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ABSTRACT

We consider the problem of modeling heterogeneous materials where micro-scale dynamics and
interactions affect global behavior. In the presence of heterogeneities in material microstructure it
is often impractical, if not impossible, to provide quantitative characterization of material response.
The goal of this work is to develop a Bayesian framework for uncertainty quantification (UQ) in
material response prediction when using nonlocal models. Our approach combines the nonlocal
operator regression (NOR) technique and Bayesian inference. Specifically, additive independent
identically distributed Gaussian noise is employed to model the discrepancy between the nonlocal
model and the data. Then, we use a Markov chain Monte Carlo (MCMC) method to sample
the posterior probability distribution on parameters involved in the nonlocal constitutive law, and
associated modeling discrepancies relative to higher fidelity computations. As an application,

we consider the propagation of stress waves through a one-dimensional heterogeneous bar with
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randomly generated microstructure. Several numerical tests illustrate the construction, enabling
UQ in nonlocal model predictions. Although nonlocal models have become popular means for
homogenization, their statistical calibration with respect to high-fidelity models has not been
presented before. This work is a first step in this direction, focused on Bayesian parameter

calibration.

INTRODUCTION

Nonlocal models have become viable alternatives to partial differential equation (PDE) models
when the effects of the small-scale behavior of a system affect its global state (Beran and McCoy
1970; Cherednichenko et al. 2006; Karal Jr and Keller 1964; Rahali et al. 2015; Smyshlyaev and
Cherednichenko 2000; Willis 1985; Eringen and Edelen 1972; Bobaru et al. 2016; Du et al. 2020).
These models are characterized by integral operators (as opposed to differentiable operators) that
embed time and length scales in their definition; as such, they are able to capture long-range effects
that classical PDE models fail to describe (Silling 2000). These effects include the anomalous
behavior often observed in coarse-grained measurements of a diffusive quantity, often referred to as
anomalous or non-standard diffusion (Du and Zhou 2011; Du et al. 2013; Suzuki et al. 2022). In the
context of materials response, it is often impractical to solve equations at the small (e.g. micro) scale
either because small-scale properties are not available and/or uncertain, or because the simulations
are computationally infeasible. Thus, a lot of effort has been dedicated to homogenization theory
with the purpose of designing large-scale models that accurately reproduce the effects of small-scale
behavior (Zohdi 2017; Bensoussan et al. 2011; Weinan and Engquist 2003; Efendiev et al. 2013;
Junghans et al. 2008; Kubo 1966; Santosa and Symes 1991; Dobson et al. 2010; Ortiz 1987; Moés
et al. 1999; Hughes et al. 2004). A coarse-grained model may or may not use the same governing
equations as the underlying small-scale model. Classical homogenization techniques, such as the
use of effective properties to represent the constitutive properties of a heterogeneous medium,
have achieved many successes and wide usage. However, they do not always lend themselves to
applications in which the size scale of the heterogeneity affects the global response. An example is

the propagation of high frequency stress waves in a composite material. As shown in Figure 1, the
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experimentally measured wave velocity decreases with frequency (Tauchert and Guzelsu 1972).
However, a classical model that uses the effective elastic modulus fails to reproduce this effect.

Thus, a nonlocal approach is more compatible with this application than classical homogenization.

b Classical
homogenization
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Fig. 1. Dispersion curves for stress waves in a fiber-reinforced composite. Solid line: experiment
(redrawn from (Tauchert and Guzelsu 1972)). Dashed line: classical homogenization using effective
properties.

Due to their ability to capture internal length scales and long-range effects, nonlocal models
are the best candidates for this type of application. (Du et al. 2020). Their use in the context of
homogenization is not new and started with the development of homogenized models for subsurface
transport (Suzuki et al. 2022). Here, fractional models were identified as the best means for
describing super- and sub-diffusive effects, and a Bayesian approach was developed in (Trillos and
Sanz-Alonso 2017), to recover the order and the diffusion coefficient of an elliptic fractional partial
differential equation. More recently, the concept of nonlocal homogenization was successfully
applied in the context of material response (Silling 2021; Silling et al. 2022). Furthermore, with
the explosion of machine learning, optimized nonlocal models were designed with the purpose of

accurately reproducing observed coarse-grained behavior and predicting unseen behavior with the
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learnt model. We refer the reader to (You et al. 2021a; You et al. 2021b; You et al. 2022; Xu et al.
2021; Xu et al. 2022; Zhang et al. 2022; de Moraes et al. 2022) for several examples of the use
of machine learning for the design of homogenized nonlocal operators and the rigorous analysis
of its learning theory (Lu et al. 2022; Zhang et al. 2022). Although successful in providing a
deterministic answer to the homogenization problem, none of these approaches characterize the
discrepancy between the homogenized nonlocal surrogate model and the high-fidelity microscale
data and its associated prediction uncertainty.

The characterization of surrogate/reduced-order modeling discrepancy is a well-known problem
in the PDE literature, while it is absent in the context of nonlocal modeling. In this work, for the first
time, we employ Bayesian inference for statistical estimation of nonlocal model parameters using
statistical descriptions for the discrepancy from high-fidelity data. Bayesian methods (Laplace
1814; Casella and Berger 1990; Jaynes 2003; Robert and Casella 2004; Sivia and Skilling 2006;
Carlin and Louis 2011) have been used increasingly over recent decades for the probabilistic
estimation of parameters of complex physical models given data on model predictions (Kennedy
and O’Hagan 2001; Higdon et al. 2003; Oliver and Moser 2011; Cui et al. 2016; Hakim et al.
2018; Huan et al. 2018). The Bayesian framework provides a number of advantages in this regard,
including means of (1) incorporating prior information which can be based on expert knowledge,
prior/other experiments, or physical laws; (2) using arbitrary data models that can incorporate
physical model complexity as well as generalized statistical models of discrepancy between data and
model predictions; and (3) model comparison, selection, and averaging, with formal connections to
information theory. We use Bayesian inference here, relying on an adaptive Markov chain Monte
Carlo MCMC) construction (Haario et al. 2001), to estimate parameters of a homogenized nonlocal
model given data from a higher-fidelity PDE model. In this context, the discrepancy between model
predictions and the data is due to predictive errors resulting from the necessary approximations
employed in the homogenized nonlocal model construction. While more sophisticated statistical
models with nontrivial correlation structure are available for the representation of this model error

discrepancy (Kennedy and O’Hagan 2000; Sargsyan et al. 2015; Sargsyan et al. 2019), our present

4 Fan, June 30, 2023



92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

construction is at more basic level, where we use additive independent identically distributed (i.i.d.)

noise to model this discrepancy.

Specifically, we employ Bayesian calibration in the context of a one-dimensional, nonlocal wave
equation that describes the propagation of stress waves through an elastic bar with a heterogeneous
microstructure. We use Bayesian inference to learn the posterior probability distributions of
parameters of the nonlocal constitutive law (i.e. the nonlocal kernel function). The data model
includes an additive noise term to represent the discrepancy between the high-fidelity, PDE models

and the (homogenized) nonlocal model. Our key contributions are summarized below.

1. We introduce and demonstrate, for the first time, a Bayesian inference framework for the
statistical estimation of parameters in homogenized nonlocal models.

2. We develop a multi-step algorithm that enables efficient Bayesian inference via effective
initialization and hyper-parameter choice.

3. Through several numerical tests we illustrate the prediction capability of the proposed

approach by successfully using the calibrated model to predict unseen scenarios.

Paper outline. In Section “Dispersion in Heterogeneous Materials” we introduce the classical
problem of stress wave propagation through heterogeneous materials and describe the numerical
solver used for the generation of the high-fidelity data set. In Section “Background and Related
Mathematical Formulation” we summarize relevant prior work on (deterministic) NOR: we describe
the mathematical formulation of the regression problem and discuss the choice of hyperparameters
for efficient training. In Section “Bayesian Nonlocal Operator Regression” we introduce a Bayesian
approach to nonlocal model calibration. We break down the MCMC-based algorithm in several
steps with the purpose of initializing distributions and hyperparameters in an efficient manner. In
Section “Application to a Heterogeneous Elastic Bar” we illustrate through several numerical tests
how our approach predicts the posterior distribution of the nonlocal model predictions, enabling
uncertainty quantification (UQ) in nonlocal simulations. Section “Conclusion” concludes the paper

with a summary of our contributions and a list of potential follow-up work.
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DISPERSION IN HETEROGENEOUS MATERIALS
The classical (local) wave equation for a heterogeneous one-dimensional linearly elastic body

reads as follows:

poZt <x ) = (E<x>—<x t>) (0D )

where x is the reference position, p is the mass density, ¢ is time, u is the displacement, f is
the external load density (assumed to be continuous), and E is the elastic modulus which varies
spatially. The quantity in the large parentheses in (1) is the stress, usually denoted by o, which
is continuous even if E has jump discontinuities. If £ has a jump discontinuity at some xq, the

following jump conditions hold:

(u] = 0. [EZ—Z] 0o ®)

where the notation for jumps is [w] = w(x;) — w(x;) for any function w. In this paper, E is
piecewise continuous. The particular choice of the function E(x) describes a microstructure. For
simplicity, E is assumed to take on only one of two values, but the spatial distribution can be either
periodic or random (see the left plot of Figure 2). Also for simplicity, p is assumed to be constant
throughout the body. Open subregions that have constant E will be called “grains” in analogy with
materials science.

In the case of a random microstructure, the grain sizes L; and L, for materials 1 and 2 are

generated using the following expressions:

Ly ~ U[(1-D)(1-¢)L, (1+D)(1-¢)L]

L, ~ U[(1-D)(1+¢)L, (1+D)(1+¢)L] (3)

where L is the mean value of grain size and ¢ determines the volume fraction of material 2. In
this work, we take ¢ = 0 without loss of generality. This choice leads to equal volume fractions for

the two materials. U [a, b] denotes a uniform random distribution between a and b. D € [0, 1] is
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the disorder parameter that determines the overall variation in grain size, with D = 0 leading to a
periodic microstructure with no randomness. Within any grain, any wave ¢ of the following form

is a solution to (1):

v(x,t) = q(x *ct), c “4)

where ¢ is the wave speed and v = du/0dt is the velocity of a material point. In the expression
X * ct, the + sign is for a “left-running” wave and the — is for a “right-running” wave. Because
the system is linear, arbitrary superpositions of waves in both directions are also solutions to (1).
In the direct numerical simulation (DNS) technique that is used in this study, the waves that are
superposed are composed of finite jumps in velocity, so that ¢ = H in (4), where H denotes the

Heaviside step function.

time

Yt '
T . i v I
Periodic (Ordered) Microstructure [ R o ;
/7 e ] 3 right-running ';
! transmitted wave, !
i left-running __ 1 H
2L — | S | transmitted wave \ H
Material 1 Material 2 A EEEEEEE ;_‘ ................... oo - -®
.A—.I Li=(1-¢)L L,=1+¢)L UY_11  right-running : Uyt
5 | 3 incident wave
! 3 left-running —
i incident wave
Random (Disordered) Microstructure Y e PSR, :
z |
' position |
Toy—1 Ty Tyl

Fig. 2. Left: One-dimensional heterogeneous bars composed of materials 1 and 2. The oscillatory
curve represents a moving wave with wavelength A. The horizon ¢ for the nonlocal continuum
model is shown. Left Top: Periodic microstructure with period 2L. Left Bottom: Random
microstructure. Right: Interaction of two waves in the DNS method.

Later in the paper, the group velocity v, (w) will be used, where w is the angular frequency of
a wave. In a homogeneous medium, the group velocity is defined by v, (w) = fl—‘,;’, where k =27/
is the wave number. With the DNS solver or any other simulation method, the group velocity can
be estimated from the velocity of a wave packet with nominal frequency w (see Figure 3). In both
periodic and random bars, the qualitative dependence of v, on w is similar. Both have the same
large-wavelength (low frequency) dependence, because A > L for long waves. In particular, both

ve functions have the same curvature as w — 0. At smaller wavelengths, there are differences in
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Fig. 3. Left: Group velocity estimation from the speed of a wave packet, which can attenuate
significantly in random media. Right: Qualitative dependence of group velocity on frequency.

v between periodic and random systems. The method for evaluating v, from wave packets is also
susceptible to error near the band stop, because in this limit, the wave packet attenuates to nearly
undetectable amplitudes as it propagates.

The goal of our learning algorithm is to learn a surrogate model that is able to predict wave
propagation over distances that are much larger than the size of the microstructure and provide error
estimation. For both training and validation purposes, we first generate high-fidelity data by solving
the classical wave equation within a detailed model of the microstructure using the DNS solver,
which will now be briefly described. For a given forcing term f(x,#) and boundary and initial
conditions, the DNS solver provides a solution for the velocity field v(x, ¢). The bar is discretized
into nodes, {x,}, such that it takes a constant amount of time Atpyg for a wave to travel through
the cell between x, and x,,, regardless of the elastic wave speed in the material between these
two nodes (see the right plot of Figure 2 and (You et al. 2021a) for further details). The interval
between two adjacent nodes is called a “cell.” Each cell is composed entirely of one material or the
other, with elastic modulus E or E,. These materials have wave speeds ¢ and c», given by (4).

The right plot of Figure 2 shows left-running and right-running waves on an x-t diagram (also

called a wave diagram). Because the wave speed varies between cells, the slopes shown in the
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diagram also vary. Because the wave transit time within any cell must be constant, the spacing
between DNS nodes varies along the bar. The DNS solver works by assuming that in each time
step, a step wave travels from any node y to its neighbor on the left or right. These neighbors also

send waves to node y. Within any cell, the two waves obey the jump condition

[o] = =pc[v], ®)

which is a consequence of the momentum balance. Note that the jump condition (5) applies to the

moving waves, while (2) applies at fixed points. From these conditions, the DNS solver computes

n+l

the updated material velocity v}

explicitly from the values at the adjacent nodes in time step n.

Details of the DNS solver can be found in (Silling 2021; You et al. 2021a).

After the velocity vl;” is computed, the displacement is updated by integrating the velocity over
time:
1 1 1
MDNS(X)/, "t )~ MT- = l/t; + AIDNsvgl,-'- .

The displacements are mapped onto a mesh with constant spacing by interpolation between the
irregularly spaced DNS node positions. The mapped displacements are used as training and
validation data as described below.

We note that the DNS solver generates an exact wave velocity, allowing us to model the propaga-
tion of waves through many thousands of microstructural interfaces. The associated displacement
is computed approximately and then interpolated onto the high-fidelity grid; this process potentially
introduces numerical errors. Despite this fact, we consider these errors negligible and treat the

interpolated displacements as the ground-truth measurements.

BACKGROUND AND RELATED MATHEMATICAL FORMULATION

In this section we introduce the nonlocal surrogate model used in this work and the proposed
Bayesian learning approach. Consider the simulation on a spatial domain € and time domain
[0,T], and S observations of forcing terms f*(x,?) and their corresponding high-fidelity solution

and/or experimental measurements of displacement fields w7}, o (x, 7). In the following we employ
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these solutions as the ground-truth dataset, denoted as D := {u . Here we assume that both

SDNS}le
f* and uj), ¢ measurements are provided on a set of time instances 1" € [0,T] and discretization
points x; € Q. Without loss of generality, we assume that all measurements are provided on
uniformly spaced spatial and time instances, with fixed spatial grid size Ax and time step size

At, and we denote the collection of all discretization points as y = {x,-}t.L: The overall goal of

1
nonlocal operator regression is to provide a nonlocal model surrogate for the simulation of wave
propagation in heterogeneous materials. Thus, we claim that given the same forcing terms f*(x, ),
the corresponding solution, u}, (x, 1), (x,1) € QX [0, T], of the nonlocal surrogate model provides
a good approximation of the ground-truth data, i.e., uy, (x,1) = uj,, o(x, 7).

Throughout this paper, for any vector v = [vi,---,v,] € RY, we use ||v||;2 to denote its 12

norm, i.e., [|[V||2 = 4/ ?:1 vl.z. For a function u(x, t) with (x,7) € Q x [0, T], its discrete /2 norm

is defined as

T/At

lul 2oy = 4| ArAx D > u(xi, i),

n=0 x;€x
which can be interpreted as a numerical approximation of the L?(Q x [0, T]) norm of u. Finally,
in what follows, I, denotes the p X p identity matrix; with an abuse of notation, when there is no

confusion on its dimension, we simply use I to denote the identity matrix.

Nonlocal Operator Regression: learning nonlocal kernels
In this section we review the general nonlocal operator regression (NOR) approach developed in
(You et al. 2021a). The goal of NOR is to find a nonlocal model that best describes the evolution of
a homogenized quantity such as the propagation of stress waves in highly heterogeneous materials.
NOR starts from the assumption that a high-fidelity data set, satisfying an underlying high-
fidelity model, is available. Given a force loading term f(x, ), (x,1) € Qx [0, T], proper boundary
conditions and initial conditions, we represent the high-fidelity (HF) model as:

02uHF
or?

(x,t) = Lyrlugrl(x,t) = f(x,1). (6)
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Here, Ly is the HF operator that accounts for the detailed microstructure, and ugp(x,1?) is
the HF solution which can be provided either from fine-scale simulations or from experimental
measurements in practice. In this work, we take uyr as the numerical solution generated from the
DNS solver as described in Section “Dispersion in Heterogeneous Materials”, i.e., ugr = upys-.
Analogously, we will refer to the homogenized effective nonlocal (NL) model as the homogenized

surrogate, and assume it has the form

82uNL
ot?

(.X, t) - -Z:NL [MNL] (X, t) = f(X, t)’ (7)

where the operator Ly := Lk, 1s an integral operator associated with a nonlocal kernel Kc:

Lo [ul (1) = /Q Ke (e, y) (u(y.1) — u(x,0)dy, ®)

and uy (x, 1) is the nonlocal solution. Here C := {C,,}*_ € RM*! is the parameter set of kernel
Kc, which will be optimized during training. As shown in (Du et al. 2017), the second-order-in-
time nonlocal equation in (7) is guaranteed to be well-posed as far as the kernel K¢ is uniformly
Lipschitz continuous. That means, the resultant surrogate model is guaranteed to be solvable in
applications, when proper boundary conditions and numerical discretization methods are employed.
Following (You et al. 2021b; You et al. 2022; You et al. 2021a), we choose to take K¢ as a radial,
sign-changing, nonlocal kernel function, compactly supported on the ball of radius ¢ centered at
X, i.e., Bs(x). Then, we parameterize the nonlocal kernel K¢ as a linear combination of Bernstein
basis polynomials:

1) _ < Cnm ¢
we ()= Lo

m=0

), (€))

where d = 1 is the dimension of the physical domain, €2, and the Bernstein basis functions are

defined as

M
By (€) = EmMA-)M ™ foro0<&< 1.
m
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238 This choice ensures that the learnt model can be readily applied in simulation problems.
To obtain the optimal nonlocal surrogate operator Ly, the nonlocal operator regression ap-
proach seeks the best C through an optimization-based procedure. For each forcing term f*(x,?),
let uf\, LC (x,1), (x,t) € Qx [0,T] be the nonlocal solution of (7) corresponding to a specific set

of kernel parameter C := {C), }f}fzo. We aim to find the optimal parameter set C such that the

N

(approximated) nonlocal solution u;,

1 c(xi,1") for a common loading f* is as close as possible
to the HF solution uj, ¢(x;, "), for all provided observation pairs {(uj, . fs)}f:1 and x; € y,

t" =0,---,T/At. To do so, for each given forcing term f*(x,?) we need to provide a numerical

N

approximation of its corresponding nonlocal solution, (u NL,C) :

~ uj‘VL’C(xi,t”). Here, with the
initial condition (u}, L,C)? := uj, v ¢(xi, 0) and proper boundary conditions, we discretize (7) with
the central difference scheme in time and Riemann sum approximation of the nonlocal operator in

space, and obtain the approximated nonlocal solution at time #"*! as follows:

n

(M;VL,C)?+1 =2(uyy )i — (M;VL,C)?_I + AP P (x;, 1) + A (LKc,h[uva,C])i
=2y, f = Wy, OF '+ AP (x, 1)
AN Y Kl - xil) (o) = (. o), (10)
xj€Bs(x;i)Ny
where Lk, is an approximation of Lk, by the Riemann sum with uniform grid spacing Ax. The

optimal parameters C* = {C;,} and the corresponding nonlocal surrogate operator Ly, = Lg..

can be obtained by considering the normalized squared-loss of displacement in Q X [0, T]:

2
S ||“ne.c ~ Upns)|
C'= argminz > CEOTD +4]|C|[%, (11
¢ = ”usDNSHlZ(Qx[O,T])
s.t. Lk, satisfies physics-based constraints. (12)

239 Here A is a regularization parameter, and (12) depends on the partial physical knowledge of the

20 heterogeneous material, which we will discuss later on in Section “Physics Constraints”.
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Initialization for Parameters and Hyper-parameters

We note that the solution of (10) has numerical errors accumulated from t = O to r = T,
and hence in practice the optimization problem (11) aims to minimize the accumulated error of
displacement fields. This setting was originally proposed and employed in (You et al. 2021a),
where the authors found that minimizing the accumulated error would help to learn physically-
stable surrogate models, and such a stability plays a critical role in long-term prediction tasks. On
the other hand, we also point out that in some application scenarios one can also choose to minimize
the step-by-step time integration error. In (Lu et al. 2022; Zhang et al. 2022), an approximated

nonlocal solution with one-step temporal error was considered:

(ﬁva,C)z"m 1= 2(upys)i = (u;)NS);l_l + AP P (x;, 1) + AT (LKC,h[uSDNS])?

= 2(”5DNS);Z - (MSDNs)?_l + Atzfs(xia ") + AP Ax Z KC(lxj - xil)((uSDNs);'l - (”sDNs);l),
Xj€Bs(xi)Ny

N

where (uj, o) =

uy,ys(xi, ") represents the high-fidelity solution. A step-by-step loss of dis-

placement is then formulated as

2
I e ——
5 NL,C DNS||,2
C' = argminz > LE0TD +2]|C|[%, (13)
N
C = ””DNSH[Z(Qx[o,T])
s.t. Lk, satisfies physics-based constraints. (14)

The loss function in (13) is in fact a quadratic equation with respect to C. As such, NOR is
equivalent to a linear regression model and solving (13) becomes a trivially linear problem. This
fact makes hyper-parameter tuning, such as the selection of the regularization parameter A, more
efficient in (13). For instance, one can identify the optimal A as the maximizer of the curvature of
the curve, following the L-curve method (Hansen 2000; Lang and Lu 2022; Lu et al. 2022). Let /

be a parametrized curve in R?, satisfying

1(A) = (a(4), (D)) := (log(E(C*(1))), log(R(C (1)), (15)
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S
MDNSHIZ(QX[(),TU

where E(C* (1)) == X_ 1 is the loss function without regularization, and

||”bNS||12(QX[o,T])
R(C*(A)) is the regularization term, which is taken as ||C*(/l)||122 in (13). Here, we used C*(1)
to highlight the fact that the optimal parameter, C*, depends on the choice of the regularization

parameter A. The optimal parameter for A then taken as the maximizer of the curvature of / as

e ll4 e l4
a 04
A" = argmax A A

b (g3 (16)

This optimal parameter A* balances the loss & and the regularization. For further details of the
L-curve method and discussions, we refer interested readers to (Hansen 2000).

In this work, we use the step-by-step loss formulation in (13) to provide an efficient estimation
for C and to select the optimal regularization parameter A. Then, the selected parameter set and
hyperparameter will be employed in the optimization problem with accumulated loss, as an initial
guess for the optimization solver and an estimated regularization parameter, respectively. Further

details and discussions will be provided in Section “A Two-Phase Learning Algorithm”.

Physics Constraints

As illustrated in (You et al. 2021a), when some physical knowledge is available, such as the
effective wave speed for infinitely long wavelengths and the curvature of the dispersion curve in the
low-frequency limit, this knowledge can be incorporated into the optimization problem as physics-
based constraints in (12) and (14). In particular, when the effective wave speed for infinitely long

wavelengths, ¢, is available, the corresponding physics-based constraint is:

)
/0 E2Kc(|¢)de = ped, (17)

where p is the effective material density. Discretizing (17) by Riemann sum, we obtain the first

constraint on {C,, }:

M 16/Ax] 5, 3
n°Ax nAx
peg=,Cn D, T3 BmM(‘ D Zc Atm (18)
m=0 n=1
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where Ay, = ZWAXJ '725A3x3 Bm,M(

nAx
5

). Furthermore, when the curvature of the dispersion curve

in the low-frequency limit, R, is also available, the corresponding physics-based constraint is:

)
/0 EKe(|¢)dé = —4pcR. (19)

Discretizing (19) with the Riemann sum approximation yields the second constraint on {C,, }:

L6/Ax]

4Ax5 Ax
—4pciR = Zc B, (‘" ') ZC Ao (20)

m=0

nAx
s

where A,,, = ZWMJ "4Ax5 Bm,M(

). These two physics-based equations are imposed as linear
constraints on {C,,}. In this work, we consider the heterogeneous bar composed of alternating
layers of two dissimilar materials, with (averaged) layer sizes Ly = (1 — ¢)L, L, = (1 + ¢)L for
materials 1 and 2, respectively. Then the effective material density, Young’s modulus and the
wave speed are given by p = ((1 = @)p1 + (1 + @) p2)/2, E =2/((1 — ¢)E1_1 +(1+ ¢)E2_1), and
co = \/m . R is the second derivative of the wave group velocity with respect to frequency at w=0.
As discussed in Section “Dispersion in Heterogeneous Materials”, the group velocity is estimated
from the speed of wave packets using the DNS solver. For the periodic microstructure, the curvature

R of the function v¢(w) at w = 0 is found by numerically differentiating this function. The value
dz DNS

obtained for the present bar composition is R = (0) = —0.006135. The same value of R
is also employed for the random microstructure because, as discussed in Section “Dispersion in
Heterogeneous Materials”, the same dispersion properties apply to both periodic and random media
with the same ¢ and L if the wavelength is much greater than the microstructural length scale.
When applying (18) and (20) in the optimization problem (11) or (13), we reformulate this

constrained optimization problem such that an unconstrained optimization problem is obtained.

In particular, denoting C; := [Cy, -+ ,Cy->]" and Cg = [Cp_1,Cum]", (18) and (20) can be
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rewritten as

peg Ao - ALm-2 Arm-1 Aim
ArCr +ARCg = , where A; = , Ag =

~4pciR Ay -+ Asm—2 Aym-1 Aom

Hence, one can eliminate Cg by writting it as a linear expression in Cy:

2
pc
Cr = A7 O |-aLC|. (21)
3
—4pcyR
and substituting into the optimization problem (11) or (13). Therefore, in the later sections we only

need to solve for Cy, and will demonstrate the algorithm for the unconstrained problem.

BAYESIAN NONLOCAL OPERATOR REGRESSION

Given observations of forcing terms f*(x, t), the corresponding DNS solution of displacement
fields at time instance " € [0, T], and discretization points x; € y, in this section we formulate the
Bayesian inference problem. Here, we stress that the proposed learning approach does not require
the knowledge of the high-fidelity model, but only the availability of high-fidelity data at sparse
points in the computational domain. Thus, it is readily usable when only sparse experimental
measurements are available. Moreover, due to the fact that the target surrogate homogenized
model is supposed to act at a larger scale without resolving the detailed microstructure, the model
discrepancy would be the largest contributor to the overall modeling error and correspondingly the

predictive uncertainty. For the s—th observation, we model the discrepancy between u},, (x;, ")

N

and the ground truth measurement u7,

NS (x;, ") as additive independent unbiased Gaussian random
noise €, with:

uSDNS(xi’ tn) = u?\]L’C ('xia tn) + Es,i,n, Gs,i,n ~ N(O’ a-sz) (22)

,and N (0, 52) represent
12(Qx[0,T]) (0, &) represents

the normal distribution with zero mean and standard deviation &. Thus, o is the standard deviation

N N

after normalization w.r.t. the /2-norm of {uls\,L C} . Here, we point out
) s=1

Here, with o a constant independent of s, & := o -

ujVL,C (x,1)

s S
of {MDNS ”NL,C}

s=1
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312

that one of the ultimate goals is to use the learnt model as a homogenized surrogate to predict
the material response under unseen loading and boundary/initial conditions and when high-fidelity
measurements or models are not available. Thus, we choose to normalize with respect to the
(computable) nonlocal surrogate solution instead of the (unlikely available or expensive to compute)

high-fidelity data. For each observation, the likelihood function at (x;, ") is

2
ujVL,C(xi, tn) - MSDNS(-xia tn)

fupys(xi,t)|C) = exp| —

2n2 257
Therefore, given the independent noise construction, the likelihood for all the observations is

2
S.L.T/At o (i 1) = upy g (i t”)‘

f@0)= |] - exp| - - . (23)
s,i,n=1 \/27'(0'2 202||us

Unr,c
We employ priors as a means of regularization. We use a multivariate normal prior distribution

S
Unpc

12(Qx[0,T]) 12(Qx[0,T7)

on the kernel parameter, C ~ N (C, &TZI). Here C is the learnt parameter from the deterministic non-
local operator regression technique introduced in Section “Background and Related Mathematical
Formulation”, & is defined as the o estimated in Step 1b of Algorithm 1 below, and A is the chosen
regularization parameter from the L-curve method, to achieve a good balance between the prior
and the likelihood contributions. Since the normalized standard deviation of model discrepancy,
o, is anticipated to be smaller than 1, in our implementation we infer log(o) instead of o, and limit
its range to [—10, 0]. Moreover, since we have no other prior knowledge about log(o), we assume
that its prior satisfies a uniform random distribution, i.e., log(c) ~ U[—10,0]. Then, combining

the prior and likelihood in (23), we define the (unnormalized) posterior 7(C|D) o« f(D|C)P(C),
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and obtain the associated negative log-posterior formulation after eliminating the constant terms:

2
) H”?\JLC_”SDNS c_¢IP
’ 12(Qx[0,T]) ” ||12
—log(n(C|D)) = Z > + Nlog (0' uf\,L’C P@x(0 T])) +/1T‘_2,
=1 2 2 Ky ’
’ T NLc 12(Qx[0,T])
(24)

T . . . K K
where N = L is the total number of measurements for each observation pair, (f*, u},)-

A Two-Phase Learning Algorithm

To learn the posterior distribution (24), we employ an adaptive Markov chain Monte Carlo
(MCMC) method (Haario et al. 2001; Andrieu et al. 2003; Andrieu and Thoms 2008; Debusschere
et al. 2017). MCMC is an effective applied Bayesian estimation procedure, generating random
samples from the target posterior distribution. Particularly in high dimensional chains, MCMC
benefits from a good initial guess to reduce burn-in. In order to accelerate convergence and obtain
a good sampling of the posterior, we provide a good initial parameter estimate to start the chain.

To this end, a two-phase learning algorithm is proposed, with the main steps summarized in
Algorithm 1. In this algorithm, an initialization phase, denoted as phase 1, is proposed before
the MCMC algorithm in phase 2, with the purpose of providing good initial values that are
close enough to the maximum a posteriori (MAP) parameter estimate from (24). Through the
initialization technique, one can also avoid manual parameter tuning.

Phase 1 is composed of a sequence of deterministic optimization problems. First, in step 1a)

we consider the quadratic problem of minimizing the step-by-step error

2

~s S
S H“NL,C UbNs
C = argmmz >

N
C = ||uDNS||12(Q><[0,T])

12(Qx[0,T

)
+A/|CI[7,

s.t. Lk, satisfies physics-based constraints,

to provide estimates for the parameter solution, C;. Based on the estimated parameter, the approx-

imated nonlocal solution u}, c, can then be obtained following the numerical scheme (10), and an
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Algorithm 1 A Two-Phase Learning Algorithm

1: Find a good initial state
1a) Learning C; by minimizing the step-by-step error via:

2
S |nL.c ~ “pns
. : 12(Qx[0.T
Ci i= argmin )| ——— 5=+ Al[CI 25)
C = ||”sz||12(Qx[0,T])

Then calculate o as the standard deviation of uy;, c, — upnys, and update the regularization
parameter, A1, following (29).

1b) With initial values C; and regularization parameter A; obtained from step 1a), find
C, and o~ as follows:

2
s | v = s ICI?
(Cz’ 0_2) - argmin . - . [ (QX[O,T]) + Nl()g (0-||M¥DNS||12(QX[O,T])) +/ll 20-212 .
Co =1 20 ||”DNS||12(Qx[0,T]) !
(26)

1¢) With the initial values C := C,, determine the regularization parameter by solving the
linear regression problem with the quadratic loss function:

2
S Hﬁvac_”;)Ns )
. ’ 12
Cs = argmmz 5 F@xior) +/l||C - C||12, 27
c s=1 s
“nLc 12(Qx[0,T])

and update the regularization parameter A, following (34).
2: Perform MCMC
With the initial values (C;, 0») and the regularization parameter A, from phase 1, run
MCMC and sample the posterior p(C, 0| D), where the negative log-posterior, up to an additive
constant, is given by

2
S | [“NL.c — “ys IC - Cal 2
’ 12(Qx[0,T]) 212
0 #N1og (ol lloaory ) {25 @9)
=1 2 s 2
’ T|[“Ne.c 2(Qx[0,T])

3: Postprocesing
Extract effective samples from the MCMC chain, and estimate statistical moments of the
corresponding solutions and other quantities of interests.
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estimate of the parameter o, which is denoted as o, is provided by calculating the (normalized)

standard deviation of unz c, — upys. We also estimate the regularization parameter, A1, as:

2

u —uj
NL,C] DNS lz(QX[O,T])

Ay = (29)

s 2 2
s=1 ||“DNS||12(Q><[0,T])”C1”12
Intuitively, this parameter guarantees that the accumulated error and the regularization term have
similar scales. Here, we use the accumulated error instead of the step-by-step error, to be con-
sistent with the MCMC formulation (24). Then, based on the estimated parameter C; and the

regularization parameter A1, in step 1b) we solve a deterministic optimization problem:

2
S ””M ¢ ~Upns C||?
. ; 12(Qx[0,T]) A Cl|7
(€2, 02) 1= argmin s 112 + N log (O_“MYDNSHIZ(QX[O,T])) + /11?21’
Co 53 20 ||MDNS||12(Q><[O,T]) 1
(30)
s.t. Lk, satisfies physics-based constraints. (31)

The above formulation acts as an approximation of the closed form of the negative log-posterior
formulation in (24). In fact, the first two terms in the loss function aim to provide an approximation
of the first two terms in (24), except that the standard deviation is normalized with respect to the
DNS data. The last term comes from the multivariate normal prior distribution assumption on the
kernel parameter, which acts as a regularization. This step is solved with the L-BFGS method.
Then, based on the estimated solution C,, in step 1c¢) we set C = C, consider the quadratic

formulation which can be seen as an approximation of the first and last term in (24):

2
S |[@vz.c ~ Upns)|,
. : 12
Cs = argmlnz > FEexor) | /l||C - C”lz, (32)
N
¢ = ||”DNS||12(Q><[0,T])
s.t. Lk, satisfies physics-based constraints, (33)
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and can be solved as a linear problem. Here, the L-curve method is again employed with the

DNSHﬂ(gx[o T))

loss function defined as E(C(1)) = X7_ 1 L and the regularization term as

||“DNS| |12(Q><[() T))

R(C(Q)) = ||C(/1) — CH;. With the estimated solution Cj3, we then update the regularization

parameter for phase 2, which will be denoted as A,:

2
us

S
Unr.c; ~ Upns

12(Qx[0,7])

2
I1C5 = Call

)

s=1

(34)
Unp.c

12(Qx[0,T1)

Finally, with the initial values (C,, o) and the regularization parameter A, from phase 1, we
apply adaptive MCMC using the log-posterior (24), where the pair (C, o) as well as the initial
guess of (C, o) are set as (Cp, 0%). Our adaptive MCMC is implemented using the Uncertainty

Quantification toolkit (UQTk) (Debusschere et al. 2004; Debusschere et al. 2017).

APPLICATION TO A HETEROGENEOUS ELASTIC BAR

In this section, we examine the efficacy of the proposed BNOR model and the two-phase
learning algorithm, by considering the stress wave propagation problem described in Section
“Dispersion in Heterogeneous Materials”. Here, we seek a nonlocal homogenized model for the
stress wave propagation in one-dimensional heterogeneous bars. Two exemplar heterogeneous bars
are considered, one with periodic microstructure and one with random microstructure. For this
problem, the goal is to obtain an effective nonlocal surrogate model from ground truth datasets
generated by the DNS solver, acting at a much larger scale than the size of the microstructure.
Since this problem has no ground-truth nonlocal kernel, we evaluate the surrogate by measuring its
effectiveness in reproducing DNS data in applications that are subject to different loading conditions
with a much longer time than the problems used as training data. To directly examine the extent
to which our surrogate model reproduces the dispersion properties in the heterogeneous material,
we also compare the group velocity curves from our model with the curves computed with DNS.
Finally, we require that the learnt surrogate should provide a physically stable material model.

To check this, we report the dispersion curve, whose positivity indicates that the learnt nonlocal
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model is physically stable. Besides the predicted MAP solutions, the Bayesian model also provides
estimation of the predictive uncertainty for all above quantities of interests.

In this work, we use a NVIDIA 3060 GPU for all training tasks. In the initialization phase,
phase 1a and phase 1c take a few seconds to complete and phase 1b takes approximately 1 hour. We
run phase 2 for approximately 3 days to generate 300,000 MCMC samples, ensuring that enough

(approximately 4,000) effective samples are obtained.

Example 1: A Bar with Periodic Microstructure

Data generation and settings. First, we consider a heterogeneous bar with a periodic microstruc-
ture. As illustrated in the left top plot in Figure 2, the bar is a layered medium composed of two
components, with the size of each layer L = 0.2. Components 1 and 2 have the same density p = 1
and Young’s moduli £; = 1 and E, = 0.25, respectively. For the purpose of training and validation,
we generate the DNS dataset with three types of data, and use the first two for training and the last
one for validation of our algorithm. For all data we set the discretization parameters for the DNS
solver as Atpys = 0.01, max{Axpys} = 0.01, and consider the symmetric domain Q = [-b, b].
In what follows, u represents the displacement, v the velocity, and f an external loading. The three

types of data are chosen to follow a similar setting as in (You et al. 2021a):

Type 1: Oscillating source (20 observations). We set b = 50. The bar starts from rest such that
-1\ 2

v(x,0) = u(x,0) = 0, and an oscillating loading is applied with f(x,t) = e_(SZk_XL)Ze_(TO) cos? (ZkLLx)

with k = 1,2,...,20. Here we take 1o = £, = 0.8.

Type 2: Plane wave with ramp (11 observations). We also set the domain parameter as b = 50.

The bar starts from rest (u(x,0) = 0) and is subject to zero loading (f(x, ) = 0). For the velocity

on the left end of the bar, we prescribe

t
sin(wt) sin’ (71_) , t<15
v(=b,1) = 3

sin(wt), t>15

forw =0.35,0.7,--- ,3.85.
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Type 3: Wave packet (3 observations). We consider a longer bar with b = 133.3, with the bar
starting from rest (u(x, 0) = 0), and is subject to zero loading (f(x, t) = 0). The velocity on the left
end of the bar is prescribed as v(—b, t) = sin(wt) exp (—=(¢/5 — 3)?) with w = 2, 3.9, and 5.

For all data types, parameters for the nonlocal solver and the optimization algorithm are set to
Ax =0.05, At =0.02, 6 = 1.2, and M = 24. For training purposes, we generate data of types 1 and
2 till T = 2. Then, to investigate the performance of our surrogate model in long-term prediction

tasks we simulate till 7 = 100 for data type 3.

19.28 30.46
19.26 | —
19.24
e 3042
19.22 30.4
19.2 30.38
19.18 30.36 -4.,548
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(a) First parameter (b) Second parameter (c) log(o)

Fig. 4. The first two kernel parameters Cy, C; and log(o) for a bar with periodic microstructure,
plotted against the iteration number after eliminating the burn-in stage (the trace plot of MCMC).
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Fig. 5. Optimal kernel, group velocity and dispersion curve for a bar with periodic microstructure.
Here, the confidence region almost coincides with the curve of average BNOR, since the uncertainty
in the kernel parameters is low. We also point out that the results from MAP point estimate via
minimizing (28) coincides with the averaged kernel from BNOR.

Results from Bayesian inference An MCMC chain with 300,000 steps is generated, with ap-

proximately 30% acceptance rate. To present the results, we post-process the chain based on 3,856
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equally spaced samples, where the effective sample size (ESS) was calculated following the formu-
lation in (Vats et al. 2019). To demonstrate the efficacy of our two-phase learning algorithm, we
also perform an ablation study of running MCMC without the initialization estimated from phase
1. As shown in the Appendix Figure 14, the acceptance rate is very low (0.0059) and only a few
proposals are sampled. Figure 4 shows a trace plot of the MCMC chain, illustrating good mixing
of the chain. In Figure 5(a), the nonlocal kernels using the learnt parameters are demonstrated,
with predictive uncertainty ranges of 68%, 95% and 99.7% provided. Here, the confidence ranges
were calculated based on the push-forward of the marginal posterior on C (using the samples from
MCMC), through the nonlocal model (7), and the averaged BNOR kernel is calculated by evaluating
the posterior mean of the kernel parameter C. Specifically, denoting the posterior mean of C, as
C, the averaged nonlocal kernel is evaluated as K¢ (%) Both the averaged nonlocal kernel from
the proposed BNOR algorithm and the deterministic nonlocal kernel from the original NOR are
reported for comparison, together with the MAP estimate. One can see that the averaged kernel
from BNOR is close to the original NOR kernel when ¢ = |y — x| is relatively large (> 0.6) with an
almost negligible predictive uncertainty, while the discrepancy becomes more significant when &
approaches zero. However, the kernel values at ¢ = 0 have a relatively small impact on the nonlocal
operator Lg,., and consequently also on the corresponding nonlocal solution uy; as well as the loss
function in our optimization problems. Moreover, sign-changing behaviors are observed on both
kernels, which are consistent with literature (Xu and Foster 2020; You et al. 2021b). Then, in Figure
5(b) we illustrate the deterministic and mean estimates, and predictive uncertainty ranges, of the
dispersion curve. Here, we can see that both the averaged model from BNOR and the deterministic
model from NOR possess positivity, indicating that both models correspond to a family of physi-
cally stable material models. Finally, in Figure 5(c) we plot the estimated group velocity against
frequency w, in comparison with the group velocity profile from the DNS simulation. These results
indicate that both the averaged model from BNOR and the deterministic model from original NOR
are able to match the DNS behavior for low frequency values w. When the frequency is getting

closer to the band stop, wy, comparing with the deterministic model from original NOR, we note
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that the averaged model from BNOR has reproduced the group velocity of the DNS model with
better accuracy. Here, we stress that since the method for evaluating the DNS v, from wave packets
is susceptible to error near the band stop, it is generally infeasible to expect our nonlocal surrogate
model to match perfectly with the DNS group velocity. For both the dispersion curve and group

velocity, predictive uncertainties are again negligible.

Push-forward Posterior(PFP) Posterior Predictive(PP)
0.25
l‘P
- 02 | ﬂ |
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Fig. 6. Comparison of two posterior uncertainty results for the prediction of two exemplar examples
from the training dataset, on the periodic microstructure case. Left: displacement field prediction
and confidence regions from the push-forward posterior (PFP) approach. Right: displacement field
prediction and confidence regions from the posterior predictive (PP) approach.

We note in particular that the evident negligible level of predictive uncertainty in these results
is due to the fact that (1) our error model is rather simple, presuming independent noise, such that
each additional data point adds information, and (2) we have a large number of data points. The
combination of both factors results in the posterior on C being highly concentrated, thus exhibiting
minimal uncertainty, even though the discrepancy between the two models is non-negligible.
In order to endow the nonlocal predictive model with uncertainties that better approximate the
discrepancy between it and the high-fidelity model, one can resort to a more elaborate statistical
construction to represent model error (Kennedy and O’Hagan 2000), particularly as embedded

in the model construction (Sargsyan et al. 2015; Sargsyan et al. 2019). We reserve this pathway
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forward for future work.

We illustrate further, in Fig. 6, posterior uncertainty on two predicted solutions that are part of
the training data. In each case, we highlight two posterior uncertainty results. The first, commonly
termed the push-forward posterior (PFP), is the push-forward of the marginal posterior p(C|D)
through the non-local model uy; c(x,?). The second, termed the posterior predictive (PP), is the
push-forward of the full posterior p(C, o|D) through the data model uy; c(x,?) + €. The PFP
provides the posterior uncertainty on the model predictions given posterior knowledge of C. On the
other hand, the PP provides a posterior density on predictions of the data model, which serves as a
diagnostic measure of the quality of this model, composed of the physical model and the proposed
error model, as a predictor of the data (Note that, in an additive model error framework (Kennedy
and O’Hagan 2001) where the € term, defined to include some correlation structure, would be
included in “corrected" model, such that the associated PP & PFP are equivalent.). It is expected
that the PP would exhibit higher uncertainty on predictions than the PFP. Further, an ideal PP should
span the data, and its samples ought to be statistically indistinguishable from the data. Considering
the results in Fig. 6, we can see that the BNOR solution with the mean C, the deterministic
NOR, and the DNS solution are all very well matched for the plane wave case, with discernible
differences in the displacement magnitudes in the oscillating source case. Further, we see that the
PFP results in negligible predictive uncertainty, as already observed in Fig. 5 for the kernel and
associated quantities of interest. On the other hand, the PP results exhibit non-negligible uncertainty,
particularly at low mean-output levels for positions beyond +10 for the oscillating source case, and
above position -15 for the plane wave case. However, we find that the PP uncertainty is again
negligible at high signal levels around position 0 in the oscillating source case, and below position
-15 in the plane wave case. Moreover, the PP uncertainty is small relative to the discrepancy
between the model and the data at large signal levels in the oscillating source case, while it is larger
than the discrepancy at low signal levels. Clearly, the PP does not do an ideal job of spanning the
discrepancy from the data, indicating that a more flexible/accurate, perhaps embedded, error model

would be needed to better capture the data error.
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Validation on wave packet In order to further test the predictive performance of our surrogate
model, we now demonstrate its capability in reproducing DNS simulations through the prediction
error of  on data type 3, involving wave packet problems where a long time simulation is conducted
on a long bar, and the loading scenario is substantially different from the training cases. With
the proposed BNOR approach, for each loading scenario both the prediction of displacement
field unr c(x;,1") and the 68% — 95% — 99.7% confidence regions are provided. Specifically,
we present both the PFP p(unp c(x;,¢")|D) and PP p(uyr.c(xi,t") + €|D) results, where € ~

2 2
N(O, o*|[unr.c(x, t)lllz([—b,b]x[O,T]))'
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Fig. 7. Validation on the wave packet traveling problem for a bar with periodic microstructure,
illustrating PFP uncertainty. Plots from top to bottom are corresponding to different loading
frequencies: (top) w = 2 < wpy, (Middle) w = 3.9 = wy, and (bottom) w = 5 > wp. Left column
shows the simulation results on a relatively short time (7" = 20), and the right column demonstrates
long time simulation results (7" = 100).

In Figures 7 and 8 we consider solutions corresponding to three values of frequency w: w; =

2 < wpg, w2 = 3.9 = wpy and w3 = 5 > wypy, respectively. Further, results in the two figures
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Fig. 8. Validation on the wave packet traveling problem for a bar with periodic microstructure,
illustrating PP uncertainty. Plots from top to bottom are corresponding to different loading fre-
quencies: (top) w = 2 < wps, (middle) w = 3.9 = wyy, and (bottom) w = 5 > wp,. Left column
shows the simulation results on a relatively short time (7" = 20), and the right column demonstrates
long time simulation results (7" = 100).

illustrate PFP (Fig. 7) and PP (Fig. 8) uncertainty as indicated. For the the first two values of w,
the exact stress wave is anticipated to be traveling in time. For the last case, since the value of w is
beyond the band stop and corresponds to a zero DNS group velocity, the exact wave does not travel
in time. Both short time (¢ = 20) and long time (¢ = 100) predictions are considered for each case.
The deterministic solution from the standard NOR algorithm and the DNS data are also reported for
comparison. We observe at the outset the negligible PFP uncertainty (Fig. 7), as already observed
in Fig. 6 for training data predictions, while larger PP uncertainty is evident (Fig. 8), and quite
prominently as the displacement goes to zero.

Further, for the loading frequency w = 2.0 case, we observe good agreement between the

mean of the nonlocal solutions and the DNS data for both r = (20, 100) cases. Thus, the optimal
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nonlocal surrogate corresponding to our learnt samples can accurately reproduce both short and
long-time stress wave propagation in this frequency range. Here, we stress that although we refer to
t = 20 as a relative short term, it is still much longer (10x) than the total time interval our training
algorithm has seen from the training samples. These findings illustrate the generalization property
of our algorithm in extrapolation tasks in this frequency range. On the other hand, considering the
wave propagation results for the loading frequency w = 3.9 case, which is close to the band stop
frequency, a larger discrepancy between the DNS solution and the predicted displacement field is
observed, especially in the region near the wave front. More specifically, at ¢ = 20, the mean of the
nonlocal solutions is slightly off from the DNS solution, while the latter still lies inside the 68% PP
confidence region (Fig. 8). This discrepancy grows appreciably as time moves forward, as can be
seen for the # = 100 case, extending well beyond the PP range. Clearly, our extrapolative behavior
is poor for loading frequencies in the vicinity of the band stop frequency. Finally, when the loading
frequency w = 5.0 > wps and the wave barely propagates, as shown in both figures, our model
successfully captures the phenomenon that the wave stops traveling.

Generally, based on these results, we can say that the proposed nonlocal surrogate model per-
forms well in short term extrapolative prediction tasks, and the posterior predictive associated with
the current additive error model provides an adequate coverage of the DNS data, even in extrapo-
lation, when the loading frequency is away from the band stop frequency, wps. To further improve
the prediction accuracy and the model discrepancy representation, more training observations on
a longer time and/or a more flexible and sophisticated error model employing a Gaussian process
construction should help, allowing always for the lack of expected accuracy from the statistical
model in extrapolation if the mean model itself is failing. We note in particular that the point-wise
mismatch between discrepancy magnitude and predictive uncertainty from the calibrated model
evident in the above figures is the expected result of the implicit mean-square averaging of the
discrepancies/errors for all data points in the present additive i.i.d. Gaussian Likelihood construc-
tion. Our estimated standard deviation of the error, as well as our parametric uncertainties, being

effectively the result of root-mean-squared averaging of these discrepancies, lead to predictive
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uncertainty that is smaller than the largest discrepancies observed in the data, and larger than the

smallest observed discrepancies.

Example 2: A Bar with Random Microstructure

Data generation and settings. We now consider a heterogeneous bar with random microstructure,
where the size of each layer is now defined by a random variable. In particular, the density for
both components is still set as p = 1 and the Young’s moduli are E1 = 1 and E, = 0.25. The
layer sizes Li, L, are two random variables, both satisfying a uniform distribution: L, L, ~
U[(1 =D)L, (1+ D)L], with the averaged layer size L = 0.2 and the disorder parameter D = (.5.
To generate the training dataset, we simulate the wave propagation using the DNS solver, under
the same settings as in data type 1 and data type 2 of the periodic bar case. Then, the wave
packet problem is again considered for the purpose of validation. Comparing with the periodic
microstructure case, from the group velocity generated by the DNS simulations (see Figure 3 right
plot) we note that the band stop generally occurs at a lower frequency in the random microstructure
case. In fact, for the microstructure considered in this bar, an estimated band stop frequency wps = 3
can be obtained from the DNS simulations. Thus, in this section, wave packets with frequencies
w = 1,2,3 and 4 are considered as the validation samples, with the purpose of investigating the
performance of our nonlocal surrogate model when the loading frequencies are below (w = 1, 2),

around (w = 3), and above (w = 4) the estimated band stop frequency wy;.

11.15 -4.329

-4.33

-4.333

11 -4.334
1 2 3 0 1 2 3

Step %10° Step «10° Step %105

(a) First parameter (b) Second parameter (c) log(o)

Fig. 9. The first two kernel parameters Cy, C; and log(o-) for a bar with random microstructure,
plotted against the iteration number after eliminating the burn-in stage (the trace plot of MCMC).
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Results from Bayesian inference. We run an MCMC chain with 300,000 steps, with a 31%
acceptance rate, and post-process it using 4,212 equally spaced samples guided by an estimated
ESS. The ESS, the trace plot, the predicted averaged kernel, and its dispersion properties are all
calculated similarly as for the periodic bar. Figure 9 shows the exemplar trace plot of the MCMC
chain for two kernel parameters, Cy and Cy, and o, illustrating good mixing. Compared with the
periodic bar, slightly larger values of o are obtained here. Hence, the randomness in material

microstructure is anticipated to induce a larger model discrepancy. Then, in Figure 10 we plot the

| FONL solution 99.7% confidence region|
| NL solution 95% confidence region
% confidence region

MAP estimate

- —MAP estimate
---Average BNOR -

---Average BNOR

Kernel
N e O B N W A U o N ™

0 0.2 0.4 0.6 0.8 i 1.2 0o 20 40 60 80 100 120 140 ] 0.5 & 15 2 25 3 a5
Position Wave number Frequency

(a) Optimal kernel (b) Dispersion curve (c) Group velocity

Fig. 10. Optimal kernel, group velocity and dispersion curve for a bar with random microstructure.
Since the uncertainty in the kernel parameters remains low, the confidence regions generally
coincide with the curve of average BNOR. Similar as in the periodic bar case, here the results from
MAP point estimate via minimizing (28) again coincides with the averaged kernel from BNOR.

predicted averaged nonlocal kernel, the dispersion curve, and the group velocity profiles, together
with the 68% — 95% — 99.7% PFP confidence regions. The results from original NOR algorithm
and the MAP estimate are also reported for comparison. For the estimated nonlocal kernels, as
demonstrated in Figure 10(a) we observe a small discrepancy between the averaged kernel and the
deterministic kernel from NOR, together with very small confidence regions. These trends are also
observed in Figure 10(b) and Figure 10(c), for the dispersion curves and group velocity profiles,
respectively. As in the periodic bar case, for this random microstructure the predicted nonlocal
model from BNOR again possesses physical stability, and successfully identifies the band stop. In
Figure 10(c), a relatively larger discrepancy is observed between the group velocity from the DNS

solver and profile from the estimated nonlocal surrogate, possibly due to the fact that the material
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randomness introduces larger errors in the approximated DNS group velocity, v,, especially for the

frequencies near the band stop, as discussed in Section “Dispersion in Heterogeneous Materials”.
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Fig. 11. Comparison of two posterior uncertainty results for the prediction of two exemplar
examples from the training dataset, on the random microstructure case. Left: displacement
field prediction and confidence regions from the push-forward posterior (PFP) approach. Right:
displacement field prediction and confidence regions from the posterior predictive (PP) approach.

We illustrate again, in Fig. 11, posterior uncertainty on two predicted solutions that are part
of the random microstructure training data, including both the PFP and PP posterior uncertainty
results. We can see that the BNOR solution with the mean C, the deterministic NOR, and the
DNS solution are all very well matched for the plane wave case. On the other hand, again, the
oscillating source case exhibits discernible displacement magnitude differences between the two
nonlocal solutions and the DNS solution. We also see that the PFP results in negligible predictive
uncertainty, as already observed in Fig. 10. On the other hand, the PP results exhibit non-negligible
uncertainty at low mean-output levels for both the oscillating source and plane wave case, while
exhibiting again negligible uncertainty at high displacement levels even where the discrepancy with
the DNS data is large. Here again, the PP with the current data model does not span the discrepancy

from the data well, and is a candidate for improvement in future work.
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Fig. 12. Validation on the wave packet traveling problem for a bar with random microstructure,
illustrating PFP uncertainty. Plots from top to bottom are corresponding to different loading
frequencies: 1) w =1 < wps, 2) W =2 < wWpy, 3) W =3 = wWps, and 4) w = 4 > wp,. Left column
shows the simulation results on a relatively short time (7 = 20), and the right column demonstrates
long time simulation results (7" = 100).

Validation on wave packet Following the same procedure as for the periodic microstructure case,
here we again demonstrate the generalization capability of the learnt nonlocal surrogate model on
different domains, boundary conditions, and longer simulation time, by considering the wave packet
problem. Prediction results subject to four loading frequencies, w = 1.0 < wps, w = 2.0 < wWpy,
w = 3.0 ® wps, and w = 4.0 > wyy, are provided on a relatively short time (¢ = 20) and a longer

time (¢ = 100) simulations. The validation results are illustrated in Figures 12 and 13 illustrating
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Fig. 13. Validation on the wave packet traveling problem for a bar with random microstructure,
illustrating PP uncertainty. Plots from top to bottom are corresponding to different loading fre-
quencies: 1) w =1 < wps, 2) W =2 < Wpy, 3) W = 3 & Wy, and 4) w = 4 > wp,. Left column
shows the simulation results on a relatively short time (7 = 20), and the right column demonstrates
long time simulation results (7" = 100).

PFP and PP uncertainty respectively. The deterministic nonlocal solution from the original NOR
algorithm and the DNS data are also reported for comparison.

We can see here again the negligible PFP uncertainty, even under extrapolation, in Fig. 12,
while significant PP uncertainty is evident in Fig. 13. Further, for the short time prediction task
(t = 20), a good agreement between the mean of the uncertain nonlocal solution and the DNS data

is observed for w = 1, 2, validating the generalizability of the learnt nonlocal surrogate under these
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loading conditions up to this time. However, there is clear mismatch with DNS for w = 3,4 in the
region near the wave front. For long time prediction (¢ = 100), the extrapolated learnt nonlocal
surrogate model exhibits discernible differences from the DNS solution under all loading cases,
with the minimal differences being evident at w = 1. At this loading the differences are confined to
small magnitude differences in the oscillatory trace. On the other hand, more significant differences
in both magnitude and phase are evident for w = 2, 3, 4. Qualitatively, a satisfactory result is indeed
obtained when the loading frequency w = 4.0 > w; in that the wave barely travels in time. Except
for the case with ¢+ = 100 and w = 3, the DNS solution always lies inside the 68% PP confidence

region, highlighting the efficacy of our additive error model under these conditions in extrapolation.

CONCLUSION

In this paper, we have proposed BNOR — an approach for learning the optimal nonlocal surrogate
together with modeling discrepancy characterization for heterogeneous material homogenization.
Our work is built based on the nonlocal operator regression approach (You et al. 2021b), which aims
to provide a well-posed and generalizable nonlocal surrogate model from high-fidelity simulations
and/or experimental measurements of the displacement fields, and allows for accurate simulations
at a larger scale than the microstructure. Because of these desired properties, the nonlocal surrogate
model from NOR is readily applicable for unseen prediction tasks, such as to find the solutions
at much larger times than the time instants used for training, and on problem settings that are
substantially different from the training data set. On the other hand, since the nonlocal surrogate
model from NOR serves as a homogenized surrogate of the original complex physical system
without resolving its heterogeneities at the microscale, unavoidable modeling discrepancy will be
introduced, which contribute to the overall prediction error and uncertainty.

To quantify the model predictions and associated uncertainty in future prediction tasks, in this
work we used an independent additive Gaussian data model centered on the NOR approach, in
order to represent and quantify the homogenization modeling discrepancies. The framework is
developed within a Bayesian inference context, where NOR model parameters are inferred simul-

taneously along with parameters that characterize errors relative to the data. To solve the Bayesian
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inference problem efficiently, a two-phase MCMC algorithm is proposed, enabling an efficient
and non-intrusive procedure for approximate likelihood construction and model discrepancy esti-
mation. Lastly, the proposed BNOR framework is validated on the wave propagation problem in
heterogeneous bars. It is found that the learnt model has 1) captured the correct band gap and the
group velocity; 2) reproduced high-fidelity data for a composite material in applications that are
substantially different from the training data under a significant range of conditions; 3) provided a
characterization for the posterior distribution of the parameters as well as the confidence region for
further prediction tasks.

In this work, we have focused on the high-fidelity measurements so the modeling discrepancy
acts as the main contributor of uncertainties. As observed in the numerical tests of Section
“Application to a Heterogeneous Elastic Bar”, the posterior predictive does not span the discrepancy
in the data well, due to the limitation of our additive i.i.d. Gaussian error Likelihood construction.
As a natural follow-up, and to provide predictive uncertainty that better matches the point-wise
discrepancies between the calibrated model and the data, we plan to pursue a more sophisticated
embedded model error construction (Sargsyan et al. 2015; Sargsyan et al. 2019). Another interesting
future direction would be to incorporate our model while enabling targeted model improvement and
optimal experimental design. Last but not least, to illustrate the efficiency of our algorithm, two-
and three-dimensional test cases will also be considered. For example, one may use the BNOR
framework to characterize the homogenization error in the coarse-grained nonlocal model from

molecular dynamics simulations, as an extension of the development in (You et al. 2022).
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APPENDIX: ABLATION STUDY

Herein, we provide additional numerical results to investigate the effect of the proposed initial-
ization scheme in phase 1. In particular, we perform the phase 2 in our algorithm by starting from
an all-one initial state. As shown in the trace plots of Figure 14, the acceptance rate is very low

(0.0059) and only a few proposals are sampled.
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Fig. 14. Ablation study — Skip phase 1 and run phase 2 directly: The first two kernel parameters
Co, C; and log(o) for a bar with periodic microstructure, plotted against the iteration number (the
trace plot of MCMC).
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