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ABSTRACT. We develop response-function algorithms for dipole moments and transition dipole 

moments for compressed multistate pair-density functional theory (CMS-PDFT). We use the method 

of undetermined Lagrange multipliers to derive analytical expressions and validate them using 

numerical differentiation. We test the accuracy of the magnitudes of predicted ground-state and 

excited-state dipole moments, the orientations of these dipole moments, and the orientation of 

transition dipole moments by comparison to experimental data. We show that CMS-PDFT has good 

accuracy for these quantities, and we also show that – unlike methods that neglect state interaction – 

CMS-PDFT yields correct behavior for the dipole moment curves in the vicinity of conical 

intersections. This work, therefore, opens the door to molecular dynamic simulations in strong electric 

fields, and we envision that CMS-PDFT can now be used to discover chemical reactions that can be 

controlled by an oriented external electric field upon photoexcitation of the reactants.  
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1. Introduction 

An accurate description of electric dipole moments is crucial for a broad range of applications, 

including studying chemical reactions controlled by electric fields,1,2 computing intensities of 

electronic and vibrational transitions,3–5 and tuning force fields6 and machine learning models7. The 

dipole moment of a molecule in a given electronic state is a result of the electron distribution, and – 

with the physicists’ sign convention – it is a vector directed toward the more positive end of the 

molecule.8 The transition dipole moment is the vector quantity that determines the strength and 

polarization of a transition between two electronic states caused by a uniform electric field, such as 

the electric field of an ultraviolet or visible (UV–vis) electromagnetic wave; its squared magnitude is 

proportional to the intensity of a transition. The sign of a transition dipole moment is not meaningful 

on its own because it depends on the arbitrary phases of the wave functions. However, the orientation 

of a transition dipole moment (aside from the sign of the direction) can be unequivocally defined with 

respect to the principal axes of inertia to make assignments of bands in spectroscopy.9  

In the basis of eigenfunctions of the electronic Hamiltonian, the diagonal matrix elements of the 

electric dipole operator are dipole moments, and the off-diagonal matrix elements are transition dipole 

moments between different electronic states. Dipole moments calculated as a function of geometry 

can be used to predict infrared intensities, while transition dipole moments as a function of geometry 

can be used to predict UV–vis vibronic band intensities. 

The dipole moments and transition dipole moments can be calculated by a variety of electronic 

structure methods, but it can be challenging to obtain high accuracy for strongly correlated electronic 

states, even for small organic molecules. Strongly correlated states are states where more than one 

configuration state function is required for a good zero-order wave function; excited electronic states 

are often strongly correlated, especially if one considers the wide range of geometries needed to 

describe typical photochemical processes. Therefore, one commonly bases their treatment on 

reference wave functions obtained by complete-active-space self-consistent-field10,11 (CASSCF) 

calculations or state-averaged CASSCF12 (SA-CASSCF); calculations of this type, with a 

multiconfigurational reference wave function, are called multireference calculations. One powerful 

multireference method is the multiconfiguration pair-density functional theory (MC-PDFT), an 

electronic structure theory that evaluates the electronic energy from the multiconfigurational wave 

function using the kinetic energy, density, on-top pair density, and an on-top density functional. 
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Recently, we derived13 the analytic dipole moment expression for CAS-PDFT, which is MC-PDFT 

based on a CASSCF reference state. However, that treatment did not yield transition dipole moments.  

Here, we use compressed multistate pair-density functional theory (CMS-PDFT),14 which is a 

multistate version of MC-PDFT. As in multiconfiguration quasidegenerate perturbation theory,15 the 

final step of a CMS-PDFT calculation is diagonalization of a model-space Hamiltonian in the space 

spanned by the n lowest-energy SA-CASSCF eigenvectors. In CMS-PDFT, the model-space 

Hamiltonian is first formed in an intermediate-state basis consisting of electrostatically compressed 

states that span the same space as the n lowest-energy SA-CASSCF eigenvectors. The CMS-PDFT 

method predicts the correct topology of crossing states at and near conical intersections, and, more 

generally, it includes state interaction that becomes important for closely spaced states. CMS-PDFT 

can be used to calculate both dipole moments and transition dipole moments for strongly correlated 

states. The accurate prediction of dipole moments at conical intersections becomes critical in 

molecular dynamics simulations where interaction of the dipole moment with the solvent environment 

can facilitate population transfer between electronic states.16 Here we derive and implement the 

analytical expressions for CMS-PDFT dipole moments and transition dipole moments, and we test 

their accuracy against the experiment. 

For comparison, we also compute dipole moments by state-average pair-density functional 

theory17,18 (SA-PDFT) and SA-CASCI and transition dipole moments by SA-CASCI. SA-PDFT also 

employs SA-CASSCF wave functions but neglects state interaction. Whereas CMS-PDFT obtains all 

states of interest as orthogonal eigenvectors of the same model-space Hamiltonian by applying the 

on-top density functional to its diagonal matrix elements in the intermediate-state basis before 

diagonalization, SA-PDFT computes each state separately by applying the on-top density functional 

to the corresponding SA-CASSCF eigenvector. On the other hand, SA-CASCI uses the SA-CASSCF 

wave functions and the conventional energy expressions without density functionals. 

The remainder of this paper is organized as follows: Section 2 presents computational details. 

Section 3 presents the CMS model-space Hamiltonian in a uniform electric field and the equations for 

the CMS-PDFT dipole moments and transition dipole moments as derivatives of the CMS-PDFT 

Hamiltonian. Section 4 provides results and discussion. Finally, section 5 has concluding remarks. 

 

2. Computational Details 

The analytic dipole moments were coded in the PySCF19,20 package, which was used for all 

calculations in this article. All calculations in this article use the tPBE on-top functional21 and the jul-
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cc-pVDZ22 one-electron basis set. In all cases, the model space size in the CMS-PDFT calculations is 

the same as the number of states averaged in the SA-CASSCF calculations. 

 

3. Theory 

3.1  CMS-PDFT Energy in an Electric Field 

We consider the usual case where the number n of states averaged in SA-CASSCF equals the 

number of interacting states in the multistate step of CMS-PDFT. The n SA-CASSCF eigenvectors 

are labeled I, J, …, and we also define two other sets of n states that span the same space: intermediate 

states P, Q, R, S, … and CMS eigenvectors M, N, …. The intermediate states are linear combinations 

of the SA-CASSCF states  

 ,
I

P I I P=  (1) 

with the expansion coefficients I P  chosen to maximize the trace Qa-a of the classical Coulomb 

energy of the active electrons:  

a-a

1

2

PP PP

ijkl ij kl

P ijkl

Q g D D=  . (2) 

where i, j, k, and l are indices of active molecular orbitals, 𝑔𝑖𝑗𝑘𝑙 is an electron repulsion integral, and 

𝐷𝑖𝑗
𝑃𝑃 is an element of the one-electron reduced density matrix for electronic state P. In the absence of 

an external field, the CMS-PDFT energy is evaluated by diagonalizing the effective Hamiltonian 

matrix in the basis of intermediate states: 

CMS CMS

MH M E M= , (3) 

HCMS =

 

(4) 

where the diagonal elements are CAS-PDFT energies of the intermediate states, and the nondiagonal 

elements are evaluated as in a conventional configuration interaction (CI) calculation.14 

A time-independent uniform electric field F contributes field-dependent terms representing the 

interaction of the external electric field with the electrons and the nuclei. The diagonal elements of 

HCMS become 
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   

CAS-PDFT

OT

1
[ , ]

2

              

PP PP PP

PP NN pq pq pqst pq st P P

pq pqst

PP

pq pq

pq

E V h D g D D E

F D F    
  

= + + + 

+ − 

 

 m R

 (5) 

where VNN is the nuclear repulsion, p, q, s, and t are indices of general molecular orbitals, hpq is the 

one-electron integral, Eot is the on-top density functional of the electron density P and on-top pair 

density P of state P, α labels a nucleus, Ωα is the nuclear charge, Rα is the coordinate of a nucleus, λ 

is x, y, or z, {v}λ denotes the λ-component of vector v, Fλ is the electric field strength in direction λ, 

and mpq is the integral of the dipole moment vector. 

 In the presence of the field, the off-diagonal elements of HCMS are the elements of a CI 

Hamiltonian 

 
1

2

PQ PQ PQ

PQ pq pq pqst pqst pq pq

pq pqst pq

H h D g d F D 


= + +   m . (6) 

where 𝑑𝑝𝑞𝑠𝑡
𝑃𝑄

 is an element of the two-electron reduced density matrix. 

 

3.2  CMS-PDFT Dipole Moments 

The electric dipole moment equals the first derivative of the energy with respect to the strength of 

the electric field:23,24  

0

CMS
M MdE

dF





=

= −

F

. (7) 

In the basis of CMS-PDFT eigenstates, the CMS-PDFT energy is 

CMS CMSˆ
ME M H M= , (8) 

which can be written in terms of the ⟨𝑀|𝑃⟩ expansion coefficients as: 

CMS CMS

,

ˆ
M

P Q

E M P P H Q Q M= . (9) 

Next, we differentiate eq (9) and set the electric field strength to zero, as in eq (7). Because the 

CMS-PDFT energy is stationary with respect to the ⟨𝑀|𝑃⟩ expansion coefficients, perturbation of the 

expansion coefficients with respect to the electric field does not contribute to eq (7), and we obtain 

0 0

CMSCMS

,

= 
PQM

P Q

dHdE
M P Q M

dF dF 
= =


F F

, (10) 
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where 
CMS

PQH  is given in eq (6). This relates the energy derivative to the derivative of the model-space 

Hamiltonian matrix elements in the intermediate-state basis. These matrix elements, however, are not 

stationary with respect to the orbital coefficients and CI vectors, and the Hellmann-Feynman theorem 

does not apply. Instead, we use the Lagrange method of undetermined multipliers to evaluate the 

derivatives on the right-hand side of eq (10).  

We introduce a Lagrangian that is stationary in wave function variables corresponding to 

nonredundant orbital rotations Xpq and unitary transformations of the CI vectors, such as rotations YRA 

between a state within and a state outside the model space and rotations ZRS between states within the 

model space: 

CMS CMS SA-CAS SA-CAS a-a

,

PQ PQ pq RA RS

p q R A R Spq RA RS

E E Q
L H x y z

X Y Z 

  
= + + +

  
   , (11) 

where xpq, yRA, and zRS are Lagrange multipliers associated with the derivatives of state-averaged 

CASSCF energy ESA-CAS and classical Coulomb energy Qa-a, and the summations run respectively 

over orbital indices p and q, over intermediate state indices R and S, and over configuration state 

functions defined by A. The three sets of Lagrange multipliers are obtained by solving the system of 

coupled linear equations generated by25 

CMS CMS CMS

0
PQ PQ PQ

pq RA RS

L L L

X Y Z

  
= = =

  
. (12) 

The derivatives in eq (10) take the simple form 

CMS CMS CMS

PQ PQ PQdH dL L

dF dF F  


= =


. (13) 

Using the chain rule, we have  

CMS CMS 2 2 2

SA-CAS SA-CAS a-a

,

PQ PQ

pq RA RS

p q R A R Spq RA RS

L H E E Q
x y z

F F F X F Y F Z     

    
= + + +

       
   , (14) 

where the first term is the Hellmann-Feynman contribution, and the remaining terms are the non-

Hellmann-Feynman contributions originating from the nonvariational character of the CMS-PDFT 

energy.  

When P = Q, the first term is a derivative of a diagonal element given by eq (5): 
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   

   

CMS

ot

1

2

PQ PP PP PP PP

pq pq pqst pq st

pq pqst
P Q

PP

pq pq

pq

PP

pq pq

pq A

H
h D g D D E

F F

F D F

D

   




 









 

=

 
= + +

  


+ −  



= − 

 

 

 

m R

m R

. 
(15) 

When P ≠ Q, this derivative takes a different form that follows from eqs (5) and (6): 

   

CMS
1

2

PQ PQ PQ

pq pq pqst pqst

pq pqst
P Q

PQ PQ

pq pq pq pq

pq pq

H
h D g d

F F

F D D

 

 




 
= + +

  


+ =



 

 m m

 (16) 

By nesting outcomes of eqs (15) and (16) into eq (10), we obtain the nuclear part of the dipole moment 

and the electronic Hellmann-Feynman contribution 

 

 

   

CMS

,

,

,

PQ

P Q

PQ

pq pq

P Q pq

P

PQ

pq pq

P Q pq

H
M P Q M

F

M P D Q M

M P P M

M P D Q M













 


=



−  =

− 



 

 

  

m

R

m R

 (17) 

The second and third terms in eq (11) are reminiscent of those in SA-PDFT and CMS-PDFT analytical 

gradients25,26 but involve electric dipole integrals instead of nuclear derivatives of one-electron 

integrals, in particular: 

 
2

SA-CAS ( )M M J M J

pq pq J ps sq sq ps

p q pq J spq

E
x x D x D

F X 






= −

 
   m , (18) 

 
2

SA-CAS

, ,

ˆ ˆM M

RA pq J J pq pq

R A pq JRA

E
y y J E E J

F Y 


 



  =  + 
  

  m . (19) 

Here, M is the index of the adiabatic CMS-PDFT state for which the dipole moment is computed, Epq 

is the one-electron excitation operator,27 J runs over reference SA-CASSCF states with weights ω, 

and Λ runs over configuration state functions. Finally, the last term in eq (11) is zero by construction 

because Qa-a does not depend on the electric field.  



8 
 

Next, we compare dipole moment expressions in CMS-PDFT, SA-PDFT, and single-state MC-

PDFT. These methods apply the on-top density functional respectively to the compressed-state 

intermediate states, the SA-CASSCF eigenvectors, and the state-specific CASSCF eigenvectors. The 

nuclear component of the electric dipole moment for classically treated nuclei is  

 0  



 =  R . (20) 

The electric dipole moment for the given state M in CMS-PDFT is 

 
CMS-PDFT

0 1 2 3

,

( )M

P Q

M P Q M    = − + + , (21) 

 1

PQ

pq pq

pq

D


 = m , (22) 

 2 ( )M J M J

pq J ps sq sq ps

pq J s

x D x D


 = −  m , (23) 

 3

,

ˆ ˆM

pq J J pq pq

pq J

y J E E J


  



 =  + 
  m , (24) 

the electric dipole moment for the given state I in SA-PDFT is 

 
SA-PDFT

0 1 2 3( )I

    = − + + , (25) 

 1

I

pq pq

pq

D


 = m , (26) 

 2 ( )I J I J

pq J ps sq sq ps

pq J s

x D x D


 = −  m , (27) 

 3

,

ˆ ˆ
pq J J pq pq

pq J

y J E E J


  



 =  + 
  m , (28) 

and the electric dipole moment for the ground state in SS-PDFT is 

 
SS-PDFT

0 1 2 3( )    = − + + , (29) 

 1 pq pq

pq

D


 = m , (30) 

 2 ( )pq ps sq sq ps

pq s

x D x D


 = − m , (31) 

 3
ˆ ˆ0 0pq J pq pq

pq J

y J E E J


  = +
  m . (32) 
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The SA-CASSCF eigenvectors, the CMS-PDFT intermediate states, and the CMS-PDFT eigenvectors 

all span the same space, and when they overlap, eq (21) reduces to 

 
CMS-PDFT

0 1 2 3

,

( )M

MP QM

P Q

      = − + + . (33) 

When P ≠ Q, the sum is precisely zero because of the two Kronecker deltas. When P = Q, only a 

single term with P = M survives the summation yielding eqs (26)-(28) of the SA-PDFT method for 

ξ1, ξ2, and ξ3, respectively. Thus, the CMS-PDFT expression reduces to SA-PDFT one when there is 

no interaction between intermediate states, and the classical Coulomb energies are already maximized 

in the space of state-averaged references. Also, note that eq (27) can be written in terms of state-

averaged density matrices, as was shown in previous work:26 

 2 ( )SA SA

pq ps sq sq ps

pq s

x D x D


 = − m . (34) 

 

3.3  CMS-PDFT Transition Dipole Moments 

The CMS-PDFT Hamiltonian can be expanded in a Taylor series in the presence of an external 

electric field as 

CMS CMS

0
ˆ ˆ ˆ( ) ...H H= −  −F μ F , (35) 

where 
CMS

0Ĥ  is the field-independent CMS-PDFT Hamiltonian and μ̂  is the dipole operator. By 

truncating this expansion at the linear term, the off-diagonal Hamiltonian matrix elements become 

CMS

0
ˆ ˆ( ) ( ) ( )MNH M H N= − F F μ F F . (36) 

Because the HMN elements are zero by construction, their derivative with respect to the electric field 

component F is also zero: 

CMS CMS

0 0

0

( ) ( ) ( )ˆ ˆˆ 0
MNdH M N

M N H N M H
dF F F



  


=

 
= − + + =

 
F

F F F
. (37) 

The first term on the right-hand side is a transition dipole moment, and it can be written as 

CMS CMS

0 0

ˆ

( ) ( )ˆ ˆ       

MN M N

M N
H N M H

F F

 

 

 =

 
= +

 

F F . (38) 

On the other hand, direct differentiation of the off-diagonal elements leads to 
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ˆ( ) ( ) ( ) ( )MN CMSH M H N=F F F F , (39) 

CMS
CMS CMS

0 0

0 0

ˆ ( )( ) ( ) ( )ˆ ˆ 0
MN dHdH M N

M N H N M H
dF dF F F  = =

 
= + + =

 
F F

FF F F
. (40) 

Combining eqs (38) and (40), the transition dipole moment in CMS-PDFT takes the form  

CMS

0

ˆ ( )MN dH
M N

dF



=

= −

F

F
. (41) 

Using a completeness relation, this derivative is transformed into 

 
CMS

,
0

1 2 3

,

( )

                = ( )

CMS PQMN

P Q

P Q

dH
M P Q N

dF

M P Q N





  

=

= −

− + +




F

F

, (42) 

which is analogous to the CMS-PDFT dipole moment, except that state |N> is in place of state |M>, 

while ξ1, ξ2, and ξ3 are identical to the terms used in dipole moment as given by eqs (30)-(32). Note 

that the nuclear contribution to the transition dipole moment is zero because of the orthogonality of 

the CMS-PDFT states. 

 

4. Results and Discussion 

4.1 Comparison of Numerical and Analytic Dipole Moments 

First, we tested our implementation of analytical CMS-PDFT dipole moments and transition 

dipole moments by carrying out the derivative of eq (7) by converged finite differences. We did this 

for water, furan, and furan cation using the two-point central difference formulas where diagonal and 

off-diagonal elements of the Hamiltonians include the field terms. The finite difference expression of 

the dipole moment of electronic state M is  

 
CMS-PDFT ( ) ( )

2

M M ME F E F

F

 





− − +

= , (43) 

And the finite difference expression used to calculate the transition dipole moment connecting 

electronic states M and N is 

 
CMS-PDFT

,

( ) ( )
 

2

PQ PQMN

P Q

H F H F
M P Q M

F

 






− − +

=  . (44) 
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We set the energy convergence threshold to 10-11 hartree (see the Supporting Information). We found 

that the numerical derivatives agreed with the analytical expressions within 10-3 D; this confirms the 

correctness of the analytic expressions and their coding. 

 

4.2 Dipole Moments in Regions of Strong Interaction of Electronic States 

Phenol. We calculated the dipole moments of phenol as a function of the O-H bond distance. The 

SA-CASSCF wave function was averaged over the lowest three singlet electronic states, which are 

strongly coupled along this coordinate. The (12e,11o) active space included three π-orbitals and three 

π*-orbitals of the aromatic ring, the lone pair orbital, and two pairs of σ and σ* orbitals primarily 

localized on the C-O and O-H bonds. The orbitals are shown in Figure S2; figures and tables with the 

prefix S are in supporting Information. This choice of active orbitals allowed a continuous change of 

the active space at the longer O-H distances. We scanned the potential energy curves and dipole 

moment curves as we decreased the O-H bond distance from 3.0 to 0.9 Å and kept the remaining 

nuclear degrees of freedom frozen at their ground-state equilibrium values; the results for CMS-PDFT 

are in Figure 1.  
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Figure 1. Top: Phenol. Middle: Unrelaxed scan of CMS-PDFT adiabatic potential energy curves 

along the r(O-H) coordinate in phenol. Bottom: Dipole moment curves for the same scan.  

 

In the Franck-Condon region, the S1(ππ*) and S2(πσ*) states are well separated from the ground 

state, with excitation energies of 4.93 and 5.83 eV, respectively. The ground-state bond dissociation 

energy is calculated to be 4.33 eV, which is in good agreement with the experimental value28 of 4.18 

eV. The second dissociation channel requires the energy of 5.03 eV, while the third one is much higher 

and is located at 6.93 eV above the ground-state minimum. A moderate gap between the two lowest 

dissociation channels leads to the relaxation of the bright S1 state through two competitive dissociation 

paths producing a ground or excited phenoxyl radical and hydrogen atom, as was discussed 

previously.28  

Upon elongating the O-H bond from the equilibrium distance [r(O-H) = 0.965 Å], the S1 and S2 

excited states approach one another at ~1.3 Å, swapping their diabatic characters. The system reaches 

a second avoided crossing at ~2.2 Å, at which the S0 state acquires a repulsive πσ* character. The 

changing character of the states has a strong effect on the dipole moments. In most geometries, the 

predicted dipole moment curves are smooth functions of O-H coordinate with a slight discontinuity at 

~1.3 Å caused by the close-lying third excited singlet. The bottom panel of Figure 1 shows a physically 

reasonable change in dipole moments when the system passes through the near-degeneracy regions. 

Because the electronic states have very different dipole moments, an electric field will change their 

relative energies together with the geometries and energies of the conical intersections.  

Figure 2 compares the CMS-PDFT results to the SA-PDFT ones. The CMS-PDFT potential 

energy curves shown in Figure 2 (top, left) are similar to those of the SA-PDFT method except for the 

regions where states approach one another. The lack of state interaction in SA-PDFT leads to 



13 
 

unphysical double crossings (Figure 2, bottom), with the location of ππ /πσ* character switching being 

shifted toward shorter O-H bonds (Figure 2, top, right). 

 

  

  

Figure 2. Potential energy (top left panel) and dipole moment (top right panel) curves for phenol as 

calculated by CMS-PDFT and SA-PDFT. The panels in the bottom line are zoomed in on the areas 

outlined by rectangles in the upper left panel. 

 

Spiro Cation. Next, we consider the crossing states in 2,2′,6,6′-tetrahydro-4H,4′H-5,5′-

spirobi[cyclopenta-[c]pyrrole], which is called the spiro cation and is illustrated in Figure 3. The spiro 

cation is a challenging mixed-valence system.29 In the most symmetrical D2d configuration, the 

unpaired electron is delocalized over the left and right pyrrole subunits, which are twisted with respect 

to each other by 90°. The high symmetry leads to a zero-dipole moment at the D2d configuration. 

However, this structure is unstable in the S0 ground state due to a pseudo-Jahn-Teller distortion. 

Consequently, the spiro cation tends to distort into either of the two C2v minima, where the unpaired 

electron is mostly localized on the left or right.14  
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Figure 3. Spiro cation structure with a hole being localized on either side (top and bottom) or 

delocalized (middle).  

 

The energy and dipole moment along a unitless reaction coordinate connecting two localized 

structures through the D2d structure (at 0) is illustrated in Figure 4. In an earlier study,14 it was shown 

that potential energy curves predicted by CMS-PDFT agree well with CASPT2 predictions. Here, we 

investigate the problem using CMS-PDFT and SA-PDFT methods employing the same (11e,10o) 

active space that spans the π-systems of pyrrole rings, as shown in Figure S3. As expected, the dipole 

moments at the two C2v geometries are equal in magnitude but opposite in direction.  

We performed SA-CASSCF, SA-PDFT, and CMS-PDFT calculations in which the SA-CASSCF 

reference wave function is based on 11 active electrons in 10 active orbitals (11e,10o), and the energy 

is averaged over the two lowest singlet states of A2 symmetry. The active orbitals are shown in Figure 

S3. Figure 4 (top) shows that SA-PDFT qualitatively fails to reproduce the avoided crossing and gives 

unphysical dips in the potential energy curves (as found in the previous work) and unphysical dipole 

moment curves for both electronic states near the conical intersection, Figures 4 (bottom) and S3. This 

illustrates how the independent calculations of the two SA-PDFT energies make the treatment of 

close-lying states very inaccurate. Employing a model-space diagonalization in an appropriate 

intermediate basis as the final step, CMS-PDFT eliminates the unphysical behavior at the symmetrical 

geometry and gives physically reasonable continuous dipole moment curves as well as a physical 

energy curve. We conclude that CMS-PDFT is more reliable than SA-PDFT for calculating dipole 

moments of strongly correlated systems where the interaction between states becomes important.  
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Figure 4. Potential energy curves14 (top) and projection of the dipole moment on the principal axis 

(bottom) of the spiro cation as functions of the unitless breathing reaction coordinate (see ref 14 for a 

mathematical definition of the reaction coordinate). Reprinted partially with permission from ref. 14. 

Copyright 2020 American Chemical Society. 

 

4.3 Tests on a Dataset of 20 Aromatic Molecules 

To assess the accuracy of CMS-PDFT for dipole moments, we analyzed a dataset of 20 aromatic 

molecules (Figure 5) for which the experimental dipole moments are available for the ground and the 

lowest excited states; all excited states in the dataset are singlet S1(ππ*) states. The S1 states have 

greater multireference character than the S0 states. We use a principal-axes-of-inertia coordinate frame 

in which the moments of inertia are in the order Ia < Ib < Ic. All molecules in the dataset possess a 

symmetry plane that makes the c-component of the dipole moment and transition dipole moment 

precisely zero. Our later discussion also involves the a-axis of this coordinate frame. The dipole 

moments of the ground states are for the ground-state equilibrium geometries, and those for the excited 

states are for the excited-state equilibrium geometries. When computing the S1 dipole moments, we 

chose the lowest S1 minimum if multiple minima were located. When calculating transition dipole 

moments, we used the S0 equilibrium geometry.  
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Figure 5. Structures of investigated molecules. 

 

The active spaces included the π systems of the aromatic rings and the lone pairs of heteroatoms, 

except that we did not include the lone pairs of fluorine atoms in the active spaces because of their 

low energies. Additionally, in the case of cyanoindoles, in addition to the π- and π*-orbitals of the 

conjugated rings, we also included a second pair of π and π*-orbitals of the nitrile group orthogonal 

to the π-system of the fused rings.  

The reference SA-CASSCF wave functions were averaged over the two lowest-energy singlet 

states. The dipole moments were computed using CMS-PDFT and SA-PDFT at the geometries 

optimized by the corresponding methods. We also used the complete active space configuration 

interaction method30,31 (SA-CASCI) to obtain dipole moments at the CMS-PDFT optimized 

geometries; the SA-CASSCF orbitals were employed in the SA-CASCI calculations. The dipole 

moments were evaluated by energy differentiation in the CMS-PDFT (eq (21) ) and SA-PDFT (eq 

(25)) calculations and as the expectation value of the dipole moment operator in the case of SA-CASCI 
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calculations. Note that SA-CASCI wave functions based on SA-CASSCF are not variationally stable 

for individual electronic states, and SA-CASCI values correspond to unrelaxed densities.  

The experimental dipole moments were derived from the 0-0 bands. All calculated dipole 

moments are for optimized geometries and are not averaged over vibrational motions. This is 

reasonable in most cases since a typical vibrational averaging of the dipole moments is expected to be 

small.32 For some conformationally flexible molecules, however, this may be an issue of concern. For 

example, the dipole moment of 7-azaindole promoted to the S1 origin at ~34630 cm-1 is 2.30(3) D.33 

However, in the excitation +280 cm-1 above the S1 origin, it is 4.6(1) D.34 Such difference can be 

attributed to the intramolecular proton transfer from the pyrrole nitrogen to the pyridine nitrogen 

triggered by excitation of the N-H vibrational mode. As a check, Table S1 shows that the CMS-PDFT 

and SA-CASCI adiabatic S1←S0 excitation energies are close to the experimentally measured energies 

of the 0-0 bands. 

Magnitudes of the Dipole Moments. When computing dipole moments, we used analytic 

formulas obtained by energy differentiation in the case of CMS-PDFT and SA-PDFT. For the SA-

CASCI method, we used expectation values (response than response theory) with unrelaxed densities 

for electronic states. Therefore, S0 and S1 dipole moments are based on unrelaxed densities. 

The absolute magnitudes of the experimental and computed dipole moments are summarized in 

Table 1. The dipole moments range in size from 1.01 to 8.92 D. The relative errors in the magnitude 

of equilibrium dipole moments with respect to gas-phase experimental values are shown in Figures 6 

and 7. In the ground state, the mean absolute percentage error (MAPE) of the CMS-PDFT, SA-

CASCI, and SA-PDFT methods are quite similar: 10%, 8%, and 9%, respectively. However, in the 

excited S1 state, the SA-CASCI error is almost doubled, with a MAPE of 16%, whereas the MAPEs 

of the CMS-PDFT and SA-PDFT calculations are still small, respectively 10% and 9%. This indicates 

the importance of including a larger amount of the correlation energy.  
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Table 1. Calculated and experimental S0 and S1 dipole moments (D). 

No.  Compound 
Active 
space 

Experiment. CMS-PDFT SA-CASCI SA-PDFT 

S0 S1 S0 S1 S0 S1 S0 S1 

1 indole35,36 (10e,9o) 1.96(1) 1.86(1) 2.38 2.08 1.88 1.51 2.36 2.17 

2 2-cyanoindole37 (14e,13o) 3.71(1) 5.21(1) 4.04 4.85 3.65 4.39 3.75 6.05 

3 3-cyanoindole38 (14e,13o) 5.90(1) 5.35(1) 6.23 5.71 5.77 5.23 6.23 5.72 

4 4-cyanoindole39 (14e,13o) 6.31(1) 8.92(1) 6.99 7.19 6.14 6.02 6.81 8.32 

5 5-cyanoindole36 (14e,13o) 7.14(4) 8.17(3) 7.74 7.64 6.66 6.33 7.55 8.28 

6 4-fluoroindole40 (10e,9o) 3.41(4) 2.99(4) 3.73 3.24 3.62 3.16 3.71 3.28 

7 5-fluoroindole36,40 (10e,9o) 3.62(1) 3.32(2) 4.00 3.64 3.87 3.48 4.04 3.69 

8 6-fluoroindole40 (10e,9o) 2.51(3) 3.38(3) 3.24 3.32 3.01 3.02 3.18 3.60 

9 6-methylindole41 (10e,9o) 1.84(1) 1.74(1) 2.25 2.00 1.81 1.46 2.24 2.09 

10 anti-5-hydroxyindole36,42 (12e,10o) 2.15(2) 1.54(3) 2.10 1.92 2.27 2.00 2.36 1.61 

11 anti-5-methoxyindole43,44 (12e,10o) 1.59(3) 1.14(6) 1.47 1.32 1.66 1.44 1.81 1.07 

12 syn-6-methoxyindole43,45 (12e,10o) 2.89(3) 3.46(2) 3.23 3.37 2.95 2.92 3.14 3.79 

13 7-azaindole33 (10e,9o) 1.59(3) 2.30(3) 1.81 2.02 1.43 1.55 1.76 2.31 

14 cis-2-naphthol46 (12e,11o) 1.01(1) 1.17(1) 1.02 1.13 1.23 1.34 1.00 1.26 

15 trans-2-naphthol47 (12e,11o) 1.36(1) 1.44(1) 1.56 1.55 1.58 1.51 1.50 1.68 

16 benzonitrile48 (10e,10o) 4.48(1) 4.57(1) 4.62 4.62 4.43 4.37 4.64 4.77 

17 phenol49,50 (8e,7o) 1.224(8) 1.30 1.28 1.33 1.44 1.47 1.27 1.38 

18 anisole51 (8e,7o) 1.26 2.19(4) 1.41 1.60 1.33 1.47 1.29 1.92 

19 1,3-dimethoxybenzene51 (10e,8o) 1.19(5) 1.42(8) 1.32 1.49 1.32 1.46 1.27 1.62 

20 1,4-dimethoxybenzene51 (10e,8o) 2.23(1) 2.76(1) 2.24 2.67 2.53 2.85 2.18 2.84 

           

mean absolute percentage error  10.4 9.6 8.0 15.5 9.1 9.0 

 

 

Figure 6. Relative errors (vs. experiment) in the dipole moments (PDMs) of the S0 state. The labels 

correspond to the structures in Figure 5 and Table 1.  
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Figure 7. Relative errors (vs. experiment) in the dipole moments (PDMs) of the S1 state. The labels 

correspond to the structures in Figure 5 and Table 1. 

 

Orientations of Dipole Moments and Transition Dipole Moments. When computing transition 

dipole moments, we used the analytic formula for CMS-PDFT. For SA-CASCI, we computed 

transition dipole moments as <0|m|1> with unrelaxed densities. 

The orientations of the dipole moments were characterized by the angles θ that they make with 

the main inertial axis (a-axis) in a given electronic state; because the excited-state optimized geometry 

is different from the ground-state one, the principal axes are slightly rotated. In the case of S1←S0 

transition dipole moments, θ was defined with respect to the a-axis in the ground-state frame. A 

positive sign of θ implies a clockwise rotation of the main inertial a-axis onto the dipole moment 

vector, as illustrated in Figure 8.  

The angles of the dipole moments are given in Table 2, and the errors as compared to the 

experiment are reported in Figure 9. Note that some of the entries in Figure 9 are omitted as the 

experimental orientation of dipole moments and transition dipole moments are either unavailable or 

trivial due to the high symmetry. Therefore, such data points were eliminated from averaging when 

calculating mean absolute percentage errors. 

For the dipole moments, the mean absolute percentage errors of CMS-PDFT values of θ are 8% 

for both S0 and S1. The SA-CASCI predictions are close to that value, with θ(S0) equal to 6% and 

sufficiently greater for θ(S1) of 13%. There is no significant improvement in CMS-PDFT calculations 

over SA-CASCI results for the orientation of the transition dipole.  
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Figure 8. Orientation of dipole moment and transition dipole moment in indole. The lengths of 

arrows are arbitrary. 

 

Table 2. Experimental 0-0 gaps E00 (eV), computed adiabatic excitation energies Ead (eV), and angles 

(deg) of the dipole moments and transition dipole moments with the principal inertia a-axis.a  

  Experiment  CMS-PDFT  SA-CASCI   
Θ 

(S0) 

Θ 

(S1) 

θ 

(S1←S0) 

 Θ 

(S0) 

Θ 

(S1) 

θ 

(S1←S0) 

 Θ 

(S0) 

Θ 

(S1) 

θ 

(S1←S0) 

1 indole35,36 ±45.5(4) ±33.0(6) ±38.3(2)  44.0 37.1 -23.9  48.6 41.9 -48.4 

2 2-cyanoindole37 ±15.7 ±7.8 ±45.9(2)  16.7 7.7 73.7  14.8 6.4 42.2 

3 3-cyanoindole38 ±45.3 ±39.3 ±15.3(1)  47.2 44.7 -20.1  45.6 42.3 10.1 

4 4-cyanoindole39 ±15.5 ±1.86 ±30.7(1)  13.6 9.4 -44.4  17.8 14.0 -70.2 

5 5-cyanoindole36 ±13(2) ±11(2) ±3(3)  14.8 13.0 10.5  16.3 14.1 -36.6 

6 4-fluoroindole40 ±40(1) ±37(1) ±63.1(1)  34.1 32.1 -78.6  42.1 41.3 78.1 

7 5-fluoroindole36,40 ±26(1) ±19(1) ±59.0(1)  26.1 20.4 -48.0  26.2 21.6 -64.0 

8 6-fluoroindole40 ±10(4) ±12(3) ±23.5(1)  27.1 22.6 10.7  19.6 13.9 -10.6 

9 6-methylindole41 ±79.4(1) ±83.7 ±21(2)  65.9 58.2 0.0  69.0 62.5 -26.1 

10 anti-5-hydroxyindole36,42 ±5(5) ±6(6) ±54  -7.1 11.5 46.0  0.0 14.2 60.9 

11 anti-5-methoxyindole43,44 ±15(1) ±69(1) ±58.4(1)  0.0 -36.1 -54.0  -9.4 -38.2 -70.8 

12 syn-6-methoxyindole43,45 ±86(1) ±83(1) ±36.2(1)  86.2 80.5 29.7  80.9 77.3 17.0 

13 7-azaindole33 ±24(2) ±14(2) ±14.2  -15.6 -17.8 -9.7  -29.4 -33.7 -24.6 

14 cis-2-naphthol46 ±70.1(4) ±97.8(4) N/A  88.1 89.4 -57.2  -56.6 -58.7 -68.3 

15 trans-2-naphthol47 ±73.7 ±44.5 N/A  -60.6 -54.1 -66.8  -84.1 -78.4 -77.6 

16 benzonitrile48 0 0 90  0.0 0.0 90.0  0.0 0.0 90.0 

17 phenol49,50 ±83.8 ±77.1 N/A  -83.3 -80.6 84.1  74.4 77.8 84.8 

18 anisole51 ±56.7 ±43.4 ±69.70(1)  45.9 44.6 85.0  68.8 64.7 84.3 

19 1,3-dimethoxybenzene51 ±15(3) ±29(5) ±14.5(1)  -41.2 -38.5 -7.8  -20.0 -20.2 -7.7 

20 1,4-dimethoxybenzene51 90 90 90  90.0 90.0 90.0  90.0 90.0 90.0 

             
 MAE     7.7 7.7 12.9  5.8 12.6 13.1 

aA positive sign of the angles θ refers to a clockwise rotation of the inertial a-axis onto the dipole 

moment or transition dipole moment vector.   
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Figure 9. Absolute errors in the orientation of dipole moments of S0 (top) and S1 (middle) states and 

the S1←S0 transition dipole moments (bottom) compared to experimental references. The labels 

correspond to the structures in Figure 5. The data points are omitted if experimental references are not 

available or the orientation of the dipole moment is trivial due to symmetry.  
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5. Concluding Remarks 

We have developed and implemented CMS-PDFT analytic dipole moments and transition dipole 

moments. The method is currently available in the pyscf-forge collection of extensions of the PySCF 

package (https://github.com/pyscf/pyscf-forge).  

We showed that by using CMS-PDFT with an SA-CASSCF reference wave function and 

translated on-top density functional, one can compute the magnitude of equilibrium dipole moments 

for the ground and excited electronic states with a relative error of about 10% from the experiment. A 

similar error has been found with the SA-PDFT method. However, when electronic states are strongly 

coupled, for instance, near a conical intersection, CMS-PDFT outperforms SA-PDFT, which often 

fails to provide even qualitatively correct dipole moment curves. The error in the orientation of CMS-

PDFT dipole moments is about 8% for both ground and excited states. The alternative SA-CASCI 

method shows a similar error for the S0 state of 6% but deteriorates for the strongly correlated state 

S1 with an error of 13%.  

We envision that dipole moments computed by CMS-PDFT can be used in several ways: (i) to 

discover photochemical reactions that can be controlled by an oriented external electric field; (ii) to 

make assignments of excited electronic states based on the orientation of the transition dipole 

moments; (iii) to compute oscillator strengths of the electronic transitions in molecular dynamics 

simulations or for assigning spectra; (iv) to generate properties of the multireference excited states 

that can be used as the training data for machine learning.  

Item (i) from this list is an interesting frontier area because the interaction of a molecular dipole 

moment with an external electric field can facilitate chemical transformations or slow them down. 

The theoretical prediction of accurate dipole moments using computational tools can be important for 

identifying optimal oriented electric fields52 for electrostatic field control. Such reactions have already 

been studied in molecular junctions53 but are currently limited to single-molecule experiments; 

however, the development of large-area molecular junctions54,55 offers promise for industrial-scale 

electrostatic catalysis.  

The current limitation of CMS-PDFT is the size of the active space chosen for the underlying SA-

CASSCF calculations and the potential degeneracy of the CMS intermediate states, which can be 

troublesome for CMS-PDFT in some cases.  
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