arX1v:2202.08872v4 [math.FA] 6 Jan 2023

GEOMETRIC DILATIONS AND OPERATOR ANNULI

SCOTT MCCULLOUGH AND JAMES E. PASCOE!

ABSTRACT. Fix 0 < r < 1. The dilation theory for the quantum annulus QA,, consisting
of those invertible Hilbert space operators T satisfying ||T'||, |7~ }|| < r~!, is determined.
The proof technique involves a geometric approach to dilation that applies to other well
known dilation theorems. The dilation theory for the quantum annulus is compared, and
contrasted, with the dilation theory for other canonical operator annuli.

1. INTRODUCTION

Following M. Mittal in [Mi] (see also the references therein; e.g., [Pau88, Sh74]), given
0 <r < 1, we call QA,, the collection of invertible Hilbert space operators T satisfying
||, T < 77!, the quantum annulus. In this article we determine the dilation theory
for QA,.. The result is stated in Subsection 1.1 immediately below. The key proof technique
— an adaptation of Nelson’s trick [N] — is of independent interest. We illustrate how the
trick provides a geometric alternate approach to the Sz.-Nagy dilation theorem and related
results. See Section 2. Later in this introduction we discuss connections between the quantum
annulus and other operator annuli [BY+, CG, Ts22a, Ts22b].

1.1. The quantum annulus. For a Hilbert space H, let B(H) denote the bounded opera-
tors on H. An invertible operator T' € B(H) has a C[z, x™!]-dilation to an invertible operator
J € B(K) if there is an isometry V : H — K such that

(1.1) " = V*J"V,

for all integers n. For expository ease, we will often drop the Clx, z7!] modifier.

It is evident that if T dilates to J and J is in the quantum annulus, then T is also
in the quantum annulus; that is, QA, is closed with respect Clz,x ']-compressions. Hence
the collection QA is, what we call here, a C[z, z™!]-dilation family [Ag88] in the sense that
it is closed with respect to (a) direct sums, (b) unital *-representations and (c) C[z,z™']-
compressions.
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The dilation of equation (1.1) is trivial if the range of V reduces T. An element T' € QA
is dilation extremal in QA, if all of its dilations to QA, are trivial; that is if J € QA, and
equation (1.1) holds, then the range of V' reduces J. This notion of dilation extremal has
connections with boundary representations in the sense of Arveson. See [Ar, DK, DM, MuSo]
and the references therein.

Let 2A, denote those operators J that, up to unitary equivalence, take the form

J — U T[KJFI _10 Y
0 T [K,1

where U is unitary, J acts on the Hilbert space direct sum K., @& K_; and Ig,, is the
identity on K4;. It is immediate that J € QA,.. As an alternate description, J € 2A,. if and
only if there exists projection Py that sum to the identity such that J*J = r?P, + r—2P_.
Theorem 1.1 below, proved in Section 3, describes the dilation theory of QA,., where QA, [H]|
denotes those elements of QA, that act on the Hilbert space H.

Theorem 1.1. The collection 2A,. has the following properties.

(a) If J € 2A,, then J € QA, is dilation extremal in QA,.;

(b) If J € 2A, K| and 7 : B(K) — B(G) is a unital *-representation on a Hilbert space G,
then (J) € 2A,[G].

(c) If T € QA,, then T dilates to a J € 2A,.

Thus ZA, is closed with respect to arbitrary direct sums, unital x-representations and
restrictions to reducing subspaces and each element of QA, dilates to an element of 2A,.
Moreover, item (a) says that Z2A, is the smallest subcollection of QA,. with these properties.
Hence 2A, is canonical and deserves the moniker dilation boundary of QA,. (See [Ag88].)
The proof of item (c), the dilation, uses Nelson’s trick to produce a geometric dilation. See
Section 3.

1.2. The Pick annulus. Let A, denote the annulus,
1
A ={zeC:r<|z| <=}
T

The recent papers [BY+, Ts22b] consider the family of operators associated to the kernel
k. : A, x A, — C defined by

kr 3 == .
(z,w) r=2 4 r2 — zw* — (zw*)~!

The Agler model theory for this family was determined in [BY+]. In [Ts22b] the spectral
bound for PA, is determined, with the lower bound also obtained in [BY+]. (Tsikalas also
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obtains a lower bound for the spectral constant for the quantum annulus in [Ts22b].) See
Section 5.1.

For a self-adjoint operator A on Hilbert space, A > 0 indicates A is positive semidefinite.
Let PA, denote those invertible Hilbert space operators T' satisfying %(T ,T*) = 0 in the
hereditary sense that

(1.2) RN P

kr m (T_2 + T2 —TT — T_*T_l) t 0.

While not obvious, if 7' € PA,[H], then T is in QA,[H]. See [BY+, Proposition 2.2] and
[Ts22b, Lemma 4.1].

Because the collection PA,. has an hereditary definition (all the adjoints are on the left
in equation (1.2)), it is closed with respect to restrictions to Clx, z"!]-invariant subspaces: if
Y € PA,[K] and H C K is a subspace invariant for both Y and Y !, then the restriction
of Y to H is in PA,[H]|. Thus PA, is a family, in the sense of Agler [Ag88|, with respect to
Clz,z '] : PA, is closed with respect to (a) direct sums, (b) unital *-representations and (c)
restrictions to C[x, z7!]-invariant subspaces.

An operator T' € B(H) lifts to an operator J € B(K) if there is an isometry V : H — K
such that VT = JV. Equivalently, T is, up to unitary equivalence, the restriction of J to an
invariant subspace. In the case that both J and T" are invertible, it follows that VI™ = J"V
for all integers n. In particular, 7™ = V*J"V and hence T dilates to J.

Let ZA, denote the collection of Hilbert space operators that have, up to unitary
equivalence, the form

(Vv rEN_(V B\ (k. 0
0 lwr 0w 0 rlg,)’
V E
U= :

is a unitary matrix. In particular, V and W are isometries and F is a partial isometry with
—,%(J*, J) is the
projection onto ker V*. Thus elements in A, are distinguished members of PA,,.

where

initial space ker W* and final space ker V*. A calculation shows kir(J, J*) =

The following lifting theorem, which essentially identifies the Agler model theory for
PA, was established in [BY+].

Theorem 1.2 ([BY+]). If T' € B(H) is invertible, then T is in PA,[H]| if and only if T lifts
to a J in ZA,.
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The Agler boundary [Ag88] of PA, is the smallest subcollection OPA, of PA, that is (1)
closed with respect to (a) direct sums, (b) unital *-representations, and (c) restrictions to
reducing subspaces; and (2) each T in PA, lifts to a J in 0PA,. While it is not evident,
families have such a boundary [Ag88]. For the family PA,, it is straightforward to verify
that ZA, satisfies the conditions (1). On the other hand, as observed in Section 4, each
J € PA, is extremal — if J lifts to F' € PA, as V.J = JV, then the range of V' reduces F —
and is therefore in OPA,.. Thus Theorem 1.2 has the following corollary.

Corollary 1.3. The collection P A, is the Agler boundary of PA,..

Since the kernel k, is a complete Pick kernel [AM][T's22b] (see also [AHMR19, AHMR21,
H+] for recent results for complete Pick kernels), the family PA, is also a dilation family.
Indeed, if ' € B(H) is invertible and there is a Y € PA,[K] and an isometry V : H — K
such that 7" = V*Y"V for all integers n, then'

(r2 —r®) —(T,T*) =1’ 472 =TT - T T

1
i
=1’ +r 2 =V VVEIV = VATV VEITY
A S S VA A A VAR VA A A 74
=V +r =T J-J I HV

1
= (=) V(LYY =0,

T

and hence T' € PA,.[H]. A consequence, stated precisely in Corollary 1.4 below, is that the
dilation theory and the Agler model theory for PA, are essentially the same.

Corollary 1.4. For an invertible operator T € B(H), the following are equivalent.
(i) T € PA,;
(i) T dilates to a 'Y € PA,;
(15i) T lifts to a J € PA,.
Moreover,

(a) if J € PA,, then J is dilation extremal; that is, any dilation of J to an element of PA,
18 trivial;
(b) The collection P A, is closed with respect to arbitrary direct sums, unital x-representations

and restrictions to reducing subspaces.

Tt is enough that T = V*J"V for n = +1.
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1.3. The annulus as a spectral set. Let R(A,) denote the algebra of rational functions
with poles off A,. An operator T with spectrum in A, has A, as spectral set if, for each

Y e R(A,),
[T < 19 loos
where |||/« is the sup norm of 1) on A,..

Let SA, denote the collection of operators with A, as a spectral set. Let . A,. denote the
normal operators with spectrum in the boundary of A,. In [Ag85] Agler proves the following
analog of the Sz.-Nagy dilation theorem for A,. If " € SA,[H] and ¢(T") C A,, then there
exists a Hilbert space K an operator N € .#A,[K] and an isometry V' : H — K such that

O(T) = VIp(N)V,

for all ¢ € R(A,).

The collection SA, is both a family in the sense of Agler and a dilation family. The
statement of Agler’s dilation theorem essentially identifies the normal operators with the
spectrum in the boundary of A, as the dilation boundary of SA,..

A normal operator with spectrum in the boundary of PA, has, up to unitary equivalence,

U+1 0 T 0
0 U_ 0 r—4)’

where Uy, are unitary operators. As noted in [BY+, Ts22b], there are the proper inclusions

the form

SA, C PA, C QA,.

Evidently from the discussions above, but somewhat surprisingly, the same chain of inclusions
holds for the dilation boundaries; that is,

SN, C PA, C DA,

Remark 1.5. The family SA, is naturally identified with unital contractive (equivalently
unital completely contractive) representations of R(A,.) on Hilbert space. Namely, an opera-
tor T' € SA,[H]| determines the representation 7r : R(A,) — B(H) given by mr(¢) = ¢(T).
Both QA, and PA, are also naturally identified with collections of representations of C[z, z™!]
(or R(A,)).

1.4. Reader’s guide. Section 2 contains geometric arguments in favor of the Sz.-Nagy
dilation theorem, its multivariable non-commutative analog for row contractions and the
dilation theory for doubly commuting contractions all using Nelson’s trick. The trick is used
in Section 3 to prove Theorem 1.1.
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Section 4 provides some details for the proofs of Corollaries 1.3 and 1.4. We emphasize
the key ingredient is Theorem 1.2.

The paper concludes with a few remarks about spectral constants for QA, and musing
about Nelson’s trick and Ando’s Theorem in Section 5

2. AUTOMORPHIC NELSON’S TRICK

To prove the principal part of Theorem 1.1, item (c¢), we adapt a method found in
[N] that replaces the positive definite (diagonal) matrix in the singular value decomposition
of a square matrix with automorphisms of the unit disc. Similar methods were employed
by [H17] for multivariable weighted shifts. Hartz notes the trick also appears in [Pa02] as
well as in [Pi01]. In this section we illustrate the technique by indicating how it applies to
several familiar dilation results. Namely the Sz.-Nagy dilation theorem (Subsection 2.1), the
Bunce-Frazho-Popescu multivariable noncommutative theory of row contractions B, Fr82,
Fr84, Po89, Po91] (Subsection 2.2) and doubly commuting contractions (Subsection 2.3). In
Section 3 we apply the method to the quantum annulus.

2.1. Unitary dilations of contractions. For a square matrix 7" of size n with ||T|| < 1,
Nelson’s construction proceeds as follows. The singular value decomposition of 7' has the
form T' = UDW, where D is a diagonal matrix whose diagonal entries \; are the eigenvalues
of (T*T)z and U, W are unitary matrices. In particular 0 < Aj < 1. Let

. )\j—Z

b;(2)

Thus each b; is an automorphism of the unit disc D = {z € C: |z| < 1}. Let

bi(z) 0 0 0

0 bg(Z) 0 0

(2.1) D(z) = . : _ .
0 0 0 - buf2)

and note that D(0) = D. Let F(z) = UD(z)W. Thus F : D — M, (C) is a bounded analytic
function such that F(0) = T and F(¢)*F(¢) = I, for |(| = 1. We note that our construct
slightly refines Nelson’s in that originally he used independent variables on the diagonal,
which, as we now turn to dilation theory, is less desirable from a minimality perspective.

We now show how to produce the desired dilation of T. Let H?*(ID) denote the usual
Hardy-Hilbert space. By construction, the operator M of multiplication by F on H?(D)®C"
is an isometry. (Note that the cokernel has dimension at most n.) The mapping V' : C* —
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H?(D) @ C" defined by Var =1 ® z is an isometry and
MiVe=Mpl@r=10 F(0)'s =1 T"'x=VT .

Hence T™ lifts to the coisometry M}, providing an explicit, geometric, unitary dilation of 7.

2.2. Row contractions. The Nelson argument extends to the Bunce-Frazho-Popescu mul-
tivariable noncommutative theory of row contractions [B, Fr82, Fr84, Po89, Po91]. Given a
tuple T = (11, ..., Tg) of n x n matrices, view T as the n X ng matrix

T = (Tl Tg) € Myyng(C).

Suppose T is a strict contraction; that is ||| < 1.

Once again, consider the singular value decomposition
T =UEW,

where
E:(D 0o ... 0)

for a diagonal n x n matrix D with nonnegative entries that are strictly less than one. In
particular, the unitary matrices U and W have sizes n and ng respectively. Define D(z) is
as in equation (2.1). Thus D(0) = D and D is unitary valued on the boundary of the disc.

Write W as a block g x g matrix with entries W, ;, € M, (C) and define F; : D — M, (C)
by F;(z) = UD(z)Wi. Let M; denote the operator of multiplication by F; on H*(D) ® C"
and observe

(2.2) M1®r=1®F0)r=1® Tz

Let Fg denote the freely noncommutative Fock space on g letters x = {z1,--- , 2.} and
let @ denote the empty word (vacuum state). Thus Iﬁ‘g is the Hilbert space with orthonormal
basis the words in z. Let S; : F2 — F2 denote the shift determined by S;f = z;f for f a
finite C-linear combination of words and note that .S M Sk = 0;%1; that is, the S; are isometries
with pairwise orthogonal ranges.

Define ¢ : H*(D) — F2 @ H*(D) by th = @ @ h. Thus ¢ is an isometry. On the Hilbert
space

K = [H*D)®C"] & & [F2 o H*D)®C"],
let
M; 0
L@ UWsy,;

: I®S, el

L@ UW,g;
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For instance, with g = 3,

M, 0 0
Jj: L®UW2J' Sj®[ 0
L®U*W37j 0 SJ®I

Observe that J¢Jy, = 6, 1. Thus {Jy, ..., Jg} is a family of isometries with orthogonal ranges.

Define V. : C* — K by Vo = [1 ® 2] @ 0. Thus V is an isometry and, in view of
equation (2.2),
JiV =VT;.

2.3. Doubly commuting contractions via Nelson. We note that Nelson’s trick also
works for a tuple of doubly commuting contractions. See [NFBL, BNS] and the references
therein. Suppose Ti,...,T; are commuting n X n matrices that are strict contractions.
Suppose further they are invertible and doubly commute, meaning for each j # k,

T:Ty, = T T}

Each T} has its polar decomposition, T; = U;D;, where D; = (T]*T])% and U; = Tij_l.
Thus each D; is a positive definite strict contraction and each Uj; is unitary. The doubly
commuting hypothesis implies the D; commute with one another, the U; doubly commute
and D;U, = U,D, for j # k. Since the D; are commuting self-adjoint matrices, they are
simultaneously diagonalizable. Hence, for each 1 < j < d, there are pairwise orthogonal
projections Pj1, Pja, ..., Pjm; that sum to the identity and distinct 0 < A;, < 1 such that

Dj - Z )\j,och,oc-
a=1

Further, for all j, k, o, 3, the operators P, , and P 3 commute and, for j # k, the operators
Ui and P; 3 commute. Let
Nig — 2
bja = 3> =
’ 1-— )\j7aZ

and
Dj(2) = bjal(2)Pja-
a=1

It follows that D;(z) and Uy commute for j # k, and the D;(z) commute with one another.
Hence the resulting matrix functions Fj(z) = U;D;(z) pointwise doubly commute and are
unitary valued on the boundary of the disc. Thus the operators M; of multiplication by Fj
on H*(D) ® C" are isometries and doubly commute. With the usual isometry V : C* —
H?*(D) ® C* defined by Vh =1 ® h, one finds VI; = M;V for each j.
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3. THE QUANTUM ANNULUS

In this section we prove Theorem 1.1. A preliminary version of the dilation, item (c), is
established using Nelson’s trick in Subsection 3.1. The remaining items of the theorem are
proved in Subsection 3.2 and are then used, in conjunction with the result of Subsection 3.1,
to complete the proof of item (c) in Subsection 3.3.

3.1. Nelson’s trick applied to QA,. In this subsection we apply Nelson’s trick to obtain
Lemma 3.1 below, an initial version of item (c¢) of Theorem 1.1. The proof of Theorem 1.1
concludes in subsection 3.3. Let o(7") denote the spectrum of a bounded operator T on
Hilbert space.

Lemma 3.1. Suppose T € QA,[H]. If o((T*T)z) C (r,r™Y) is finite, then there exists a
Hilbert space K, an operator J € 2A,[K| and an isometry V : H — K such that T" =
V*J™V for all integers n.

Proof. The operator 1" has the polar decomposition
T =UP,

where P is positive semidefinite and U is unitary. Indeed, since T*T is invertible, P = (T*T)%
and U = TP~ By hypothesis, there exists a finite set § C (r,7~1) such that P has spectral

decomposition,
P =Y \E),

where {E) : A € §} are pairwise orthogonal projections that sum to the identity.

Let T denote the unit circle, viewed as the boundary of D. Let I*! denote the upper and
lower half of T respectively. It is well known that the unit disc ID is the universal cover of
A,.. Namely, there exists an onto analytic function ¢ : D — A, with 9(0) = 1 and mapping
I*! to the inner and outer boundary components {|z| = r*!} of A, respectively that extends
across T except at +1. Given r < A < r~ !, there exists a Mobuis automorphism my, of the
unit disc so that ¥, = 19 om, maps D onto A, and sends 0 to A\. There exists arcs [ )jfl whose
disjoint union is the boundary of the unit disc, save for two points, that are mapped, under
¥y, to the inner and outer boundaries of A, respectively.

Define F' : D — B(H) by F(z) = UP(z), where
AET
Observe F' is analytic on D, extends to T except at finitely many point, and F'(0) = T.

Let L? = L?(T) denote the usual L? space of the unit circle T. The characteristic
functions y3' of the intervals I3 induce projection operators Qy' on L?(T) by sending
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f to Xfl f. Moreover, the projections Qfl are orthogonal and sum to the identity. Let
K = L*(T) ® H. Tt follows that the 2|F| projections {Qi' ® E\ : A € F} are pairwise
orthogonal and sum to the identity.

Let My denote the operator of multiplication by F on K = L?*(T)® H. By construction,
given f € L*(T), for h € H and ¢ € 9D and each \ € g,

Mp(Q)[Q3" @ EX(f @ h)(Q) = Mp(Ox3' f(C) @ Exh = 9A(Ox3 f(C) ® UEA.
Hence, if also f' € L(T) and &’ € h, then
(MEMpQY ® EN|(f @ h), [ @ h')
= (O3 FO@UER, Y 9,0Ox,f ()@ UELMN)

HETF,j==%1

=200 (O @ Exhy i f(C) @ ExE)

=r QY @ EX(f ®@h), [ @ I).
It follows that

MiMpQy' @ I =r=2Q5' @ I.
Thus
MiMp =7Qf @ I +7r72Q, ® 1

and therefore Mp € 2A,.

Define V: H — K = L*(T)® H by Vh = 1®h. Thus V is an isometry. Moreover, since
F'is analytic, if h,g € H, and n € Z, then

(MpVh,Vg) = (Mpl®h,1®g) = (F"(0)h,g) = (T"h, g)

and we obtain
" =V*MpV
for all n € Z. ]

3.2. The dilation boundary of QA,. In this subsection we prove items (a) and (b) of
Theorem 1.1 and provide an alternate characterizations of the dilation boundary of QA,..

3.2.1. Proof of Theorem 1.1 items (a) and (b).

Proposition 3.2. An invertible operator T is in QA, if and only if
r4 =TT —T'T™ =0

and T € 2A, if and only if

(3.1) r 24 T - T 1T = 0.



GEOMETRIC DILATIONS 11

Proof. Suppose T is invertible and let A = T*T. By definition, T € QA, if and only r? <
A < r~%if and only if o(A), the spectrum of A, lies in the interval [r? r2].

Let
A= / NAE())
a(A)

denote the spectral decomposition of A. Since T7'T—* = A1,
PR T = [ (- (e h) dE,
o(4)

On the other hand f : R — R defined by f(¢t) = r=2 +r? — (t + ¢t!) is positive if and only
if 72 <t <r % and is 0 if and only if either ¢t = 7? or t = r=2. Thus o(A) C [r?,r~?] if and
only if
f(t)dE(t) = 0
o(A)

and the first part of the proposition is proved. Moreover,

O=r’+r?—A-A"= f(t)dE(t)
o(A)
if and only if o(A) C {r?,r=2} if and only if A = r2E({r?}) + r2E({r~?}) if and only if
T € 2A,, completing the proof of the proposition. [

Proof of Theorem 1.1 item (a). Suppose J € 2A,[H| and F' € QA,[K] and there is an isom-
etry V : H — K such that J" = V*F"V for all n € Z. Using both parts of Proposition 3.2,

O=r’+r?—JJ—J'J
=2 +r 2 = V*F*(VVFV - V*F Y (VVF*V
=V +r P = F*F = F ')V = 0.
It follows that V*F*(VV*)FV = V*F*FV and also V*F'VV*F~*V = V*F~'F~*V. Thus
the range of V' is invariant for both F' and F~*. In particular, F~—*V = VV*F~*V =V J~*.

Thus F*V =V J* and hence the range of V' is invariant for F™*. Hence the range of V' reduces
F. [

Proof of Theorem 1.1 item (b). Simply note that if J*J = r?P, + r—2P_, where P. are
orthogonal projections that sum to the identity and 7 is a unital *-representation, then
m(Py) are orthogonal projections that sum to the identity and

n(J)m(J) = 7(J*J) = r*n(Py) + r*m(P.).



12 MCCULLOUGH AND PASCOE

3.2.2. Boundary representations. We call, $),., the universal unital C*-algebra with genera-
tors t and 0 satisfying the relations t0 = 1 = 0t and

r 4t =t —00" =0

the donut C*-algebra. (Compare Proposition 3.2.) Naturally we write 0 = t~!. The existence
of §, is guaranteed since if '€ 2A, and D = T~!, then T and D satisfy the relations. By
Proposition 3.2, if 7 : ), — B(H) is a unital #-representation, then J = 7(t) € Z2A, and in
particular ||t|| < r~2 and [[t7!|| < r~2. Classically, the von Neumann inequality is equivalent
to saying that the map taking continuous functions on the unit circle to algebra generated
by a contraction T such that ™ is mapped to 7™ and e~ to (T*)" is a completely positive
map. Similarly, the natural map from from the donut algebra induced by an element of the

donut algebra is completely positive.

Note that we may also view ), as the completion of the algebra of trigonometric poly-
nomials 9 = {3V, p.2"} endowed with the family of norms on M, () given by

[Plln = sup{{[p(D)[| : T € QA } = sup{[[p(J)| : J € 2A,},

using Ruan’s characterization of operator algebras.

3.3. The proof of Theorem 1.1 item (c). Fix T' € QA,[H] and let T'= UP denote its
polar decomposition. Thus, as before P = (T*T)% and U = TP~!. Using Proposition 3.2,

let
P= / NdE
[r,r=1]

denote the spectral decomposition of P. Given a positive integer m, choose a measurable
simple function s,, taking values in (r,r~!) that approximates A uniformly within % on
[r,r71]. Let

P, = / sm(\) dE

and let T,,, = UP,,. It follows that T, is in QA,[H] and satisfies the hypotheses of Lemma 3.1.
Hence there exists a Hilbert space K,,, an operator J,,, € 2A, and an isometry V,, : H — K,,
such that, for n € 7Z,
T =V J V.

Let J = ®J,, acting on the Hilbert space K = ®K,,. Thus J € 2A, and moreover, if
p(z) = Z;V:_ijzj is a d x d matrix-valued polynomial and p(J) = 0, then p(7,,) = 0
for each m. Since (7},) converges to 1" in operator norm, we conclude that p(7") = 0. By
Arveson’s extension theorem [Ag82], there exists a Hilbert space L, an isometry V : H — L,
and a unital *-representation 7 : B(K) — B(L) such that

" = V*r(J)"V
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for n € Z. Item (c) of Theorem 1.1 now follows from item (b).

Remark 3.3. Combining Theorem 1.1 with Proposition 3.2 shows J € QA, is dilation
extremal (in QA,) if and only if J € 2A,. On the other hand, it is possible to prove directly
that T satisfies equation (3.1) if and only if 7" is dilation extremal and thus deduce item (c)
of Theorem 1.1 as a consequence of results in [Ag88, Ar, DM, DK].

In Agler’s operator model theory, a pleasing fact is that the boundary of a family has a
C-star characterization. For the dilation family QA,, the identity of equation (3.1) is such a
condition. ]

4. THE BOUNDARIES OF THE PICK ANNULUS

This section contains proofs of the parts of Corollaries 1.3 and 1.4 not covered by
Theorem 1.2 or the discussion in the introduction. Thus, what remains to be proved are
items (a) and (b) of Corollary 1.4. Namely, that the collection A, (1) is closed under (a)
s-representations, (b) restrictions to reducing subspaces, and (c¢) arbitrary direct sums and
(2) all dilations (and hence lifts) of a J € ZA, to an F' € PA, are trivial.

4.1. The dilation boundary of PA,. The following lemma establishes item (b) of Corol-
lary 1.4.

Lemma 4.1. An invertible operator J is in PA, if and only if
1 1

4.1
(4.1) W W

(J,J*) = (J*, J)

is a projection. Thus PA, is closed with respect to arbitrary direct sums, restrictions to
reducing subspaces and unital x-representations.

Proof. Direct computation shows if J € A, then the relevant conditions are satisfied.

Now suppose .J is an invertible operator satisfying the given conditions. Let p = r=2 412

and v = r=2 — r2. Multiplying equation (4.1) by v gives,

p—JJ =T = = JJ T
Rearranging,
(4.2) pw—JJ = (TN =—p+ JT+ (JT)TN

Since J and J* are in QA,., the left hand side of equation (4.2) is positive semidefinite
and the right hand side is negative semidefinite. Hence both sides are 0 and therefore,
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by Proposition 3.2, J € 2A,. Thus there exists a unitary U such that (up to unitary

JzU(T (_)1>
0 r

1 r2 0 r=2 0
P e —_ * = — — *
Vi 14 ]{,‘T, (J, J ) 1% (O ’["_2> U ( 0 ’["2> U y

where P = k%.(Jv J*) is a projection. Simplifying,

r=2 0 r=2 0
4.3 -U U*=vP
(4.3) ( 0 7‘2> < 0 r2) v

Writing U = (Uj)3 -, and comparing the (2,2) (block) entries from equation (4.3) and

equivalence),

It follows that

using the fact that U is unitary,
l/P272 = 7“2 — 7’_2U271U§71 — 7’2U272U2*72 = —(7’_2 — T2)U271U§71 = —UV U271U2*71.

Since both Uy Uy, and P, 5 are positive semidefinite, both Uy, and P, 5 are 0. Hence U is
block upper triangular and thus J € ZA,.

To prove the last statement, note the conditions characterizing membership in A,

are all invariant under arbitrary direct sums, restrictions to reducing subspaces and unital

*-representations. [ |

To prove item (a) of Corollary 1.4, suppose J € LA, dilates to F' € PA,.. Thus J is in
2A, and dilates to F' € QA,. By item (a) of Theorem (1.1), the dilation is trivial.

4.2. The Agler boundary of PA,. To this point, we have seen that ZA,. is closed with
respect to direct sums, unital *-representations and restrictions to reducing subspaces. More-
over, Theorem 1.2 says each element of PA, lifts to an element of &2A,.. To show that A,
is the smallest subcollection of PA, with these properties, and is thus the Agler boundary,
it suffices to show that each J € A, is extremal in PA,; that is, if J € A, [H| and
F € PA,[K] and there is an isometry V' : H — K such that

(4.4) VJ=FV,

then the range of V' reduces J. To prove this statement, observe that equation (4.4) imme-
diately implies

JT=V*F"V
for all integers n. Hence J dilates to F. By item (a), the range of V' reduces F.
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Remark 4.2. Lemma 4.1 provides a C-star characterization of the boundary of PA,.. (Com-
pare with Remark 3.3.)

Also note, in Lemma 4.1, the condition k%.(‘]’ J*) is a projection can be replaced with
k%(J, J*) is positive semidefinite.

5. FURTHER REMARKS

The paper concludes with a few remarks about spectral constants for QA, and musing
about Nelson’s trick and Ando’s Theorem in Subsections 5.1, and 5.2 respectively.

5.1. Spectral constants. To more easily connect with the existing literature, we now work
with the annulus,

A, ={z€C:q<|z| <1}

It is conformally equivalent to the annulus Aq . We update the definitions of PA, and QA,

1
2
accordingly.

Operators in PA, and QA, do not necessarily have the annulus as a spectral set, but
one can ask, what are the spectral constants

rp=sup{|[Q(T)[|: T € F, ¢ € R(Ay), [[¢]le <1},

for F either PA, or QA,. Note that it suffices to optimize not over all of PA, or QA,, but
just over their dilation boundaries.

Tsikalas [Ts22b] shows ks, is v/2 independent of ¢ (in [BY+] the inequality xpa, < V2
is obtained). For QA, there are the estimates

(5.1) 2 < kga, <1+ V2,

with the lower bound due to Tsikalas [Ts22a] and the upper bound to Crouzeix and Green-
baum [CG]. The estimate in [Ts22a] is obtained by a clever choice of element of the dilation
boundary of QA,.

Let <7 (2,) denote the annulus algebra, consisting of those functions continuous on 2,
and analytic on 2,. Fisher proves that convex combinations of inner functions are dense in
</ (2,) [Fi]. It follows that to determine spectral constants, it suffices to optimize over inner
functions in o7 (2,). For the annulus it is particularly easy to numerically compute the inner

functions.

The zero set Z(1) of an inner function ¢ € &/ (2,) is finite. Moreover, the modulus
of the product (counting with multiplicity) of the zeros of 1 is ¢* for some natural number
k. Conversely, given a finite subset [’ of 2(, such that the modulus of the product of the
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elements of F' is ¢* for some natural number k, then there is an inner function ¢ such that
Z(1) = F, determined uniquely up to a rotation.

One way to construct these inner functions is as follows [McSh]. Let f(a,t) denote the

Jordan-Kronecker function,
e n

f(Oé,t): Z ;IW

Given w € 2, let
By(z2) = f(zw, [w]?)
The function B,, : A, — C has constant (but different) modulus on each boundary compo-

nent of 2, and vanishes precisely at w. Given W = {wy, ..., w,,} C 2, and a positive integer
k such that | [Tw;| = ¢*, let

1
7(2) = o H By, (2).
The function ¢y : 2, — I defined by

vwlz) = 78
vanishes precisely on the set {w,...,w,,} and has modulus 1 on the boundary of 2,.
To establish the lower bound from equation (5.1), Tsikalas [T's22a] applies the functions
2"+ Z—:
T

to a clever choice of operator from ZA, that, in a certain sense, contains arbitrarily large

fﬁ(Z)ZZ

permutations. While not inner, the functions f,, are, loosely, asymptotically inner. Numerical
experiments suggest 2 is the optimal spectral constant for the quantum annulus.

5.2. Ando’s inequality. An optimist hopes Nelson’s trick can be applied to prove the
following two variable analogue of the von Neumann inequality.

Theorem 5.1 (Ando [An]). Let p be a polynomial. Let Ty, Ty be bounded operators on some
Hilbert space such that ||T1|, || T2|| < 1 and Ty commutes with Ty. Then,

lp(Th, T)|| < sup |p(2)].

2eD?

Ando’s inequality fails for commuting triples [Par, V74].
Recall the following result of Gerstenhaber.

Theorem 5.2 (Gerstenhaber [G]). The algebra generated by a commuting pair of n by n
matrices is at most n dimensional.
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It is known that for 4-tuples of commuting matrices, the above theorem fails, and it
is unknown what happens for triples. The variety of commuting pairs is irreducible with

diagonalizable elements being dense, whereas for large dimensions for triples it is known not
to be [NS].

We conjecture that there should be a Nelson’s trick type argument in 2 variables. Such
an argument cannot work in 3 variables because of the failure of irreducibility of the variety.
In turn, failure of irreducibility should imply that the distinguished boundary (or the place
where functions are forced to take their maximum) contains nonunitary points in 3 or more
variables.
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