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Abstract— Cellular signaling pathways are responsible for
decision making that sustains life. Most signaling pathways
include post-translational modification cycles, that process mul-
tiple inputs and are tightly interconnected. Here we consider
a model for phosphorylation/dephosphorylation cycles, and
we show that under some assumptions they can operate as
molecular neurons or perceptrons, that generate sigmoidal-like
activation functions by processing sums of inputs with positive
and negative weights. We carry out a steady-state and structural
stability analysis for single molecular perceptrons as well as for
feedforward interconnections, concluding that interconnected
phosphorylation/dephosphorylation cycles may work as multi-
layer biomolecular neural networks (BNNs) with the capacity
to perform a variety of computations. As an application, we
design signaling networks that behave as linear and non-linear
classifiers.

I. INTRODUCTION

Living cells sense, process, and respond to a multitude of
inputs from the environment, collectively using this informa-
tion to make complex, life-sustaining decisions. To integrate
and process several inputs at once, cells rely on signaling
pathways that regulate downstream systems depending on the
input patterns they detect [1]. An important building block
of signaling pathways is given by protein post-translational
modification cycles, of which the best known is phospho-
rylation [2]. The rich dynamics and steady-state responses
of these signaling pathway have been amply studied and are
well-understood when they are taken as single-input, single-
output isolated systems [3]. However, these pathways not
only respond to multiple inputs, but they are also tightly
interconnected, making it difficult to clearly identify their
input-output function and their full potential for signal pro-
cessing and computation.

In this manuscript, we consider a model for multi-input,
single output phosphorylation/dephosphorylation cycles and
describe their ability to operate as molecular perceptrons.
Building on previous work by us and others, that proposed
a strategy to build Biomolecular Neural Networks (BNNs)
using molecular sequestration [4], here we demonstrate that,
under some assumptions, these natural signaling pathways
can operate as multi-input perceptrons as long as their input-
output behavior has a tunable threshold. Further, these molec-
ular perceptrons can process several inputs assigning them
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positive and negative weights by tuning catalytic rate param-
eters; the presence of both positive and negative weights is
essential for complex classification. We report a structural
steady-state and stability analysis of the multi-input phos-
phorylation/dephosphorylation cycle model considered as a
candidate perceptron, as well as stability analysis for BNNs
resulting from the feedforward interconnection of multiple
perceptrons. With simulations, we show that by tuning the
weights suitably, and by designing the depth of the BNN, it
is possible to build linear and non-linear classifiers.

There is a long history of theoretical and experimental
work devoted to discovering the computational power of
chemical and biological networks under the lens of neural
networks. For example, a chemical implementation of neural
networks based on reversible reaction was proposed in [5];
networks in living cells were examined in [6], showing that
they present features not found in conventional computer-
based neural networks; chemical Boltzmann machines have
been described in [7]. It has been proposed that transcrip-
tional networks in vitro and in vivo may operate as neural
networks by tuning various reaction rate parameters [8],
[9]. Nucleic acids have been engineered for experimental
demonstrations of molecular neural networks in vitro [10],
[11], in cell extracts [12], and in cells [13], [11].

Although in practice any biological network may be tuned
to work as a neural network [6], the main challenge is to
translate an abstract design into an implementation with pre-
dictable behavior. A long-standing challenge, for example, is
that of implementing negative weights in a biological neural
network that can only admit positive variables (concentra-
tions). In previous work, we demonstrated that molecular
sequestration reaction can theoretically implement positive
and negative weights because it performs a subtraction
operation between its inputs [4]. Because a salient feature of
molecular sequestration is that it generates an ultrasensitive
response with a tunable threshold, we rationalize that other
networks with a tunable threshold may implement molecular
neural networks with positive and negative weights. This
rationale motivates the present study: we show that when
post-translational modification cycles, such as phosphory-
lation/dephosphorylation, present an ultrasensitive response
with a tunable threshold, they can operate as perceptron
nodes with positive and negative weights. After providing
basic definitions in Section II, in Section III we report
mathematical analysis of phosphorylation/dephosphorylation
cycles as a perceptrons. In section IV we describe the design
of a single-layer linear classifiers, Section V describes multi-
layer BNNs, and finally Section VI provides simulation
examples of non-linear classifiers.



II. BACKGROUND: ARTIFICIAL NEURAL NETWORKS AND
PERCEPTRONS

Artificial neural networks (ANNs), also called perceptron
networks, take inspiration from the architecture of the human
brain. ANNs consist of multiple, interconnected artificial
neurons, or perceptrons, which represent the nodes of the
network. Each perceptron performs a different computation
of the same functional form, whose outcome depends on the
perceptron’s inputs and parameters. We adopt the following
model (Fig. 1A) for a single perceptron that takes n inputs:

f

(
n∑
i=1

wixi

)
, xi, wi ∈ R,

where f is a non-linear activation function, xi are the percep-
tron inputs, i = 1, ..., n, and wi is the parameter or weight
associated to the ith input. By connecting multiple per-
ceptrons, each with potentially distinct inputs and weights,
ANNs achieve the emergent ability to carry out complex
computations far more sophisticated than those realizable
by an individual perceptron [14]. In the next sections,
we discuss how a well-known class of (post-translational)
signaling networks can be viewed as molecular perceptrons.

III. PHOSPHORYLATION-DEPHOSPHORYLATION CYCLES
CAN OPERATE LIKE BIOMOLECULAR PERCEPTRONS

Here we argue that post-translational modification cycles
such as phosphorylation-dephosphorylation cycles can op-
erate like biomolecular perceptrons (Fig. 1). Let us denote
chemical species with uppercase letters, and their concentra-
tions with the corresponding lowercase letter, so that species
X has concentration x.

In a phosphorylation-dephosphorylation cycle (scheme in
Fig 1B), a target protein P ∗ (inactive state, unphosphory-
lated) is converted into P (active state, phosphorylated) in
the presence of a kinase Z, which adds a phosphate group
to P ∗ so as to produce P . A phosphatase Y can reverse this
process by removing the phosphate group from protein P ,
thus producing P ∗.

inhibitionactivation
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Fig. 1. Phosphorylation-based perceptron. A: Perceptron scheme. B:
Biomolecular implementation of the perceptron, including at its heart a
phosphorylation-dephosphorylation cycle. C: Sigmoidal-like activation and
inhibition functions.

We model this process through the following biochemical
reactions. The kinase Z, the phosphatase Y and the target
protein P ∗ are produced at a constant rate, respectively u, v
and θ:

∅ u−−−⇀ Z ∅ v−−−⇀ Y ∅ θ−−−⇀ P ∗.

All species are subject to first order degradation with rate
constant δ:

Z, Y, P, P ∗, C1, C2
δ−−−⇀ ∅.

Z and P ∗ bind with rate constant a1 to form an intermediate
complex C1, which dissociates at rate constant d1. The
complex C1 produces P and Z with rate parameter k1.

Z + P ∗ a1−−−⇀↽−−−
d1

C1
k1−−−⇀ P + Z.

Analogously, Y and P bind at rate constant a2 to form an
intermediate complex C2, which dissociates with parameter
d2. In addition, the complex C2 can produce P ∗ and Y with
rate parameter k2.

Y + P
a2−−−⇀↽−−−
d2

C2
k2−−−⇀ P ∗ + Y.

Assuming that the reaction kinetics follow the law of mass
action, the dynamic evolution of the species concentrations
can be expressed by the following system of Ordinary
Differential Equations (ODEs):

ż = u− a1zp∗ + (d1 + k1)c1 − δz, (1)
ṗ∗ = θ − a1zp∗ + d1c1 + k2c2 − δp∗, (2)
ċ1 = a1zp

∗ − (d1 + k1)c1 − δc1, (3)
ẏ = v − a2yp+ (d2 + k2)c2 − δy, (4)
ṗ = −a2yp+ d2c2 + k1c1 − δp, (5)
ċ2 = a2yp− (d2 + k2)c2 − δc2. (6)

We can show that the system is positive, which is consis-
tent with the fact that the state variables are concentrations
of chemical species, hence cannot take negative values.

Proposition 1: The system (1)–(6) is positive: given a pos-
itive initial condition, all the state variables have nonnegative
values at all future times.

Proof: The result follows by noticing that, for each
state variable x ∈ {z, p∗, c1, y, p, c2}, ẋ ≥ 0 when x = 0,
hence the variable cannot become negative.

A. Stability analysis without production and degradation

If we neglect production and degradation reactions (u =
θ = v = 0 and δ = 0), assuming that they compensate for
each other, then the system simplifies to:

ż = −a1zp∗ + (d1 + k1)c1, (7)
ṗ∗ = −a1zp∗ + d1c1 + k2c2, (8)
ċ1 = a1zp

∗ − (d1 + k1)c1, (9)
ẏ = −a2yp+ (d2 + k2)c2, (10)
ṗ = −a2yp+ d2c2 + k1c1, (11)
ċ2 = a2yp− (d2 + k2)c2, (12)

where the sums z + c1, y + c2 and p∗ + p + c1 + c2
are constant quantities, hence the system can be associated
with a reduced-order system with three differential equations
and three conservation laws. Since each species is involved
at least in one conservation law, this is a conservative
chemical reaction network. The steady-state value and its
global stability can only be assessed within the stoichiometric



compatibility class associated with an assigned value of the
conserved quantities.

Theorem 1: The system (7)–(12) admits a unique steady
state within each stoichiometric compatibility class, and such
a steady state is structurally globally asymptotically stable.

Proof: If we set z = ztot − c1 and y = ytot − c2, and
neglect the dynamic equations for z and y, from (7)–(12) we
get the reduced-order system

ṗ∗ = −a1p∗(ztot − c1) + d1c1 + k2c2,

ċ1 = a1p
∗(ztot − c1)− (d1 + k1)c1,

ṗ = −a2p(ytot − c2) + d2c2 + k1c1,

ċ2 = a2p(y
tot − c2)− (d2 + k2)c2,

where p∗ + p+ c1 + c2 is constant. The Jacobian is

Jr =

−α1 β1 + d1 0 k2
α1 −(β1 + d1 + k1) 0 0
0 k1 −α2 β2 + d2
0 0 α2 −(β2 + d2 + k2)

 ,
where α1 = a1(ztot − c̄1), α2 = a2(ytot − c̄2), β1 = a1p̄

∗

and β2 = a2p̄. Jr is singular and weakly column diagonally
dominant, with strictly negative diagonal entries and non-
negative off-diagonal entries. Therefore, the system admits
the 1-norm

‖[p∗ − p̄∗ c1 − c̄1 p− p̄ c2 − c̄2]>‖1
.
= ‖x‖1

as a weak Lyapunov function that certifies the structural
marginal stability of its steady state (p̄∗, c̄1, p̄, c̄2) [15],
[16, Section 4.5.5], regardless of the values of the system
parameters. The only eigenvalue on the imaginary axis is
λ = 0, associated with the left eigenvector [1, 1, 1, 1] that
identifies an invariant subspace for the system. In this
invariant subspace, the system admits a polyhedral Lyapunov
function whose unit ball is given by the intersection between
the shifted diamond centred at the steady state (p̄∗, c̄1, p̄, c̄2)
and the hyperplane orthogonal to the vector [1, 1, 1, 1] and
passing through (p̄∗, c̄1, p̄, c̄2). Since the system Jacobian is
structurally nonsingular within the stoichiometric compatibil-
ity class, this Lyapunov function guarantees that the system
equilibrium is structurally asymptotically stable. Note that,
since the original (non-linearized) system can be rewritten
as ẋ = A(x)x, where A is related to the integral of the
system Jacobian [15], [17], the system admits the same
Lyapunov function at all points, hence a global (not only
local) stability analysis can be conducted. In particular, in
view of the structural nonsingularity of the Jacobian, the
results in [17] also guarantee the uniqueness of the steady
state and its structural global asymptotic stability within the
stoichiometric compatibility class. See also [18], where the
system (7)–(12) is shown to be structurally attractive.

It is worth stressing that Theorem 1 does not rely on the
mass-action-kinetics assumption: the same result would hold
true for any functional form (and parameter values) of the
reaction kinetics, as long as the reaction rates are monotonic
functions of the reagent concentrations.

B. Quasi-steady-state approximation

In the presence of production and degradation reactions,
the quantities ztot = z + c1, ytot = y + c2, and ptot =
p∗ + p + c1 + c2 are not constant. From Equations (1)–(6),
it follows that these quantities evolve over time as

żtot = u− δztot, (13)
ẏtot = v − δytot, (14)
ṗtot = θ − δptot. (15)

Therefore, at the steady state, z̄ + c̄1 = z̄tot = u/δ, while
ȳ + c̄2 = ȳtot = v/δ and p̄∗ + p̄+ c̄1 + c̄2 = p̄tot = θ/δ.

Let us adopt a commonly accepted assumption in enzyme
kinetics (cf. Michaelis-Menten kinetics) and consider that
the concentrations of the intermediate complexes, c1 and c2,
do not change on the time scale of product formation, thus
reaching a quasi steady state:

ċ1 = a1(ztot − c1)p∗ − d1c1 − k1c1 − δc1 ≈ 0, (16)
ċ2 = a2(ytot − c2)p− d2c2 − k2c2 − δc2 ≈ 0. (17)

Therefore

c1 ≈
p∗

p∗ +K1
ztot, with K1 =

d1 + k1 + δ

a1
, (18)

and

c2 ≈
p

p+K2
ytot, with K2 =

d2 + k2 + δ

a2
. (19)

If we plug the expression of c1 and c2 into the equation for
ṗ, we obtain

ṗ = −a2p
K2

p+K2
ytot+d2

p

p+K2
ytot+k1

p∗

p∗ +K1
ztot−δp,

which can rewrite as

ṗ = −(k2 + δ)
p

p+K2
ytot + k1

p∗

p∗ +K1
ztot − δp. (20)

Similarly, the equation for ṗ∗ can be rewritten as

ṗ∗ = θ− (k1 +δ)
p∗

p∗ +K1
ztot+k2

p

p+K2
ytot−δp∗. (21)

C. Steady-state analysis

To perform the steady-state analysis of the
phosphorylation-dephosphorylation network, we make
the following simplifying assumptions, which are
typically verified in practice. Phosphorylation and
dephosphorylation are assumed to be much faster than
degradation: k1, k2 � δ. Also, the total amount of the
target protein is assumed to be much larger than the total
amount of the enzymes: ptot � ztot, ytot. Then, since
c1 < ztot � ptot and c2 < ytot � ptot, we can approximate
p∗ + p = ptot − c1 − c2 ≈ ptot. Then, by considering
k1 + δ ≈ k1 and k2 + δ ≈ k2 (since k1, k2 � δ), we can
rewrite equations (20) and (21) as

ṗ = −k2
p

p+K2
ytot + k1

p∗

p∗ +K1
ztot − δp, and (22)



ṗ∗ = θ − k1
p∗

p∗ +K1
ztot + k2

p

p+K2
ytot − δp∗. (23)

Under these approximations, p+ p∗ = ptot and consistently
ṗ+ ṗ∗ = ṗtot.

Also, under the above approximations, by rearranging
equation (22) at steady state (i.e., ṗ = 0) and neglecting
the term δp, we can write the ratio

r =
k1z̄

tot

k2ȳtot
≈

p̄/p̄tot
(
K̂1 + 1− p̄/p̄tot

)
(
K̂2 + p̄/p̄tot

)
(1− p̄/p̄tot)

, (24)

where K̂1 = K1/p̄
tot and K̂2 = K2/p̄

tot.
In addition, to simplify our analysis, let us assume that

K̂ = K̂1 = K̂2. When the steady-state amount of active p
is larger than half the total amount, p̄ > p̄tot/2, the ratio
is larger than one: r > 1. Conversely, when p̄ < p̄tot/2,
the ratio is smaller than one: r < 1. Finally, when p̄ =
p̄tot/2, this results in r = 1 (the inputs k1z̄tot and k2ȳ

tot

are approximately the same in magnitude). In short,{
p̄ ≥ 1/2 if r ≥ 1

p̄ < 1/2 if r < 1.

We can rewrite this expression as a function of z̄tot and ȳtot

as follows: {
p̄ ≥ 1/2 if k1z̄tot − k2ȳtot ≥ 0

p̄ < 1/2 if k1z̄tot − k2ȳtot < 0
(25)

Since at steady state z̄tot = u/δ and ȳtot = v/δ, we can
rewrite the condition as a function of the inputs u and v:{

p̄ ≥ 1/2 if k1u− k2v ≥ 0

p̄ < 1/2 if k1u− k2v < 0

This mechanism allow us to implement both positive
and negative weights, thanks to the fact that the input u
appears in the condition with a positive sign, while the input
v appears with a negative sign. Then, defining the input
u =

∑m
i=1 w

∗
i xi, associated with a positive sign, and the

input v =
∑n−m
j=1 w∗jxj , associated with a negative sign, the

effective input (whose sign determines whether the value of
p̄ is above or below the threshold 1/2) becomes

n∑
q=1

wqxq =
m∑
i=1

(k1w
∗
i )xi +

n−m∑
j=1

(−k2w∗j )xj ,

which corresponds to the weighted sum of inputs with both
positive and negative coefficients. The coefficients w∗k can be
interpreted biologically as production rates of the enzymes Z
and Y . Then, the steady-state expression for multiple inputs
can be rewritten as{

p̄ ≥ 1/2 if
∑n
q=1 wqxq ≥ 0

p̄ < 1/2 if
∑n
q=1 wqxq < 0

(26)

D. Stability analysis

In this section, we show structural stability of the reduced
order model including equations (13), (14) and (15), as well
as equations (22) and (23). Since p + p∗ = ptot, we can
consider a system with only four equations:

żtot = u− δztot (27)
ẏtot = v − δytot (28)
ṗtot = θ − δptot (29)

ṗ = −k2
p

p+K2
ytot + k1

ptot − p
ptot − p+K1

ztot − δp (30)

Theorem 2: The system (27)–(30) admits a unique steady
state, which is structurally globally asymptotically stable.

Proof: We start by observing that the system trajectories
are asymptotically bounded in the open set S = {0 <
ztot < zMAX , 0 < ytot < yMAX , 0 < ptot < pMAX , 0 <
p < ptot}, hence at least one steady state must exist in S .
In particular, it can be seen that z̄tot = u/δ, ȳtot = v/δ
and p̄tot = θ/δ, while p̄ ∈ (0, p̄tot) solves the equilibrium
condition

g(p)
.
= k2

p

p+K2
ȳtot + δp = k1

p̄tot − p
p̄tot − p+K1

z̄tot
.
= h(p).

In the interval [0, p̄tot], g(p) is a continuous strictly increas-
ing function with g(0) = 0 and g(p̄tot) > 0, while h(p)
is a continuous strictly decreasing function with h(0) > 0
and h(p̄tot) = 0, hence an intersection must exist in view of
continuity, and it is unique in view of monotonicity.
Structural local asymptotic stability of the equilibrium can
be proven by noticing that the Jacobian matrix

J =


−δ 0 0 0
0 −δ 0 0
0 0 −δ 0
f1 −f2 f3 −δ − f4

 , (31)

where the quantities f1 = k1
ptot−p

ptot−p+K1
, f2 = k2

p
p+K2

,
f3 = k1

K1

(ptot−p+K1)2
ztot and f4 = k1

K1

(ptot−p+K1)2
ztot +

k2
K2

(p+K2)2
ytot are positive, is a lower triangular matrix,

whose eigenvalues are the negative diagonal entries.
Structural asymptotic stability can also be guaranteed by
the existence of a polyhedral Lyapunov function [15]: the
similarity transformation TJT−1, with T = diag(1, 1, 1, ρ),
turns J into a column diagonally dominant matrix with
strictly negative diagonal entries, if ρ is chosen small enough;
then, the weighted 1-norm ‖x‖1,T = ‖Tx‖1, with x =
[ztot − z̄tot, ytot − ȳtot, ptot − p̄tot, p − p̄]>, is a structural
Lyapunov function for the system [16, Proposition 4.58].
Finally, since the Jacobian is structurally nonsingular, the
results in [17] guarantee the structural global asymptotic
stability of the equilibrium.

Also Theorem 2 would hold for any kinetics (not necessar-
ily mass-action or Michaelis-Menten), as long as monotonic-
ity with respect to species concentrations can be assumed.

Remark 1: Since all the variables of system (27)–(30) are
asymptotically bounded in an open set, as shown in the
proof of Theorem 2, the following fundamental result from



degree theory can also be applied to prove uniqueness of the
equilibrium.

Theorem 3: [19], [20] Assume that the system ẋ = f(x),
with f : Rn → Rn sufficiently regular, has solutions
that are globally uniformly asymptotically bounded in an
open set S and admits N < ∞ equilibrium points x̄(i),
i = 1, . . . , N , each contained in S and such that the
determinant of the system Jacobian matrix evaluated at
x̄(i) is nonzero: det(Jf (x̄(i))) 6= 0 ∀i. Then,

∑N
i=1 =

sign[det(−Jf (x̄(i)))] = 1.
For the Jacobian in Equation (31), det(−J) > 0 structurally;
therefore, the equilibrium must be unique.

IV. TUNABLE MOLECULAR LINEAR CLASSIFIERS

In Section III, we have shown that a reaction network
based on post-translational modification by phosphorylation
and dephosphorylation may work as a tunable thresholding
mechanism (see Fig. 1C). In particular, the threshold can
be adjusted by the production of kinase and phosphatase
species by positive and negative inputs, respectively, per
equation (26). Altogether, this circuit can be viewed as a
molecular perceptron with a sigmoidal activation function
that incorporates positively- and negatively-weighted inputs.

In this section, we consider two case studies to show
how the phosphorylation-dephosphorylation cycle, and by
extension any other post-translational modification cycle,
may be engineered to build bio-molecular linear classifiers in
the presence of multiple inputs, and we discuss how adjusting
the weights associated with kinetic rates can predictably
program the linear classification.

A. Network with two positive and one negative weights

We start with the design of a linear classifier with three
inputs, as shown in Fig. 2A. We consider two inputs X1 and
X2, which produce the kinase Z with rates w1 and w2, as
well as a constant production rate w0 for the phosphatase Y .
All other chemical reactions are taken as in Section III, as
shown in Fig. 2B. Recall that, in our scheme, input species
that produce Z are considered positively-weighted, while
input species that produce Y are negatively-weighted. Thus,
this reaction network represents a single perceptron with two
positive inputs and a single, fixed negative input, or bias.

Using analogous assumptions as in Section III to simplify
the model leads to the ODE system:

żtot = w1x1 + w2x2 − δztot

ẏtot = w0 − δytot

ṗtot = θ − δptot

ṗ = k1
ptot − p

ptot − p+K1
ztot − k2

p

p+K2
ytot.

At the steady state, z̄tot = w1

δ x1 + w2

δ x2, ȳtot = w0

δ , and
p̄tot = θ

δ . We can find p̄ as a function of the system inputs
by following the same procedure as in Section III, which
eventually yields (25) where

k1z̄
tot − k2ȳtot =

(
w1k1
δ

)
x1 +

(
w2k1
δ

)
x2 −

(
w0k2
δ

)
.

The terms inside the parenthesis are the effective weights of
the system. Fig. 2C-D shows how the linear classification of
the system changes when we change the production rates w1

and w2: Varying w1 rescales the x-axis, varying w2 rescales
the y-axis, and varying w0 rigidly shifts the white region (not
shown here).

Fig. 2. Three-input phosphorylation-based linear classifier with two
positive weights and one negative weight A) Design schematic of a single
perceptron with three inputs presenting two positive and a single negative
weight. B) Phosphorylation-based realization of the perceptron. C) Steady
state solutions are shown as heat maps for a range of inputs x1 and x2. A
top-view of the heat-maps for different values of weights w1, demonstrating
the tunability of the decision boundary (white region). D) The effect of
varying w2 changes the y-axis scale on the decision boundary (top-view
heat-maps). Parameter for simulations w0 = w1 = w2 = 0.5, θ = δ = 1,
k1 = k2 = 10, and K1 = K2 = 0.05.

B. A network with one positive and two negative weights

As a second case study, we consider the design of a linear
perceptron with one positive and two negative weights, as
shown in Fig. 3A top. Hence, this reaction network features
a single input X2, which produces Z with rate w2, and two
inputs which produce Y – a constant production w0 and an
input X1 associated with rate w1 – as shown in Fig. 3A
(bottom). This leads to the ODE system:

żtot = w2x2 − δztot (32)
ẏtot = w0 + w1x1 − δytot (33)
ṗtot = θ − δptot (34)

ṗ = k1
ptot − p

ptot − p+K1
ztot − k2

p

p+K2
ytot. (35)

At steady state, z̄tot = w2

δ x2, ȳtot = w0

δ + w1

δ x1, and
p̄tot = θ

δ , while p̄ is expressed by (25) with

k1z̄
tot − k2ȳtot =

(
w2k1
δ

)
x2 −

(
w0k2
δ

)
−
(
w1k2
δ

)
x1.

Again, varying the production rates of the system has an
equivalent effect on the network’s linear classification: w1

and w2 rescale the x- and y-axes, respectively (Fig. 3B-C)
and w0 rigidly shifts the white region (not shown here).



Fig. 3. Three-input phosphorylation-based linear classifier with one
positive and two negative weights A) Design specification and molecular
implementation of a single perceptron with three inputs, one positive and
two negative weights. C) Steady state solutions for different values of
weights w1, it results in rescaling the y-axis. D) Varying the production rate
w2 rescale the x-axis. Parameter for simulations w0 = w1 = w2 = 0.5,
θ = δ = 1, k1 = k2 = 10, and K1 = K2 = 0.05.

In this example, we can observe the importance of incorpo-
rating negatively-weighted input values: Changing the sign of
w1 from positive to negative reorients the decision boundary
and affords this perceptron greater representation power than
the previous example. Specifically, a linear classifier with
only positive weights (excluding the bias term), like the per-
ceptron in Fig. 2, is incapable of producing the classification
in Fig. 3 without negative weights. In the following sections,
we will also demonstrate how tuning positive and negative
weights in molecular networks can enable us to engineer
more complex decision boundaries when multiple nodes are
interconnected.

V. MULTI-LAYER BIOMOLECULAR NEURAL NETWORKS

Having shown how post-translational modification cycles
can operate as a single biomolecular perceptron, we now
study networks obtained by cascading many such perceptrons
into a multi-layer system. In the following, we denote as
Biomolecular Neural Network (BNN) a network including
multiple perceptrons, that are organized into layers linked
only by feedforward connections (cf. Fig. 4). Each percep-
tron in a layer processes input species xi,j (i ∈ {1, . . . ,W},
j ∈ {1, . . . , D}) to produce output species yi,j , where W is
the width and D is the depth of the network.

BNNs including layered perceptrons based on molecular
sequestration have been studied in [4]. Here, we analyze the
stability of the equilibria of a BNN composed of layered
phosphorylation-dephosphorylation modules.

Proposition 2: Consider a BNN with depth D and width
wj for each layer j (hence, W =

∑
j wj). Every equilibrium

point is locally asymptotically stable.
Proof: The general Jacobian matrix for a feedforward

BNN network takes the lower block-triangular form:

JBNN =



L1 0 · · · 0 · · · 0
C1,2 L2 · · · 0 · · · 0

...
...

. . .
...

...
...

C1,j C2,j · · · Lj · · · 0
...

...
...

...
. . .

...
C1,D C2,D · · · Cj,D · · · LD


,

where
• matrix Cj,k, with j, k ∈ {1, . . . , D} and j < k, de-

scribes how the variables in layer j affect the dynamics
of the variables in layer k;

• matrix Lj represents the autonomous dynamics of layer
j and has the block-diagonal form

Lj = blockdiag{Pj,1, Pj,2, . . . , Pj,mj
},

where Pi,j denotes the Jacobian matrix of the biomolec-
ular perceptron in position i, j.

Since the Jacobian JBNN is a block-triangular matrix, its
characteristic polynomial ψBNN (s) is the product of the
characteristic polynomials of its diagonal blocks. Also, since
each diagonal block Lj is block-diagonal, its characteris-
tic polynomial is in turn the product of the characteristic
polynomials ψi,j(s) of the perceptrons Pi,j included in the
corresponding layer. Therefore,

ψBNN (s) =
D∏
j=1

(
mj∏
i=1

ψi,j(s)

)
.

Since the generic phosphorylation-dephosphorylation per-
ceptron is structurally asymptotically stable, as shown in
Theorem 2, all the eigenvalues of matrix JBNN have neg-
ative real part. Therefore, the BNN is asymptotically stable
around any equilibrium.

VI. MOLECULAR NON-LINEAR CLASSIFIERS

In the previous section we demonstrated the stability
of any feedforward BNN that includes a cascade of per-
ceptrons based on post-translational modification cycles. In
this section, we use three simulation examples to illustrate

Fig. 4. Biomolecular Neural Network A) The schematic diagram for
a BNN of depth D = 4 with two input species, X1 and X2, six
biomolecular perceptrons in cicles, and one output species O1. Black arrows
represent feedforward connections between neighboring layers, and red
lines, feedforward connections spanning more than one layer. B) A simple
biological implementation of each node based on phosphorylation reactions.



how feedforward BNNs may be used to build non-linear
classifiers, highlighting their versatility and computational
power.

A. XNOR and XOR bio-molecular networks

Exclusive logical or (XOR) classification is a quintessen-
tial problem in the field of machine learning. It is the
only logical operation which is not linearly separable, and
has consequently motivated the use of multi-layer networks:
Unlike single perceptrons, networks with two or more layers
can perform non-linear classifications (e.g. XOR) provided
appropriate weights.

For example, by adjusting its parameter values, the two-
layer, three-node network shown in Fig. 5A can implement
either XNOR or XOR logical functions. To conserve space,
we do not show the detailed chemical reactions for this
network, but describe the system with the following ODEs,
following steps as given in previous sections:

żtot1 = w1,1x1 + w1,2x2 − δztot1 (36)
ẏtot1 = w1,0 − δytot1 (37)
żtot2 = w2,0 − δztot2 (38)
ẏtot2 = w2,1x1 + w2,2x2 − δytot2 (39)
żtot3 = w3,1p1 + w3,2p2 − δztot3 (40)
ẏtot3 = w3,0 − δytot3 (41)
ṗtoti = θ − δptoti , (42)

ṗi = k1
ptoti − pi

ptoti − pi +K
ztoti − k2

pi
pi +K

ytoti , (43)

with i = 1, 2, 3.
Notably, the network topology above may carry out either

classification by only modifying the bias weights. In Fig. 5,
we display the intermediate transfer functions given by
perceptrons p1 and p2 (Fig. 5B and C, Left and Middle) for
each non-linear classifier. To obtain an XNOR classification,
we require p1 and p2 to have oppositely signed weights
applied to x1 and x2 – positive weights for p1 and negative
for p2 – and a larger magnitude of bias for w1,0 than w2,0

(see Fig. 5B). Under these conditions, the entire network
represents an XNOR function; the output of p3 is maximal
when x1 and x2 both take on low or high values. In contrast,
if we decrease the magnitude of bias w1,0 and increase biases
w2,0 and w3,0, the same network topology can perform an
XOR operation, which has the opposite output (see Fig. 5C).

This case study illustrates an important general property
of BNNs: By changing the weights of each node, the
classification boundary, represented by the white area of
each plot, can be adjusted in a predictable way and to
represent highly dissimilar decision-making functions. Bi-
ologically, such changes are tantamount to adjustments of
the rate parameters of the network’s constituent reactions;
no modifications to its underlying topology are required.

B. More complex decision-making

Although the previous classifier is able to deliver a non-
linear function of its inputs, its network topology is incapable

Fig. 5. Phosphorylation-based XNOR and XOR classifiers A) Network
design. B) Steady state solution for an XNOR with optimized weights
(w1,0:2 = [1.5, 1, 1], w2,0:2 = [0.4, 1, 1], w3,0:2 = [0.3, 1, 1]). C) Steady
state solution for an XOR with optimized weights (w1,0:2 = [0.4, 1, 1],
w2,0:2 = [1.2, 1, 1], w3,0:2 = [1.3, 1, 1]). The rest of the parameter for
both simulations are θ = δ = 1, k1 = k2 = 10, and K = 0.05.

of creating a closed decision boundary. To achieve this form
of classification, we add a perceptron to the first layer of
the network, creating a four-node network (Fig. 6). We then
optimize the weights of p̄1, p̄2 and p̄3 to enclose a central
region of the classification space, as shown in Fig. 6B. Only
where their maximal values (i.e. blue regions) overlap is the
threshold value of the fourth node exceeded. This "activated"
region forms a closed boundary where the output of the
entire network is high. Moreover, by modifying the weights
of each node it is possible to shift, scale, and rotate this
closed boundary and enclose alternative regions (not shown
here). The ODEs describing this network are given below:

żtot1 = w1,1x1 + w1,2x2 − δztot1 (44)
ẏtot1 = w1,0 − δytot1 (45)
żtot2 = w2,1x1 + w2,0 − δztot2 (46)
ẏtot2 = w2,2x2 − δytot2 (47)
żtot3 = w3,0 + w3,2x2 − δztot3 (48)
ẏtot3 = w3,1x1 − δytot3 (49)
żtot4 = w4,1p1 + w4,2p2 + w4,3p3 − δztot4 (50)
ẏtot4 = w4,0 − δytot4 (51)
ṗtoti = θ − δptoti (52)

ṗi = k1
ptoti − pi

ptoti − pi +K
ztoti − k2

pi
pi +K

ytoti , (53)



for i = 1, 2, 3, 4.

Fig. 6. Phosphorylation-based non-linear classifiers Network design for
a closed-type decision making with four nodes. Parameter for simulations
w1,0:2 = [0.2, 0.5, 0.5], w2,0:2 = [0.2, 0.5, 0.8], w3,0:2 = [0.2, 0.8, 0.5],
w4,0:3 = [1.3, 0.5, 0.5, 0.5] θ = δ = 1, k1 = k2 = 10, and K = 0.05.

VII. DISCUSSION

We have discussed how, under some assumptions, a broad
class of biomolecular signaling networks have the capacity
to operate as molecular perceptrons, due to their sigmoidal
input-output behavior with a tunable threshold, that can
integrate additively the contribution of multiple inputs. In
particular we have shown that the perceptron model arising
from this type of network includes inputs that are weighted
both positively and negatively. A great advantage of realizing
and tuning negative weights is that they make it possible to
optimize networks for classification. We illustrated this con-
cept by simulating linear and non-linear classifiers based on
phosphorylation/dephosphorylation cycles. This manuscript
extends to signaling networks our earlier work that demon-
strated how molecular sequestration motifs have the capacity
to implement biomolecular neural networks [4]. While here
we focus exclusively on demonstrating the computational and
classification power of signaling networks, our goal for future
work is to build on this approach to examine the contribution
of cross-talk to the decision boundary of post-translational
modification cycles.

Our analysis complements theoretical and experimental
efforts toward building complex molecular networks such as
chemical Boltzmann machines [7] and DNA-based classifiers
[13], [11]. As molecular neural networks are becoming
relevant for applications that include in vitro diagnostics [12]
and in vivo cellular classifiers[13], we expect that methods to
harness the computational power and implementation options
of BNNs will make it possible to expand the ways we can
engineer living cells for advanced decision making.
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