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ABSTRACT: The advent of new data acquisition and handling
techniques has opened the door to alternative and more
comprehensive approaches to environmental monitoring that will
improve our capacity to understand and manage environmental
systems. Researchers have recently begun using machine learning
(ML) techniques to analyze complex environmental systems and their
associated data. Herein, we provide an overview of data analytics
frameworks suitable for various Environmental Science and Engineer-
ing (ESE) research applications. We present current applications of
ML algorithms within the ESE domain using three representative case studies: (1) Metagenomic data analysis for characterizing and
tracking antimicrobial resistance in the environment; (2) Nontarget analysis for environmental pollutant profiling; and (3) Detection
of anomalies in continuous data generated by engineered water systems. We conclude by proposing a path to advance incorporation
of data analytics approaches in ESE research and application.
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anomaly detection, water

1. BACKGROUND

Data science is a rapidly evolving interdisciplinary field
incorporating fundamentals from computer science, informa-
tion science, mathematics, and statistics.1 It combines
principles and methodologies that facilitate and guide
extraction of knowledge and insights from available data
streams in a usable format that supports data-driven policy and
decision making.2 Moreover, data science provides the capacity
to better delineate problems by improving alignment between
the data that is available and the corresponding questions that
can be addressed. The availability of voluminous amounts of
data, powerful computational resources, affordable data
storage, and highly efficient algorithms is enabling broader
and deeper data analyses than previously possible.
Machine learning (ML) is an emerging data science subfield

that includes algorithms and methodologies that can be used to
find hidden patterns within data and aid in predictive model
construction.3 ML enables analysis of bigger and ever more
complex data sets in more efficient and more accurate ways
than otherwise possible.4 In the past decade, ML has begun to
significantly impact numerous disciplines5 and Environmental
Science and Engineering (ESE) has benefited from this surging
interest in ML and its applications.6 At its core, ESE is
concerned with improving and maintaining the environment,
with the ultimate goal of protecting human and ecological
health. ESE encompasses diverse areas, such as water and
wastewater treatment, air quality, environmental impact
assessment, and hazardous waste management. ESE incorpo-
rates concepts from disciplines such as basic sciences, public

health, engineering, biological sciences, and nanotechnology.
Research and industrial work within ESE increasingly require
collection of vast amounts of data that simultaneously reflect
numerous data types (e.g., air and water quality measurements,
flow measurements, spatial discretization, etc.) with wide
spatial and temporal variability. Data of this nature
encompasses a broad and dynamic range with masses reported
from nanogram to teragram and flows ranging from microliters
per second to millions of liters per day. Recent advances in
environmental metagenomics and nontarget analysis further
expand the types and volumes of data being generated within
ESE.
The advent of novel data acquisition and handling

techniques has opened the door to alternative and potentially
more comprehensive means of environmental monitoring that
will improve our capacity to understand and manage
environmental systems. For instance, metagenomics and
nontarget analysis are evolving as powerful ways to identify
unknown contaminants for surveillance.7,8 Further, identifica-
tion of anomalous or unusual events in water/wastewater
treatment processes using real time water quality data is a key
tenet of the “digital water” movement that holds immense
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potential for the water industry.9 However, interpreting these
types of data is not trivial and requires appropriate application
of ML techniques.
The aim of this Feature is to provide an overview of data

analysis frameworks suitable for application within ESE. We
first introduce a general data analysis framework, then highlight
current applications of ML within ESE problem domains, and
conclude with thoughts about the future.

2. GENERAL DATA ANALYSIS FRAMEWORK

A general data analysis framework includes data acquisition,
data exploration, data preprocessing and visualization,
algorithms for model building, and ways to evaluate and
interpret the models and the results (Figure 1).
2.1. Data Acquisition. Data acquisition is the process of

collecting or acquiring data and storing it in a readily accessible
form, such as a database (Figure 1a). Data acquisition requires
thorough planning to ensure the data set can be effectively
interrogated for the desired end purpose. Key elements of such
a plan include deciding upon the data collection methodology,
selecting variables of interest, determining the sampling
frequency and the number of replicates, assessing how much
data is needed to effectively build the model(s) and test the

study hypotheses, and deciding upon means to properly
document and store the data.
Work within ESE increasingly requires acquisition of vast

amounts of data. Hence, it is necessary to frame and adopt
succinct protocols to minimize biases and increase compara-
bility and reproducibility across the discipline. To that extent,
several publications and guidance documents have focused on
good implementation practices for collection of robust data
sets.10,1112,13

2.2. Data Exploration/Visualization and Preprocess-
ing. Data exploration or visualization is used to understand the
data characteristics. Data exploration helps illustrate key
aspects, such as sample size, missing values, distributions,
initial patterns, correlations, or variables that appear to be
sensitive to the system of interest. Exploration is commonly
achieved by plotting and visualizing the data in a manner such
that distributions and trends are readily apparent.14

Raw data are often incomplete, noisy, and inconsistent due
to data redundancy, incompatibilities between multiple data
sources, and divergent data collection protocols. Poor data
quality can lead to inaccurate or misleading analyses.15 Data
preprocessing is intended to improve model quality and
minimize computational resource usage.

Figure 1. Data Analysis Framework and Methodologies. (a) Data Collection: Gather the data; (b) Data Exploration/Preprocessing: Fix the
discrepancies, visualize and transform the data to the required form; (c) Model Building and Evaluation: Train the model and evaluate
performance; (d) Interpretation: Use the model to make predictions, analyze and interpret the outcomes; (e) Monitoring: Based on the learned
knowledge and domain expertise. The top thread on the figure represents the tools and software that are available to execute various steps in the
end-to-end data analysis framework.
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ESE data sets can incorporate numerous data types with
wide spatial and temporal variability. Accordingly, if possible, a
thorough data visualization/exploration and preprocessing
process should be performed to gain initial insights and
streamline the data for the subsequent model building steps.
(Figure 1b). To aid this, depending on the data type, well
established community guidelines could be leveraged. This
process typically includes four steps: data cleaning, integration,
reduction, and transformation (See the glossary for de-
tails).16,17

2.3. Model Building. ML Models. ML models fall into
three classes: supervised, unsupervised, and semisupervised
(Figure 1c). Supervised learning is a ML task where an
algorithm is used to train a model using known data and then
the learned model is used to predict the outcome of new or
unforeseen instances.18 In supervised learning, a sample in the
data set has two components: (1) a set of variables (features)
that define the sample and (2) class labels (outcomes) that one
wants to predict. Two types of models are built using
supervised learning algorithms: classification or regression
models. A classification model is suggested when the output
data can be categorized into specific groups or classes (i.e.,
discrete output variables). If the output variable is a continuous
variable, a regression model is recommended.
Unsupervised learning is done in the absence of pre-existing

class labels. It is a ML category where the goal is to find hidden
and unknown data patterns or to determine the data
distribution across the data set.19 Unsupervised learning
algorithms are often used for data exploration and visual-
ization. The two major types of unsupervised learning
approaches are clustering and dimensionality reduction.
Clustering algorithms are used to group similar samples
together into clusters, whereas dissimilar samples are relegated
to separate clusters. Dimensionality reduction algorithms are
used to reduce the dimension of the feature set. Too many
uninformative features can hinder predictive modeling; this is
often referred to as the “curse of dimensionality”. Some
common supervised and unsupervised learning algorithms are
listed in Table 1.
Semisupervised learning is a hybrid of supervised and

unsupervised learning, where a set of labeled data is used in
conjunction with a set of unlabeled training data. In many
cases, getting true labels for a data set can be difficult.
Semisupervised learning tackles this problem by making use of
unlabeled data in the learning process and then leveraging this
learned information along with the labeled data set for
subsequent prediction.20

Model Optimization and Evaluation. Supervised learning
is usually a three-step process. In the first step, the data are
split into training and testing data sets with the split ranging
between 60 and 80% for training and 40−20% for testing. The
training data set is then iteratively separated into training and
validation sets. The model is trained on the training set, while
the validation set is used to tune the model hyperparameters
that consist of the model architecture and the parameters that
affect the speed and quality of the training process. Following
this cross-validation, the learned model is tested against the
test data set to evaluate model robustness and accuracy. To
ensure unbiased model evaluation, the test data set cannot be
used for training. Commonly used model evaluation metrics
include accuracy, F1-score, precision, recall, area under the
receiver operating characteristic (ROC) curve, mean absolute
error (MAE), and mean squared error (MSE).21

Evaluating unsupervised models can be challenging because
data do not have prior labels. Evaluation typically involves
internal and external validation.22 Internal validation is done by
estimating inter- and intra-cluster distances to evaluate cluster
quality. A cluster refers to a collection of data points that
accumulate together based on certain similarities. Models
minimizing intracluster distances while maximizing intercluster
distances are preferred. Such a result suggests that these
models are performing well at clustering similar data points
together. Some commonly used metrics for this purpose are
the Adjusted Rand Index and the Silhouette Coefficient.
However, a good internal validation score does not guarantee
the effectiveness of the obtained clusters for real applications.
Hence, external validation is necessary to assess whether the
data points are assigned to the correct clusters. This step
usually requires human evaluation or comparison against
benchmarks. For dimensionality reduction, task reconstruction
error or loss is estimated to evaluate model performance.
These methods seek to minimize the reconstruction error or
loss−defined as the distance between the original data point
and its projection onto a lower-dimensional subspace (its
“estimate”).23

The ESE community has begun to leverage various ML
algorithms and techniques to analyze environmental data sets.
While it is difficult to determine a priori which ML algorithm is
best suited for a particular data set, an improved understanding
of the positives and negatives and the inherent assumptions of
the specific algorithms aid in the choice of the right
technique(s). Table 1 summarizes algorithms popular within
the ESE community. The table describes the algorithms, their
advantages and disadvantages, the assumptions for specific data
types, and gives examples where the algorithms have been used
to address ESE related problems.

2.4. Data Interpretation. The final step in the model
building cycle is to interpret the learnt model and develop
reasonable explanations for the obtained analysis (Figure 1d).
Data interpretation could mean extracting important variables
contributing to the model prediction. These variables could
help in verifying the hypotheses of the study or understanding
what factors are critical in driving the observations in the study
under consideration. At this stage, the literature and expert
opinions are queried to make connections between the model
outputs and knowledge about the relevant chemical, physical,
and biological phenomena to make data-driven conclusions
and decisions.

3. CURRENT APPLICATIONS OF MACHINE LEARNING
IN ESE

In this section, we discuss current applications of ML
algorithms within the ESE domain by presenting three case
studies representing different application areas.

3.1. Metagenomic Data Analysis. High throughput
shotgun (untargeted) metagenomic DNA sequencing offers a
robust and effective way to access the microbial world and is
now often used in ESE. Differentiating microbial communities
in different environments,60,61 studying the dissemination of
antibiotic resistance in environmental systems,62,63 defining
bacterial communities in contaminated environments to
explore bioremediation,64 and characterizing microbial com-
munities in wastewater treatment processes65,66 are all
examples of environments where metagenomic character-
ization is increasingly being applied.
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In a typical metagenomic study, the first step is often to
search sequenced DNA reads against a reference database to
derive taxonomic or functional gene annotation. The obtained
taxonomic or functional gene profiles are then normalized to
provide relative abundance information corresponding to
different species or genes in the sample that can be visualized
and analyzed to answer specific questions about the sample.
Continuous optimization and declining costs of sequencing
platforms have made metagenomics related research more
accessible than ever before. This trend has led to the
generation of large volumes of publicly available sequencing
data, but rendering these data into meaningful interpretations
remains challenging.67 Fortunately, the advent of ML methods
has immensely accelerated advancement at every cross section
of a typical metagenomic study.68 Here, we highlight some
applications of ML in antibiotic resistance-related studies.
One often faced challenge with metagenomic data is that of

high dimensionality and low sample size (HDLSS; i.e., more
variables than independent samples). For example, the number
of genes annotated within a given environmental sample can
easily exceed hundreds of thousands. Hence, many unsuper-
vised techniques, such as principal component analysis (PCA)
and non-metric multi-dimensional scaling (NMDS), are used
as preprocessing steps to reduce dimensionality by removing
uninformative features. A common application of these
techniques is to examine the similarity/dissimilarity of different
environmental samples by clustering based on species or gene
composition.69 Network-based ML (data is represented in the
form of a graph where nodes are the data points to be clustered
and edges represent the relationship or similarity between the
data points) is another unsupervised approach to study
protein−protein or gene−gene interactions to understand
different functional pathways.70

Given the sample labels or response variables, and the gene
composition, support vector machines (SVMs), ANNs, and
ensemble methods (such as random forest (RF) or extremely
randomized trees) have been extensively used to perform
supervised learning and build predictive models. For example,
identifying interesting patterns and important genes in a data
set,58 predicting relative antibiotic resistance abundance
levels,7 understanding the role of socioeconomic status in
shaping the resistome or microbiome,71 or the prediction of
antibiotic resistance phenotype72 are some of the unique
problems that have been examined using the above-mentioned
methods. Hidden Markov models (HMMs), which can be
used in both supervised or unsupervised fashion, are one of the
more readily used algorithms to detect antibiotic resistance
gene variants or potential functional homologues73 and have
been applied for the discovery of novel ARGs from
metagenomic data.74

Word embedding, which has gained a lot of popularity over
the recent years, is a feature learning technique used in natural
language processing (NLP). Word embedding is a term used
for the representation of words or sentences in the form of
numeric vectors that can be used for downstream ML tasks.75

Raw DNA/protein sequences sliced into k-mers are analogous
to the structure of a sentence and can be analyzed in a similar
fashion as natural languages. Thus, there is a rapid thrust
toward analyzing raw sequences using NLP based techni-
ques.76,77 MetaMLP,78 based on a similar idea, uses a word
embedding based classification model to predict ARG
phenotype and has been found to perform 50× faster than
DIAMOND (one of the fastest sequence alignment methods)

with similar accuracy. Word embedding based models hold
immense promise in analyzing metagenomic data as they have
the ability to learn patterns directly from within raw sequences.
Similar to the antibiotic resistance example, other

applications can also be envisioned. For instance, analyzing
metagenomics data for taxonomic classification79,80 or mobile
genetic element classification,81 where ML algorithms were
able to outperform the traditional methods. In essence, ML
algorithms have enhanced our ability to robustly analyze
complex metagenomic data.

3.2. Nontarget Analysis of Environmental Samples. A
rapidly developing approach in environmental analysis and
toxicology involves the use of high resolution mass
spectrometry (HRMS) based nontarget analysis (NTA)
where data on accurate masses of molecular and fragment
ions are collected without a priori information on the
chemicals being analyzed. NTA can potentially aid in the
screening and analysis of the vast and diverse universe of
organic pollutants, a grand challenge faced by the ESE
community.82 Because the chemicals being detected are not
predetermined, NTA provides an opportunity to comprehen-
sively examine the occurrence, fate, and transport of chemical
contaminants in different environmental niches with minimal
bias.82 Similarly, NTA can be applied in environmental
metabolomics to facilitate understanding of the effects of
chemical perturbations on exposed organisms (e.g., plants,
animals, and humans), without focusing on a particular
biochemical pathway.83,84 A recent review highlighted studies
that employed the different types of NTA techniques used in
metabolomics to discover metabolite changes in plants induced
by exposure to xenobiotics (e.g., pharmaceuticals, personal care
products, pesticides, flame retardants, and engineered nano-
materials), to examine the effect of altered levels of nutrients in
the environment on plant systems.85 Here we present a brief
summary of how the combination of NTA with ML can
advance monitoring of water, wastewater quality, soil, and
exposed organisms (e.g., humans, wildlife).
While there are various methods that can be used for NTA

in ESE, HRMS is the most popular because of its capacity for
sensitive detection of low levels of contaminants and
metabolites in complex environmental samples. However, the
power of NTA using HRMS has been limited by problems
associated with sample preparation and data analysis. In
analyzing environmental samples using MS, sample concen-
tration and cleanup are critical because the signal intensity of
the MS features depend not only on the concentrations of the
chemicals, but also on the amounts and the nature of the
matrix present in the sample extracts. The reproducibility of
the ionization of compounds in MS can be compromised
significantly by matrix effects. Therefore, it is important to have
an appropriate number of replicate samples and properly
selected blank samples when conducting NTA. Solid-phase
extraction for sample cleanup is commonly used, but this
approach can introduce bias because highly polar contaminants
may be lost during sample preparation. Unlike in target
analysis where variations due to matrix effects and sample
losses can be corrected using stable isotope-labeled reference
compounds as surrogates, this approach cannot be used in
NTA because the purpose of NTA is to identify unknown
contaminants that were not included in the target list. To
normalize for instrumental variation and matrix effects, internal
standards with varying polarity can be added to the sample
extract prior to analysis. Recently, several compounds of
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diverse structure, log Kow, chromatographic behavior, and
ionization efficiency have been proposed for inclusion in a
quality control mixture usable for NTA.86 However, the
proposed mixture has limitations, such as for the detection of
hydrophilic compounds and molecular formula generation for
compounds containing fluorine. Finally, due to the substantial
amount of MS data acquired indiscriminately under full-scan
and the subsequent MS/MS fragmentation of molecular and
fragment ions, data processing to identify relevant features is
daunting. Therefore, NTA workflows with built-in filters and
criteria are being developed to facilitate prioritization of MS
features that are useful for chemical structure annotation. In
this regard, advanced data processing tools, high throughput
statistical packages, and user-friendly visualization programs
are needed to fully interrogate the rich data sets acquired by
NTA.
NTA based on HRMS holds great promise for the

comprehensive monitoring of the occurrence and fate of
contaminants in water and wastewater.87 It also allows
researchers to retrospectively analyze stored HRMS data to
screen for suspected contaminants (i.e., suspect screening) that
may have been missed during target analysis.88 Using advanced
computational strategies, such as hierarchical cluster analysis,
common patterns in the occurrence of contaminants in the
environment and their emission pathways can be predicted
based on time series analysis of the aggregated NTA data.89

NTA combined with cluster analysis was successfully applied
to reveal previously unmonitored chemical contaminants in
soil and sediment samples.90 The application of NTA and
advanced postacquisition data treatment will continue to
enhance our ability to discover emerging contaminants in the
environment, including those that bioaccumulate and pose
risks to humans and wildlife. For instance, new polyhalo-
genated compounds were detected for the first time in blubber
samples from marine mammal sentinel species using both LC-
HRMS and GC-HRMS for analysis, and an open-source data
mining software in the R programming environment that
detected halogenated signatures in full scan HRMS.91 Finally,
NTA combined with personal passive samplers and proper
sample preparation techniques can be used to unlock the
composition of chemical mixtures that humans are exposed to
on a daily basis, which can be used in investigating the human
exposome.92

Akin to metagenomic data, NTA data pose a similar HDLSS
challenge, as each mass spectrum constitutes a large number of
peaks representing potential compounds present in a given
sample. Hence, data preprocessing is crucial and inevitable.
Various data preprocessing steps are performed such as
detecting peaks, subtracting peaks that were found in blank
or control samples, componentization (i.e., grouping of signals
that probably belong to one unique molecular structure) and
removing noise using replicate measurements.93 Following
preprocessing, various supervised and unsupervised ML
algorithms can be applied to engineer, select, and extract
relevant features. However, before any further analysis, data
normalization, and data scaling are two crucial steps that
require consideration.
The most common algorithms used for NTA are linear

projection methods, such as PCA and supervised partial least-
squares discriminant analysis (PLS-DA).94,95,48 PCA aids in
sample comparison by removing variance from the sample set.
Supervised PLS-DA along with relevant metadata can be used
to extract features pertaining to the specific questions that are

being asked. However, a major challenge is that feature
detection based on peak intensity can be misleading because of
erroneous peak assignments. Also, relevant information can be
lost when differentiating the actual contaminant signals and
background noise when using intensity information for feature
selection. Hence, several alternative approaches that aim at
using raw data signals (retention time × mass-to-charge ratio)
that bypass the peak detection step have been proposed and
implemented for improved extraction of information and
underlying patterns in the data set.96−98 This includes
techniques such as transforming the raw data signal to distance
matrices for dissimilarity analysis,96−98 and using clustering to
extract features.99

A number of other data analysis algorithms exist, but have
not yet become common in NTA environmental analysis.
Clustering techniques such as k-means and hierarchical
clustering can be used to identify similar samples. Algorithms
like RF, SVMs and ANNs can be applied to classify samples
based on different categories and would be advantageous in
illustrating nonlinear relations in the data. These algorithms
have shown excellent promise in analyzing HRMS data in
other fields100−103 and this promise can certainly be extended
to environmental sample analysis.

3.3. Anomaly Detection in Engineered Water Sys-
tems (EWS). EWS is an umbrella term for systems of water
collection, treatment, distribution, storage and their operation.
Recently, there has been a major thrust toward digitalization of
the water sector.104 In particular, the evolution of cyberinfras-
tructure and of online process control instrumentation has led
to the development of advanced process control solutions such
as supervisory control and data acquisition (SCADA)
systems.105,106 Such advances have enabled water utilities to
continuously monitor water quality, identify problems, and
effectively oversee maintenance issues both remotely and more
locally. These systems entail collection of a large volume of raw
data that could be, in conjunction with appropriate data
analysis techniques, transformed into valuable information that
can be leveraged to make proactive decisions to optimize
overall performance.107 In particular, there is surging interest in
using ML techniques to identify unusual patterns in raw EWS
data as a means of discovering unexpected activities−this is
broadly termed anomaly detection.108

A typical anomaly detection task in EWS aims to
differentiate between natural, expected variations in water
quality and unusual or suspicious variations caused by
contamination or failure somewhere in the system. The
challenge is to characterize these normal water quality
variations as it requires analysis of long-term data that
encompasses inherent background variability.109 This charac-
terized normal response helps to flag anomalous events in the
data. Various ML algorithms have been applied to address this
problem (Table 1).
Within EWS, one primary form of the generated data is a

time series, where each time point can be considered a discrete
sample. The time series consists of measurements of indicators
collected over time from one or several sensors, which form
the feature set. Hence, each sample can be represented as a
multidimensional vector, where each dimension represents a
feature. Historic data is then used to train the model. Given
appropriate analysis of the supporting data set, one can frame
and solve problems to address a multitude of aims such as
detecting leaks, sensor failures, abrupt changes in water quality,
or contamination events.110−112
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There are a number of different anomaly detection
techniques available.113 In the unsupervised approach,
unlabeled samples are clustered using an algorithm; such as
k-means, density-based clustering algorithms, or expectation-
maximization (EM) clustering. The concept is that the normal
data points cluster to form high density clusters, whereas
anomalous data points cluster separately or distant from the
normal data points/clusters and are located in low-density
regions. This way one can carry out additional investigation
using new samples and classify them relative to the normal
data. In the supervised approach, labels (normal or anomalous)
are assigned to each sample based on past information and
expert knowledge of anomalous behavior. In this way, the
problem is converted into a binary classification problem.
Though, it can easily be extended to a multiclass classification
to categorize different types of anomalies. SVM, ANN,
Bayesian Network, Logistic Regression models, and their
variants are well explored algorithms in this space.113 A special
case of SVM, One-Class SVM (OCSVM) is a widely used
method for anomaly detection. In OCSVM, the entire training
data set is considered as one-class (e.g., normal class) and the
new data points are classified as similar (normal) or different
(anomalous) to the training data. Because considering all data
points from one class is equivalent to having no label, OCSVM
is considered as unsupervised learning method.
Owing to the success of ML in detecting anomalies in other

domains, such as network security, researchers have started
exploring its potential in water quality anomaly detec-
tion.43,114,115 Based on the studies published so far, DL
algorithms have shown promise in detecting anomalies and
have outperformed conventional techniques on a number of
occasions. However, it should be noted that DL methods could
be slow to train depending on the depth of the network and
the amount of data available.116

Many studies have adopted a batch learning approach where
the model is trained on historical data and then the new data is
categorized using this trained model. With a continuous
incoming time-series data stream and the possibility of novel
anomalies, retraining the models with every new data set can
quickly become impractical and difficult to reliably execute.
Continual or active learning frameworks that continuously
learn as the new data stream comes in and that can identify
anomalous behavior in real time are required to circumvent
these issues.117,118 Variants of Latent Dirichlet Allocation,
Markov Models, and ANN based architectures are algorithms
that have been applied in other domains to achieve continual
online learning.119−121 However, thes approaches remain
underexplored for anomaly detection in water systems as
these frameworks are not trivial and have their own
implementation challenges.118,119

Ultimately, anomaly detection will be most valuable if it can
learn continually as the data stream comes in and yield real-
time reporting that informs immediate corrective action. It is
crucial that the models being utilized are fast and accurate.
Hence, going forward, there is a need to shift the focus toward
hybrid approaches (combinations of different algorithms) to
build powerful models that are able to detect multiple types of
anomalies in real-time. Such models will enhance EWS
anomaly detection and advance public health.9,118,119

4. PATH FORWARD

There is increasing interest in and a growing body of research
documenting how data analytics is being used to address ESE

problems. As illustrated in this Feature, the power of data
analytics has been widely recognized, as has been the vast need
for its application. Anomaly detection has particularly
promising applications for water professionals and practi-
tioners. Notably, broader application of metagenomics and
NTA can revolutionize environmental monitoring efforts.
However, the application of data analytics in ESE practice
remains in its infancy and concerted efforts are required to
make data analytics an integral part of ESE research and
education. Such a goal would most effectively be achieved if
there were an agreed-upon plan of action. Coordinated efforts
on several fronts are needed to help the ESE community reap
the potential benefits of data analytics.
First, there is a need to encourage collaborations between

data scientists and ESE practitioners that involve diversely
engaged and integrated research teams from multiple
disciplines. Such collaborations will facilitate cross-disciplinary
communication and simultaneous skills building. For example,
data scientists come from a culture highly supportive of data
sharing (e.g., GitHub, Bitbucket, public databases). The ESE
community should embrace this culture and incorporate data
sharing both locally, regionally, and globally. Recent efforts to
address the COVID-19 pandemic,122,123 the global dissem-
ination of antimicrobial resistance,7 and the development of
globally vetted data analysis approaches within the NTA
community are all steps in this direction. Such collaborations
have the potential to yield profound data-driven insights and
conclusions that would be impossible to achieve within normal
academic and professional silos. Working on their own, data
scientists may create models that answer specific questions, but
lack the interpretive training required to contextualize their
results into real world applications. Simultaneously, ESE
practitioners with data may not possess the corresponding
tools or insights required for proper analysis. Strategic
collaborations will lead to improved data analytics, data
interpretation, and improved decision making.
Second, there is a lack of user-friendly data analytics tools

and platforms devised for ESE problems. Although under-
standing the theory behind ML algorithms is not a difficult task
for many trained scientists, a major hurdle that ESE researchers
face is in the coding and implementation of these models. With
the continual advancement of data science, programming is
becoming an increasingly necessary skill, without which models
may be improperly developed or may lack efficiency. User-
friendly tools may circumvent the problems with coding
learning curves and may be essential for widespread
practitioner adoption. While many tools (Microsoft power
BI, Weka, Tableau, Azure) are available for general data
analysis, application-specific tools/platforms would greatly aid
in performing end-to-end analyses.
Third, the field needs to incorporate data analytics-oriented

curricula. This could include the addition of data analytics
focused modules within existing coursework, the introduction
of new data science and statistics courses within ESE degree
programs, and the development of relevant capstone projects
for ESE applications. Such experiential learning would help
students understand the intricacies of different algorithms and
provide hands-on experience in applying various data analytics
techniques in the context of specific ESE problems. Further,
encouraging students to take part in data science internships
would be an excellent means of developing such expertise.
Fourth, introducing data analytics workshops and making

the relevant resources available is valuable for students,
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researchers, and professionals. A plethora of online resources,
such as Coursera, LinkedIn Learning, and Edx, are available for
low or no cost, offering high-quality content in data science.
Expanding access to and creation of open source learning
platforms could prove instrumental in instigating the data-
driven problem-solving approach.
Finally, we know that data analytics is not new, but

continues to evolve at a rapid pace. These advancements
furnish us with new and powerful ways to analyze the data that
can help holistically tackle the challenges faced by ESE
community, and ultimately inform decision-making and policy
formulation at scales never previously imagined. Hence, it is
critical to be abreast of new developments in data analytics and
to continue making efforts to harvest their full potential.
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■ GLOSSARY

Accuracy Correct predictions/
total predictions.

Autoencoders A deep learning techni-
que that aims to build a
model where the output
targets are set equal to
the input variables. It
seeks to learn an ap-
proximate representa-
tion of the data and
reconstruct it. It is an
unsupervised learning
approach used for di-
mensionality reduction.

Bayesian Network Bayesian networks are a
kind of probabilistic
graphical model that
utilizes Bayesian infer-
ence for probability es-
timations. Bayesian net-
works are used to
model conditional de-
pendence, and hence
causation, using a direc-
ted graph.

Data cleaning Identification of outliers
or filling in of missing
values. Outlier identifi-
cation can be done by
using Z-score, quartile
values, or hypothesis
testing. Missing data
can be handled in mul-
tiple ways such as filling
the value by computing
the summary statistics
of the given variable,
using predicted values
computed by an ML
algorithm, manual cura-
tion, or by ignoring the
missing record.
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Data integration The combination of
multiple data sources
into a single coherent
form.

Data reduction Aggregation or elimina-
tion of redundant in-
formation to reduce the
data set size.

Data transformation Conversion of raw data
by normalizing to a
common scale to en-
sure consistency and
comparability.

Density Based Clustering Work by recognizing
“dense” groups of
points, permitting it to
learn clusters of discre-
tionary shape and dis-
tinguish anomalies in
the information.

Dimensionality Reduction The process of reducing
the number of random
variables or attributes
under consideration.

EM Clustering Similar to k-means ex-
cept it assigns the sam-
ples into clusters based
on the probabilities es-
timated using the EM
algorithm. The objec-
tive is to maximize the
overall probability of
the data for the given
(final) clusters.

Ensemble Methods Ensemble methods are
algorithms that com-
bine predictions from
several base models to
obtain one optimal
model.

F1-Score F1-Score is a harmonic
mean of recall and
precision.

HMM HMM is a statistical
Markov mode l i n
which the system being
modeled is assumed to
be a Markov process.

k-mer A substring with a
length k in a biological
sequence of nucleoti-
des.

Naiv̈e Bayes Naive Bayes methods
are a family of simple
probabilistic classifiers
based on Bayes rule.
The method is called
“Naive” for its assump-
tion of conditional in-
dependence among the
features.

Natural Language Processing (NLP) A subfield of computer
science, artificial intelli-
gence, and linguistics
that deals with the
interaction of com-
puters with human lan-
guages.

NMDS NMDS is an ordination
technique based on dis-
tance or dissimilarity
matrix. NMDS repre-
sents pairwise dissimi-
larity between samples
in a low-dimensional
space.

PLS-DA PLS-DA is a linear
classification model
that is able to predict
the class of new sam-
ples.

R Programming language
for Statistical Comput-
ing

ROC-Curve A receiver operating
characteristic (ROC)
curve is a plot of true
positive rate (TPR-y
axis) against the false
positive rate (FPR-x
axis). It measures the
performance of a classi-
fier.

SCADA Supervisory control and
d a t a a c q u i s i t i o n
(SCADA) is a system
designed to gather and
analyze real time data.
It is used in water/
wastewater treatment
plants to monitor and
manage processes.
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