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GEOMETRIC DILATIONS AND OPERATOR ANNULI

SCOTT MCCULLOUGH AND JAMES E. PASCOE1

Abstract. Fix 0 < r < 1. The dilation theory for the quantum annulus QAr, consisting

of those invertible Hilbert space operators T satisfying ‖T ‖ , ‖T−1‖ ≤ r−1, is determined.

The proof technique involves a geometric approach to dilation that applies to other well

known dilation theorems. The dilation theory for the quantum annulus is compared, and

contrasted, with the dilation theory for other canonical operator annuli.

1. Introduction

Following M. Mittal in [Mi] (see also the references therein; e.g., [Pau88, Sh74]), given

0 < r < 1, we call QAr, the collection of invertible Hilbert space operators T satisfying

‖T‖ , ‖T−1‖ ≤ r−1, the quantum annulus. In this article we determine the dilation theory

for QAr. The result is stated in Subsection 1.1 immediately below. The key proof technique

– an adaptation of Nelson’s trick [N] – is of independent interest. We illustrate how the

trick provides a geometric alternate approach to the Sz.-Nagy dilation theorem and related

results. See Section 2. Later in this introduction we discuss connections between the quantum

annulus and other operator annuli [BY+, CG, Ts22a, Ts22b].

1.1. The quantum annulus. For a Hilbert space H, let B(H) denote the bounded opera-

tors on H. An invertible operator T ∈ B(H) has a C[x, x91]-dilation to an invertible operator

J ∈ B(K) if there is an isometry V : H → K such that

(1.1) T n = V ∗JnV,

for all integers n. For expository ease, we will often drop the C[x, x91] modifier.

It is evident that if T dilates to J and J is in the quantum annulus, then T is also

in the quantum annulus; that is, QAr is closed with respect C[x, x91]-compressions. Hence

the collection QAr is, what we call here, a C[x, x91]-dilation family [Ag88] in the sense that

it is closed with respect to (a) direct sums, (b) unital ∗-representations and (c) C[x, x91]-

compressions.
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2 MCCULLOUGH AND PASCOE

The dilation of equation (1.1) is trivial if the range of V reduces T. An element T ∈ QAr

is dilation extremal in QAr if all of its dilations to QAr are trivial; that is if J ∈ QAr and

equation (1.1) holds, then the range of V reduces J. This notion of dilation extremal has

connections with boundary representations in the sense of Arveson. See [Ar, DK, DM, MuSo]

and the references therein.

Let QAr denote those operators J that, up to unitary equivalence, take the form

J = U

(

rIK+1
0

0 r−1IK−1

)

,

where U is unitary, J acts on the Hilbert space direct sum K+1 ⊕ K−1 and IK±1
is the

identity on K±1. It is immediate that J ∈ QAr. As an alternate description, J ∈ QAr if and

only if there exists projection P± that sum to the identity such that J∗J = r2P+ + r−2P−.

Theorem 1.1 below, proved in Section 3, describes the dilation theory of QAr, where QAr[H ]

denotes those elements of QAr that act on the Hilbert space H.

Theorem 1.1. The collection QAr has the following properties.

(a) If J ∈ QAr, then J ∈ QAr is dilation extremal in QAr;

(b) If J ∈ QAr[K] and π : B(K) → B(G) is a unital ∗-representation on a Hilbert space G,

then π(J) ∈ QAr[G].

(c) If T ∈ QAr, then T dilates to a J ∈ QAr.

Thus QAr is closed with respect to arbitrary direct sums, unital ∗-representations and
restrictions to reducing subspaces and each element of QAr dilates to an element of QAr.

Moreover, item (a) says that QAr is the smallest subcollection of QAr with these properties.

Hence QAr is canonical and deserves the moniker dilation boundary of QAr. (See [Ag88].)

The proof of item (c), the dilation, uses Nelson’s trick to produce a geometric dilation. See

Section 3.

1.2. The Pick annulus. Let Ar denote the annulus,

Ar = {z ∈ C : r < |z| < 1

r
}.

The recent papers [BY+, Ts22b] consider the family of operators associated to the kernel

kr : Ar × Ar → C defined by

kr(z, w) =
r−2 − r2

r−2 + r2 − zw∗ − (zw∗)−1
.

The Agler model theory for this family was determined in [BY+]. In [Ts22b] the spectral

bound for PAr is determined, with the lower bound also obtained in [BY+]. (Tsikalas also
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obtains a lower bound for the spectral constant for the quantum annulus in [Ts22b].) See

Section 5.1.

For a self-adjoint operator A on Hilbert space, A � 0 indicates A is positive semidefinite.

Let PAr denote those invertible Hilbert space operators T satisfying 1
kr
(T, T ∗) � 0 in the

hereditary sense that

(1.2)
1

kr
(T, T ∗) =

1

r−2 − r2

(

r−2 + r2 − T ∗T − T−∗T−1
)

� 0.

While not obvious, if T ∈ PAr[H ], then T is in QAr[H ]. See [BY+, Proposition 2.2] and

[Ts22b, Lemma 4.1].

Because the collection PAr has an hereditary definition (all the adjoints are on the left

in equation (1.2)), it is closed with respect to restrictions to C[x, x91]-invariant subspaces: if

Y ∈ PAr[K] and H ⊆ K is a subspace invariant for both Y and Y −1, then the restriction

of Y to H is in PAr[H ]. Thus PAr is a family, in the sense of Agler [Ag88], with respect to

C[x, x91] : PAr is closed with respect to (a) direct sums, (b) unital ∗-representations and (c)

restrictions to C[x, x91]-invariant subspaces.

An operator T ∈ B(H) lifts to an operator J ∈ B(K) if there is an isometry V : H → K

such that V T = JV. Equivalently, T is, up to unitary equivalence, the restriction of J to an

invariant subspace. In the case that both J and T are invertible, it follows that V T n = JnV

for all integers n. In particular, T n = V ∗JnV and hence T dilates to J.

Let PAr denote the collection of Hilbert space operators that have, up to unitary

equivalence, the form

J =

(

rV 1
r
E

0 1
r
W ∗

)

=

(

V E

0 W ∗

) (

rIK+1
0

0 r−1IK−1

)

,

where

U =

(

V E

0 W ∗

)

,

is a unitary matrix. In particular, V and W are isometries and E is a partial isometry with

initial space kerW ∗ and final space ker V ∗. A calculation shows 1
kr
(J, J∗) = − 1

kr
(J∗, J) is the

projection onto ker V ∗. Thus elements in PAr are distinguished members of PAr.

The following lifting theorem, which essentially identifies the Agler model theory for

PAr was established in [BY+].

Theorem 1.2 ([BY+]). If T ∈ B(H) is invertible, then T is in PAr[H ] if and only if T lifts

to a J in PAr.
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The Agler boundary [Ag88] of PAr is the smallest subcollection ∂PAr of PAr that is (1)

closed with respect to (a) direct sums, (b) unital *-representations, and (c) restrictions to

reducing subspaces; and (2) each T in PAr lifts to a J in ∂PAr. While it is not evident,

families have such a boundary [Ag88]. For the family PAr, it is straightforward to verify

that PAr satisfies the conditions (1). On the other hand, as observed in Section 4, each

J ∈ PAr is extremal – if J lifts to F ∈ PAr as V J = JV, then the range of V reduces F –

and is therefore in ∂PAr. Thus Theorem 1.2 has the following corollary.

Corollary 1.3. The collection PAr is the Agler boundary of PAr.

Since the kernel kr is a complete Pick kernel [AM][Ts22b] (see also [AHMR19, AHMR21,

H+] for recent results for complete Pick kernels), the family PAr is also a dilation family.

Indeed, if T ∈ B(H) is invertible and there is a Y ∈ PAr[K] and an isometry V : H → K

such that T n = V ∗Y nV for all integers n, then1

(r−2 − r2)
1

kr
(T, T ∗) = r2 + r−2 − T ∗T − T−∗T−1

= r2 + r−2 − V ∗J∗V V ∗JV − V ∗J−∗V V ∗J−1V

� r2 + r−2 − V ∗J∗JV − V ∗J−∗J−1V

= V ∗(r2 + r−2 − J∗J − J−∗J−1)V

= (r−2 − r2) V ∗
1

kr
(Y, Y ∗)V � 0,

and hence T ∈ PAr[H ]. A consequence, stated precisely in Corollary 1.4 below, is that the

dilation theory and the Agler model theory for PAr are essentially the same.

Corollary 1.4. For an invertible operator T ∈ B(H), the following are equivalent.

(i) T ∈ PAr;

(ii) T dilates to a Y ∈ PAr;

(iii) T lifts to a J ∈ PAr.

Moreover,

(a) if J ∈ PAr, then J is dilation extremal; that is, any dilation of J to an element of PAr

is trivial;

(b) The collection PAr is closed with respect to arbitrary direct sums, unital ∗-representations
and restrictions to reducing subspaces.

1It is enough that T n = V ∗JnV for n = ±1.
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1.3. The annulus as a spectral set. Let R(Ar) denote the algebra of rational functions

with poles off Ar. An operator T with spectrum in Ar has Ar as spectral set if, for each

ψ ∈ R(Ar),

‖ψ(T )‖ ≤ ‖ψ‖∞,
where ‖ψ‖∞ is the sup norm of ψ on Ar.

Let SAr denote the collection of operators with Ar as a spectral set. Let SAr denote the

normal operators with spectrum in the boundary of Ar. In [Ag85] Agler proves the following

analog of the Sz.-Nagy dilation theorem for Ar. If T ∈ SAr[H ] and σ(T ) ⊆ Ar, then there

exists a Hilbert space K an operator N ∈ SAr[K] and an isometry V : H → K such that

ψ(T ) = V ∗ψ(N)V,

for all ψ ∈ R(Ar).

The collection SAr is both a family in the sense of Agler and a dilation family. The

statement of Agler’s dilation theorem essentially identifies the normal operators with the

spectrum in the boundary of Ar as the dilation boundary of SAr.

A normal operator with spectrum in the boundary of PAr has, up to unitary equivalence,

the form
(

U+1 0

0 U−1

) (

r 0

0 r−1

)

,

where U±1 are unitary operators. As noted in [BY+, Ts22b], there are the proper inclusions

SAr ( PAr ( QAr.

Evidently from the discussions above, but somewhat surprisingly, the same chain of inclusions

holds for the dilation boundaries; that is,

SAr ( PAr ( QAr.

Remark 1.5. The family SAr is naturally identified with unital contractive (equivalently

unital completely contractive) representations of R(Ar) on Hilbert space. Namely, an opera-

tor T ∈ SAr[H ] determines the representation πT : R(Ar) → B(H) given by πT (ψ) = ψ(T ).

Both QAr and PAr are also naturally identified with collections of representations of C[x, x91]

(or R(Ar)).

1.4. Reader’s guide. Section 2 contains geometric arguments in favor of the Sz.-Nagy

dilation theorem, its multivariable non-commutative analog for row contractions and the

dilation theory for doubly commuting contractions all using Nelson’s trick. The trick is used

in Section 3 to prove Theorem 1.1.
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Section 4 provides some details for the proofs of Corollaries 1.3 and 1.4. We emphasize

the key ingredient is Theorem 1.2.

The paper concludes with a few remarks about spectral constants for QAr and musing

about Nelson’s trick and Ando’s Theorem in Section 5

2. Automorphic Nelson’s Trick

To prove the principal part of Theorem 1.1, item (c), we adapt a method found in

[N] that replaces the positive definite (diagonal) matrix in the singular value decomposition

of a square matrix with automorphisms of the unit disc. Similar methods were employed

by [H17] for multivariable weighted shifts. Hartz notes the trick also appears in [Pa02] as

well as in [Pi01]. In this section we illustrate the technique by indicating how it applies to

several familiar dilation results. Namely the Sz.-Nagy dilation theorem (Subsection 2.1), the

Bunce-Frazho-Popescu multivariable noncommutative theory of row contractions [B, Fr82,

Fr84, Po89, Po91] (Subsection 2.2) and doubly commuting contractions (Subsection 2.3). In

Section 3 we apply the method to the quantum annulus.

2.1. Unitary dilations of contractions. For a square matrix T of size n with ‖T‖ < 1,

Nelson’s construction proceeds as follows. The singular value decomposition of T has the

form T = UDW, where D is a diagonal matrix whose diagonal entries λj are the eigenvalues

of (T ∗T )
1

2 and U,W are unitary matrices. In particular 0 ≤ λj < 1. Let

bj(z) =
λj − z

1− λjz
.

Thus each bj is an automorphism of the unit disc D = {z ∈ C : |z| < 1}. Let

(2.1) D(z) =











b1(z) 0 0 · · · 0

0 b2(z) 0 · · · 0
...

...
... · · · ...

0 0 0 · · · bn(z)











and note that D(0) = D. Let F (z) = UD(z)W. Thus F : D →Mn(C) is a bounded analytic

function such that F (0) = T and F (ζ)∗F (ζ) = In for |ζ | = 1. We note that our construct

slightly refines Nelson’s in that originally he used independent variables on the diagonal,

which, as we now turn to dilation theory, is less desirable from a minimality perspective.

We now show how to produce the desired dilation of T. Let H2(D) denote the usual

Hardy-Hilbert space. By construction, the operatorMF of multiplication by F onH2(D)⊗Cn

is an isometry. (Note that the cokernel has dimension at most n.) The mapping V : Cn →



GEOMETRIC DILATIONS 7

H2(D)⊗ Cn defined by V x = 1⊗ x is an isometry and

M∗

FV x =M∗

F1⊗ x = 1⊗ F (0)∗x = 1⊗ T ∗x = V T ∗x.

Hence T ∗ lifts to the coisometry M∗
F , providing an explicit, geometric, unitary dilation of T.

2.2. Row contractions. The Nelson argument extends to the Bunce-Frazho-Popescu mul-

tivariable noncommutative theory of row contractions [B, Fr82, Fr84, Po89, Po91]. Given a

tuple T = (T1, . . . , Tg) of n× n matrices, view T as the n× ng matrix

T =
(

T1 · · · Tg

)

∈Mn,ng(C).

Suppose T is a strict contraction; that is ‖T‖ < 1.

Once again, consider the singular value decomposition

T = UEW,

where

E =
(

D 0 . . . 0
)

for a diagonal n × n matrix D with nonnegative entries that are strictly less than one. In

particular, the unitary matrices U and W have sizes n and ng respectively. Define D(z) is

as in equation (2.1). Thus D(0) = D and D is unitary valued on the boundary of the disc.

Write W as a block g× g matrix with entries Wj,k ∈Mn(C) and define Fj : D →Mn(C)

by Fj(z) = UD(z)W1,j . Let Mj denote the operator of multiplication by Fj on H
2(D)⊗ Cn

and observe

(2.2) M∗

j 1⊗ x = 1⊗ Fj(0)
∗x = 1⊗ T ∗

j x.

Let F2
g denote the freely noncommutative Fock space on g letters x = {x1, · · · , xg} and

let ∅ denote the empty word (vacuum state). Thus F2
g is the Hilbert space with orthonormal

basis the words in x. Let Sj : F2
g → F2

g denote the shift determined by Sjf = xjf for f a

finite C-linear combination of words and note that S∗
jSk = δj,kI; that is, the Sj are isometries

with pairwise orthogonal ranges.

Define ι : H2(D) → F2
g ⊗H2(D) by ιh = ∅ ⊗ h. Thus ι is an isometry. On the Hilbert

space

K =
[

H2(D)⊗ Cn
]

⊕ ⊕g

2

[

F2
g ⊗H2(D)⊗ Cn

]

,

let

Jj =











Mj 0






ι⊗ UW2,j

...

ι⊗ UWg,j






I ⊗ Sj ⊗ I











.
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For instance, with g = 3,

Jj =







Mj 0 0

ι⊗ UW2,j Sj ⊗ I 0

ι⊗ U∗W3,j 0 Sj ⊗ I






.

Observe that J∗
j Jk = δj,kI. Thus {J1, . . . , Jg} is a family of isometries with orthogonal ranges.

Define V : Cn → K by V x = [1 ⊗ x] ⊕ 0. Thus V is an isometry and, in view of

equation (2.2),

J∗

j V = V T ∗

j .

2.3. Doubly commuting contractions via Nelson. We note that Nelson’s trick also

works for a tuple of doubly commuting contractions. See [NFBL, BNS] and the references

therein. Suppose T1, . . . , Td are commuting n × n matrices that are strict contractions.

Suppose further they are invertible and doubly commute, meaning for each j 6= k,

T ∗

j Tk = TkT
∗

j .

Each Tj has its polar decomposition, Tj = UjDj, where Dj = (T ∗
j Tj)

1

2 and Uj = TjD
−1
j .

Thus each Dj is a positive definite strict contraction and each Uj is unitary. The doubly

commuting hypothesis implies the Dj commute with one another, the Uj doubly commute

and DjUk = UkDj for j 6= k. Since the Dj are commuting self-adjoint matrices, they are

simultaneously diagonalizable. Hence, for each 1 ≤ j ≤ d, there are pairwise orthogonal

projections Pj,1, Pj,2, . . . , Pj,mj
that sum to the identity and distinct 0 < λj,α < 1 such that

Dj =

mj
∑

α=1

λj,αPj,α.

Further, for all j, k, α, β, the operators Pj,α and Pk,β commute and, for j 6= k, the operators

Uk and Pj,β commute. Let

bj,α =
λj,α − z

1− λj,αz

and

Dj(z) =

mj
∑

α=1

bj,α(z)Pj,α.

It follows that Dj(z) and Uk commute for j 6= k, and the Dj(z) commute with one another.

Hence the resulting matrix functions Fj(z) = UjDj(z) pointwise doubly commute and are

unitary valued on the boundary of the disc. Thus the operators Mj of multiplication by Fj

on H2(D) ⊗ Cn are isometries and doubly commute. With the usual isometry V : Cn →
H2(D)⊗ Cn defined by V h = 1⊗ h, one finds V T ∗

j =M∗
j V for each j.
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3. The Quantum Annulus

In this section we prove Theorem 1.1. A preliminary version of the dilation, item (c), is

established using Nelson’s trick in Subsection 3.1. The remaining items of the theorem are

proved in Subsection 3.2 and are then used, in conjunction with the result of Subsection 3.1,

to complete the proof of item (c) in Subsection 3.3.

3.1. Nelson’s trick applied to QAr. In this subsection we apply Nelson’s trick to obtain

Lemma 3.1 below, an initial version of item (c) of Theorem 1.1. The proof of Theorem 1.1

concludes in subsection 3.3. Let σ(T ) denote the spectrum of a bounded operator T on

Hilbert space.

Lemma 3.1. Suppose T ∈ QAr[H ]. If σ((T ∗T )
1

2 ) ⊆ (r, r−1) is finite, then there exists a

Hilbert space K, an operator J ∈ QAr[K] and an isometry V : H → K such that T n =

V ∗JnV for all integers n.

Proof. The operator T has the polar decomposition

T = UP,

where P is positive semidefinite and U is unitary. Indeed, since T ∗T is invertible, P = (T ∗T )
1

2

and U = TP−1. By hypothesis, there exists a finite set F ⊆ (r, r−1) such that P has spectral

decomposition,

P =
∑

λ∈F

λEλ,

where {Eλ : λ ∈ F} are pairwise orthogonal projections that sum to the identity.

Let T denote the unit circle, viewed as the boundary of D. Let I±1 denote the upper and

lower half of T respectively. It is well known that the unit disc D is the universal cover of

Ar. Namely, there exists an onto analytic function ϑ : D → Ar with ϑ(0) = 1 and mapping

I±1 to the inner and outer boundary components {|z| = r±1} of Ar respectively that extends

across T except at ±1. Given r < λ < r−1, there exists a Möbuis automorphism mλ of the

unit disc so that ϑλ = ϑ ◦mλ maps D onto Ar and sends 0 to λ. There exists arcs I±1
λ whose

disjoint union is the boundary of the unit disc, save for two points, that are mapped, under

ϑλ, to the inner and outer boundaries of Ar respectively.

Define F : D → B(H) by F (z) = UP (z), where

P (z) =
∑

λ∈F

ϑλ(z)Eλ.

Observe F is analytic on D, extends to T except at finitely many point, and F (0) = T.

Let L2 = L2(T) denote the usual L2 space of the unit circle T. The characteristic

functions χ±1
λ of the intervals I±1

λ induce projection operators Q±1
λ on L2(T) by sending
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f to χ±1
λ f. Moreover, the projections Q±1

λ are orthogonal and sum to the identity. Let

K = L2(T) ⊗ H. It follows that the 2|F| projections {Q±1
λ ⊗ Eλ : λ ∈ F} are pairwise

orthogonal and sum to the identity.

LetMF denote the operator of multiplication by F on K = L2(T)⊗H. By construction,

given f ∈ L2(T), for h ∈ H and ζ ∈ ∂D and each λ ∈ F,

MF (ζ)[Q
±1
λ ⊗ Eλ](f ⊗ h)(ζ) =MF (ζ)χ

±1
λ f(ζ)⊗ Eλh = ϑλ(ζ)χ

±1
λ f(ζ)⊗ UEλh.

Hence, if also f ′ ∈ L2(T) and h′ ∈ h, then

〈M∗

FMF [Q
±1
λ ⊗Eλ](f ⊗ h), f ′ ⊗ h′〉

= 〈 ϑλ(ζ)χ±1
λ f(ζ)⊗ UEλh,

∑

µ∈F,j=±1

ϑµ(ζ)χ
j
µf

′(ζ)⊗ UEµh
′ 〉

= r±2〈χ±1
λ f(ζ)⊗ Eλh, χ

±1
λ f ′(ζ)⊗Eλh

′〉
= r±2〈Q±1

λ ⊗Eλ(f ⊗ h), f ′ ⊗ h′〉.
It follows that

M∗

FMFQ
±1
λ ⊗ I = r±2Q±1

λ ⊗ I.

Thus

M∗

FMF = r2Q+
λ ⊗ I + r−2Q−

λ ⊗ I

and therefore MF ∈ QAr.

Define V : H → K = L2(T)⊗H by V h = 1⊗h. Thus V is an isometry. Moreover, since

F is analytic, if h, g ∈ H, and n ∈ Z, then

〈Mn
FV h, V g〉 = 〈Mn

F1⊗ h, 1⊗ g〉 = 〈F n(0)h, g〉 = 〈T nh, g〉

and we obtain

T n = V ∗Mn
FV

for all n ∈ Z.

3.2. The dilation boundary of QAr. In this subsection we prove items (a) and (b) of

Theorem 1.1 and provide an alternate characterizations of the dilation boundary of QAr.

3.2.1. Proof of Theorem 1.1 items (a) and (b).

Proposition 3.2. An invertible operator T is in QAr if and only if

r−2 + r2 − T ∗T − T−1T−∗ � 0

and T ∈ QAr if and only if

(3.1) r−2 + r2 − T ∗T − T−1T−∗ = 0.
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Proof. Suppose T is invertible and let A = T ∗T. By definition, T ∈ QAr if and only r2 �
A � r−2 if and only if σ(A), the spectrum of A, lies in the interval [r2, r−2].

Let

A =

∫

σ(A)

λ dE(λ)

denote the spectral decomposition of A. Since T−1T−∗ = A−1,

r−2 + r2 − T ∗T − T−1T−∗ =

∫

σ(A)

(

r−2 + r2 − (λ+ λ−1)
)

dE.

On the other hand f : R → R defined by f(t) = r−2 + r2 − (t + t−1) is positive if and only

if r2 < t < r−2 and is 0 if and only if either t = r2 or t = r−2. Thus σ(A) ⊆ [r2, r−2] if and

only if
∫

σ(A)

f(t) dE(t) � 0

and the first part of the proposition is proved. Moreover,

0 = r2 + r−2 −A−A−1 =

∫

σ(A)

f(t) dE(t)

if and only if σ(A) ⊆ {r2, r−2} if and only if A = r2E({r2}) + r−2E({r−2}) if and only if

T ∈ QAr, completing the proof of the proposition.

Proof of Theorem 1.1 item (a). Suppose J ∈ QAr[H ] and F ∈ QAr[K] and there is an isom-

etry V : H → K such that Jn = V ∗F nV for all n ∈ Z. Using both parts of Proposition 3.2,

0 = r2 + r−2 − J∗J − J−1J−∗

= r2 + r−2 − V ∗F ∗(V V ∗)FV − V ∗F−1(V V ∗)F−∗V

� V ∗(r2 + r−2 − F ∗F − F−1F−∗)V � 0.

It follows that V ∗F ∗(V V ∗)FV = V ∗F ∗FV and also V ∗F−1V V ∗F−∗V = V ∗F−1F−∗V. Thus

the range of V is invariant for both F and F−∗. In particular, F−∗V = V V ∗F−∗V = V J−∗.

Thus F ∗V = V J∗ and hence the range of V is invariant for F ∗. Hence the range of V reduces

F.

Proof of Theorem 1.1 item (b). Simply note that if J∗J = r2P+ + r−2P−, where P± are

orthogonal projections that sum to the identity and π is a unital ∗-representation, then

π(P±) are orthogonal projections that sum to the identity and

π(J)∗π(J) = π(J∗J) = r2π(P+) + r−2π(P−).
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3.2.2. Boundary representations. We call, Hr, the universal unital C∗-algebra with genera-

tors t and d satisfying the relations td = 1 = dt and

r−2 + r2 − t∗t− dd∗ = 0

the donut C∗-algebra. (Compare Proposition 3.2.) Naturally we write d = t−1. The existence

of Hr is guaranteed since if T ∈ QAr and D = T−1, then T and D satisfy the relations. By

Proposition 3.2, if π : Hr → B(H) is a unital ∗-representation, then J = π(t) ∈ QAr and in

particular ‖t‖ ≤ r−2 and ‖t−1‖ ≤ r−2. Classically, the von Neumann inequality is equivalent

to saying that the map taking continuous functions on the unit circle to algebra generated

by a contraction T such that einθ is mapped to T n and e−inθ to (T ∗)n is a completely positive

map. Similarly, the natural map from from the donut algebra induced by an element of the

donut algebra is completely positive.

Note that we may also view Hr as the completion of the algebra of trigonometric poly-

nomials P = {
∑N

−N pnz
n} endowed with the family of norms on Mn(P) given by

‖p‖n = sup{‖p(T )‖ : T ∈ QAr} = sup{‖p(J)‖ : J ∈ QAr},

using Ruan’s characterization of operator algebras.

3.3. The proof of Theorem 1.1 item (c). Fix T ∈ QAr[H ] and let T = UP denote its

polar decomposition. Thus, as before P = (T ∗T )
1

2 and U = TP−1. Using Proposition 3.2,

let

P =

∫

[r,r−1]

λ dE

denote the spectral decomposition of P. Given a positive integer m, choose a measurable

simple function sm taking values in (r, r−1) that approximates λ uniformly within 1
m

on

[r, r−1]. Let

Pm =

∫

sm(λ) dE

and let Tm = UPm. It follows that Tm is in QAr[H ] and satisfies the hypotheses of Lemma 3.1.

Hence there exists a Hilbert spaceKm, an operator Jm ∈ QAr and an isometry Vm : H → Km

such that, for n ∈ Z,

T n
m = V ∗

mJ
n
mVm.

Let J = ⊕Jm acting on the Hilbert space K = ⊕Km. Thus J ∈ QAr and moreover, if

p(z) =
∑N

j=−N pjz
j is a d × d matrix-valued polynomial and p(J) � 0, then p(Tm) � 0

for each m. Since (Tm) converges to T in operator norm, we conclude that p(T ) � 0. By

Arveson’s extension theorem [Ag82], there exists a Hilbert space L, an isometry V : H → L,

and a unital ∗-representation π : B(K) → B(L) such that

T n = V ∗π(J)nV
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for n ∈ Z. Item (c) of Theorem 1.1 now follows from item (b).

Remark 3.3. Combining Theorem 1.1 with Proposition 3.2 shows J ∈ QAr is dilation

extremal (in QAr) if and only if J ∈ QAr. On the other hand, it is possible to prove directly

that T satisfies equation (3.1) if and only if T is dilation extremal and thus deduce item (c)

of Theorem 1.1 as a consequence of results in [Ag88, Ar, DM, DK].

In Agler’s operator model theory, a pleasing fact is that the boundary of a family has a

C-star characterization. For the dilation family QAr, the identity of equation (3.1) is such a

condition.

4. The Boundaries of the Pick Annulus

This section contains proofs of the parts of Corollaries 1.3 and 1.4 not covered by

Theorem 1.2 or the discussion in the introduction. Thus, what remains to be proved are

items (a) and (b) of Corollary 1.4. Namely, that the collection PAr (1) is closed under (a)

∗-representations, (b) restrictions to reducing subspaces, and (c) arbitrary direct sums and

(2) all dilations (and hence lifts) of a J ∈ PAr to an F ∈ PAr are trivial.

4.1. The dilation boundary of PAr. The following lemma establishes item (b) of Corol-

lary 1.4.

Lemma 4.1. An invertible operator J is in PAr if and only if

(4.1)
1

kr
(J, J∗) = − 1

kr
(J∗, J)

is a projection. Thus PAr is closed with respect to arbitrary direct sums, restrictions to

reducing subspaces and unital ∗-representations.

Proof. Direct computation shows if J ∈ PAr, then the relevant conditions are satisfied.

Now suppose J is an invertible operator satisfying the given conditions. Let µ = r−2+r2

and ν = r−2 − r2. Multiplying equation (4.1) by ν gives,

µ− J∗J − J−∗J−1 = −µ+ JJ∗ + J−1J−∗.

Rearranging,

(4.2) µ− J∗J − (J∗J)−1 = −µ+ JJ∗ + (JJ∗)−1.

Since J and J∗ are in QAr, the left hand side of equation (4.2) is positive semidefinite

and the right hand side is negative semidefinite. Hence both sides are 0 and therefore,
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by Proposition 3.2, J ∈ QAr. Thus there exists a unitary U such that (up to unitary

equivalence),

J = U

(

r 0

0 r−1

)

.

It follows that

νP2,2 = ν
1

kr
(J, J∗) = µ−

(

r2 0

0 r−2

)

− U

(

r−2 0

0 r2

)

U∗,

where P = 1
kr
(J, J∗) is a projection. Simplifying,

(4.3)

(

r−2 0

0 r2

)

− U

(

r−2 0

0 r2

)

U∗ = νP,

Writing U = (Uj,k)
2
j,k=1 and comparing the (2, 2) (block) entries from equation (4.3) and

using the fact that U is unitary,

νP2,2 = r2 − r−2U2,1U
∗

2,1 − r2U2,2U
∗

2,2 = −(r−2 − r2)U2,1U
∗

2,1 = −ν U2,1U
∗

2,1.

Since both U2,1U
∗
2,1 and P2,2 are positive semidefinite, both U2,1 and P2,2 are 0. Hence U is

block upper triangular and thus J ∈ PAr.

To prove the last statement, note the conditions characterizing membership in PAr

are all invariant under arbitrary direct sums, restrictions to reducing subspaces and unital

∗-representations.

To prove item (a) of Corollary 1.4, suppose J ∈ PAr dilates to F ∈ PAr. Thus J is in

QAr and dilates to F ∈ QAr. By item (a) of Theorem (1.1), the dilation is trivial.

4.2. The Agler boundary of PAr. To this point, we have seen that PAr is closed with

respect to direct sums, unital ∗-representations and restrictions to reducing subspaces. More-

over, Theorem 1.2 says each element of PAr lifts to an element of PAr. To show that PAr

is the smallest subcollection of PAr with these properties, and is thus the Agler boundary,

it suffices to show that each J ∈ PAr is extremal in PAr; that is, if J ∈ PAr[H ] and

F ∈ PAr[K] and there is an isometry V : H → K such that

(4.4) V J = FV,

then the range of V reduces J. To prove this statement, observe that equation (4.4) imme-

diately implies

Jn = V ∗F nV

for all integers n. Hence J dilates to F. By item (a), the range of V reduces F.
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Remark 4.2. Lemma 4.1 provides a C-star characterization of the boundary of PAr. (Com-

pare with Remark 3.3.)

Also note, in Lemma 4.1, the condition 1
kr
(J, J∗) is a projection can be replaced with

1
kr
(J, J∗) is positive semidefinite.

5. Further remarks

The paper concludes with a few remarks about spectral constants for QAr and musing

about Nelson’s trick and Ando’s Theorem in Subsections 5.1, and 5.2 respectively.

5.1. Spectral constants. To more easily connect with the existing literature, we now work

with the annulus,

Aq = {z ∈ C : q < |z| < 1}.

It is conformally equivalent to the annulus A
q
1
2
. We update the definitions of PAq and QAq

accordingly.

Operators in PAq and QAq do not necessarily have the annulus as a spectral set, but

one can ask, what are the spectral constants

κF = sup{‖ψ(T )‖ : T ∈ F , ψ ∈ R(Aq), ‖ψ‖∞ ≤ 1},

for F either PAq or QAq. Note that it suffices to optimize not over all of PAq or QAq, but

just over their dilation boundaries.

Tsikalas [Ts22b] shows κPAq
is
√
2 independent of q (in [BY+] the inequality κPAq

≤
√
2

is obtained). For QAq there are the estimates

(5.1) 2 ≤ κQAq
≤ 1 +

√
2,

with the lower bound due to Tsikalas [Ts22a] and the upper bound to Crouzeix and Green-

baum [CG]. The estimate in [Ts22a] is obtained by a clever choice of element of the dilation

boundary of QAr.

Let A (Aq) denote the annulus algebra, consisting of those functions continuous on Aq

and analytic on Aq. Fisher proves that convex combinations of inner functions are dense in

A (Aq) [Fi]. It follows that to determine spectral constants, it suffices to optimize over inner

functions in A (Aq). For the annulus it is particularly easy to numerically compute the inner

functions.

The zero set Z(ψ) of an inner function ψ ∈ A (Aq) is finite. Moreover, the modulus

of the product (counting with multiplicity) of the zeros of ψ is qk for some natural number

k. Conversely, given a finite subset F of Aq such that the modulus of the product of the
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elements of F is qk for some natural number k, then there is an inner function ψ such that

Z(ψ) = F, determined uniquely up to a rotation.

One way to construct these inner functions is as follows [McSh]. Let f(α, t) denote the

Jordan-Kronecker function,

f(α, t) =
∞
∑

n=−∞

αn

1− tq2n
.

Given w ∈ Aq, let

Bw(z) = f(zw, |w|2)
The function Bw : Aq → C has constant (but different) modulus on each boundary compo-

nent of Aq and vanishes precisely at w. Given W = {w1, . . . , wm} ⊆ Aq and a positive integer

k such that |∏wj| = qk, let

τ(z) =
1

zk

∏

Bwj
(z).

The function ψW : Aq → D defined by

ψW (z) =
τ(z)

τ(1)

vanishes precisely on the set {w1, . . . , wm} and has modulus 1 on the boundary of Aq.

To establish the lower bound from equation (5.1), Tsikalas [Ts22a] applies the functions

fn(z) =
zn + qn

zn

1 + qn

to a clever choice of operator from QAq that, in a certain sense, contains arbitrarily large

permutations. While not inner, the functions fn are, loosely, asymptotically inner. Numerical

experiments suggest 2 is the optimal spectral constant for the quantum annulus.

5.2. Ando’s inequality. An optimist hopes Nelson’s trick can be applied to prove the

following two variable analogue of the von Neumann inequality.

Theorem 5.1 (Ando [An]). Let p be a polynomial. Let T1, T2 be bounded operators on some

Hilbert space such that ‖T1‖, ‖T2‖ ≤ 1 and T1 commutes with T2. Then,

‖p(T1, T2)‖ ≤ sup
z∈D2

|p(z)|.

Ando’s inequality fails for commuting triples [Par, V74].

Recall the following result of Gerstenhaber.

Theorem 5.2 (Gerstenhaber [G]). The algebra generated by a commuting pair of n by n

matrices is at most n dimensional.
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It is known that for 4-tuples of commuting matrices, the above theorem fails, and it

is unknown what happens for triples. The variety of commuting pairs is irreducible with

diagonalizable elements being dense, whereas for large dimensions for triples it is known not

to be [NS].

We conjecture that there should be a Nelson’s trick type argument in 2 variables. Such

an argument cannot work in 3 variables because of the failure of irreducibility of the variety.

In turn, failure of irreducibility should imply that the distinguished boundary (or the place

where functions are forced to take their maximum) contains nonunitary points in 3 or more

variables.
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121 (1994), no. 4, 1111–1121. 16

[Mi] Mittal, Meghna Function theory on the quantum annulus and other domains. Thesis (Ph.D.)–University

of Houston. 2010. 141 pp. ISBN: 978-1124-46385-8 1

[MuSo] Muhly, Paul S.; Solel, Baruch An algebraic characterization of boundary representations, Nonselfad-

joint operator algebras, operator theory, and related topics, 189–196, Oper. Theory Adv. Appl., 104,
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