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ABSTRACT12

We consider the problem ofmodeling heterogeneousmaterials wheremicro-scale dynamics and13

interactions affect global behavior. In the presence of heterogeneities in material microstructure it14

is often impractical, if not impossible, to provide quantitative characterization of material response.15

The goal of this work is to develop a Bayesian framework for uncertainty quantification (UQ) in16

material response prediction when using nonlocal models. Our approach combines the nonlocal17

operator regression (NOR) technique and Bayesian inference. Specifically, additive independent18

identically distributed Gaussian noise is employed to model the discrepancy between the nonlocal19

model and the data. Then, we use a Markov chain Monte Carlo (MCMC) method to sample20

the posterior probability distribution on parameters involved in the nonlocal constitutive law, and21

associated modeling discrepancies relative to higher fidelity computations. As an application,22

we consider the propagation of stress waves through a one-dimensional heterogeneous bar with23
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randomly generated microstructure. Several numerical tests illustrate the construction, enabling24

UQ in nonlocal model predictions. Although nonlocal models have become popular means for25

homogenization, their statistical calibration with respect to high-fidelity models has not been26

presented before. This work is a first step in this direction, focused on Bayesian parameter27

calibration.28

INTRODUCTION29

Nonlocal models have become viable alternatives to partial differential equation (PDE) models30

when the effects of the small-scale behavior of a system affect its global state (Beran and McCoy31

1970; Cherednichenko et al. 2006; Karal Jr and Keller 1964; Rahali et al. 2015; Smyshlyaev and32

Cherednichenko 2000; Willis 1985; Eringen and Edelen 1972; Bobaru et al. 2016; Du et al. 2020).33

These models are characterized by integral operators (as opposed to differentiable operators) that34

embed time and length scales in their definition; as such, they are able to capture long-range effects35

that classical PDE models fail to describe (Silling 2000). These effects include the anomalous36

behavior often observed in coarse-grained measurements of a diffusive quantity, often referred to as37

anomalous or non-standard diffusion (Du and Zhou 2011; Du et al. 2013; Suzuki et al. 2022). In the38

context of materials response, it is often impractical to solve equations at the small (e.g. micro) scale39

either because small-scale properties are not available and/or uncertain, or because the simulations40

are computationally infeasible. Thus, a lot of effort has been dedicated to homogenization theory41

with the purpose of designing large-scale models that accurately reproduce the effects of small-scale42

behavior (Zohdi 2017; Bensoussan et al. 2011; Weinan and Engquist 2003; Efendiev et al. 2013;43

Junghans et al. 2008; Kubo 1966; Santosa and Symes 1991; Dobson et al. 2010; Ortiz 1987; Moës44

et al. 1999; Hughes et al. 2004). A coarse-grained model may or may not use the same governing45

equations as the underlying small-scale model. Classical homogenization techniques, such as the46

use of effective properties to represent the constitutive properties of a heterogeneous medium,47

have achieved many successes and wide usage. However, they do not always lend themselves to48

applications in which the size scale of the heterogeneity affects the global response. An example is49

the propagation of high frequency stress waves in a composite material. As shown in Figure 1, the50
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experimentally measured wave velocity decreases with frequency (Tauchert and Guzelsu 1972).51

However, a classical model that uses the effective elastic modulus fails to reproduce this effect.52

Thus, a nonlocal approach is more compatible with this application than classical homogenization.53

54

Fig. 1. Dispersion curves for stress waves in a fiber-reinforced composite. Solid line: experiment
(redrawn from (Tauchert andGuzelsu 1972)). Dashed line: classical homogenization using effective
properties.

Due to their ability to capture internal length scales and long-range effects, nonlocal models55

are the best candidates for this type of application. (Du et al. 2020). Their use in the context of56

homogenization is not new and started with the development of homogenized models for subsurface57

transport (Suzuki et al. 2022). Here, fractional models were identified as the best means for58

describing super- and sub-diffusive effects, and a Bayesian approach was developed in (Trillos and59

Sanz-Alonso 2017), to recover the order and the diffusion coefficient of an elliptic fractional partial60

differential equation. More recently, the concept of nonlocal homogenization was successfully61

applied in the context of material response (Silling 2021; Silling et al. 2022). Furthermore, with62

the explosion of machine learning, optimized nonlocal models were designed with the purpose of63

accurately reproducing observed coarse-grained behavior and predicting unseen behavior with the64
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learnt model. We refer the reader to (You et al. 2021a; You et al. 2021b; You et al. 2022; Xu et al.65

2021; Xu et al. 2022; Zhang et al. 2022; de Moraes et al. 2022) for several examples of the use66

of machine learning for the design of homogenized nonlocal operators and the rigorous analysis67

of its learning theory (Lu et al. 2022; Zhang et al. 2022). Although successful in providing a68

deterministic answer to the homogenization problem, none of these approaches characterize the69

discrepancy between the homogenized nonlocal surrogate model and the high-fidelity microscale70

data and its associated prediction uncertainty.71

The characterization of surrogate/reduced-order modeling discrepancy is a well-known problem72

in the PDE literature, while it is absent in the context of nonlocal modeling. In this work, for the first73

time, we employ Bayesian inference for statistical estimation of nonlocal model parameters using74

statistical descriptions for the discrepancy from high-fidelity data. Bayesian methods (Laplace75

1814; Casella and Berger 1990; Jaynes 2003; Robert and Casella 2004; Sivia and Skilling 2006;76

Carlin and Louis 2011) have been used increasingly over recent decades for the probabilistic77

estimation of parameters of complex physical models given data on model predictions (Kennedy78

and O’Hagan 2001; Higdon et al. 2003; Oliver and Moser 2011; Cui et al. 2016; Hakim et al.79

2018; Huan et al. 2018). The Bayesian framework provides a number of advantages in this regard,80

including means of (1) incorporating prior information which can be based on expert knowledge,81

prior/other experiments, or physical laws; (2) using arbitrary data models that can incorporate82

physical model complexity as well as generalized statistical models of discrepancy between data and83

model predictions; and (3) model comparison, selection, and averaging, with formal connections to84

information theory. We use Bayesian inference here, relying on an adaptive Markov chain Monte85

Carlo (MCMC) construction (Haario et al. 2001), to estimate parameters of a homogenized nonlocal86

model given data from a higher-fidelity PDEmodel. In this context, the discrepancy between model87

predictions and the data is due to predictive errors resulting from the necessary approximations88

employed in the homogenized nonlocal model construction. While more sophisticated statistical89

models with nontrivial correlation structure are available for the representation of this model error90

discrepancy (Kennedy and O’Hagan 2000; Sargsyan et al. 2015; Sargsyan et al. 2019), our present91
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construction is at more basic level, where we use additive independent identically distributed (i.i.d.)92

noise to model this discrepancy.93

Specifically, we employ Bayesian calibration in the context of a one-dimensional, nonlocal wave94

equation that describes the propagation of stress waves through an elastic bar with a heterogeneous95

microstructure. We use Bayesian inference to learn the posterior probability distributions of96

parameters of the nonlocal constitutive law (i.e. the nonlocal kernel function). The data model97

includes an additive noise term to represent the discrepancy between the high-fidelity, PDE models98

and the (homogenized) nonlocal model. Our key contributions are summarized below.99

1. We introduce and demonstrate, for the first time, a Bayesian inference framework for the100

statistical estimation of parameters in homogenized nonlocal models.101

2. We develop a multi-step algorithm that enables efficient Bayesian inference via effective102

initialization and hyper-parameter choice.103

3. Through several numerical tests we illustrate the prediction capability of the proposed104

approach by successfully using the calibrated model to predict unseen scenarios.105

Paper outline. In Section “Dispersion in Heterogeneous Materials” we introduce the classical106

problem of stress wave propagation through heterogeneous materials and describe the numerical107

solver used for the generation of the high-fidelity data set. In Section “Background and Related108

Mathematical Formulation”we summarize relevant prior work on (deterministic) NOR:we describe109

the mathematical formulation of the regression problem and discuss the choice of hyperparameters110

for efficient training. In Section “Bayesian Nonlocal Operator Regression” we introduce a Bayesian111

approach to nonlocal model calibration. We break down the MCMC-based algorithm in several112

steps with the purpose of initializing distributions and hyperparameters in an efficient manner. In113

Section “Application to a Heterogeneous Elastic Bar” we illustrate through several numerical tests114

how our approach predicts the posterior distribution of the nonlocal model predictions, enabling115

uncertainty quantification (UQ) in nonlocal simulations. Section “Conclusion” concludes the paper116

with a summary of our contributions and a list of potential follow-up work.117
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DISPERSION IN HETEROGENEOUS MATERIALS118

The classical (local) wave equation for a heterogeneous one-dimensional linearly elastic body119

reads as follows:120

𝜌(𝑥) 𝜕
2𝑢

𝜕𝑡2
(𝑥, 𝑡) = 𝜕

𝜕𝑥

(
𝐸 (𝑥) 𝜕𝑢

𝜕𝑥
(𝑥, 𝑡)

)
+ 𝑓 (𝑥, 𝑡) (1)121

where 𝑥 is the reference position, 𝜌 is the mass density, 𝑡 is time, 𝑢 is the displacement, 𝑓 is122

the external load density (assumed to be continuous), and 𝐸 is the elastic modulus which varies123

spatially. The quantity in the large parentheses in (1) is the stress, usually denoted by 𝜎, which124

is continuous even if 𝐸 has jump discontinuities. If 𝐸 has a jump discontinuity at some 𝑥0, the125

following jump conditions hold:126

[𝑢] = 0,
[
𝐸
𝜕𝑢

𝜕𝑥

]
= 0 (2)127

where the notation for jumps is [𝑤] = 𝑤(𝑥+0 ) − 𝑤(𝑥
−
0 ) for any function 𝑤. In this paper, 𝐸 is128

piecewise continuous. The particular choice of the function 𝐸 (𝑥) describes a microstructure. For129

simplicity, 𝐸 is assumed to take on only one of two values, but the spatial distribution can be either130

periodic or random (see the left plot of Figure 2). Also for simplicity, 𝜌 is assumed to be constant131

throughout the body. Open subregions that have constant 𝐸 will be called “grains” in analogy with132

materials science.133

In the case of a random microstructure, the grain sizes 𝐿1 and 𝐿2 for materials 1 and 2 are134

generated using the following expressions:135

𝐿1 ∼ U
[
(1 − 𝐷) (1 − 𝜙)𝐿, (1 + 𝐷) (1 − 𝜙)𝐿

]
136

𝐿2 ∼ U
[
(1 − 𝐷) (1 + 𝜙)𝐿, (1 + 𝐷) (1 + 𝜙)𝐿

]
(3)137

where 𝐿 is the mean value of grain size and 𝜙 determines the volume fraction of material 2. In138

this work, we take 𝜙 = 0 without loss of generality. This choice leads to equal volume fractions for139

the two materials. U[𝑎, 𝑏] denotes a uniform random distribution between 𝑎 and 𝑏. 𝐷 ∈ [0, 1] is140
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the disorder parameter that determines the overall variation in grain size, with 𝐷 = 0 leading to a141

periodic microstructure with no randomness. Within any grain, any wave 𝑞 of the following form142

is a solution to (1):143

𝑣(𝑥, 𝑡) = 𝑞(𝑥 ± 𝑐𝑡), 𝑐 =

√︄
𝐸

𝜌
(4)144

where 𝑐 is the wave speed and 𝑣 = 𝜕𝑢/𝜕𝑡 is the velocity of a material point. In the expression145

𝑥 ± 𝑐𝑡, the + sign is for a “left-running” wave and the − is for a “right-running” wave. Because146

the system is linear, arbitrary superpositions of waves in both directions are also solutions to (1).147

In the direct numerical simulation (DNS) technique that is used in this study, the waves that are148

superposed are composed of finite jumps in velocity, so that 𝑞 = 𝐻 in (4), where 𝐻 denotes the149

Heaviside step function.150

2𝐿
𝜆
𝛿

Periodic (Ordered) Microstructure

Random (Disordered) Microstructure

Material 1
𝐿! = 1 − 𝜙 𝐿

Material 2
𝐿" = 1 + 𝜙 𝐿

position

time

left-running 
incident wave

right-running 
transmitted wave

right-running 
incident wave

left-running 
transmitted wave

 

Fig. 2. Left: One-dimensional heterogeneous bars composed of materials 1 and 2. The oscillatory
curve represents a moving wave with wavelength 𝜆. The horizon 𝛿 for the nonlocal continuum
model is shown. Left Top: Periodic microstructure with period 2𝐿. Left Bottom: Random
microstructure. Right: Interaction of two waves in the DNS method.

Later in the paper, the group velocity 𝑣𝑔 (𝜔) will be used, where 𝜔 is the angular frequency of151

a wave. In a homogeneous medium, the group velocity is defined by 𝑣𝑔 (𝜔) = 𝑑𝜔
𝑑𝑘
, where 𝑘 = 2𝜋/𝜆152

is the wave number. With the DNS solver or any other simulation method, the group velocity can153

be estimated from the velocity of a wave packet with nominal frequency 𝜔 (see Figure 3). In both154

periodic and random bars, the qualitative dependence of 𝑣𝑔 on 𝜔 is similar. Both have the same155

large-wavelength (low frequency) dependence, because 𝜆 ≫ 𝐿 for long waves. In particular, both156

𝑣𝑔 functions have the same curvature as 𝜔 → 0. At smaller wavelengths, there are differences in157
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Fig. 3. Left: Group velocity estimation from the speed of a wave packet, which can attenuate
significantly in random media. Right: Qualitative dependence of group velocity on frequency.

𝑣𝑔 between periodic and random systems. The method for evaluating 𝑣𝑔 from wave packets is also158

susceptible to error near the band stop, because in this limit, the wave packet attenuates to nearly159

undetectable amplitudes as it propagates.160

The goal of our learning algorithm is to learn a surrogate model that is able to predict wave161

propagation over distances that are much larger than the size of the microstructure and provide error162

estimation. For both training and validation purposes, we first generate high-fidelity data by solving163

the classical wave equation within a detailed model of the microstructure using the DNS solver,164

which will now be briefly described. For a given forcing term 𝑓 (𝑥, 𝑡) and boundary and initial165

conditions, the DNS solver provides a solution for the velocity field 𝑣(𝑥, 𝑡). The bar is discretized166

into nodes, {𝑥𝛾}, such that it takes a constant amount of time Δ𝑡𝐷𝑁𝑆 for a wave to travel through167

the cell between 𝑥𝛾 and 𝑥𝛾+1, regardless of the elastic wave speed in the material between these168

two nodes (see the right plot of Figure 2 and (You et al. 2021a) for further details). The interval169

between two adjacent nodes is called a “cell.” Each cell is composed entirely of one material or the170

other, with elastic modulus 𝐸1 or 𝐸2. These materials have wave speeds 𝑐1 and 𝑐2, given by (4).171

The right plot of Figure 2 shows left-running and right-running waves on an 𝑥-𝑡 diagram (also172

called a wave diagram). Because the wave speed varies between cells, the slopes shown in the173
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diagram also vary. Because the wave transit time within any cell must be constant, the spacing174

between DNS nodes varies along the bar. The DNS solver works by assuming that in each time175

step, a step wave travels from any node 𝛾 to its neighbor on the left or right. These neighbors also176

send waves to node 𝛾. Within any cell, the two waves obey the jump condition177

[𝜎] = ±𝜌𝑐[𝑣], (5)178

which is a consequence of the momentum balance. Note that the jump condition (5) applies to the179

moving waves, while (2) applies at fixed points. From these conditions, the DNS solver computes180

the updated material velocity 𝑣𝑛+1
𝛾 explicitly from the values at the adjacent nodes in time step 𝑛.181

Details of the DNS solver can be found in (Silling 2021; You et al. 2021a).182

After the velocity 𝑣𝑛+1
𝛾 is computed, the displacement is updated by integrating the velocity over183

time:184

𝑢𝐷𝑁𝑆 (𝑥𝛾, 𝑡𝑛+1) ≈ 𝑢𝑛+1
𝛾 = 𝑢𝑛𝛾 + Δ𝑡𝐷𝑁𝑆𝑣

𝑛+1
𝛾 .185

The displacements are mapped onto a mesh with constant spacing by interpolation between the186

irregularly spaced DNS node positions. The mapped displacements are used as training and187

validation data as described below.188

We note that the DNS solver generates an exact wave velocity, allowing us to model the propaga-189

tion of waves through many thousands of microstructural interfaces. The associated displacement190

is computed approximately and then interpolated onto the high-fidelity grid; this process potentially191

introduces numerical errors. Despite this fact, we consider these errors negligible and treat the192

interpolated displacements as the ground-truth measurements.193

BACKGROUND AND RELATED MATHEMATICAL FORMULATION194

In this section we introduce the nonlocal surrogate model used in this work and the proposed195

Bayesian learning approach. Consider the simulation on a spatial domain Ω and time domain196

[0, 𝑇], and 𝑆 observations of forcing terms 𝑓 𝑠 (𝑥, 𝑡) and their corresponding high-fidelity solution197

and/or experimental measurements of displacement fields 𝑢𝑠
𝐷𝑁𝑆

(𝑥, 𝑡). In the following we employ198
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these solutions as the ground-truth dataset, denoted asD := {𝑢𝑠
𝐷𝑁𝑆

}𝑆
𝑠=1. Here we assume that both199

𝑓 𝑠 and 𝑢𝑠
𝐷𝑁𝑆

measurements are provided on a set of time instances 𝑡𝑛 ∈ [0, 𝑇] and discretization200

points 𝑥𝑖 ∈ Ω. Without loss of generality, we assume that all measurements are provided on201

uniformly spaced spatial and time instances, with fixed spatial grid size Δ𝑥 and time step size202

Δ𝑡, and we denote the collection of all discretization points as 𝜒 = {𝑥𝑖}𝐿𝑖=1. The overall goal of203

nonlocal operator regression is to provide a nonlocal model surrogate for the simulation of wave204

propagation in heterogeneous materials. Thus, we claim that given the same forcing terms 𝑓 𝑠 (𝑥, 𝑡),205

the corresponding solution, 𝑢𝑠
𝑁𝐿

(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω× [0, 𝑇], of the nonlocal surrogate model provides206

a good approximation of the ground-truth data, i.e., 𝑢𝑠
𝑁𝐿

(𝑥, 𝑡) ≈ 𝑢𝑠
𝐷𝑁𝑆

(𝑥, 𝑡).207

Throughout this paper, for any vector v = [𝑣1, · · · , 𝑣𝑞] ∈ R𝑞, we use | |v| |𝑙2 to denote its 𝑙2

norm, i.e., | |v| |𝑙2 :=
√︃∑𝑞

𝑖=1 𝑣
2
𝑖
. For a function 𝑢(𝑥, 𝑡) with (𝑥, 𝑡) ∈ Ω × [0, 𝑇], its discrete 𝑙2 norm

is defined as

| |𝑢 | |𝑙2 (Ω×[0,𝑇]) :=

√√√
Δ𝑡Δ𝑥

𝑇/Δ𝑡∑︁
𝑛=0

∑︁
𝑥𝑖∈𝜒

𝑢2(𝑥𝑖, 𝑡𝑛),

which can be interpreted as a numerical approximation of the 𝐿2(Ω × [0, 𝑇]) norm of 𝑢. Finally,208

in what follows, I𝑝 denotes the 𝑝 × 𝑝 identity matrix; with an abuse of notation, when there is no209

confusion on its dimension, we simply use I to denote the identity matrix.210

Nonlocal Operator Regression: learning nonlocal kernels211

In this section we review the general nonlocal operator regression (NOR) approach developed in212

(You et al. 2021a). The goal of NOR is to find a nonlocal model that best describes the evolution of213

a homogenized quantity such as the propagation of stress waves in highly heterogeneous materials.214

NOR starts from the assumption that a high-fidelity data set, satisfying an underlying high-215

fidelity model, is available. Given a force loading term 𝑓 (𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω× [0, 𝑇], proper boundary216

conditions and initial conditions, we represent the high-fidelity (HF) model as:217

𝜕2𝑢𝐻𝐹

𝜕𝑡2
(𝑥, 𝑡) − L𝐻𝐹 [𝑢𝐻𝐹] (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡). (6)218
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Here, L𝐻𝐹 is the HF operator that accounts for the detailed microstructure, and 𝑢𝐻𝐹 (𝑥, 𝑡) is219

the HF solution which can be provided either from fine-scale simulations or from experimental220

measurements in practice. In this work, we take 𝑢𝐻𝐹 as the numerical solution generated from the221

DNS solver as described in Section “Dispersion in Heterogeneous Materials”, i.e., 𝑢𝐻𝐹 = 𝑢𝐷𝑁𝑆.222

Analogously, we will refer to the homogenized effective nonlocal (NL) model as the homogenized223

surrogate, and assume it has the form224

𝜕2𝑢𝑁𝐿

𝜕𝑡2
(𝑥, 𝑡) − L𝑁𝐿 [𝑢𝑁𝐿] (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡), (7)225

where the operator L𝑁𝐿 := L𝐾C is an integral operator associated with a nonlocal kernel 𝐾C:226

L𝐾C [𝑢] (𝑥, 𝑡) =
∫
Ω

𝐾C(𝑥, 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑦, (8)227

and 𝑢𝑁𝐿 (𝑥, 𝑡) is the nonlocal solution. Here C := {𝐶𝑚}𝑀𝑚=0 ∈ R𝑀+1 is the parameter set of kernel228

𝐾C, which will be optimized during training. As shown in (Du et al. 2017), the second-order-in-229

time nonlocal equation in (7) is guaranteed to be well-posed as far as the kernel 𝐾C is uniformly230

Lipschitz continuous. That means, the resultant surrogate model is guaranteed to be solvable in231

applications, when proper boundary conditions and numerical discretizationmethods are employed.232

Following (You et al. 2021b; You et al. 2022; You et al. 2021a), we choose to take 𝐾C as a radial,233

sign-changing, nonlocal kernel function, compactly supported on the ball of radius 𝛿 centered at234

𝑥, i.e., 𝐵𝛿 (𝑥). Then, we parameterize the nonlocal kernel 𝐾C as a linear combination of Bernstein235

basis polynomials:236

𝐾C

(
|𝜉 |
𝛿

)
=

𝑀∑︁
𝑚=0

𝐶𝑚

𝛿𝑑+2𝐵𝑚,𝑀

(����𝜉𝛿 ����) , (9)237

where 𝑑 = 1 is the dimension of the physical domain, Ω, and the Bernstein basis functions are

defined as

𝐵𝑚,𝑀 (𝜉) =
©­­«
𝑀

𝑚

ª®®¬ 𝜉𝑚 (1 − 𝜉)𝑀−𝑚 for 0 ≤ 𝜉 ≤ 1.
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This choice ensures that the learnt model can be readily applied in simulation problems.238

To obtain the optimal nonlocal surrogate operator L𝑁𝐿 , the nonlocal operator regression ap-

proach seeks the best C through an optimization-based procedure. For each forcing term 𝑓 𝑠 (𝑥, 𝑡),

let 𝑢𝑠
𝑁𝐿,C(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω × [0, 𝑇] be the nonlocal solution of (7) corresponding to a specific set

of kernel parameter C := {𝐶𝑚}𝑀𝑚=0. We aim to find the optimal parameter set C such that the

(approximated) nonlocal solution 𝑢𝑠
𝑁𝐿,C(𝑥𝑖, 𝑡

𝑛) for a common loading 𝑓 𝑠 is as close as possible

to the HF solution 𝑢𝑠
𝐷𝑁𝑆

(𝑥𝑖, 𝑡𝑛), for all provided observation pairs {(𝑢𝑠𝐷𝑁𝑆, 𝑓
𝑠)}𝑆

𝑠=1 and 𝑥𝑖 ∈ 𝜒,

𝑡𝑛 = 0, · · · , 𝑇/Δ𝑡. To do so, for each given forcing term 𝑓 𝑠 (𝑥, 𝑡) we need to provide a numerical

approximation of its corresponding nonlocal solution, (𝑢𝑠
𝑁𝐿,C)

𝑛
𝑖
≈ 𝑢𝑠

𝑁𝐿,C(𝑥𝑖, 𝑡
𝑛). Here, with the

initial condition (𝑢𝑠
𝑁𝐿,C)

0
𝑖

:= 𝑢𝑠
𝐷𝑁𝑆

(𝑥𝑖, 0) and proper boundary conditions, we discretize (7) with

the central difference scheme in time and Riemann sum approximation of the nonlocal operator in

space, and obtain the approximated nonlocal solution at time 𝑡𝑛+1 as follows:

(𝑢𝑠𝑁𝐿,C)
𝑛+1
𝑖 :=2(𝑢𝑠𝑁𝐿,C)

𝑛
𝑖 − (𝑢𝑠𝑁𝐿,C)

𝑛−1
𝑖 + Δ𝑡2 𝑓 𝑠 (𝑥𝑖, 𝑡𝑛) + Δ𝑡2

(
L𝐾C,ℎ [𝑢𝑠𝑁𝐿,C]

)𝑛
𝑖

=2(𝑢𝑠𝑁𝐿,C)
𝑛
𝑖 − (𝑢𝑠𝑁𝐿,C)

𝑛−1
𝑖 + Δ𝑡2 𝑓 𝑠 (𝑥𝑖, 𝑡𝑛)

+ Δ𝑡2Δ𝑥
∑︁

𝑥 𝑗∈𝐵𝛿 (𝑥𝑖)∩𝜒
𝐾C( |𝑥 𝑗 − 𝑥𝑖 |) ((𝑢𝑠𝑁𝐿,C)

𝑛
𝑗 − (𝑢𝑠𝑁𝐿,C)

𝑛
𝑖 ), (10)

where L𝐾C,ℎ is an approximation of L𝐾C by the Riemann sum with uniform grid spacing Δ𝑥. The

optimal parameters C∗ = {𝐶∗
𝑚} and the corresponding nonlocal surrogate operator L𝑁𝐿 := L𝐾C∗

can be obtained by considering the normalized squared-loss of displacement in Ω × [0, 𝑇]:

C∗ = argmin
C

𝑆∑︁
𝑠=1

������𝑢𝑠
𝑁𝐿,C − 𝑢𝑠

𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])����𝑢𝑠

𝐷𝑁𝑆

����2
𝑙2 (Ω×[0,𝑇])

+ 𝜆 | |C| |2
𝑙2
, (11)

s.t. L𝐾C satisfies physics-based constraints. (12)

Here 𝜆 is a regularization parameter, and (12) depends on the partial physical knowledge of the239

heterogeneous material, which we will discuss later on in Section “Physics Constraints”.240
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Initialization for Parameters and Hyper-parameters241

We note that the solution of (10) has numerical errors accumulated from 𝑡 = 0 to 𝑡 = 𝑇 ,

and hence in practice the optimization problem (11) aims to minimize the accumulated error of

displacement fields. This setting was originally proposed and employed in (You et al. 2021a),

where the authors found that minimizing the accumulated error would help to learn physically-

stable surrogate models, and such a stability plays a critical role in long-term prediction tasks. On

the other hand, we also point out that in some application scenarios one can also choose to minimize

the step-by-step time integration error. In (Lu et al. 2022; Zhang et al. 2022), an approximated

nonlocal solution with one-step temporal error was considered:

(𝑢̃𝑠𝑁𝐿,C)
𝑛+1
𝑖 := 2(𝑢𝑠𝐷𝑁𝑆)

𝑛
𝑖 − (𝑢𝑠𝐷𝑁𝑆)

𝑛−1
𝑖 + Δ𝑡2 𝑓 𝑠 (𝑥𝑖, 𝑡𝑛) + Δ𝑡2

(
L𝐾C,ℎ [𝑢𝑠𝐷𝑁𝑆]

)𝑛
𝑖

= 2(𝑢𝑠𝐷𝑁𝑆)
𝑛
𝑖 − (𝑢𝑠𝐷𝑁𝑆)

𝑛−1
𝑖 + Δ𝑡2 𝑓 𝑠 (𝑥𝑖, 𝑡𝑛) + Δ𝑡2Δ𝑥

∑︁
𝑥 𝑗∈𝐵𝛿 (𝑥𝑖)∩𝜒

𝐾C( |𝑥 𝑗 − 𝑥𝑖 |) ((𝑢𝑠𝐷𝑁𝑆)
𝑛
𝑗 − (𝑢𝑠𝐷𝑁𝑆)

𝑛
𝑖 ),

where (𝑢𝑠
𝐷𝑁𝑆

)𝑛
𝑖

:= 𝑢𝑠
𝐷𝑁𝑆

(𝑥𝑖, 𝑡𝑛) represents the high-fidelity solution. A step-by-step loss of dis-

placement is then formulated as

C̃∗ = argmin
C

𝑆∑︁
𝑠=1

������𝑢̃𝑠
𝑁𝐿,C − 𝑢𝑠

𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])����𝑢𝑠

𝐷𝑁𝑆

����2
𝑙2 (Ω×[0,𝑇])

+ 𝜆 | |C| |2
𝑙2
, (13)

s.t. L𝐾C satisfies physics-based constraints. (14)

The loss function in (13) is in fact a quadratic equation with respect to C. As such, NOR is242

equivalent to a linear regression model and solving (13) becomes a trivially linear problem. This243

fact makes hyper-parameter tuning, such as the selection of the regularization parameter 𝜆, more244

efficient in (13). For instance, one can identify the optimal 𝜆 as the maximizer of the curvature of245

the curve, following the L-curve method (Hansen 2000; Lang and Lu 2022; Lu et al. 2022). Let 𝑙246

be a parametrized curve in R2, satisfying247

𝑙 (𝜆) = (𝛼(𝜆), 𝛽(𝜆)) := (log(E(C∗(𝜆))), log(R(C∗(𝜆))), (15)248
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where E(C∗(𝜆)) :=
∑𝑆
𝑠=1

������𝑢̃𝑠
𝑁𝐿,C∗ (𝜆)−𝑢

𝑠
𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇 ])

| |𝑢𝑠𝐷𝑁𝑆 | |2𝑙2 (Ω×[0,𝑇 ])
is the loss function without regularization, and

R(C∗(𝜆)) is the regularization term, which is taken as | |C∗(𝜆) | |2
𝑙2
in (13). Here, we used C∗(𝜆)

to highlight the fact that the optimal parameter, C∗, depends on the choice of the regularization

parameter 𝜆. The optimal parameter for 𝜆 then taken as the maximizer of the curvature of 𝑙 as

𝜆∗ = argmax
𝜆

𝛼′𝛽′′ − 𝛼′𝛽′′

(𝛼′ 2 + 𝛽′ 2)3/2 . (16)

This optimal parameter 𝜆∗ balances the loss E and the regularization. For further details of the249

L-curve method and discussions, we refer interested readers to (Hansen 2000).250

In this work, we use the step-by-step loss formulation in (13) to provide an efficient estimation251

for C and to select the optimal regularization parameter 𝜆. Then, the selected parameter set and252

hyperparameter will be employed in the optimization problem with accumulated loss, as an initial253

guess for the optimization solver and an estimated regularization parameter, respectively. Further254

details and discussions will be provided in Section “A Two-Phase Learning Algorithm”.255

Physics Constraints256

As illustrated in (You et al. 2021a), when some physical knowledge is available, such as the257

effective wave speed for infinitely long wavelengths and the curvature of the dispersion curve in the258

low-frequency limit, this knowledge can be incorporated into the optimization problem as physics-259

based constraints in (12) and (14). In particular, when the effective wave speed for infinitely long260

wavelengths, 𝑐0, is available, the corresponding physics-based constraint is:261

∫ 𝛿

0
𝜉2𝐾C( |𝜉 |)𝑑𝜉 = 𝜌𝑐2

0, (17)262

where 𝜌 is the effective material density. Discretizing (17) by Riemann sum, we obtain the first263

constraint on {𝐶𝑚}:264

𝜌𝑐2
0 =

𝑀∑︁
𝑚=0

𝐶𝑚

⌊𝛿/Δ𝑥⌋∑︁
𝜂=1

𝜂2Δ𝑥3

𝛿3 𝐵𝑚,𝑀

(����𝜂Δ𝑥𝛿 ����) = 𝑀∑︁
𝑚=0

𝐶𝑚𝐴1𝑚 (18)265

14 Fan, June 30, 2023



where 𝐴1𝑚 :=
∑⌊𝛿/Δ𝑥⌋
𝜂=1

𝜂2Δ𝑥3

𝛿3 𝐵𝑚,𝑀

(����𝜂Δ𝑥𝛿 ����) . Furthermore, when the curvature of the dispersion curve266

in the low-frequency limit, 𝑅, is also available, the corresponding physics-based constraint is:267

∫ 𝛿

0
𝜉4𝐾C( |𝜉 |)𝑑𝜉 = −4𝜌𝑐3

0𝑅. (19)268

Discretizing (19) with the Riemann sum approximation yields the second constraint on {𝐶𝑚}:269

− 4𝜌𝑐3
0𝑅 =

𝑀∑︁
𝑚=0

𝐶𝑚

⌊𝛿/Δ𝑥⌋∑︁
𝜂=1

𝜂4Δ𝑥5

𝛿3 𝐵𝑚,𝑀

(����𝜂Δ𝑥𝛿 ����) = 𝑀∑︁
𝑚=0

𝐶𝑚𝐴2𝑚 (20)270

where 𝐴2𝑚 :=
∑⌊𝛿/Δ𝑥⌋
𝜂=1

𝜂4Δ𝑥5

𝛿3 𝐵𝑚,𝑀

(����𝜂Δ𝑥𝛿 ����) . These two physics-based equations are imposed as linear271

constraints on {𝐶𝑚}. In this work, we consider the heterogeneous bar composed of alternating272

layers of two dissimilar materials, with (averaged) layer sizes 𝐿1 = (1 − 𝜙)𝐿, 𝐿2 = (1 + 𝜙)𝐿 for273

materials 1 and 2, respectively. Then the effective material density, Young’s modulus and the274

wave speed are given by 𝜌 = ((1 − 𝜙)𝜌1 + (1 + 𝜙)𝜌2)/2, 𝐸 = 2/((1 − 𝜙)𝐸−1
1 + (1 + 𝜙)𝐸−1

2 ), and275

𝑐0 =
√︁
𝐸/𝜌. 𝑅 is the second derivative of the wave group velocity with respect to frequency at𝜔=0.276

As discussed in Section “Dispersion in Heterogeneous Materials”, the group velocity is estimated277

from the speed of wave packets using the DNS solver. For the periodic microstructure, the curvature278

𝑅 of the function 𝑣𝑔 (𝜔) at 𝜔 = 0 is found by numerically differentiating this function. The value279

obtained for the present bar composition is 𝑅 =
𝑑2𝑣𝐷𝑁𝑆𝑔

𝑑𝜔2 (0) = −0.006135. The same value of 𝑅280

is also employed for the random microstructure because, as discussed in Section “Dispersion in281

HeterogeneousMaterials”, the same dispersion properties apply to both periodic and randommedia282

with the same 𝜙 and 𝐿 if the wavelength is much greater than the microstructural length scale.283

When applying (18) and (20) in the optimization problem (11) or (13), we reformulate this

constrained optimization problem such that an unconstrained optimization problem is obtained.

In particular, denoting C𝐿 := [𝐶0, · · · , 𝐶𝑀−2]𝑇 and C𝑅 := [𝐶𝑀−1, 𝐶𝑀]𝑇 , (18) and (20) can be
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rewritten as

A𝐿C𝐿 + A𝑅C𝑅 =


𝜌𝑐2

0

−4𝜌𝑐3
0𝑅

 , where A𝐿 :=


𝐴10 · · · 𝐴1,𝑀−2

𝐴20 · · · 𝐴2,𝑀−2

 , A𝑅 :=


𝐴1,𝑀−1 𝐴1,𝑀

𝐴2,𝑀−1 𝐴2,𝑀

 .
Hence, one can eliminate C𝑅 by writting it as a linear expression in C𝐿:284

C𝑅 = A−1
𝑅

©­­«


𝜌𝑐2
0

−4𝜌𝑐3
0𝑅

 − A𝐿C𝐿

ª®®¬ , (21)285

and substituting into the optimization problem (11) or (13). Therefore, in the later sections we only286

need to solve for C𝐿 , and will demonstrate the algorithm for the unconstrained problem.287

BAYESIAN NONLOCAL OPERATOR REGRESSION288

Given observations of forcing terms 𝑓 𝑠 (𝑥, 𝑡), the corresponding DNS solution of displacement289

fields at time instance 𝑡𝑛 ∈ [0, 𝑇], and discretization points 𝑥𝑖 ∈ 𝜒, in this section we formulate the290

Bayesian inference problem. Here, we stress that the proposed learning approach does not require291

the knowledge of the high-fidelity model, but only the availability of high-fidelity data at sparse292

points in the computational domain. Thus, it is readily usable when only sparse experimental293

measurements are available. Moreover, due to the fact that the target surrogate homogenized294

model is supposed to act at a larger scale without resolving the detailed microstructure, the model295

discrepancy would be the largest contributor to the overall modeling error and correspondingly the296

predictive uncertainty. For the 𝑠−th observation, we model the discrepancy between 𝑢𝑠
𝑁𝐿,C(𝑥𝑖, 𝑡

𝑛)297

and the ground truth measurement 𝑢𝑠
𝐷𝑁𝑆

(𝑥𝑖, 𝑡𝑛) as additive independent unbiased Gaussian random298

noise 𝜖 , with:299

𝑢𝑠𝐷𝑁𝑆 (𝑥𝑖, 𝑡
𝑛) = 𝑢𝑠𝑁𝐿,C(𝑥𝑖, 𝑡

𝑛) + 𝜖𝑠,𝑖,𝑛, 𝜖𝑠,𝑖,𝑛 ∼ N(0, 𝜎̃2
𝑠 ). (22)300

Here, with𝜎 a constant independent of 𝑠, 𝜎̃𝑠 := 𝜎 ·
������𝑢𝑠

𝑁𝐿,C(𝑥, 𝑡)
������
𝑙2 (Ω×[0,𝑇])

, andN(0, 𝜎̃2
𝑠 ) represents

the normal distribution with zero mean and standard deviation 𝜎̃𝑠. Thus, 𝜎 is the standard deviation

of
{
𝑢𝑠
𝐷𝑁𝑆

− 𝑢𝑠
𝑁𝐿,C

}𝑆
𝑠=1
after normalization w.r.t. the 𝑙2-norm of

{
𝑢𝑠
𝑁𝐿,C

}𝑆
𝑠=1
. Here, we point out
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that one of the ultimate goals is to use the learnt model as a homogenized surrogate to predict

the material response under unseen loading and boundary/initial conditions and when high-fidelity

measurements or models are not available. Thus, we choose to normalize with respect to the

(computable) nonlocal surrogate solution instead of the (unlikely available or expensive to compute)

high-fidelity data. For each observation, the likelihood function at (𝑥𝑖, 𝑡𝑛) is

𝑓 (𝑢𝑠𝐷𝑁𝑆 (𝑥𝑖, 𝑡
𝑛) |C) = 1√︁

2𝜋𝜎̃2
𝑠

exp
©­­«−

���𝑢𝑠
𝑁𝐿,C(𝑥𝑖, 𝑡

𝑛) − 𝑢𝑠
𝐷𝑁𝑆

(𝑥𝑖, 𝑡𝑛)
���2

2𝜎̃2
𝑠

ª®®¬ .
Therefore, given the independent noise construction, the likelihood for all the observations is301

𝑓 (D|C) =
𝑆,𝐿,𝑇/Δ𝑡∏
𝑠,𝑖,𝑛=1


1√︂

2𝜋𝜎2
������𝑢𝑠

𝑁𝐿,C

������2
𝑙2 (Ω×[0,𝑇])

exp
©­­­«−

���𝑢𝑠
𝑁𝐿,C(𝑥𝑖, 𝑡

𝑛) − 𝑢𝑠
𝐷𝑁𝑆

(𝑥𝑖, 𝑡𝑛)
���2

2𝜎2
������𝑢𝑠

𝑁𝐿,C

������2
𝑙2 (Ω×[0,𝑇])

ª®®®¬

. (23)302

We employ priors as a means of regularization. We use a multivariate normal prior distribution303

on the kernel parameter,C ∼ N(Ĉ, 𝜎̂2

𝜆
I). Here Ĉ is the learnt parameter from the deterministic non-304

local operator regression technique introduced in Section “Background and Related Mathematical305

Formulation”, 𝜎̂ is defined as the 𝜎2 estimated in Step 1b of Algorithm 1 below, and 𝜆 is the chosen306

regularization parameter from the L-curve method, to achieve a good balance between the prior307

and the likelihood contributions. Since the normalized standard deviation of model discrepancy,308

𝜎, is anticipated to be smaller than 1, in our implementation we infer log(𝜎) instead of 𝜎, and limit309

its range to [−10, 0]. Moreover, since we have no other prior knowledge about log(𝜎), we assume310

that its prior satisfies a uniform random distribution, i.e., log(𝜎) ∼ U[−10, 0]. Then, combining311

the prior and likelihood in (23), we define the (unnormalized) posterior 𝜋(C|D) ∝ 𝑓 (D|C)𝑃(C),312
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and obtain the associated negative log-posterior formulation after eliminating the constant terms:313

− 𝑙𝑜𝑔(𝜋(C|D)) =
𝑆∑︁
𝑠=1


������𝑢𝑠

𝑁𝐿,C − 𝑢𝑠
𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])

2𝜎2
������𝑢𝑠

𝑁𝐿,C

������2
𝑙2 (Ω×[0,𝑇])

+ 𝑁 log
(
𝜎

������𝑢𝑠𝑁𝐿,C������
𝑙2 (Ω×[0,𝑇])

) + 𝜆
����C − Ĉ

����2
𝑙2

2𝜎̂2 ,

(24)314

where 𝑁 = 𝐿 𝑇
Δ𝑡
is the total number of measurements for each observation pair, ( 𝑓 𝑠, 𝑢𝑠

𝐷𝑁𝑆
).315

A Two-Phase Learning Algorithm316

To learn the posterior distribution (24), we employ an adaptive Markov chain Monte Carlo317

(MCMC) method (Haario et al. 2001; Andrieu et al. 2003; Andrieu and Thoms 2008; Debusschere318

et al. 2017). MCMC is an effective applied Bayesian estimation procedure, generating random319

samples from the target posterior distribution. Particularly in high dimensional chains, MCMC320

benefits from a good initial guess to reduce burn-in. In order to accelerate convergence and obtain321

a good sampling of the posterior, we provide a good initial parameter estimate to start the chain.322

To this end, a two-phase learning algorithm is proposed, with the main steps summarized in323

Algorithm 1. In this algorithm, an initialization phase, denoted as phase 1, is proposed before324

the MCMC algorithm in phase 2, with the purpose of providing good initial values that are325

close enough to the maximum a posteriori (MAP) parameter estimate from (24). Through the326

initialization technique, one can also avoid manual parameter tuning.327

Phase 1 is composed of a sequence of deterministic optimization problems. First, in step 1a)

we consider the quadratic problem of minimizing the step-by-step error

C1 = argmin
C

𝑆∑︁
𝑠=1

������𝑢̃𝑠
𝑁𝐿,C − 𝑢𝑠

𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])����𝑢𝑠

𝐷𝑁𝑆

����2
𝑙2 (Ω×[0,𝑇])

+ 𝜆 | |C| |2
𝑙2
,

s.t. L𝐾C satisfies physics-based constraints,

to provide estimates for the parameter solution, C1. Based on the estimated parameter, the approx-328

imated nonlocal solution 𝑢𝑠
𝑁𝐿,C1

can then be obtained following the numerical scheme (10), and an329
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Algorithm 1 A Two-Phase Learning Algorithm
1: Find a good initial state

1a) Learning C1 by minimizing the step-by-step error via:

C1 := argmin
C

𝑆∑︁
𝑠=1

������𝑢̃𝑠
𝑁𝐿,C − 𝑢𝑠

𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])����𝑢𝑠

𝐷𝑁𝑆

����2
𝑙2 (Ω×[0,𝑇])

+ 𝜆 | |C| |2
𝑙2
. (25)

Then calculate 𝜎1 as the standard deviation of 𝑢𝑁𝐿,C1 − 𝑢𝐷𝑁𝑆, and update the regularization
parameter, 𝜆1, following (29).

1b) With initial values C1 and regularization parameter 𝜆1 obtained from step 1a), find
C2 and 𝜎2 as follows:

(C2, 𝜎2) := argmin
C,𝜎

𝑆∑︁
𝑠=1


������𝑢𝑠

𝑁𝐿,C − 𝑢𝑠
𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])

2𝜎2
����𝑢𝑠

𝐷𝑁𝑆

����2
𝑙2 (Ω×[0,𝑇])

+ 𝑁 log
(
𝜎
����𝑢𝑠𝐷𝑁𝑆����𝑙2 (Ω×[0,𝑇]))

+𝜆1
| |C| |2

𝑙2

2𝜎2
1
.

(26)
1c)With the initial values Ĉ := C2, determine the regularization parameter by solving the

linear regression problem with the quadratic loss function:

C3 := argmin
C

𝑆∑︁
𝑠=1

������𝑢̃𝑠
𝑁𝐿,C − 𝑢𝑠

𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])������𝑢𝑠

𝑁𝐿,C

������2
𝑙2 (Ω×[0,𝑇])

+ 𝜆
����C − Ĉ

����2
𝑙2
, (27)

and update the regularization parameter 𝜆2 following (34).
2: Perform MCMC

With the initial values (C2, 𝜎2) and the regularization parameter 𝜆2 from phase 1, run
MCMCand sample the posterior 𝑝(C, 𝜎 |D), where the negative log-posterior, up to an additive
constant, is given by

𝑆∑︁
𝑠=1


������𝑢𝑠

𝑁𝐿,C − 𝑢𝑠
𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])

2𝜎2
������𝑢𝑠

𝑁𝐿,C

������2
𝑙2 (Ω×[0,𝑇])

+ 𝑁 log
(
𝜎
����𝑢𝑠𝑁𝐿 ����𝑙2 (Ω×[0,𝑇]))

 + 𝜆2
| |C − C2 | |2𝑙2

2𝜎2
2

. (28)

3: Postprocesing
Extract effective samples from the MCMC chain, and estimate statistical moments of the

corresponding solutions and other quantities of interests.
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estimate of the parameter 𝜎, which is denoted as 𝜎1, is provided by calculating the (normalized)330

standard deviation of 𝑢𝑁𝐿,C1 − 𝑢𝐷𝑁𝑆. We also estimate the regularization parameter, 𝜆1, as:331

𝜆1 :=
𝑆∑︁
𝑠=1

������𝑢𝑠
𝑁𝐿,C1

− 𝑢𝑠
𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])����𝑢𝑠

𝐷𝑁𝑆

����2
𝑙2 (Ω×[0,𝑇]) | |C1 | |2𝑙2

. (29)332

Intuitively, this parameter guarantees that the accumulated error and the regularization term have

similar scales. Here, we use the accumulated error instead of the step-by-step error, to be con-

sistent with the MCMC formulation (24). Then, based on the estimated parameter C1 and the

regularization parameter 𝜆1, in step 1b) we solve a deterministic optimization problem:

(C2, 𝜎2) := argmin
C,𝜎

𝑆∑︁
𝑠=1


������𝑢𝑠

𝑁𝐿,C − 𝑢𝑠
𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])

2𝜎2
����𝑢𝑠

𝐷𝑁𝑆

����2
𝑙2 (Ω×[0,𝑇])

+ 𝑁 log
(
𝜎
����𝑢𝑠𝐷𝑁𝑆����𝑙2 (Ω×[0,𝑇]))

 + 𝜆1
| |C| |2

𝑙2

2𝜎2
1
,

(30)

s.t. L𝐾C satisfies physics-based constraints. (31)

The above formulation acts as an approximation of the closed form of the negative log-posterior

formulation in (24). In fact, the first two terms in the loss function aim to provide an approximation

of the first two terms in (24), except that the standard deviation is normalized with respect to the

DNS data. The last term comes from the multivariate normal prior distribution assumption on the

kernel parameter, which acts as a regularization. This step is solved with the L-BFGS method.

Then, based on the estimated solution C2, in step 1c) we set Ĉ := C2 consider the quadratic

formulation which can be seen as an approximation of the first and last term in (24):

C3 := argmin
C

𝑆∑︁
𝑠=1

������𝑢̃𝑠
𝑁𝐿,C − 𝑢𝑠

𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])����𝑢𝑠

𝐷𝑁𝑆

����2
𝑙2 (Ω×[0,𝑇])

+ 𝜆
����C − Ĉ

����2
𝑙2
, (32)

s.t. L𝐾C satisfies physics-based constraints, (33)

20 Fan, June 30, 2023



and can be solved as a linear problem. Here, the L-curve method is again employed with the333

loss function defined as E(C(𝜆)) :=
∑𝑆
𝑠=1

������𝑢̃𝑠
𝑁𝐿,C(𝜆)−𝑢

𝑠
𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇 ])

| |𝑢𝑠𝐷𝑁𝑆 | |2𝑙2 (Ω×[0,𝑇 ])
and the regularization term as334

R(C(𝜆)) :=
����C(𝜆) − Ĉ

����2
𝑙2
. With the estimated solution C3, we then update the regularization335

parameter for phase 2, which will be denoted as 𝜆2:336

𝜆2 :=
𝑆∑︁
𝑠=1

������𝑢𝑠
𝑁𝐿,C3

− 𝑢𝑠
𝐷𝑁𝑆

������2
𝑙2 (Ω×[0,𝑇])������𝑢𝑠

𝑁𝐿,C3

������2
𝑙2 (Ω×[0,𝑇])

| |C3 − C2 | |2𝑙2
. (34)337

Finally, with the initial values (C2, 𝜎2) and the regularization parameter 𝜆2 from phase 1, we338

apply adaptive MCMC using the log-posterior (24), where the pair (Ĉ, 𝜎̂) as well as the initial339

guess of (C, 𝜎) are set as (C2, 𝜎2). Our adaptive MCMC is implemented using the Uncertainty340

Quantification toolkit (UQTk) (Debusschere et al. 2004; Debusschere et al. 2017).341

APPLICATION TO A HETEROGENEOUS ELASTIC BAR342

In this section, we examine the efficacy of the proposed BNOR model and the two-phase343

learning algorithm, by considering the stress wave propagation problem described in Section344

“Dispersion in Heterogeneous Materials”. Here, we seek a nonlocal homogenized model for the345

stress wave propagation in one-dimensional heterogeneous bars. Two exemplar heterogeneous bars346

are considered, one with periodic microstructure and one with random microstructure. For this347

problem, the goal is to obtain an effective nonlocal surrogate model from ground truth datasets348

generated by the DNS solver, acting at a much larger scale than the size of the microstructure.349

Since this problem has no ground-truth nonlocal kernel, we evaluate the surrogate by measuring its350

effectiveness in reproducingDNS data in applications that are subject to different loading conditions351

with a much longer time than the problems used as training data. To directly examine the extent352

to which our surrogate model reproduces the dispersion properties in the heterogeneous material,353

we also compare the group velocity curves from our model with the curves computed with DNS.354

Finally, we require that the learnt surrogate should provide a physically stable material model.355

To check this, we report the dispersion curve, whose positivity indicates that the learnt nonlocal356
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model is physically stable. Besides the predicted MAP solutions, the Bayesian model also provides357

estimation of the predictive uncertainty for all above quantities of interests.358

In this work, we use a NVIDIA 3060 GPU for all training tasks. In the initialization phase,359

phase 1a and phase 1c take a few seconds to complete and phase 1b takes approximately 1 hour. We360

run phase 2 for approximately 3 days to generate 300,000 MCMC samples, ensuring that enough361

(approximately 4,000) effective samples are obtained.362

Example 1: A Bar with Periodic Microstructure363

Data generation and settings. First, we consider a heterogeneous bar with a periodic microstruc-364

ture. As illustrated in the left top plot in Figure 2, the bar is a layered medium composed of two365

components, with the size of each layer 𝐿 = 0.2. Components 1 and 2 have the same density 𝜌 = 1366

and Young’s moduli 𝐸1 = 1 and 𝐸2 = 0.25, respectively. For the purpose of training and validation,367

we generate the DNS dataset with three types of data, and use the first two for training and the last368

one for validation of our algorithm. For all data we set the discretization parameters for the DNS369

solver as Δ𝑡𝐷𝑁𝑆 = 0.01, max{Δ𝑥𝐷𝑁𝑆} = 0.01, and consider the symmetric domain Ω = [−𝑏, 𝑏].370

In what follows, 𝑢 represents the displacement, 𝑣 the velocity, and 𝑓 an external loading. The three371

types of data are chosen to follow a similar setting as in (You et al. 2021a):372

Type 1: Oscillating source (20 observations). We set 𝑏 = 50. The bar starts from rest such that373

𝑣(𝑥, 0) = 𝑢(𝑥, 0) = 0, and an oscillating loading is applied with 𝑓 (𝑥, 𝑡)= 𝑒−( 2𝑥
5𝑘𝐿 )2

𝑒
−
(
𝑡−𝑡0
𝑡𝑝

)2

cos2
(

2𝜋𝑥
𝑘𝐿

)
374

with 𝑘 = 1, 2, . . . , 20. Here we take 𝑡0 = 𝑡𝑝 = 0.8.375

Type 2: Plane wave with ramp (11 observations). We also set the domain parameter as 𝑏 = 50.376

The bar starts from rest (𝑢(𝑥, 0) = 0) and is subject to zero loading ( 𝑓 (𝑥, 𝑡) = 0). For the velocity377

on the left end of the bar, we prescribe378

𝑣(−𝑏, 𝑡) =


sin(𝜔𝑡) sin2

( 𝜋𝑡
30

)
, 𝑡 ≤ 15

sin(𝜔𝑡), 𝑡 > 15
379

for 𝜔 = 0.35, 0.7, · · · , 3.85.380
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Type 3: Wave packet (3 observations). We consider a longer bar with 𝑏 = 133.3, with the bar381

starting from rest (𝑢(𝑥, 0) = 0), and is subject to zero loading ( 𝑓 (𝑥, 𝑡) = 0). The velocity on the left382

end of the bar is prescribed as 𝑣(−𝑏, 𝑡) = sin(𝜔𝑡) exp (−(𝑡/5 − 3)2) with 𝜔 = 2, 3.9, and 5.383

For all data types, parameters for the nonlocal solver and the optimization algorithm are set to384

Δ𝑥 = 0.05, Δ𝑡 = 0.02, 𝛿 = 1.2, and 𝑀 = 24. For training purposes, we generate data of types 1 and385

2 till 𝑇 = 2. Then, to investigate the performance of our surrogate model in long-term prediction386

tasks we simulate till 𝑇 = 100 for data type 3.387

(a) First parameter (b) Second parameter (c) log(𝜎)

Fig. 4. The first two kernel parameters 𝐶0, 𝐶1 and log(𝜎) for a bar with periodic microstructure,
plotted against the iteration number after eliminating the burn-in stage (the trace plot of MCMC).

(a) Optimal kernel (b) Dispersion curve

𝝎𝒃𝒔

(c) Group velocity

Fig. 5. Optimal kernel, group velocity and dispersion curve for a bar with periodic microstructure.
Here, the confidence region almost coincides with the curve of average BNOR, since the uncertainty
in the kernel parameters is low. We also point out that the results from MAP point estimate via
minimizing (28) coincides with the averaged kernel from BNOR.

Results from Bayesian inference An MCMC chain with 300,000 steps is generated, with ap-388

proximately 30% acceptance rate. To present the results, we post-process the chain based on 3,856389
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equally spaced samples, where the effective sample size (ESS) was calculated following the formu-390

lation in (Vats et al. 2019). To demonstrate the efficacy of our two-phase learning algorithm, we391

also perform an ablation study of running MCMC without the initialization estimated from phase392

1. As shown in the Appendix Figure 14, the acceptance rate is very low (0.0059) and only a few393

proposals are sampled. Figure 4 shows a trace plot of the MCMC chain, illustrating good mixing394

of the chain. In Figure 5(a), the nonlocal kernels using the learnt parameters are demonstrated,395

with predictive uncertainty ranges of 68%, 95% and 99.7% provided. Here, the confidence ranges396

were calculated based on the push-forward of the marginal posterior on C (using the samples from397

MCMC), through the nonlocal model (7), and the averaged BNOR kernel is calculated by evaluating398

the posterior mean of the kernel parameter C. Specifically, denoting the posterior mean of C, as399

C̄, the averaged nonlocal kernel is evaluated as 𝐾C̄

(
|𝜉 |
𝛿

)
. Both the averaged nonlocal kernel from400

the proposed BNOR algorithm and the deterministic nonlocal kernel from the original NOR are401

reported for comparison, together with the MAP estimate. One can see that the averaged kernel402

from BNOR is close to the original NOR kernel when 𝜉 = |𝑦 − 𝑥 | is relatively large (> 0.6) with an403

almost negligible predictive uncertainty, while the discrepancy becomes more significant when 𝜉404

approaches zero. However, the kernel values at 𝜉 ≈ 0 have a relatively small impact on the nonlocal405

operator L𝐾C , and consequently also on the corresponding nonlocal solution 𝑢𝑁𝐿 as well as the loss406

function in our optimization problems. Moreover, sign-changing behaviors are observed on both407

kernels, which are consistent with literature (Xu and Foster 2020; You et al. 2021b). Then, in Figure408

5(b) we illustrate the deterministic and mean estimates, and predictive uncertainty ranges, of the409

dispersion curve. Here, we can see that both the averaged model from BNOR and the deterministic410

model from NOR possess positivity, indicating that both models correspond to a family of physi-411

cally stable material models. Finally, in Figure 5(c) we plot the estimated group velocity against412

frequency𝜔, in comparison with the group velocity profile from the DNS simulation. These results413

indicate that both the averaged model from BNOR and the deterministic model from original NOR414

are able to match the DNS behavior for low frequency values 𝜔. When the frequency is getting415

closer to the band stop, 𝜔𝑏𝑠, comparing with the deterministic model from original NOR, we note416
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that the averaged model from BNOR has reproduced the group velocity of the DNS model with417

better accuracy. Here, we stress that since the method for evaluating the DNS 𝑣𝑔 from wave packets418

is susceptible to error near the band stop, it is generally infeasible to expect our nonlocal surrogate419

model to match perfectly with the DNS group velocity. For both the dispersion curve and group420

velocity, predictive uncertainties are again negligible.421

Fig. 6. Comparison of two posterior uncertainty results for the prediction of two exemplar examples
from the training dataset, on the periodic microstructure case. Left: displacement field prediction
and confidence regions from the push-forward posterior (PFP) approach. Right: displacement field
prediction and confidence regions from the posterior predictive (PP) approach.

We note in particular that the evident negligible level of predictive uncertainty in these results422

is due to the fact that (1) our error model is rather simple, presuming independent noise, such that423

each additional data point adds information, and (2) we have a large number of data points. The424

combination of both factors results in the posterior on C being highly concentrated, thus exhibiting425

minimal uncertainty, even though the discrepancy between the two models is non-negligible.426

In order to endow the nonlocal predictive model with uncertainties that better approximate the427

discrepancy between it and the high-fidelity model, one can resort to a more elaborate statistical428

construction to represent model error (Kennedy and O’Hagan 2000), particularly as embedded429

in the model construction (Sargsyan et al. 2015; Sargsyan et al. 2019). We reserve this pathway430
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forward for future work.431

We illustrate further, in Fig. 6, posterior uncertainty on two predicted solutions that are part of432

the training data. In each case, we highlight two posterior uncertainty results. The first, commonly433

termed the push-forward posterior (PFP), is the push-forward of the marginal posterior 𝑝(C|𝐷)434

through the non-local model 𝑢𝑁𝐿,C(𝑥, 𝑡). The second, termed the posterior predictive (PP), is the435

push-forward of the full posterior 𝑝(C, 𝜎 |𝐷) through the data model 𝑢𝑁𝐿,C(𝑥, 𝑡) + 𝜖 . The PFP436

provides the posterior uncertainty on the model predictions given posterior knowledge ofC. On the437

other hand, the PP provides a posterior density on predictions of the data model, which serves as a438

diagnostic measure of the quality of this model, composed of the physical model and the proposed439

error model, as a predictor of the data (Note that, in an additive model error framework (Kennedy440

and O’Hagan 2001) where the 𝜖 term, defined to include some correlation structure, would be441

included in “corrected" model, such that the associated PP & PFP are equivalent.). It is expected442

that the PPwould exhibit higher uncertainty on predictions than the PFP. Further, an ideal PP should443

span the data, and its samples ought to be statistically indistinguishable from the data. Considering444

the results in Fig. 6, we can see that the BNOR solution with the mean C, the deterministic445

NOR, and the DNS solution are all very well matched for the plane wave case, with discernible446

differences in the displacement magnitudes in the oscillating source case. Further, we see that the447

PFP results in negligible predictive uncertainty, as already observed in Fig. 5 for the kernel and448

associated quantities of interest. On the other hand, the PP results exhibit non-negligible uncertainty,449

particularly at low mean-output levels for positions beyond ±10 for the oscillating source case, and450

above position -15 for the plane wave case. However, we find that the PP uncertainty is again451

negligible at high signal levels around position 0 in the oscillating source case, and below position452

-15 in the plane wave case. Moreover, the PP uncertainty is small relative to the discrepancy453

between the model and the data at large signal levels in the oscillating source case, while it is larger454

than the discrepancy at low signal levels. Clearly, the PP does not do an ideal job of spanning the455

discrepancy from the data, indicating that a more flexible/accurate, perhaps embedded, error model456

would be needed to better capture the data error.457
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Validation on wave packet In order to further test the predictive performance of our surrogate458

model, we now demonstrate its capability in reproducing DNS simulations through the prediction459

error of 𝑢 on data type 3, involving wave packet problems where a long time simulation is conducted460

on a long bar, and the loading scenario is substantially different from the training cases. With461

the proposed BNOR approach, for each loading scenario both the prediction of displacement462

field 𝑢𝑁𝐿,C(𝑥𝑖, 𝑡𝑛) and the 68% − 95% − 99.7% confidence regions are provided. Specifically,463

we present both the PFP 𝑝(𝑢𝑁𝐿,C(𝑥𝑖, 𝑡𝑛) |𝐷) and PP 𝑝(𝑢𝑁𝐿,C(𝑥𝑖, 𝑡𝑛) + 𝜖 |𝐷) results, where 𝜖 ∼464

N(0, 𝜎2 | |𝑢𝑁𝐿,C(𝑥, 𝑡) | |2𝑙2 ( [−𝑏,𝑏]×[0,𝑇])).465

Fig. 7. Validation on the wave packet traveling problem for a bar with periodic microstructure,
illustrating PFP uncertainty. Plots from top to bottom are corresponding to different loading
frequencies: (top) 𝜔 = 2 < 𝜔𝑏𝑠, (middle) 𝜔 = 3.9 ≈ 𝜔𝑏𝑠, and (bottom) 𝜔 = 5 > 𝜔𝑏𝑠. Left column
shows the simulation results on a relatively short time (𝑇 = 20), and the right column demonstrates
long time simulation results (𝑇 = 100).

In Figures 7 and 8 we consider solutions corresponding to three values of frequency 𝜔: 𝜔1 =466

2 < 𝜔𝑏𝑠, 𝜔2 = 3.9 ≈ 𝜔𝑏𝑠 and 𝜔3 = 5 > 𝜔𝑏𝑠, respectively. Further, results in the two figures467
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Fig. 8. Validation on the wave packet traveling problem for a bar with periodic microstructure,
illustrating PP uncertainty. Plots from top to bottom are corresponding to different loading fre-
quencies: (top) 𝜔 = 2 < 𝜔𝑏𝑠, (middle) 𝜔 = 3.9 ≈ 𝜔𝑏𝑠, and (bottom) 𝜔 = 5 > 𝜔𝑏𝑠. Left column
shows the simulation results on a relatively short time (𝑇 = 20), and the right column demonstrates
long time simulation results (𝑇 = 100).

illustrate PFP (Fig. 7) and PP (Fig. 8) uncertainty as indicated. For the the first two values of 𝜔,468

the exact stress wave is anticipated to be traveling in time. For the last case, since the value of 𝜔 is469

beyond the band stop and corresponds to a zero DNS group velocity, the exact wave does not travel470

in time. Both short time (𝑡 = 20) and long time (𝑡 = 100) predictions are considered for each case.471

The deterministic solution from the standard NOR algorithm and the DNS data are also reported for472

comparison. We observe at the outset the negligible PFP uncertainty (Fig. 7), as already observed473

in Fig. 6 for training data predictions, while larger PP uncertainty is evident (Fig. 8), and quite474

prominently as the displacement goes to zero.475

Further, for the loading frequency 𝜔 = 2.0 case, we observe good agreement between the476

mean of the nonlocal solutions and the DNS data for both 𝑡 = (20, 100) cases. Thus, the optimal477
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nonlocal surrogate corresponding to our learnt samples can accurately reproduce both short and478

long-time stress wave propagation in this frequency range. Here, we stress that although we refer to479

𝑡 = 20 as a relative short term, it is still much longer (10×) than the total time interval our training480

algorithm has seen from the training samples. These findings illustrate the generalization property481

of our algorithm in extrapolation tasks in this frequency range. On the other hand, considering the482

wave propagation results for the loading frequency 𝜔 = 3.9 case, which is close to the band stop483

frequency, a larger discrepancy between the DNS solution and the predicted displacement field is484

observed, especially in the region near the wave front. More specifically, at 𝑡 = 20, the mean of the485

nonlocal solutions is slightly off from the DNS solution, while the latter still lies inside the 68% PP486

confidence region (Fig. 8). This discrepancy grows appreciably as time moves forward, as can be487

seen for the 𝑡 = 100 case, extending well beyond the PP range. Clearly, our extrapolative behavior488

is poor for loading frequencies in the vicinity of the band stop frequency. Finally, when the loading489

frequency 𝜔 = 5.0 > 𝜔𝑏𝑠 and the wave barely propagates, as shown in both figures, our model490

successfully captures the phenomenon that the wave stops traveling.491

Generally, based on these results, we can say that the proposed nonlocal surrogate model per-492

forms well in short term extrapolative prediction tasks, and the posterior predictive associated with493

the current additive error model provides an adequate coverage of the DNS data, even in extrapo-494

lation, when the loading frequency is away from the band stop frequency, 𝜔𝑏𝑠. To further improve495

the prediction accuracy and the model discrepancy representation, more training observations on496

a longer time and/or a more flexible and sophisticated error model employing a Gaussian process497

construction should help, allowing always for the lack of expected accuracy from the statistical498

model in extrapolation if the mean model itself is failing. We note in particular that the point-wise499

mismatch between discrepancy magnitude and predictive uncertainty from the calibrated model500

evident in the above figures is the expected result of the implicit mean-square averaging of the501

discrepancies/errors for all data points in the present additive i.i.d. Gaussian Likelihood construc-502

tion. Our estimated standard deviation of the error, as well as our parametric uncertainties, being503

effectively the result of root-mean-squared averaging of these discrepancies, lead to predictive504
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uncertainty that is smaller than the largest discrepancies observed in the data, and larger than the505

smallest observed discrepancies.506

Example 2: A Bar with Random Microstructure507

Data generation and settings. Wenowconsider a heterogeneous barwith randommicrostructure,508

where the size of each layer is now defined by a random variable. In particular, the density for509

both components is still set as 𝜌 = 1 and the Young’s moduli are 𝐸1 = 1 and 𝐸2 = 0.25. The510

layer sizes 𝐿1, 𝐿2 are two random variables, both satisfying a uniform distribution: 𝐿1, 𝐿2 ∼511

U[(1 − 𝐷)𝐿, (1 + 𝐷)𝐿], with the averaged layer size 𝐿 = 0.2 and the disorder parameter 𝐷 = 0.5.512

To generate the training dataset, we simulate the wave propagation using the DNS solver, under513

the same settings as in data type 1 and data type 2 of the periodic bar case. Then, the wave514

packet problem is again considered for the purpose of validation. Comparing with the periodic515

microstructure case, from the group velocity generated by the DNS simulations (see Figure 3 right516

plot) we note that the band stop generally occurs at a lower frequency in the random microstructure517

case. In fact, for themicrostructure considered in this bar, an estimated band stop frequency𝜔𝑏𝑠 ≈ 3518

can be obtained from the DNS simulations. Thus, in this section, wave packets with frequencies519

𝜔 = 1, 2, 3 and 4 are considered as the validation samples, with the purpose of investigating the520

performance of our nonlocal surrogate model when the loading frequencies are below (𝜔 = 1, 2),521

around (𝜔 = 3), and above (𝜔 = 4) the estimated band stop frequency 𝜔𝑏𝑠.522

(a) First parameter (b) Second parameter (c) log(𝜎)

Fig. 9. The first two kernel parameters 𝐶0, 𝐶1 and log(𝜎) for a bar with random microstructure,
plotted against the iteration number after eliminating the burn-in stage (the trace plot of MCMC).
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Results from Bayesian inference. We run an MCMC chain with 300,000 steps, with a 31%523

acceptance rate, and post-process it using 4,212 equally spaced samples guided by an estimated524

ESS. The ESS, the trace plot, the predicted averaged kernel, and its dispersion properties are all525

calculated similarly as for the periodic bar. Figure 9 shows the exemplar trace plot of the MCMC526

chain for two kernel parameters, 𝐶0 and 𝐶1, and 𝜎, illustrating good mixing. Compared with the527

periodic bar, slightly larger values of 𝜎 are obtained here. Hence, the randomness in material528

microstructure is anticipated to induce a larger model discrepancy. Then, in Figure 10 we plot the

(a) Optimal kernel (b) Dispersion curve

𝝎𝒃𝒔

(c) Group velocity

Fig. 10. Optimal kernel, group velocity and dispersion curve for a bar with random microstructure.
Since the uncertainty in the kernel parameters remains low, the confidence regions generally
coincide with the curve of average BNOR. Similar as in the periodic bar case, here the results from
MAP point estimate via minimizing (28) again coincides with the averaged kernel from BNOR.

529

predicted averaged nonlocal kernel, the dispersion curve, and the group velocity profiles, together530

with the 68% − 95% − 99.7% PFP confidence regions. The results from original NOR algorithm531

and the MAP estimate are also reported for comparison. For the estimated nonlocal kernels, as532

demonstrated in Figure 10(a) we observe a small discrepancy between the averaged kernel and the533

deterministic kernel from NOR, together with very small confidence regions. These trends are also534

observed in Figure 10(b) and Figure 10(c), for the dispersion curves and group velocity profiles,535

respectively. As in the periodic bar case, for this random microstructure the predicted nonlocal536

model from BNOR again possesses physical stability, and successfully identifies the band stop. In537

Figure 10(c), a relatively larger discrepancy is observed between the group velocity from the DNS538

solver and profile from the estimated nonlocal surrogate, possibly due to the fact that the material539
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randomness introduces larger errors in the approximated DNS group velocity, 𝑣𝑔, especially for the540

frequencies near the band stop, as discussed in Section “Dispersion in Heterogeneous Materials”.541

Fig. 11. Comparison of two posterior uncertainty results for the prediction of two exemplar
examples from the training dataset, on the random microstructure case. Left: displacement
field prediction and confidence regions from the push-forward posterior (PFP) approach. Right:
displacement field prediction and confidence regions from the posterior predictive (PP) approach.

We illustrate again, in Fig. 11, posterior uncertainty on two predicted solutions that are part542

of the random microstructure training data, including both the PFP and PP posterior uncertainty543

results. We can see that the BNOR solution with the mean C, the deterministic NOR, and the544

DNS solution are all very well matched for the plane wave case. On the other hand, again, the545

oscillating source case exhibits discernible displacement magnitude differences between the two546

nonlocal solutions and the DNS solution. We also see that the PFP results in negligible predictive547

uncertainty, as already observed in Fig. 10. On the other hand, the PP results exhibit non-negligible548

uncertainty at low mean-output levels for both the oscillating source and plane wave case, while549

exhibiting again negligible uncertainty at high displacement levels even where the discrepancy with550

the DNS data is large. Here again, the PP with the current data model does not span the discrepancy551

from the data well, and is a candidate for improvement in future work.552
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Fig. 12. Validation on the wave packet traveling problem for a bar with random microstructure,
illustrating PFP uncertainty. Plots from top to bottom are corresponding to different loading
frequencies: 1) 𝜔 = 1 < 𝜔𝑏𝑠, 2) 𝜔 = 2 < 𝜔𝑏𝑠, 3) 𝜔 = 3 ≈ 𝜔𝑏𝑠, and 4) 𝜔 = 4 > 𝜔𝑏𝑠. Left column
shows the simulation results on a relatively short time (𝑇 = 20), and the right column demonstrates
long time simulation results (𝑇 = 100).

Validation on wave packet Following the same procedure as for the periodic microstructure case,553

here we again demonstrate the generalization capability of the learnt nonlocal surrogate model on554

different domains, boundary conditions, and longer simulation time, by considering the wave packet555

problem. Prediction results subject to four loading frequencies, 𝜔 = 1.0 < 𝜔𝑏𝑠, 𝜔 = 2.0 < 𝜔𝑏𝑠,556

𝜔 = 3.0 ≈ 𝜔𝑏𝑠, and 𝜔 = 4.0 > 𝜔𝑏𝑠, are provided on a relatively short time (𝑡 = 20) and a longer557

time (𝑡 = 100) simulations. The validation results are illustrated in Figures 12 and 13 illustrating558
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Fig. 13. Validation on the wave packet traveling problem for a bar with random microstructure,
illustrating PP uncertainty. Plots from top to bottom are corresponding to different loading fre-
quencies: 1) 𝜔 = 1 < 𝜔𝑏𝑠, 2) 𝜔 = 2 < 𝜔𝑏𝑠, 3) 𝜔 = 3 ≈ 𝜔𝑏𝑠, and 4) 𝜔 = 4 > 𝜔𝑏𝑠. Left column
shows the simulation results on a relatively short time (𝑇 = 20), and the right column demonstrates
long time simulation results (𝑇 = 100).

PFP and PP uncertainty respectively. The deterministic nonlocal solution from the original NOR559

algorithm and the DNS data are also reported for comparison.560

We can see here again the negligible PFP uncertainty, even under extrapolation, in Fig. 12,561

while significant PP uncertainty is evident in Fig. 13. Further, for the short time prediction task562

(𝑡 = 20), a good agreement between the mean of the uncertain nonlocal solution and the DNS data563

is observed for 𝜔 = 1, 2, validating the generalizability of the learnt nonlocal surrogate under these564
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loading conditions up to this time. However, there is clear mismatch with DNS for 𝜔 = 3, 4 in the565

region near the wave front. For long time prediction (𝑡 = 100), the extrapolated learnt nonlocal566

surrogate model exhibits discernible differences from the DNS solution under all loading cases,567

with the minimal differences being evident at 𝜔 = 1. At this loading the differences are confined to568

small magnitude differences in the oscillatory trace. On the other hand, more significant differences569

in both magnitude and phase are evident for𝜔 = 2, 3, 4. Qualitatively, a satisfactory result is indeed570

obtained when the loading frequency 𝜔 = 4.0 > 𝜔𝑏𝑠 in that the wave barely travels in time. Except571

for the case with 𝑡 = 100 and 𝜔 = 3, the DNS solution always lies inside the 68% PP confidence572

region, highlighting the efficacy of our additive error model under these conditions in extrapolation.573

CONCLUSION574

In this paper, we have proposed BNOR– an approach for learning the optimal nonlocal surrogate575

together with modeling discrepancy characterization for heterogeneous material homogenization.576

Our work is built based on the nonlocal operator regression approach (You et al. 2021b), which aims577

to provide a well-posed and generalizable nonlocal surrogate model from high-fidelity simulations578

and/or experimental measurements of the displacement fields, and allows for accurate simulations579

at a larger scale than the microstructure. Because of these desired properties, the nonlocal surrogate580

model from NOR is readily applicable for unseen prediction tasks, such as to find the solutions581

at much larger times than the time instants used for training, and on problem settings that are582

substantially different from the training data set. On the other hand, since the nonlocal surrogate583

model from NOR serves as a homogenized surrogate of the original complex physical system584

without resolving its heterogeneities at the microscale, unavoidable modeling discrepancy will be585

introduced, which contribute to the overall prediction error and uncertainty.586

To quantify the model predictions and associated uncertainty in future prediction tasks, in this587

work we used an independent additive Gaussian data model centered on the NOR approach, in588

order to represent and quantify the homogenization modeling discrepancies. The framework is589

developed within a Bayesian inference context, where NOR model parameters are inferred simul-590

taneously along with parameters that characterize errors relative to the data. To solve the Bayesian591
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inference problem efficiently, a two-phase MCMC algorithm is proposed, enabling an efficient592

and non-intrusive procedure for approximate likelihood construction and model discrepancy esti-593

mation. Lastly, the proposed BNOR framework is validated on the wave propagation problem in594

heterogeneous bars. It is found that the learnt model has 1) captured the correct band gap and the595

group velocity; 2) reproduced high-fidelity data for a composite material in applications that are596

substantially different from the training data under a significant range of conditions; 3) provided a597

characterization for the posterior distribution of the parameters as well as the confidence region for598

further prediction tasks.599

In this work, we have focused on the high-fidelity measurements so the modeling discrepancy600

acts as the main contributor of uncertainties. As observed in the numerical tests of Section601

“Application to a Heterogeneous Elastic Bar”, the posterior predictive does not span the discrepancy602

in the data well, due to the limitation of our additive i.i.d. Gaussian error Likelihood construction.603

As a natural follow-up, and to provide predictive uncertainty that better matches the point-wise604

discrepancies between the calibrated model and the data, we plan to pursue a more sophisticated605

embeddedmodel error construction (Sargsyan et al. 2015; Sargsyan et al. 2019). Another interesting606

future direction would be to incorporate our model while enabling targeted model improvement and607

optimal experimental design. Last but not least, to illustrate the efficiency of our algorithm, two-608

and three-dimensional test cases will also be considered. For example, one may use the BNOR609

framework to characterize the homogenization error in the coarse-grained nonlocal model from610

molecular dynamics simulations, as an extension of the development in (You et al. 2022).611
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APPENDIX: ABLATION STUDY776

Herein, we provide additional numerical results to investigate the effect of the proposed initial-777

ization scheme in phase 1. In particular, we perform the phase 2 in our algorithm by starting from778

an all-one initial state. As shown in the trace plots of Figure 14, the acceptance rate is very low779

(0.0059) and only a few proposals are sampled.780
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(a) First parameter (b) Second parameter (c) log(𝜎)

Fig. 14. Ablation study – Skip phase 1 and run phase 2 directly: The first two kernel parameters
𝐶0, 𝐶1 and log(𝜎) for a bar with periodic microstructure, plotted against the iteration number (the
trace plot of MCMC).
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