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Abstract

Examining energization of kinetic plasmas in phase space is a growing topic of interest, owing to the wealth of data
in phase space compared to traditional bulk energization diagnostics. Via the field-particle correlation (FPC)
technique and using multiple means of numerically integrating the plasma kinetic equation, we have studied the
energization of ions in phase space within oblique collisionless shocks. The perspective afforded to us with this
analysis in phase space allows us to characterize distinct populations of energized ions. In particular, we focus on
ions that reflect multiple times off the shock front through shock-drift acceleration, and how to distinguish these
different reflected populations in phase space using the FPC technique. We further extend our analysis to
simulations of three-dimensional shocks undergoing more complicated dynamics, such as shock ripple, to
demonstrate the ability to recover the phase-space signatures of this energization process in a more general system.
This work thus extends previous applications of the FPC technique to more realistic collisionless shock
environments, providing stronger evidence of the technique’s utility for simulation, laboratory, and spacecraft
analysis.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Shocks (2086); Plasma physics (2089); Space
plasmas (1544); High energy astrophysics (739)

1. Introduction

The means by which the hot, tenuous plasmas that make up
the luminous universe convert energy from one form to another
via collisionless processes, i.e., processes involving the
interaction between the constituent plasma particles and the
self-consistently generated electromagnetic fields, remains an
active area of research. In particular, the mechanisms for
dissipation of energy in collisionless shock waves are a rich
field of study. Here, a shock wave refers to a disturbance
propagating faster than the largest local wave speed, and the
shock wave is considered collisionless because the steepening
of the shock, and the resultant conversion of the upstream
kinetic energy to other forms of energy, occurs on a length
scale much smaller than the collisional mean free path of the
plasma particles. How the plasma converts the large bulk
kinetic energy of the incoming supersonic flow to electro-
magnetic and thermal energy over such small length scales can
vary dramatically based on the shock geometry and the fast
magnetosonic Mach number Mf=Ushock/vf, where Ushock is
the shock velocity and vf is the fast magnetosonic wave
velocity. A critical commonality is that because these processes
are collisionless, they involve the evolution of the plasma in the
full position–velocity six-dimensional (3D-3V) phase space.

Leveraging phase space to determine the details of the
plasma’s evolution has historically been fruitful but also
fraught with challenges. Sufficient particle statistics to

reconstruct the distribution function in both spacecraft
observations and particle-in-cell (PIC) simulations is nontrivial
and often limited by instrumental and computational con-
straints. Nevertheless, the increasing resolution of modern
spacecraft observations and numerical methods, along with
more advanced laboratory measurement techniques for recon-
structing distribution functions, is ever building toward more
sophisticated means of diagnosing the energetics of collision-
less plasma phenomena such as collisionless shocks.
In particular, recent work has focused on the field-particle

correlation technique (FPC; Klein & Howes 2016; Howes et al.
2017; Klein 2017) to characterize the energy transfer between
the plasma particles and electromagnetic fields in phase space.
First developed for turbulence applications (Klein et al. 2017;
Howes et al. 2018; Li et al. 2019; Horvath et al. 2020; Klein
et al. 2020), the FPC technique has recently been applied to
collisionless shocks (Juno et al. 2021) to identify the
energization signatures of shock-drift acceleration of ions
(Paschmann et al. 1982; Sckopke et al. 1983; Ball &
Melrose 2001) and adiabatic heating of electrons (see, e.g.,
Balogh & Treumann 2013) in phase space. These velocity-
space signatures of the exchange of energy between particles
and electromagnetic fields are useful for understanding
energization in kinetic simulations and of especially high
utility when comparing to laboratory measurements (Schroeder
et al. 2021) and spacecraft observations (Chen et al. 2019;
Afshari et al. 2021). Spacecraft, for example, provide us an
Eulerian perspective of how regions of phase space are being
energized after sufficient integration over particle statistics, in
contrast to a Lagrangian perspective of tracking the energiza-
tion of individual particles. There is thus growing interest in
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characterizing a wider variety of collisionless shock energiza-
tion mechanisms in phase space using the FPC technique and
comparing the observed signatures from spacecraft measure-
ments of distribution functions in heliospheric shocks to those
obtained from simulations.

Juno et al. (2021) considered a fairly idealized shock: one-
dimensional and perpendicular, where perpendicular defines
the angle between the upstream magnetic field and shock-
normal direction. In more realistic plasma environments, not
only is there often a finite component of the magnetic field in
the shock-normal direction, but also instabilities in the
transverse plane of the shock (Schwartz et al. 1985, 1992;
Wilson et al. 2013, 2014), which may lead to distortions and a
corrugation of the shock, often referred to as “shock ripple”
(Johlander et al. 2016). In both cases, this additional physics
may significantly complicate the shock dynamics, allowing
particles to return upstream when the magnetic field partially
lies in the shock-normal direction. Further, this additional
physics may prevent a clean “two-state” picture of the shock,
where there is a clearly defined upstream and downstream
region with respect to the shock, because these transverse
instabilities distort the shock transition. It is thus reasonable to
ask whether these potentially powerful velocity-space signa-
tures of energization in phase space are recoverable in these
more realistic shock environments.

It is the purpose of this article to address this issue with both
more realistic shock geometries and full three-dimensional
simulations that permit the development of transverse instabil-
ities. We again leverage the Gkeyll simulation framework
(Juno et al. 2018; Hakim & Juno 2020) to perform continuum
kinetic simulations of a collisionless shock and obtain high-
fidelity representations of the distribution function through the
shock, free of the counting noise present in PIC simulations.
Similar to Juno et al. (2021), we perform one-dimensional
simulations of an electron–ion plasma but now equally
subdivide the magnetic field between the components perpend-
icular and parallel to the shock-normal direction, often referred
to as an oblique shock with shock-normal angle θBn= 45°. We
find with these one-dimensional simulations of an oblique
shock that not only can we still recover the shock-drift
acceleration signature in this more realistic shock geometry, but
the inclusion of an in-plane magnetic field component permits
the ions to bounce multiple times off the shock front and thus
be continually energized by shock-drift acceleration. Using the
FPC technique, we can clearly identify these distinct popula-
tions of energized ions.

We supplement this more computationally demanding model
with complementary hybrid PIC simulations using dHybridR
(Gargaté et al. 2007; Haggerty & Caprioli 2019; Caprioli et al.
2020; Haggerty & Caprioli 2020) in three dimensions with the
same initial shock geometry. We are able to obtain identical
velocity-space signatures of the ions bouncing multiple times
off the shock front and being energized continually via shock-
drift acceleration even with the added complication of the
shock distorting and rippling in the transverse plane due to a
kinetic instability. This study thus serves also as a proof of
concept that this phase-space analysis can also be performed on
PIC simulations, provided a sufficiently large number of
particles is used to allow for a reasonably accurate reconstruc-
tion of the distribution function.

2. Computational Models and the Field-particle Correlation
Technique

Both the continuum Vlasov–Maxwell solver in the Gkeyll
framework and the hybrid PIC code dHybridR numerically
integrate the Vlasov equation,
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where fs= fs(x, v, t) is the particle distribution function for
species s, qs and ms are the charge and mass of species s
respectively, and E= E(x, t) and B=B(x, t) are the electric
and magnetic fields respectively. We note that collisions can be
included in the Gkeyll discretization of the Vlasov equation
as a Fokker–Planck operator (Hakim et al. 2020) on the right-
hand side of Equation (1), and that such an operator is useful
for providing numerical regularization of velocity space given
finite velocity-space resolution. The two methods utilize
different field equations for the evolution of the electro-
magnetic fields; Gkeyll’s Vlasov–Maxwell solver numeri-
cally integrates Maxwell’s equations, while dHybridR uses a
reduced set of field equations in the limit that the electron mass
is negligible.
Both methods have advantages and disadvantages for this

particular study. Gkeyll’s continuum Vlasov–Maxwell solver
directly discretizes the Vlasov equation on a phase-space grid,
thus completely eliminating the noise inherent in the PIC
algorithm, which can be problematic for distribution function
analysis. Discretization on a phase-space grid comes at an
increased computational cost—the one-dimensional oblique
shock analyzed in Section 3 requires a four-dimensional phase
space (1D-3V). dHybridR’s cost is further decreased by its
reduced electromagnetic field equations, which allow dHy-
bridR to step over restrictive electron temporal and spatial
scales. While the approximate electromagnetic field equations
prevent dHybridR from being used to examine electron
energization, the reduced model does lower the computational
cost enough for us to perform three-dimensional simulations in
configuration space of the ion dynamics. Additionally, the
lowered computational cost allows us to utilize a large particle-
per-cell count and thus increase the accuracy of the distribution
function reconstruction by decreasing the noise caused by the
sampling of velocity space using discrete particles.
With access to the distribution function, we can employ the

foundational tool of this study: the FPC technique. By defining
the phase-space energy density ws(x, v, t)≡msv

2fs(x, v, t)/2
and multiplying the Vlasov equation by msv

2/2, we obtain an
expression for the rate of change of this phase-space energy
density,
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The only term that leads to net energy transfer in phase space is
the electric field term (Klein & Howes 2016; Howes et al.
2017; Klein et al. 2017), which allows us to define

⎡⎣⎢ ⎤⎦⎥
( )

( ) · ( ) ( )ò

t

t
= -

¶ ¢
¶

¢ ¢
t

t

-

+

x v
x v

v
E x

C t

q
v f t

t dt

, , ;

1
2

, ,
, . 3

E

t

t

s
s

0

2

2 2
0

0

2

The Astrophysical Journal, 944:15 (9pp), 2023 February 10 Juno et al.



Equation (3) is the principal instrument for our subsequent
analysis and provides a measure of the rate of change of phase-
space energy density at position x0 as a function of velocity
space v over the correlation time τ. We call the resulting
signature the velocity-space signature characteristic of the
mechanism of energization. Different velocity-space signatures
can then be used to identify a particular energization process
such as a wave–particle resonance like Landau damping
(Howes et al. 2017; Klein et al. 2017) and cyclotron damping
(Klein et al. 2020), or in the case of the previous Juno et al.
(2021) shock study, a nonresonant signature such as shock-drift
acceleration or adiabatic heating.

For the present study of ion energization at collisionless
shocks using the FPC technique, we follow Juno et al. (2021)
to separate the correlation by electric field component Ej and to
take τ= 0 so that our correlation is instantaneous.8 Here we
emphasize two key concepts in the implementation of the FPC
technique: (i) the choice of reference frame and (ii) the different
means of calculating the correlation for a grid code versus a
particle code.

First, the velocity-space signatures of ion energization are
most easily interpreted if the calculations are performed in a
frame of reference in which the upstream flow is along the
shock normal (normal incidence frame) and in which the shock
is at rest (shock-rest frame). The upstream inflow is easily
initialized along the shock normal; see Appendix A for details.
In the frame of the simulations (the downstream rest frame), the
shock propagates at velocity Ushock, so the electromagnetic
fields are Lorentz transformed, in the nonrelativistic limit, from
the simulation frame (primed) to the shock-rest frame
(unprimed) by

( )= ¢ + ´ ¢E E U B , 4shock

( )= ¢B B , 5

and velocity coordinates are likewise shifted by =v
¢ -v Ushock. In the resulting shock-rest frame, the contribution
to the ion energization due to the jth component of the electric
field is therefore given by
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Second, although for the Gkeyll simulations we can
directly compute Equation (6) from the simulation output
because we have the distribution function at every grid point in
configuration space, for the dHybridR simulations, integrat-
ing over a finite spatial volume is required to reconstruct the
distribution function from the particles. If we bin the particles
to obtain fi before computing the correlation, the electric field
used in the correlation must be spatially averaged over the
binning volume. Instead, following Chen et al. (2019), we
compute for every particle an alternative correlation,

( ) ( ) ( )¢ =x v xC t q v E, , , 7E l l i j j lj l

where l denotes the lth ion. We then bin Equation (7) into
equally spaced bins in configuration and velocity space. This

precomputation of the correlation before binning allows us to
retain the spatial variation of the electric field within the
binning volume, reducing noise and improving accuracy. We
then recover the original definition of the component-wise
correlation with
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where ΔxΔv are the sizes of our configuration space and
velocity-space bins, and the sum over l sums over all the ions in
that bin.
Finally, we note that we generally integrate the computed

correlations, Equation (6), over one velocity degree of freedom
for ease of visualization. In other words, reduced quantities
such as
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facilitate 2V visualizations of velocity-space signatures,
thereby avoiding the complexities of three-dimensional visua-
lization. Henceforth, the velocity-space dependence of CEj will
be explicitly stated, with any missing velocity coordinates
implying integration over that dimension.

3. Field-particle Correlation Analysis of Ions: 1D Oblique
Shock in Gkeyll

To simulate an oblique collisionless shock self-consistently
using the continuum Vlasov–Maxwell solver in Gkeyll, we
set up a one-dimensional geometry in configuration space with
all three velocity dimensions (1D-3V) and choose the one
spatial coordinate to be along the shock normal in the x-
direction. The initial magnetic field is then taken to be in the x
−z plane, ( ) ( ˆ ˆ)= = +B x zt B B0 20 0 . We choose a domain
size of Lx= 24di and an inflow velocity to initiate the shock of
Ux= 6vA, where di= c/ωpi is the ion inertial length and

m=v B n mA i0 0 0 is the ion Alfvén speed respectively. Here,

c is the speed of light, mi is the ion mass, w = e n mpi i
2

0 0 is
the ion plasma frequency, and the subscript 0 denotes the
upstream value, e.g., n0 is the upstream density and B0 is the
upstream magnetic field magnitude. We employ a reduced
mass ratio mi/me= 100 where me is the electron mass; other
parameters are detailed in Appendix A.
We visualize the electromagnetic fields along with the

corresponding ion distribution functions in the shock-rest frame
in Figure 1 at = W-t 8 ci

1. We restrict our attention to just the
region immediately in proximity to the shock: the foot, ramp,
overshoot, and transition to the downstream. We mark an
approximate compression ratio of r = 3.6 of the compressing
component of the magnetic field, Bz, which we have obtained
from the MHD Rankine–Hugoniot solutions for a shock with
the parameters: θBn= 45°, βtot= 2, MA= 8.3. This compres-
sion ratio corresponds to a shock velocity of =Ushock

( ) ˆ ˆ- ~x xU r v1 2.3x A for transforming the electromagnetic
fields to the shock rest frame and a final Alfvén Mach number

8 In the presence of shock nonstationarity, such as shock reformation, a finite
correlation interval is likely required to average over the reformation cycle; see,
e.g., Balogh & Treumann (2013), Caprioli et al. (2014) for discussions of shock
nonstationarity. Over the time interval of analysis, no shock nonstationarity is
observed for the simulations presented in this study.
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of MA∼ 8.3 in the shock-rest frame. We focus in particular on
the ion distribution function in the vx−vy and vx−vz planes at
x= 16di and x= 19di in the ramp and foot of the shock
respectively for further analysis. We find a crescent-shaped
structure at x= 16di in the vx−vy plane for the reflected ion
population, similar to the structure observed in the perpend-
icular shock study in Juno et al. (2021) and other simulation
studies of shock-drift acceleration (e.g., Park et al. 2013; Guo
et al. 2014a, 2014b; Park et al. 2015; Xu et al. 2020).

Motivated by the results of Juno et al. (2021), we plot theCEy

FPC in vx−vy and vx−vz at these two spatial locations in
Figure 2. To accentuate the structure in the distribution
function, we plot the logarithm (base 10) of the distribution
function. In fact, from this perspective, not only do we see the
familiar reflected ion population in the vx−vy plane, but now we
can identify a separate, higher-energy population in the vx−vz
plane. Note that the vx−vz plane corresponds to the velocities in
the upstream coplanarity plane.

Further, in the vx−vy plane at both x= 16di in the ramp and
x= 19di in the foot, we observe the same velocity-space
signature for shock-drift acceleration: a blue-red signature
coincident with the crescent feature in the ion distribution
function corresponding to a loss (blue) of phase-space energy

density at lower energies and a gain (red) of phase-space
energy density at higher energies. The crescent-shaped feature
in phase space represents the reflected ions resulting from the
ion’s gyromotion being turned around by a combination of the
shock’s magnetic field gradient and, to a lesser extent, the
cross-shock electric field. These ions pass back upstream into a
region of lower magnetic field, and can then gain energy from
the motional electric field that supports the incoming super-
sonic E×B flow. This same velocity-space signature can be
viewed from a different perspective in the vx−vz plane, where
all particles in the range of velocities9 vx∼ [− 3.5vti, 3.5vti],
vz∼ [0, 7vti] are particles that have reflected off the shock front
and can thus gain energy via shock-drift acceleration. In fact,
there is an additional small signal in the velocity-space
signature coincident with the higher-energy population at
x= 16di in the ramp, and the signal becomes stronger as we
move into the foot of the shock, x= 19di.
Thus, not only can we easily obtain the shock-drift

acceleration velocity-space signature found in Juno et al.
(2021) in this more general shock geometry, we can also obtain
an energization signature for a separate, higher-energy ion
population. This additional velocity-space signature corre-
sponds to ions that have experienced an additional bounce off
the shock, i.e., another round of shock-drift acceleration.
Because these now higher-energy particles have a larger
Larmor radius and thus gyrate further upstream when they gain
energy, the signature is stronger in the foot of the shock. In fact,
for this shock geometry and Mach number, many of these
particles that are being further energized upstream of the shock
return upstream instead of passing downstream after their
second bounce—see Appendix B for a similar analysis to Juno
et al. (2021) connecting the single-particle-motion picture to
the observed distribution functions in phase space.
Further, with access to all of phase space we can also

quantitatively assess the energization of the particles in ways
that are impossible with traditional bulk energization diag-
nostics, such as J ·E. We have demarcated in panels (g) and (h)
of Figure 2 a separation between the parts of phase space that
contain the incoming supersonic beam and the reflected
particles, vx=− vz. Integrating CEy over the remaining velocity
dimensions in phase space below and above this line separates
the energization of the incoming beam and reflected particles.
We find that, while the beam density is 5.22 times greater than
the reflected particle density, the reflected particles experience a
10.1 times larger increase in their energy density. Thus, per
particle, the reflected particles gain 52.7 times more energy
than the energy change experienced by the incoming beam of
supersonic particles. We emphasize again that this type of
analysis is not possible without access to phase space; by
examining phase space holistically, we gain new perspective on
how ions across energy scales are heated and accelerated.

4. Field-particle Correlation Analysis of Ions: 3D Oblique
Shock in dHybridR

While the shock-drift acceleration velocity-space signature
has been recovered in a more general shock geometry in one
spatial dimension, and even revealed further benefits of the
FPC approach through the identification of an additional

Figure 1. Electromagnetic fields (a) and (b), ion distribution function as a
function of (x, vx) (c), and ion distribution function at x = 16di in the shock
ramp as a function of (vx, vy) (d) and (vx, vz) (e). In the shock-rest frame, Ey and
Ez are approximately constant through the shock, while the cross-shock electric
field Ex arises to maintain quasi-neutrality as a result of the electron pressure
gradient. Bz compresses as a result of the shock, while Bx remains constant in
this one-dimensional geometry because ∇ · B = 0. In all three means of
visualizing the ion distribution function, we observe a reflected ion population
as a result of ions upstream encountering the compressed magnetic field and
returning upstream due to their gyromotion.

9 Here, =v k T m2ti B i i0 is the upstream ion thermal velocity and kB and Ti0
are Boltzmann’s constant and the upstream ion temperature respectively. See
Appendix A for a further discussion of the velocity-space grid employed for
these simulations.
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velocity-space signature for ions bouncing multiple times off
the shock, full three-dimensional simulations allow for even
further complications to the shock dynamics. For the
dHybridR three-dimensional shock, we adopt a similar shock
geometry to the Gkeyll simulation analyzed in Section 3: the
shock normal is in the x-direction and the initial magnetic field
is in the x−z plane as before. We use a standard setup
employed in previous hybrid PIC shock simulations (Gargaté
et al. 2007; Haggerty & Caprioli 2019) where particles are
injected from one end of the domain (x= Lx) and reflect off a
conducting wall at the other end of the domain (x = 0) to drive
a shock that propagates away from this reflecting wall in the
simulation frame. The inflow velocity of the particles is
identical to the Gkeyll simulation, Ux=− 6vA. Periodic
boundary conditions are employed in y and z, and further
parameters can be found in Appendix C.

We plot the electromagnetic fields from the dHybridR
simulation in Figure 3, averaging E and B over the transverse
dimensions for comparison with the Gkeyll electromagnetic
fields in Figure 1, and the compressing component of the
magnetic field, Bz, in three dimensions to illustrate the nontrivial
structure along the shock interface. This corrugation or rippling
of the shock is the product of instabilities driven by the reflected
ion population and can further modify the shock energetics. We
reconstruct the distribution function and compute the FPC using
Equation (8) for two different transverse spatial integration areas
in Figure 4 and a fixed shock-normal direction integration range
x= [41.75di, 42.25di], i.e., Δx= di/2 centered at x= 42di.

Integrating over the entire transverse direction, Δy=
Δz= 12di, allows us to construct a representation of the
distribution function with little apparent particle noise, and we
recover both the familiar blue-red crescent velocity-space
signature of shock-drift acceleration in vx−vy and can identify
the multiple-bounce velocity-space signature in vx−vz.

However, such a large integration window averages over this
shock ripple and broadens some of the features of the velocity-
space signatures, as different regions of the transverse plane
may be in different parts of the shock, i.e., the foot where the

Figure 2. Ion distribution functions and CEy field-particle correlations from the Gkeyll simulation at two locations: the shock foot at x = 16di and the shock ramp at
x = 19di. We plot the distribution function and correlations as a function of vx−vy, (a)–(d), and as a function of vx−vz, (e)–(h). A unique feature of this study with a
more general shock geometry is the distribution function and correlations in the coplanarity plane vx−vz. While we note in both the shock foot and shock ramp we
observe the same reflected population and velocity-space signature of shock-drift acceleration found in Juno et al. (2021), the Eulerian perspective of the distribution
function in the coplanarity plane reveals additional insights. First, the shock-drift acceleration signature appears as a positive-definite velocity-space signature in this
plane, owing to the integration over vy so that we identify all particles in phase space with particular vx and vz being energized. Second we can identify distinct
populations of energized ions for particles that have bounced multiple times off the shock front, i.e., particles at x = 19di, vx ∼ [ − 3.5vti, 3.5vti], vz ∼ [0, 7vti], which
have undergone their first bounce and vx ∼ [ − 1.0vti, 1.0vti], vz ∼ [10, 14vti], which have undergone a second bounce.

Figure 3. Electromagnetic fields in the shock-rest frame integrated over the
transverse directions plotted in the shock-normal direction, (a) and (b), and
three-dimensional isosurface of Bz (c) from the dHybridR simulation. The
one-dimensional profiles are similar to the one-dimensional Gkeyll
simulations, but the three-dimensional visualization demonstrates the additional
physics present in the higher-dimensional dHybridR simulation: instabilities
in the transverse plane lead to a rippling of the shock such that the shock is not
completely planar. We mark an approximate compression ratio of the shock
r ∼ 3.6 and the x location of interest in the shock foot for the subsequent
distribution function analysis, x = 42di.
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second ion bounce is more easily visible versus the ramp where
the first ion bounce is more strongly energized. Integrating over
a smaller region of the transverse direction, Δy=Δz= 3di,
from y= [0, 3di], z= [0, 3di], reduces the quality of the
distribution function reconstruction, but nevertheless still
allows for a reasonable computation of the FPC. Thus, despite
the shock ripple complicating the shock transition, we can still
safely apply the FPC to understand the energization of particles
in phase space. Further, while the grid-based solution provided
by Gkeyll is of high utility for this type of phase-space
analysis, with sufficiently high particle counts and a reformula-
tion of the FPC for particle data provided by Equation (8), we
can diagnose the energization of the plasma in phase space with
a PIC method.

5. Summary and Future Outlook

Motivated by the growing interest in leveraging phase space
to understand particle energization in collisionless shocks, this
study has three principal results:

1. The velocity-space signature of shock-drift acceleration
found using the FPC technique in Juno et al. (2021) for
an idealized perpendicular shock can be found in more
realistic shock geometries where the upstream magnetic
field is almost never completely perpendicular to the
shock-normal direction.

2. The velocity-space signature of ions that have bounced
multiple times off the shock, undergoing multiple rounds
of shock-drift acceleration, has likewise been found, and
further demonstrates the utility of the FPC technique, as
the technique provides a holistic view of phase space in
which distinct populations of energized ions can be
identified and examined.

3. This holistic view of phase space allows for unique
quantitative analysis of phase space by permitting

separate calculations of the energization experienced by
different populations of particles. The energy gain per
particle of the reflected populations is over 50 times
larger than the energy change per particle of the incoming
beam, a determination we can make because we can
subdivide phase space and compute the energization of
each population of particles.

4. These signatures persist into general three-dimensional
simulations where the shock distorts in the transverse
plane due to kinetic instabilities, and further with
sufficient particle resolution, these analysis techniques
are applicable to traditional PIC methods for the
simulation of collisionless shocks.

Importantly, this phase-space analysis procedure generalizes far
beyond the cases considered in this study. As these shock
waves propagate for greater distances, particles may undergo
even further energization, reflecting continuously both off the
shock and off electromagnetic fluctuations upstream driven
unstable by the reflected particles in the classical diffusive
shock acceleration picture of energization (Fermi 1949, 1954;
Blandford & Ostriker 1978; Caprioli et al. 2011). The FPC
technique not only permits a visualization in phase space of
each distinct population of particles’ energetics, but also allows
for a fine-grained quantitative analysis in which we can
integrate over subdomains of phase space to understand both
how these particles are energized and the degree to which they
are energized. Phase-space analysis thus provides benefits
compared to both the tracking of the energetics of individual
particles and to traditional bulk energization diagnostics such
as J ·E.
We defer to future work a systematic convergence study of

the minimum particle resolution to reconstruct distribution
functions to the level of fidelity required to compute the FPC.
Such a study requires a quantitative criterion for when a
velocity-space signature is identifiable, as the reduction in the

Figure 4. Ion distribution functions and CEy field-particle correlation from the three-dimensional dHybridR simulation, averaged over Δx = di/2, centered at
x = 42di in the shock foot for two transverse averaging boxes: one, the entire transverse direction, Δy = Δz = 12di, of the three-dimensional simulation (a), (b), (e),
and (f), and two, a smaller region of the transverse direction, Δy = Δz = 3di, from y = [0, 3di], z = [0, 3di] (c), (d), (g), and (h). Note that we plot the CEy FPC in the
coplanarity plane, vx−vz, with a symmetric logarithmic color bar to more easily identify the particles that have bounced twice off the shock front. While the need to
average over a finite box extent in a PIC method reduces the solution quality compared to a point-wise distribution function obtained from the Eulerian Gkeyll
simulation and averages over different regions of the shock due to the shock ripple, mixing upstream, foot, ramp, and overshoot particles, we nonetheless can obtain
the velocity-space signature of shock-drift acceleration and identify the same multiple-bounce particles in phase space.
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integration window and the number of particles used to
reconstruct distribution in Figure 4 did introduce noise to the
computation of the correlation. We are engaged in ongoing
work to train a convolutional neural network on known
velocity-space signatures such that we can utilize machine
learning to constrain when the resolution of a PIC simulation is
sufficient for this type of phase-space analysis. Of even greater
interest is the use of the FPC technique to characterize the
velocity-space signature, or signatures, of the instabilities that
lead to the corrugation of the three-dimensional dHybridR
shock examined in Section 4. We will then have completely
characterized the energy transfer between particles and
electromagnetic fields in these particular unstable shocks, and
in so doing, provide a framework for the application of this
type of phase-space analysis to a broad class of collisionless
shocks.

The authors thank A. Spitkovsky for enlightening discus-
sions on collisionless shocks. J.J. thanks the entire
Gkeyll team, especially A. Hakim, for all of their insights.

This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by
National Science Foundation grant No. ACI-1548562, as well
as high-performance computing resources at the Texas Advanced
Computing Center (TACC) at The University of Texas at Austin.
J. Juno was supported by a NSF Atmospheric and Geospace
Science Postdoctoral Fellowship (grant No. AGS-2019828) and
by the U.S. Department of Energy under Contract No. DE-AC02-
09CH1146 via an LDRD grant. C.R. Brown, G.G. Howes, C.C.
Haggerty, and J.M. TenBarge were supported by NASA grant
80NSSC20K1273. G.G. Howes was also supported by NASA
grants 80NSSC18K1366, 80NSSC18K1217, 80NSSC18K1371,
and 80NSSC18K0643. J.M. TenBarge was also supported by
DOE grant DE-SC0020049. K.G. Klein was supported by NASA
Grant 80NSSC19K0912.

Data Availability

Gkeyll is open source and can be installed by following
the instructions on the Gkeyllwebsite (http://gkeyll.
readthedocs.io). The input file for the Gkeyll simulation
presented here is available in the following GitHub repository,
https://github.com/ammarhakim/gkyl-paper-inp.

Declaration of Interests

The authors report no conflict of interests.

Appendix A
Complete Gkeyll Simulation Parameters

The Gkeyll simulation domain extends from [−Lx, Lx],
Lx= 24di, and electrons and ions are initialized with the same
supersonic and super-Alfvénic flow, Ux=± 6vA, Ux= 6vA
from x= [− Lx, 0] and Ux=− 6vA from x= [0, Lx] such that

the flows collide at x= 0 and produce a shock wave that
propagates back toward the walls in a symmetric fashion. We
will focus on only the right half of the domain from x= [0,
Lx]. We use a reduced mass ratio between the ions and
electrons, mi/me= 100, the total plasma beta, b =

( )m + =n k T T B2 2B e i0 0 0
2

0 0 , with the ion beta, βi= 1.3,
and electron beta, βe= 0.7, and both the ions and electrons
are nonrelativistic, with vte/c= 1/8, where =v k T m2ts B s s0 .
Since the plasma is initialized with a flow in a background
magnetic field, we initialize an electric field to support the
component of the flow perpendicular to the magnetic field,

ˆ= - ´E x BUx , which leads to a background electric field in
the y-direction. We note that the initialization of the upstream
distribution function with a net flow in the shock-normal
direction includes a flow parallel to the magnetic field, but
because the flow is parallel to the magnetic field, no further
inputs are required.
The grid resolution in configuration space is Nx = 3072, or

Nx= 1536 for the right half of the domain x= [0, Lx],
corresponding to Δx∼ de/6∼ 1.9λD, where de= c/ωpe and

( )l w= v 2D te pe are the electron inertial length and electron
Debye length, respectively. For velocity space, the electrons are
simulated on a [ ]- v v6 , 6th th

3
e e domain with Nv= 243 grid

points, and the ions are simulated on a [ ]- v v16 , 16th th
3

i i

domain with Nv= 323 grid points. We employ piecewise
quadratic Serendipity elements for the discontinuous Galerkin
basis expansion (Arnold & Awanou 2011). A small collision-
ality is employed for regularization of velocity space, νee=
0.1Ωci, νii= 0.01Ωci= eB0/mi, where Ωci is the ion cyclotron
frequency.

Appendix B
Single-particle Motion of the Reflected Ions

Using a similar analysis to that employed in Juno et al.
(2021), we illustrate this multiple-bounce picture in Figure 5 by
combining a Lagrangian picture of single-particle motion with
an Eulerian picture of the rate of energization of the full ion
velocity distribution using a Vlasov-mapping technique
(Scudder et al. 1986). We advect a number of particles in the
self-consistent electromagnetic fields given by the Gkeyll
simulation, and then assuming the upstream distribution
function is a Maxwellian and phase space is incompressible,
we can reconstruct the ion distribution function through the
shock. Comparing the trajectory of a particle that has reflected
twice off of the shock, we identify two diagonal features of
energization in ( )C v v,E x zy coincident with the red and maroon
segments of the ion trajectory. Particles at x= 19di,
vx∼ [− 3.5vti, 3.5vti], vz∼ [0, 7vti], are undergoing their first
bounce and gaining energy, and vx∼ [− 1.0vti, 1.0vti],
vz∼ [10, 14vti] are undergoing a second bounce and gaining
further energy. The Vlasov-mapping technique allows us to
connect the motion of these individual particles to the observed
features in phase space when a whole population of particles
are undergoing this motion and reflecting off the shock front
multiple times.
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Appendix C
Complete dHybridR Simulation Parameters

The full three-dimensional domain is (Lx, Ly, Lz)= (96di, 12di,
12di) with (Nx, Ny, Nz)= (192, 48, 48) grid points, Δx= di/4.
Nppc= 10, 000 at the reference density, which we take to be the
upstream density, n0= 1.0. dHybridR requires the ratio vA/c to
be specified since the algorithm is designed to handle the
generation of energetic particles self-consistently, and we pick this
ratio to be small, vA/c= 0.008 such that the Lorentz boost factors
of the most energetic particles are still γ∼ 1. Additionally we
choose ( )b m= + =n k T T B2 2B e i0 0 0

2
0 0 , with equal ion and

electron plasma beta, βi= βe= 1.0. Note that while total β is the
same between the Gkeyll and dHybridR simulation, the
individual species values of βe,i are slightly different from the
Gkeyll simulation. The electric field to support the perpend-
icular component of the flow is initialized identically to the
Gkeyll simulation.
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