COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
2023, VOL. 48, NO. 5, 753-791
https://doi.org/10.1080/03605302.2023.2202720

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates

Sticky particle Cucker-Smale dynamics and the entropic
selection principle for the 1D Euler-alignment system

Trevor M. Leslie? and Changhui Tan®

Department of Mathematics, University of Southern California, Los Angeles, CA, USA; "Department of
Mathematics, University of South Carolina, Columbia, SC, USA

ABSTRACT ARTICLE HISTORY

We develop a global wellposedness theory for weak solutions to the
1D Euler-alignment system with measure-valued density, bounded
velocity, and locally integrable communication protocol. A satisfac-
tory understanding of the low-regularity theory is an issue of press-
ing interest, as smooth solutions may lose regularity in finite time.
However, no such theory currently exists except for a very special
class of alignment interactions. We show that the dynamics of the
1D Euler-alignment system can be effectively described by a nonlo-
cal scalar balance law, the entropy conditions of which serves as an
entropic selection principle that determines a unique weak solution of
the Euler-alignment system. Moreover, the distinguished weak solu-
tion of the system can be approximated by the sticky particle
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1. Introduction
We are interested in the following Euler-alignment system

Op + V- (pu) =0, (x,t) € R? x Ry,

1
O(pu) + V- (pu®@u) = Jde(x, Hp(nt)e(x —y)(uly.t) —u(xt)) dy, .

subject to the initial data

p(x.0) = p"(x), u(x0) =u’(x).

Here p > 0 and u € R? represent density and velocity, respectively. We shall make the
global assumption that p is normalized to have total mass 1. The term on the right-
hand side of the equation for the momentum pu is the alignment force. The function ¢
is called the communication protocol, and it governs the strength of the interactions
between the ‘agents’ that comprise the density profile. Throughout the paper, we will
assume ¢ is non-negative, locally integrable, and radially decreasing.

The Euler-alignment system comes from the theory of collective behavior. Its salient
feature is the nonlocal alignment interaction, which for appropriate ¢ leads to a
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remarkable long-time behavior referred to as flocking (a term intentionally reminiscent
of a group of birds). We will discuss flocking in due course, but we do not attempt a
comprehensive overview here. The most complete reference is [1], which also contains
references to many other excellent reviews.

The nonlocality of (1) is a notorious difficulty in the study of the wellposedness and
long-time behavior for this equation. However, there are two important cases where the
nonlocality drops out. If ¢ =0, then (1) reduces to the well-studied pressureless Euler
equations. This case does not exhibit the alignment features associated with non-degen-
erate ¢, but its more developed wellposedness theory showcases an arsenal of tools that
one can try out on the Euler-alignment system. The other situation where nonlocality is
not truly present is that of all-to-all coupling, where ¢ is a positive constant. Solutions
of the all-to-all coupled system exhibit most features of the long-time behavior that one
expects for more general ¢. However, the analysis of this case is simpler: the alignment
force reduces to a linear and local damping.

In this paper, we develop a global wellposedness theory for weak solutions of the 1D
Euler-alignment system (1) with measure-valued density, and bounded velocity. Our
analysis covers the classical setup when the communication protocol ¢ is bounded and
Lipschitz. More interestingly, it also works for the case when ¢ is weakly singular,
namely it has an integrable singularity at the origin. We show an asymptotic flocking
behavior for the solutions we construct. Our approach adapts the sticky particle approxi-
mation, originally developed by Brenier and Grenier [2] to treat the 1D pressureless
Euler equations. We require a detailed understanding of the relationship between the
discrete and hydrodynamic settings; let us therefore review the derivation of (1) from
the Cucker-Smale system.

1.1. A brief derivation of the Euler-alignment system

The Euler-alignment system can be derived as a hydrodynamic version of the celebrated
Cucker-Smale system of ODFE’s [3, 4]:

e
di N Xi» Vi ERdXRd, i=1,---,N. 2
Y S ety —w), @
j=1
xj;éx,-

This system governs the motion of N agents with masses m; > 0, positions x; and veloc-
ities v;. As the number of agents goes to infinity, one can derive a kinetic formulation,
using BBGKY hierarchies [5] or mean-field limits [6-8]. The kinetic distribution func-
tion f(x,v,t) solves the Vlasov-type equation

Of +v-Vif+V,-(fE(f)) =0,
FOswm0 = | | O gls—y)w =) dwdy,

(x,1,t) € RT x RY x R,.

3)

Define the macroscopic density and momentum by
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p(x,t) = JR[(x, v, t) dv, P(x,t) = p(x, t)u(x, t) = JRdvf(x, v, t) dv.

Here u(,t) is the macroscopic velocity, well-defined on Q(t) := {x: p(x,t) > 0}.
Taking zeroth and first moments on v of the kinetic system then ylelds

3tp+vx( ) 0, ( )ERdX]R+,

O (pu) + Vi (pu@u+R) = J (x, t)p(n, t)p(x — y)(u(y, t) —u(x,t)) dy, (4)

R(x,t) = J d(v —u(x, 1) @ (v—u(xt))f(x,v,t)dv,
R

where R denotes the Reynolds stress tensor. Finally, one obtains the pressureless Euler-

alignment system (1) as a hydrodynamic limit by taking a monokinetic ansatz

flx,v,t) = p(x,t)0(v — u(x, t)), which eliminates R from (4). Rigorous justification (for

bounded ¢) can be found in [I, 9, 10].

An alternative hydrodynamic limit can be obtained [11-13] by taking an isothermal
ansatz f(x,v,t) = (21) Y*p(x,1) exp (—|v — u(x, £)|*/2), in which case V, - R becomes
a pressure term V,p. The resulting isothermal Euler-alignment system was investigated
n [14, 15]. A more general class of isentropic Euler-alignment system with a pressure
term V,(p”),y > 1 was considered in [16, 17]. The regularity theories of these cases are
less well-developed than that of their pressureless cousin. We do not treat the pressured
system further in the present work, as the assumption of monokineticity is strongly
embedded in our framework.

Finally, many authors prefer for technical reasons to replace (1), with the velocity
equation

-+ u- V= [ 60006~ ) alnt) = u0) dy (5)

and to define u(,t) on all of R, or on some domain containing suppp(t). We will not
use the Eq. (5) directly; the divergence form of (1) is more amenable to the framework
we want to build. We mostly do not distinguish between the two formulations in our
discussion of the literature.

1.2. Existing wellposedness theory on the pressureless Euler-alignment system

The global regularity theory for smooth solutions of the Euler-alignment system (1) is
fairly well-established in one space dimension, with different types of alignment
interactions.

The first scenario is when the interaction is regular, namely ¢ is bounded and
Lipschitz. At the heart of many wellposedness results is the following quantity, intro-
duced in [14]:

e(x,t) = Ou(x, t) + ¢ x p(x, t). (6)

Here * denotes convolution in the spatial variable. Remarkably, e satisfies the simple
evolution equation
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Ore + Ox(ue) = 0. (7)

This structure yields a precise description of global wellposedness via a critical threshold
condition [14]: if the initial condition is subcritical, satisfying ¢® > 0 on all of R, then
the solution stays globally regular; otherwise, supercritical initial data lead to shock for-
mations in finite time.

The next scenario is when the interaction is weakly singular, that is, when ¢ has an
integrable singularity at the origin, e.g. ¢(r) ~ r~* with s € (0,1). Under this setup, a
similar but distinct critical threshold condition holds [18]; the main additional subtlety
occurs when ¢ takes the value 0.

In the presence of vacuum p°(x) = 0, the critical threshold conditions are inaccessible

from physical initial data (p° P°). The first author [19] has worked with an antideriva-
tive  of e, defined by

Y(xt) = ulxt) + @ x p(x, 1), (8)

where @ is the unique odd antiderivative of ¢. The critical threshold condition can
then be expressed in terms of /°, which must be nondecreasing on the support of p° to
propagate regularity. This condition is also sufficient when the protocol ¢ is regular; for
weakly singular interactions, additional assumptions are needed to propagate regularity.
Sharp conditions are not known. In the present work, we make extensive use of the
quantity  and its discrete analog for the Cucker-Smale system.

Another interesting scenario is when the interaction is strongly singular, namely ¢
has a non-integrable singularity at the origin. In this case, the alignment produces
nonlocal dissipation that regularizes the solution. It has been shown that solutions are
globally regular for all smooth initial data away from vacuum [20-24]. (However, the
non-vacuum stipulation is important here, c.f. [25, 26].) Moreover, for rough initial
data, the solutions are instantaneously regularized thanks to the strongly singular inter-
action, see e.g. [27-30].

The Euler-alignment system (1) is less well understood in higher dimensions, largely
because of the lack of a scalar quantity e that solves a simple continuity equation like
(7). A natural candidate for a multi-dimensional replacement is e =V, -u+ ¢ x p,
which satisfies the equation dje + V, - (ue) = (V, - u)” — trace((V,u)?). The right-hand
side vanishes if the velocity is unidirectional, i.e., u(x,t) = u(x, t)h with a fixed direction
he Rd; in this case, the same threshold as in the 1D setting holds [31]. However, for

general u, the term (V, - u)* — trace((V,u)?) does not vanish and is difficult to control
(but c.f. [31] for the ‘almost unidirectional’ case). Partial results are available in 2D [32,
33], for radial solutions [34], and recently in higher dimensions [35].

As for the asymptotic behavior, Ha and Liu [7] have shown that the Cucker-Smale
dynamics (2) enjoy the flocking property: when the communication weight ¢ has a fat
tail, namely

Jocqﬁ(r) dr = oo, 9)

1

then the diameter of the positions of all agents remains uniformly bounded in time,
and moreover, the velocities of all agents tend to a common value as time goes to infin-
ity. An analog of this property is inherited by the Euler-alignment system (1), at least
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for smooth solutions: it was proved in [33] that if ¢ satisfies (9), then strong solutions
must flock.

1.3. Weak solutions and the non-uniqueness issue

Though the theory of strong solutions to the Euler-alignment system has been well-
developed over the last decade, little is known about weak solutions, even in one dimen-
sion. This is a serious gap in the theory, as solutions can lose regularity even if they are
initially smooth. Several natural questions arise when considering the possibility of weak
solutions:

e How does a solution evolve after the formation of a shock?
e Do weak solutions flock?
e How are weak solutions connected to the Cucker-Smale dynamics?

The global wellposedness theory we develop in this paper will address these points.

Let us remark that when the interaction is strongly singular and the initial data non-
vacuous, due to instant regularization, solutions are smooth and the existing theory of
strong solutions applies. Therefore, we shall focus on the case when the communication
protocol ¢ is locally integrable, so the interaction can be either regular or weakly singu-
lar. A theory of weak solutions is needed, especially for supercritical initial data.

It is not difficult to formulate a satisfactory definition of a distributional weak solu-
tion of the Euler-alignment system (1). However, it is well-known that such solutions
are not unique. In fact, Carrillo et al. [36] studied weak solutions to Euler systems with
a general class of nonlocal interactions and showed that there exist infinitely many
weak solutions that dissipate the kinetic energy. What we need, therefore, is an add-
itional selection principle that will single out a unique weak solution.

The non-uniqueness issue is better understood for the 1D pressureless Euler system

Op + Ox(pu) =0,
(10)
Oi(pu) + O (pu?) = 0.

A well-known class of entropy inequalities for (10), introduced by Lax [37], requires
that for any positive convex entropy #,

O(pn(u)) + O (pun(u)) < 0. (11)

These entropy inequalities can be adapted to the 1D Euler-alignment system, by replac-
ing n(u) with n(y), where { is defined in (8). However, the entropy inequalities (11)
do not guarantee uniqueness. Bouchut [38] showed there are infinitely many entropic
solutions to the 1D pressureless Euler equations that satisfy (11). He also presented an
instructive example with atomic initial data: Consider a configuration where two par-
ticles move toward each other with velocities v; > v,. One can impose different rules
when they collide. As long as the collision preserves momentum, and the post-collision
velocities V|, V) € [v2, v1], this setup generates an entropic solution for the 1D pressure-
less Euler equations. Two particular solutions are: (i) no collision: v =v;,i=1,2;



758 @ T. M. LESLIE AND C. TAN

(i) completely inelastic collision: v =+v,. Hence, a stronger selection principle is
required to obtain a unique solution.

1.4. Sticky particle dynamics and selection principles

Among all the collision rules, the completely inelastic collision dissipates the most
energy. Since the post-collision velocities are the same, the two particles stick to each
other and travel together after the collision. This sticky particle model was originally
proposed by Zeldovich [39]; it generates atomic weak solutions to (10). Grenier [40]
also used the sticky particle dynamics to prove existence (but not uniqueness) of solu-
tions to (10). The sticky particle dynamics underlie at some level all of the successful
selection principles that we discuss below for the theory of (10) and related systems.
One line of results on the theory of (10) is related to a so-called generalized vari-
ational principle due to E, Rykov, and Sinai [41], which is compatible with the sticky
particle dynamics and can serve as a selection principle. Huang and Wang [42] proved
existence and uniqueness of weak solutions satisfying the one-sided Lipschitz condition
u(xy,t) —u(x,t) 1

<-, t>0. (12)
Xy — X1 t

Their construction is based on a generalized potential and has strong ties to the vari-
ational principle of [41] (c.f. also the earlier works [43, 44]). The framework of [42] has
been adapted to the 1D Euler-alignment system with all-to-all coupling [45, 46], where
the alignment interaction reduces to a linear, local damping. It is not clear whether this
approach can be extended to the truly nonlocal case of a general communication proto-
col ¢; to our knowledge, this question has not been treated in the literature.

Another type of selection principle for (10) is based on the entropy conditions for a
related scalar equation. This approach was pioneered by Brenier and Grenier [2], who
study (10) by connecting it to the scalar conservation law

AWM + 8. (A(M)) = 0, (13)

where M is the cumulative distribution function of the density p, and the flux A only
depends on the initial data p° and u°. The entropy conditions for (13) select a unique
solution M, which determines a distinguished weak solution of the pressureless Euler
equations through p = O.M, pu = 0,(A(M)). Hence, the entropy inequalities for the
scalar conservation law (13) serve as a satisfactory selection principle for (10).
Moreover, the entropy solution of (13) has an elegant connection to the sticky particle
dynamics: with a discretized initial condition MY, and flux Ay, the sticky particle
dynamics generate the entropy solution of the scalar conservation law by tracking the
locations of all the shocks of My.

Bouchut and James have developed a related but alternative theory of duality solu-
tions [47, 48] for solutions to (10). Their theory relies on properties of monotone solu-
tions to (13), and they prove uniqueness under an assumption similar to (but stronger
than) (12). The framework of [2] has been successfully applied to the 1D Euler-Poisson
equations [49-51]. To handle the additional nonlocal Poisson force, a nonlocal scalar
conservation law (13) is generated, with a time dependent flux A = A(M,t). A similar
argument also works for the 1D Euler-alignment system with all-to-all coupling [52].
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The sticky particle approach to the pressureless Euler equations and related systems
has continued to garner attention, through the lens of optimal transport [49-51, 53,
54], and also from a probabilistic perspective [55-60]. An exhaustive review of the lit-
erature on the pressureless Euler system is far beyond the scope of the present work.
However, the approaches described above provide sufficient context for the ideas devel-
oped in our paper.

1.5. Scalar balance laws for the Euler-alignment system

We are interested in the 1D Euler-alignment system with general alignment interac-
tions.

Op + ax(pu) =0, (14)
&(

pu) + d(pu’) = p( * (pu)) — pu(e * p).

The major challenge is to appropriately treat the nonlocality from the alignment interac-
tions. Unfortunately, the system cannot be connected to a scalar conservation law of the
type (13), except for special cases, e.g. constant ¢.

We introduce a new scalar balance law connected to the 1D Euler-alignment system:

OIM + 0,(A(M)) = (¢ * M)OM. (15)

The contribution from the alignment interaction is split between the flux term and the
nonlinear, nonlocal right-hand side of (15). Following the framework of Brenier and
Grenier, we establish a global wellposedness theory for (15) and show that there is a
unique entropy solution. We then construct a unique weak solution to the 1D Euler-
alignment system (14), using the entropy conditions for (15) as our selection principle.
The intrinsic nonlocality embedded in (15) requires a significant advancement of the
analytical techniques used for (13), in terms of both the global wellposedness theory
and (more significantly) the precise connection with (14). For example, we prove that
solutions M of (15) are stable with respect to perturbations of the initial data M° and
the flux A. Our bound is the same as the one for scalar conservation laws (c.f.
[Theorem 3, 61]); however, we need to use monotonicity of M(-,t) (built into our def-
inition of entropy solution) in an essential way to treat the nonlocal term, whereas this
assumption is not needed to treat (13). Another distinctive feature of (15) is that
Ox(A(M)) does not represent the momentum pu; rather, it is equal to pyy. We use the
relation (8) to recover the momentum. Finally, when ¢ is merely locally integrable, the
fact that ¢ * M may not be differentiable presents challenges in both the existence and
stability proofs: The term corresponding to (¢ * M)J,M in our definition of entropy
solution is the most subtle with respect to convergence of the discretization.
Furthermore, it necessitates an additional application of the BV chain rule and the use
of a delicate cancelation in our uniqueness and stability argument.

We also explore the connection between (15) and the sticky particle Cucker-Smale
dynamics, introduced in Section 3. We show that the entropy solution of (15) can be
constructed through an approximation by a sequence of solutions to the sticky particle
Cucker-Smale dynamics. Ultimately, our approach yields a uniquely determined solu-
tion to (14), through a discrete approximation by sticky particle Cucker-Smale
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dynamics, for measure-valued data. Under additional assumptions on the initial condi-
tions and protocol ¢, we obtain an error estimate for the approximation, with an expli-
cit convergence rate of up to O(N~'). The rate echoes the work of Lucier [61] on scalar
conservation laws. This paves a clean path for the numerical implementation of our
solution through the sticky particle approximation.

Finally, we study the asymptotic behavior of our constructed solution to (14).
Applying uniform estimates on the sticky particle Cucker-Smale dynamics and the con-
vergence result of the approximation, we establish the same flocking property that is
enjoyed by strong solutions: If ¢ satisfies (9), our weak solutions must flock.

Remark 1.1 (Interpretation of the solution). Our method of construction and the ‘sticky
particle’ framework are naturally compatible with the monokinetic ansatz mentioned in
Section 1.1. Different closure assumptions (e.g., a Maxwellian) will require different techni-
ques. A recent work of Amadori and Christoforou [62] treats the global existence and
asymptotic behavior of weak solutions to the Euler-alignment system with all-to-all cou-
pling (¢ = 1) and an additional pressure term resulting from a Maxwellian ansatz. Their
solutions are generated by a front-tracking scheme, but their analysis otherwise has little
overlap with our work or with the sticky particle-based literature described previously.

In this work, our primary interest in the sticky particle Cucker-Smale dynamics relates
to their role in selecting a unique solution of the Euler-alignment system. However, one
can interpret them physically as an ‘extreme’ case of strong local alignment. We conjecture
that this heuristic can be rigorously justified, and we plan to address it in future work.

1.6. Main results and structure of the paper

We study the following three systems and their connections. The sticky particle collision
rule in the Cucker-Smale dynamics corresponds to the entropy conditions for the scalar
balance law, which in turn serves as the selection principle to the unique weak solution
of the 1D Euler-alignment system.

Cucker—Smale Scalar balance 1D Euler-alignment
dynamics (2) law (15) system (14)
Sticky particle Entropy solution Unique weak solution

Our results are summarized in the following points. The explicit statements appear in
the text.

o Existence, Uniqueness, and Stability.

e  For monotone initial data M° and Lipschitz flux A, the scalar balance law (15) has
a unique entropy solution M, which is BV in space and time (Theorem 5.1(a)).
The solution is stable under perturbations of both M° and A (Theorem 5.1(c)).

e Given p° € P.(R) (a compactly supported probability measure) and u’ €
L>(dp®), a unique solution of (14) can be generated from the unique entropy
solution of (15) with corresponding initial data M° and flux A (Theorem 6.3,
the entropic selection principle).
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e Discretization and Approximability.
e The sticky particle Cucker-Smale dynamics determine the entropy solution of the
scalar balance law (15) for discretized initial data M})\, and flux Ay (Theorem 4.1).
e he sticky particle Cucker-Smale dynamics approximate the unique solution of
(15) and (14) for general initial data (Theorems 5.1(b) and 6.5), with an explicit
convergence rate depending on ¢ and u° (Theorem 6.7).
o Long-Time Behavior and Flocking.
e Our constructed weak solution to the 1D Euler-alignment system (14) exhibits
the flocking phenomenon (Theorem 7.2): If ¢ which decays slowly enough, the
velocity u converges to a constant, and p converges to a traveling wave p.

Outline of the paper

In Section 2, we give a formal derivation of the scalar balance law (15) from the Euler-
alignment system and derive the associated Rankine-Hugoniot condition and Oleinik
entropy condition. In Section 3, we discuss the properties of the sticky particle Cucker—
Smale dynamics that are needed for our wellposedness theory. In Section 4, we connect
the sticky particle Cucker-Smale dynamics to the entropy solution of the discretized
scalar balance law (15). In Section 5, we present the wellposedness theory for entropy
solutions of (15) and prove the convergence of the sticky particle approximation. In
Section 6, we establish rigorously the connection between solutions to the scalar balance
law (15) and the 1D Euler-alignment system (14), construct a unique weak solution,
and study the approximation by the sticky particle Cucker-Smale dynamics. Finally, in
Section 7, we study the asymptotic flocking behavior.

2. Derivation of the scalar balance law and entropy conditions
2.1. The scalar balance law

We give a formal derivation of the scalar balance law (15) from the 1D Euler-alignment
system (14), assuming all functions involved are as regular as necessary. Rigorous justifi-
cation of the equivalence between the two systems will be made in Section 6.

We begin by reformulating the 1D Euler-alignment system as follows. Integrating (7)
yields

O + udy =0, (16)
where y = u+ @ % p as in (8), and

() = j:qs(y) dy. 17)

The 1D Euler-alignment system can then be expressed in terms of the pair (p, py) :

dp + Ox(pu) =0,

{ A (py) + Ox(pyu) = 0.
The velocity can be recovered from s and p via the relation (8):
u=y —dxp. (19)

(18)
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Since p and pyr satisfy the same continuity Eq. (18), their primitives
1
M) =3+ | o ewo=|  wime e
(7oo,x (700,9(

will satisfy the transport equations

&M + uaxM =0, &Q + l/laxQ =0.

Let A be a map (depending only on the initial data (M°, Q%)) such that A o M° = Q°.
If (x,t) lies on a characteristic path originating at (x°,0) and governed by the velocity
field u, then

Qx,t) = Q'(x") = AM°(x")) = A(M(x,1)).
Using this identity Q = A(M), as well as the definitions of p and , we can write
UM = pyp — p®@ % p = 0,Q — 0 M - (¢ * M) = 0x(A(M)) — OM - (¢ * M),
which leads to the scalar balance law (15).

Remark 2.1. We include a shift of —% in the definition of M in (20) to make sense of
the convolution ¢ x M. We will always work with p such that p(¢) is supported in a
compact interval [—R(T),R(T)] for any t € [0,T], so that M(*x,t) = *1 for any x >
R(T). For R > R(T), we define
2R
¢ *x M(x,t) = J ¢(z)M(x — z,t)dz, for all x € [-RR]. (21)
—2R

Since ¢ is even, the choice of R is inconsequential to the value of ¢ * M; consequently,
the definition (21) defines ¢ * M(x,t) for all x € R, t € [0, T]. Moreover,

b M) = 00)Mx =)+ [ @O)ple— ) dy = D plx )

—2R

for all x €[— R,R]. Both boundary terms take the value {®(2R) and hence cancel with
each other.

Finally, it is easy to see that ¢ + M = ® % p is bounded (by ®(2R)) and continuous
(since @ is).

2.2. Entropy conditions to the scalar balance law

The scalar balance law (15) admits a natural admissibility criterion via entropy inequal-

ities. Let 7 : [—1,4] — R be a convex and Lipschitz function and suppose q: [-1,3] —
R satisfies ¢ = n’A’. The pair (,q) is known as an entropy/entropy-flux pair, and the

entropy inequality for (15) associated to each such pair reads
Ai(n(M)) + 0:(q(M)) < (¢ * M) dx(n(M)), (22)

in the sense of distributions. That is, for any nonnegative test function { € C°(R x
(0, T)), we require

J JR [n(M)DL + q(M)DL + L + M) (n(M))] dx dt > 0. (23)

0
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Let us comment on the last term in (23). When ¢ is bounded and Lipschitz, it is
easy to check that ¢ « M is Lipschitz. In this case, the integral can be realized as
T

JTJR§(¢ « M) (n(M)) dx df — _J

0 0

jR O (h M) + C0u(h 5 M) (M) dxdr

For general locally integrable communication protocol ¢, note that n(M) € BVj,(R)
(e.g. by Lemma 5.2) and is constant outside of [—R,R|. Hence, O,(n(M)) is a Radon
measure with support in [—R, R]. Since ¢ x M € Cy([—R, R]), it follows that the integral
is well-defined.

Definition 2.1. We say M : R x [0, T|—[— 3,3] is an entropy solution to the scalar bal-
ance law (15) if

e The entropy inequality (22) is satisfied for every entropy/entropy flux pair (1,q), in
the sense outlined in the discussion above.
M(-, t) is nondecreasing, for any t € [0, T].
There exists an R(T) > 0, such that M(*x,t) = =1, for any x > R(T) and ¢ € [0, T].

We say M : R x [0,+00)—[— 1,1] is an entropy solution if its restriction to any
compact time interval [0, T] is an entropy solution in the sense above.

By a standard approximation argument, one deduces that the collection of all
entropy/entropy flux pairs in Definition 2.1 may be replaced a smaller class. The
entropy solution can be equivalently defined if the entropy inequality (22) is satisfied
for every Kruzkov entropy pair

nm) =|m—al,  q(m)=sgn(m—a)(A(m) — A(2)), o€ [—%ﬂ (24)
We will use the definition (24) in the proofs of existence and uniqueness of entropy sol-
utions to (15).

Next, we state the Rankine-Hugoniot condition and the Oleinik entropy condition
for (15). Since the nonlocal term on the right-hand side of (22) plays a role in the con-
ditions, we shall outline the derivation.

Suppose M takes the values My and M, on two sides of a shock along a curve C =
{(x,t) : x =s(t)}. We denote by o(t) = §(t) the speed of the shock. The entropy condi-
tion (23) becomes

JC(H'?(M)HM(S) + ([[a@D]] = (¢ = M)[[n(M)]])vx(s)) ds > 0,
where v = (v, 1) = (14 02)7%(1, —g) is the unit normal vector along C, and we have
used the notation [[n(M)]] = n(M,) — n(M,) and [[g(M)]] = q(M,) — q(M,). This implies

(04 (¢ = M)[ln(M)]] < [[gM)]],  along C.

Taking 7 =1id and q = A, and noting that equality should hold in (23), we get the
Rankine-Hugoniot condition
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Q)]
[[M]]
For My, < M,, we take n(m) = (m — 0)H(m — 0) and g(m) = (A(m) — A(0))H(m — 0)
for 0 € (My, M,). Here, H denotes the Heaviside function. This leads to the Oleinik

entropy condition

o+ ¢xM= (25)

A(0) — AMy)

* M <
g+ ¢ < 2,

. 0€ (MpM,). (26)

3. The sticky particle Cucker-Smale dynamics

3.1. Definitions and notation

N

Consider a system of particles of positive masses (mi)f.il and configurations (x;(t), vi(t)),_,

following the Cucker-Smale dynamics (2) in one dimension

dx,- dV,‘ N
— = — = mip(x; —x;)(v; — v;). (27)
dt dt % JE !

Xj Xi

We always assume the total mass is 1:

N
i=1

The system (27)-(28) allows particles to pass through each other. We propose a modi-
fied system: the sticky particle Cucker-Smale dynamics, which follows (27) except at
times when two or more particles collide, i.e., occupy the same position (for the first
time). We insist that colliding particles remain stuck together for all future times. We
refer to the unmodified system (27)-(28) as the Cucker-Smale dynamics without colli-
sions, in order to emphasize the distinction between the two sets of dynamics.

Let us now define precisely the collision rules for the sticky particle Cucker-Smale
dynamics. We fix the notation J;(¢) to represent the set of indices j such that particle j
is stuck to particle i at time t:

Jit) == {] €1L.,N:x(t) = xi(t)}.

The collision rules have two ingredients:

e Fach collision is completely inelastic, and particles stick to each other after collisions:
Ji(t) 2 Ji(s),  whenever t>s>0; (29)

e The collision conserves momentum:

Zje],-(t)mjvf(t_)

Vi(t-l-) =
Zje]i(t)m]'

(30)

We will always index the particles in increasing order from left to right:

x1() < x(t) < - < xpn(t).
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Since the collision rules do not allow particles to cross each other, the order stays
unchanged for all time. It will be convenient to set notation for lowest and highest indi-
ces in a given J;(¢):

i,(t) = min J;(t), i*(t) = max J;(¢).

A time ¢ is called a collision time if the cardinality of one or more of the J;’s increases
at time t. At collision times, we make the convention that the v/’s are right continuous,
ie, vi(t) = vi(t+). We set v;(0—) = VJQ by convention, to account for the possibility that
some of the x¥ = x;(0)’s might coincide and create a ‘collision” at time zero. It is clear
that at most N — 1 collisions can occur. Thus global-in-time existence and uniqueness
of the sticky particle Cucker-Smale dynamics is a triviality.

3.2. Basic properties for the sticky particle Cucker-Smale dynamics

We begin by stating the maximum principle on (v,-)fil, which is well-known for the
Cucker-Smale dynamics without collisions.

Proposition 3.1. Suppose (x;(t), vi(t))~, follows the sticky particle Cucker-Smale dynam-

ics associated to the data (x%,v°, m;),. Then

i ; < y; < : i=1,... >s>0.
1rgnjlgr}l\]v](s) <w(t) < 1%%)1{\1V](S)’ for any i=1,.,N, t>s>0 (31)
[ 0N 0 1o
Consequently, if {x}}._ C [-R°R°), then

{xi(t)},L C [-R(t),R(t)], R(t):=R’+ tlrgj%)ﬁj\vﬂ, for all t>0. (32)

Proof. On collisionless time intervals, the bounds (31) follow immediately from the
dynamics of v; in (27). It is also clear that the collision rule (30) respects the maximum
principle (31). The assertion (32) follows immediately from (31). O

Remark 3.1. A nondegenerate alignment forcing in the velocity equation will often
decrease the best possible R(¢) in (32). In fact, under appropriate assumptions on the
size and support of ¢, the radius R(t) may be chosen independent of ¢, and each v;(¢)
will converge to the average v = > .m? as t — co. These phenomena are known as
flocking and velocity alignment and are well-known for the Cucker-Smale dynamics
without collisions, c.f. [7]. We will discuss these properties in the context of the sticky
particle Cucker-Smale dynamics and the Euler-alignment system in Section 7.

We now consider some properties of the sticky particle Cucker-Smale dynamics that
are unique to the 1D setting. These properties are connected to the quantity

Vi) = wi(t) + 3_m®(xi(t) — x(1)), (33)
j=1

where @ is the odd antiderivative of ¢, defined in (17). The quantity V; is a discrete
analog of the macroscopic ¥ from (8). It plays the same role in many respects that the
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particle velocities v; do in the absence of alignment force. Indeed, i; = v; in the degen-
erate case where ¢ = 0. The quantities y; have been used to study the 1D Cucker-
Smale dynamics without collisions [63, 64]. In the 1D sticky particle setup, they play a
crucial role in the analysis of collisions. We list two basic properties below.

Proposition 3.2. The quantities \; have the following properties.
(@)  Each ,(t) is constant in time in the absence of collisions; for any t that is not a

collision time,

d

i =0 (34)

(b) Iftis a collision time, we have
Zje],(t)mjlpj(t_)
Zje]i(t)mj

Eq. (34) is verified by differentiating the formula for y,(t) and using (27). It is a dis-
crete analog of (16). To prove (35), we apply the collision rule (30) and use the continu-
ity of the trajectories x;(¢):

Yi(t+) = (35)

Vi) = vi(t) + > _me®(xi(t) — xi(t))

k=1
N
_ e (nmyvi(t=) 2 je()™Mj (Zk:lmkq)(xj(t) - xk(t») _ e (o™i (E-)
2 jer™; 2jent™ X jen(o™;

3.3. The barycentric lemma

We are now in a position to state the following barycentric lemma, which is the key to
connecting the sticky particle dynamics with the entropy solutions of (15). A similar
argument has been implemented in [2, Lemma 2.2] for the pressureless Euler equation,
when ¢ = 0.

Lemma 3.3. Fix an i € {1,...,N} and a time t > 0. For any k € J;(t), we have

k i*(t)
D iy miW (=) S Djennmivy(t=) bi(t4) > > ik mi(t=)
k - . - i _— l'* .
D imi (™M 2 g™ Srm;

j=

(36)

Proof. It suffices to establish the following monotonicity property:
Vi(t=) 2 Vi (t=) 2 2 Y (t—). (37)

However, (37) follows directly from the corresponding obvious monotonicity property
for the velocities

Vi, (0 (=) = Vi1 (E=) = - = v (E-)s

after taking into account that y;(t—) — v;(t—) is independent of j € Ji(t). O
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4. Entropy solutions to the discretized balance law

In this section, we study the following discretized scalar balance law
&MN + 8x(AN(MN)) = (q’) * MN)axMN, MN(X, 0) = M?\](X) (38)

as a first step toward understanding (15). Egs. (38) and (15) are identical except for
notation; we write (38) separately to highlight the special discretized initial data MY
and flux Ay under consideration.

Let us describe our hypotheses. We assume MY, is piecewise constant, of the form

MY (x - + Zm, x— ) (39)

where the m] ’s are all strictly positive and sum to unity, as in (28). We also assume xJ <
x5 KN<oo < xN, and we use H to denote the right-continuous Heaviside function, with
H (0) — 1. Note that the range of My is discrete, consisting of the values ()Y, defined by

1 i
0i:=—>+ ;m] (40)

We define Ay as a continuous and piecewise linear function, with breakpoints only at

N—
(91');':11:
11 - . . .
Ay : 35 R, Ay is linear in each interval [0;_;,0;], for any i=1,...,N.

(41)

Our main purpose in this section is to demonstrate that one can generate an entropy
solution to (38) using the sticky particle Cucker-Smale dynamics. This builds a connec-
tion between the collision rules (29)-(30) and the entropy conditions for the scalar bal-
ance law (15). This connection will be further developed later into a selection principle
for a unique weak solution of the 1D Euler-alignment system.

Theorem 4.1. Consider the scalar balance law (38) with discrete initial data MY and flux
A, satisfying the hypotheses (39) (for some m;’s and x)’s as described above) and (41),

respectively. For each i = 1,...,N, define y} via

ma] = An(0;) — An(0i-1), (42)
and put
N
V=) — ij(l)(x? —x). (43)
=1

Let (xi(t),vi(t))Y, follow the sticky particle Cucker-Smale dynamics associated to the

masses (m;), and the initial conditions (x0,v?).|. Then

My (x,1) = —= + Zm H(x — x;(t)) (44)
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is an entropy solution of the discretized balance law (38). Moreover, we have

An o My(x,t) = Ay (— %) + Zmilﬁi(t)H(x — x;(t)). (45)

Proof. Since My(-,t) in (44) is piecewise constant, it suffices to check that the shock dis-
continuities along the curves C; = {(x;(t),t) : t > 0} satisfy the Rankine-Hugoniot condi-
tion (25) and the Oleinik entropy condition (26), with the shock speed a;(t) = v;(t).

Fix a point (x;(),t) on C;. By definition (44), we get
My(xi(t)—t) = 0, )1, Mn(xi(t)+,t) = My (xi(t), t) = Op-s).
We denote the jump of a function f across C; by [[f]] = f(xi(t)+) — f(xi(t)—). Thus
[Mn ()] = Oier) — Oi ()1 = Zmp

and from (42)

[[An o M (- )] = An(0:-5) — ij

Applying (35), we verify the Rankine-Hugoniot condition (25)

[[An 0 My (5] _ Sjeni™ivy
([My (- 1)]] 2jern™;
Next, we check the Oleinik entropy condition (26), that is,

AN(0) — An(0;,-1)
0 — 0,1 ’

= Y,(t) = vit) + ¢ * Mn(t), along C;.

Vi(t) + ¢ * My(xi(t), 1) <

0 € (0;. -1, 0 (r))-

Since Ay is piecewise linear, it suffices to check the inequality for 0 =0k, k€
{i*(t) -1,.., i*(t)}. Applying Lemma 3.3, we obtain

k
AN(Ok) = An (0 1) > MV Z;e/,
Ok — 05,1 Z]]'(:i*(t)mj ZJEL( )m
Finally, we check (45). The equality is trivial when x < x;(¢). For x > x,(t), let k be the

smallest index such that x > xi(¢). Then we have My(x,t) = 0, so that, recalling (42),
we have

= () = vilt) + ¢ * My (xi(), 1)

k

AN(My(x,t)) = An(0o) + z i-1)) = AN<> + Zm .

The conservation of momentum (35) implies that for our choice of x, we have

Zmlﬁ Zm‘// t)—Zml// H(x — xi(t)),

which ends the proof. O
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Remark 4.1. The flux Ay need not be exactly piecewise linear in order for the analysis
above to work, but it does need to satisfy certain requirements. More specifically, let Ay
be a Lipschitz function such that Ay(6;) = Ay(0;) for each i. One can repeat the ana-
lysis of this section, with Ay replacing Ay, and obtain the exact same weak solution
My (t) of the discretized system (38). This weak solution will be an entropy solution of
the discretized system (with flux Ay) if Ay > Ay, as one can readily check. On the
other hand, if the x?’s are all distinct and if AN(m) < An(m) for some m, then it is
immediate that My(t) is not an entropy solution.

5. The scalar balance law

In this section, we focus on developing global wellposedness theory for the scalar bal-
ance law (15), which we recall for the reader’s convenience:

IM + O (A(M)) = (¢ x M)O. M, M(x,0) = M°(x). (46)

The existence and uniqueness theory for entropy solutions of scalar conservation laws
has been well-established. The additional feature of (46) is the right-hand side of the
equation, which is both nonlinear and nonlocal, requires extra treatment. We show that
the entropy solution of (46), in the sense of Definition 2.1, exists and is unique.
Furthermore, it can be approximated by the sticky particle Cucker-Smale dynamics. We
also obtain stability bounds with respect to the initial condition M?, as well as the flux
A. Our main theorem is stated as follows.

Theorem 5.1. Consider the scalar balance law (46). Assume the initial condition M° is a
nondecreasing function and that there exists an R® > 0 such that M°(*x) = =1 for any
x > RO. Let the flux A : [-1,1] — R be a Lipschitz function.
(a) (Existence and Uniqueness) Given any T >0, the Cauchy problem (46) has a
unique entropy solution
M € BV(R x [0, T]).
(b)  (Approximability) For any T > 0, the entropy solution M of (46) on [0, T] can be
approximated by the discretized balance law (38), and hence by the sticky particle
Cucker-Smale dynamics, in the following sense. There exists a sequence of (explicit)

discrete initial data MY and fluxes Ay, satisfying the hypotheses (39) and (41),
respectively, such that the associated entropy solutions My of (46) satisfy

My —M —0 in C([0, T];L'(R)), (47)
and
My (-t) = OM(t) in M(R). (48)

for any t € [0, T] . Here, M is the space of measures.
(c)  (Stability) Let M be the entropy solution of the scalar balance law

M + Oy (A(M)) = (¢ = M)OM, M(x,0) = M°(x)

with initial data M° and flux A that satisfy the same assumptions as M® and A
respectively. Then for any t > 0, we have the following stability bound:
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1M, 8) = Mo )l gy < 1M = MOz + A = Al (49)

The rest of the section is devoted to the proof of this theorem. Before beginning in
earnest, however, we note the following. In our argument, we will need to differentiate
the composition of a Lipschitz function and a BV function. To make sense of such an
operation, one can use Vol'pert’s theory of the BV calculus [65]. The precise version of
the BV chain rule that we need is stated in [66, Lemma A2.1].

Lemma 5.2. Suppose W € BV)o(R) and f is Lipschitz. Then f o W belongs to € BVjoc(R),
and in the sense of measures,

4 W‘. (50)

0w <5

5.1. Existence and approximability

We start with the existence part of Theorem 5.1(a). The plan is to construct an entropy
solution of (46) using the front-tracking scheme, c.f. [Chapter 14, 67]. A front-tracking
approximation of (46) follows precisely the dynamics of the discretized balance law
(38); therefore, we will construct a sequence of approximated solutions My, extract a
limit M, and show that M is an entropy solution of (46).

Step 1: Constructing an approximation sequence

For a given N, we construct an initial condition M%, and flux Ay for the discretized balance
law (38). As long as the hypotheses (39) and (41) are satisfied, we can apply Theorem 4.1 to
get a solution My of the form (38). We give slightly more detail in this step than what is
strictly necessary for the proof of Theorem 5.1(a); we do this to allow for the reader to easily
compare the approximation scheme we use here with the one we use later in Theorem 6.7.

We begin with an N-tuple of positive masses (mi,N)fil that sum to unity (28). We
also assume

lim max m;y = 0. (51)
N—00l<i<N
A typical choice is m;y = 3;, so all particles have the same mass. Next, we define x{, by
Xy =inf{x: M°(x) > Oin}, i=1,...,N. (52)

where 0,y is defined in (40). It is easy to check that {X?,N}il C [-R%R°]. Then, MY,
can be constructed from (39). Finally, we define Ay as the piecewise linear approxima-
tion of A such that

AN(HI',N) — A(Qi,N)) l — 0, ey N (53)
The MY and Ay constructed through the procedure above clearly satisfy the hypothe-
ses (39) and (41). Moreover, they approximate M° and A in the following sense.
Lemma 5.3. The following inequalities hold:
My, = M°|| 1) < 2R max m;n, sup |Ay(m) — A(m)|<] A|LiP1r£i%)1(\1mi’N' (54)

1<i<N mE[f%,%]

In particular, MY — M® — 0 in L'(R) and Ay — A uniformly, as N — oo.
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Proof. Denote x{ y := —R°. We have

N px° N
BN
1My — M|y = D J (M°(x) = My(x)) dx < Y min(x)y = 61 y)
=

- 0
=LY% N

< 2R max mM; N,
1<j<N

which proves the first inequality in (54). Note that we may allow x](')—l,N = xﬁN for some
j’s, and the estimate above still holds. As for the second inequality in (54), fix m €

[—1,1] and choose i such that m € [0;_n, 0;n]. Then (41) and (53) imply

m — 01‘, 6," —m
An(m) = A(m) = =5 (A(0y) = A(m) + == (A(0in) — A(m),
which easily implies the second inequality. O

Step 2: Extracting a limit M

Fix a time T > 0. For any t € [0, T}, since My(t) is uniformly bounded and nonde-
creasing, we may apply Helly’s selection theorem and find a convergent subsequence
My, (t) in L}

oc(R). Using a diagonal argument, we can get a further subsequence, still

denoted by My,, that is convergent for all rational t € [0, T] in L, (R). We provisionally
denote the limit by M(t). We want to upgrade the convergence My, (t) — M(t) — 0
from L} (R) to L'(R) and also extend our conclusion to irrational times. The following
observation will help us achieve this.

Note that by (42), (43), and the monotonicity of ®, we have the following N-inde-
pendent bound on the initial velocities {:

N
Vil = Wiy = D min®(xly — x| < |Anly, + PRRY) < |A],, + ®(2R%).  (55)
j=1

Then, (32) implies that for ¢ € [0, T], we have {x,-,N(t)}fil C [-R(T),R(T)], where
R(T) = R* + T(|Al];, + ®(2R")). (56)

It follows that My(*x,t) = *3 for all x> R(T) and t € [0,T], and thus we have

My, (t) — M(t) — 0 in L'(R) for all rational times ¢ € Q,. The extension of this con-
vergence to irrational times is an easy consequence of the time regularity estimate

N
J |Mn(x,t) — My(x,s)]dx < Zmi|x,~)N(t) —xn ()< mjax|vgN| - (t—5) (57)
R — i

i=1

< (|Alyp + @2RY)(t —9).

We used (44) to get the first inequality, then the maximum principle (31) to get the
second, and finally the bound (55) to finish.

Combining (57) with the established convergence My, (t) — M(t) — 0 at rational
times, we conclude
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My, —M — 0 in C([0,T]; L'(R)).

The limit M has the desired properties: For each t € [0, T|, the function M(-,¢) is non-
decreasing, with M(*x,t) = =1 for all x > R(T). Moreover, the time regularity esti-
mate (57) implies a uniform bound

[0:M, (%, 1) || o < |Al, + @(2R%),  for all ¢ € [0, T].

Then, extracting a further subsequence, still denoted by My,, we obtain the weak-* con-
vergence

oMy, (-, t) = OM(-t) in M(R).
This also allows us to conclude that M € BV(R x [0, T]).

Remark 5.1. Once we show M is the unique entropy solution of (46) (through an argu-
ment independent of the existence proof), we can conclude that the whole sequence My
converges to M, finishing the proof of Theorem 5.1(b).

Step 3: Verifying the entropy conditions

Finally, we show that the function M we have constructed above is indeed an entropy
solution of (46). We do this by verifying the entropy inequality (23) for all Kruzkov
entropy pairs (17,q) in (24).

We know from Theorem 4.1 that My is an entropy solution of (38). Thus the
entropy inequality (23) is satisfied for (1,qn), where n(m) =|m —o| and gyn(m) =
sgn(m — a)(Ay(m) — An(a)). It reads

J JR[H(MN) 0+ qn(My)0xL + (¢ + My)C 9:(n(My))] dxdt > 0.

0
Now we pass to the limit. To simplify the notation, we write My instead of My, in
what follows. Define q(m) = sgn(m — a)(A(m) — A(x)), as in (24). For a fixed t € [0, T
(for which we suppress the notation), we use Lemma 5.3 and get

ln(My) = (M)l < [l | My = M| = [[My — M|, — 0,

s (M) — a1 < llaw (M) — g + la(M) — a(M)
< OR(T)Ax = All o ) + 1Al My — M, = 0.

This establishes convergence for the first two terms. The last term is more subtle; we
argue as follows.

First, we claim that ¢ * My converges uniformly to ¢ * M with respect to x, and that
this convergence is furthermore uniform with respect to t on [0, T]. This is immediate
if ¢ is bounded; otherwise we can consider a mollification ¢; of ¢ and estimate as
follows:

1+ My — ¢+ M|« < [[¢ = b5l [[My — M| = + [ fs[ [ My — M|

We can first choose d so that the first term on the right is small, then choose N large
enough to finish.
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Next, we note that (by Lemma 5.2) 0,(n(My)) is a bounded sequence in M(R):
10 (n(MN)) | v < 11lip-
The same bound holds for 0,(1(M)). Now we can write

T

JTJRw M) 0,0 M) dx i — |

0 0

[0« Mcoon acar
< [ IO 16+ M = 6+ M)

+

T
|| ] @ bcontan) - astnaa) axar
0
The first term on the right side of the above inequality goes to zero in light of the above
arguments. We can establish the vanishing of the second term similarly: Mollifying ¢
M if necessary, we write

T
j ij « M)L[D,(1(My)) — D (n(M))] dxdt

0

T
< j 1206 # M — (¢ M), ) 105 (1(Mav)) — Ds(n(M))] o dt

T
+ J 102 M) 1 I (M) — (M) d.

Note that mollification is unnecessary if ¢ is bounded. In any case, the continuity of
¢ * M and the compact support of { guarantee that ||{((¢ * M) — (¢ * M);)||,~ can be
made as small as desired by choosing J appropriately, after which we can choose N
large enough to make ||n(My) — n(M)||;; small. We thus obtain the entropy inequality
(23) and conclude that M is an entropy solution of (46).

5.2. Uniqueness and L' stability

We now prove the stability estimate (49). Note that uniqueness is a direct consequence
if we set M® = M° and A = A. We use Kruzkov’s doubling of the variables strategy,
with additional treatment of the nonlocal term on the right-hand side of (46).

For fixed (y,s), consider the Kruzkov entropy pair (24) with o = M(y,s), and a test
function {(x,t) = w(x,t,,s) to be specified later. Entropy inequality (23) reads

0< “|M(x, ) — By, ) Ow(x, £, ,5) dr dt
+ | [senoa(a.1) = 1, 9) (A1) — A, 9)) Dol 05) e
] [ M) ) @UMEs )~ B i, 7,9)
We omit the bounds of integration in most of the computation below. Unless otherwise

specified, the spatial variables x and y are integrated over R, while the time variables f,
s are integrated over [0, T1.
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We perform the analogous manipulations, with A replacing A and the roles of
M(x,t) and M(y,s) interchanged. Integrating over the remaining free variables in both
cases and adding the results yields

0< J |M(x,t) — M(y,5)| (0w + Osw) (x, £, ,5) dx dt dy ds
+ Jsgn(M(x) £) = M(3,9) [(A(M(x,1) — A(M(3,5))Dw(x, 1, )
+ (A(M(x,t)) — A(M(y,s)))0,w(x, t,y,s)| dxdtdyds

] [ st 9lio  mymnanistten) = )
+ (¢ % M)(9,5)0,|M(x, t) — M(y,s)|] dxdtdyds.

(58)
We introduce the auxiliary variables
X X — - t+s t—s
5{: +y’ 5/: y, t:i, and 327,
2 2 2 2

and we take a test function of the form

st =0 (52 ) (5o (32 s (15 = b0 st

where b,, g, hs are smooth, nonnegative functions satisfying the following properties.

e The functions (b;),., approximate the Dirac delta distribution as ¢ — 04 . We
take b, to be a standard mollifier, supported in (—¢,¢) and having integral 1.
The function g is identically 1 on [-R(T),R(T)] and is compactly supported.
The functions (hs);., approximate the indicator function of [s, t] as 6 — 0 +. We
take h; to be identically 1 on [s, t], identically zero outside [s — 0,¢ + J], and linear
on [s — d,s] and [t, ¢ + J].

To proceed, we shall substitute our test function into (58), using the auxiliary varia-
bles. Observe that

Oi+0. =0 O+0,=0n Oc—0,=0

We now rewrite our inequality in terms of the new variables. In particular, the brack-
eted part of the second term on the right side of (58) can be rewritten as

(AL (M) — AL (M)) 0w+ (A_(M) — A_(M)) Iw,
where we have used the shorthand notation
A(m)=A
Ai <m) = (m) (m)
2
and suppressed the arguments of M and M. The latter will be equal to (x,t) = (%X + J,
t+5) and (y,s) = (X — y,t — 5), respectively, for the rest of the computation below.

Note that if the fluxes A and A are identical, then A, reduces to their common value,
while A_ vanishes. Hence, A_ encodes information about stability with respect to the flux.
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Next, we rewrite the bracketed part in the last term of (58) (again suppressing argu-
ments) as

G*M-+dxM
2
Substituting the above into (58) then yields

_ M—¢*M
-3;C|M—M|+%

- 05|M — M.

0< J J J J[|M—Z\7I| Orw -+ san(M — B) (A (M) — A, (M))sw] dx dE dy ds

+ J J J Jsgn(M M)A (M) — A_(8))0,w dx dF dy ds

+%J,[JJ(¢*M+¢*M)W'82|M—M|d5cdtd)7d§ (59)
+;JJJJ(d’*M—¢*M)W.ay|M_M|dxdtdyds

We want to take ¢ — 0, which will effectively set ¥ and s equal to zero. Before we can
do this, however, we need to deal with the ¥ derivatives. We treat the second integrable
above first, making use of the following lemma to justify the necessary integration by parts.

Lemma 5.4. The function
(M. ) := sgn(M — M)(A_(M) — A_ (i)
is Lipschitz in both variables M and M, with
‘y("M”Lip < |A*|Lip’ |V(M">|Lip < |A*|Lip'

Proof. Fix an M and pick M; < M,. We consider two cases. First, if M; and M, are
both greater or both less than M, then

[p(My, M) — (M, M)|=| A_(My) — A_(My)|<| A_|y;,| My — My|.
If on the other hand we have M; < M < M,, then
[9(My, B1) — (Mo, S1) <] Ay (B — My) + [A- [y (Ma — B1) = [A_], | My — Mol

The estimate |y(',]\~/I)|Lip < |A_|y;, follows. The other bound can be obtained in the

same way. ]

Now, we apply (50) with f(z) =y(z,M),W =M and f(z) = y(M,z), W =M.
Lemma 5.4 yields

d - _ - _
‘@V(M,M)' <Al [OM(x + 3,8 +9)] + |A_|, [OM(x -, —53)|.

Here 0, denotes differentiation with respect to the first (spatial) argument.
We also use the following estimate in the fourth integral of (59):

d _ _ i , 8 _
‘dy|M(x+y,t+s)—M(x—y,t—s)| < |OME+7,T45) + OM(x — 5, —3)|.
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We now collect all the estimates above and take ¢ — 0 in (59). For simplicity, we revert
to the notation (x,¢) in rather than (X,f) in this inequality and the following ones. We
obtain

0< “UM(x, £) — ¥(x1)] g()H)(t) + sgn(M — F1)(A, (M) — A, (B1))g (x)hs(1)] dxdt

+ ” Ay (1M + |0])g (0)hs (1) dx dt

4%”[(15* (M + M) - 9|M — M| + (¢  |[M — M|) -| M + 0. M|]g(x)hs(t) dx dt.

Next, we recall our choices of ¢ and h;. We can drop the second term in the first
integral above, since ¢’ =0 in [—R(T), R(T)]; we also replace g by 1 for the rest of the
terms. Taking 6 — 0, we get

J|M(x,t) — M(x,t)| dx

_ 1 - [
< J|M(x»5) — M(x,s)|dx + A —A|LipJ

s

J|8xM| + (0] dx de

t
—|—%J J[d)* (3xM+3xM).6x|M—M| + |axM+axM|(q)*8x|M—]\~/I\)} dx dr.

N

(60)

Up to this point, we have not used the fact that M and M are nondecreasing. We take
advantage of it in this final step by replacing |0,M| with 0,M, etc. Under these replace-

ments, the second term in (60) becomes |A — A|Lip(t —s), while the last term in (60)

vanishes identically due to the oddness of ®. The stability bound (49) follows immedi-
ately, upon taking s = 0.

6. The entropic selection principle for the Euler-alignment system

In this section, we come back to our main 1D Euler-alignment system (14). Recall

{ 0up + Oc(pu) = 0, { p(x,0) = p°(x),
O (pu) + 0c(pu®) = p( * (pu)) — pu(¢ * p), u(x,0) = u°(x).

We construct a uniquely determined weak solution of (61), using the entropy condi-
tions (22) for the scalar balance law (15) in our selection principle. Theorem 6.3 details
the process by which our solution is constructed; we prove that the resulting object
meets the requirements of Definition 6.2 below. Finally, we explicitly connect our solu-
tion to the sticky particle dynamics (27)-(30). We demonstrate in Theorem 6.5 that the
sticky particle Cucker-Smale dynamics can always be used to approximate the solution.
Moreover, Theorem 6.7 gives a much stronger conclusion under additional hypotheses,
by fashioning an explicit rate of convergence of the sticky particle approximation for
the density profile.

Let us denote by P.(R) the space of probability measures with compact support. We
will use the Wasserstein-1 metric to quantify the distance between elements of P (R).

(61)
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Definition 6.1 (Wasserstein-1 metric). Let p,p € P.(R). The Wasserstein-1 distance
between them is

| 7ot~ | saneo

R R

Wi(p,p) = sup
Lip(f)<1

It is well-known that if M and M are cumulative distribution functions for p and p
defined in (20), respectively, then W,;(p,p) = |M — M||,,. We will consider P.(R)
equipped with the Wasserstein-1 metric. In this setting, WV, convergence is equivalent
to weak-* convergence in the sense of measures.

Next, we make precise what we mean by a weak solution of (61).

Definition 6.2 (Weak solution). Let p° € P.(R) and u° € L>°(dp°). Define P° = p°u°,
which lies in the space of signed measures M(RR). We say that (p,P) = (p,pu) is a
weak solution to the Euler-alignment system (61) if for any T > 0,

p € C([0, T]; Pc(R)).
P(-,t)e M(R) for any t € [0, T]. Moreover, P(-,t) is absolutely continuous with
respect to p(-,t), with the Radon-Nikodym derivative u(-,t) € L>°(dp(t)), where
u(-,t)dp(-,t) = dP(-,t), for any t € [0, T).
(p, u) satisfies (61) in the sense of distributions.

e The initial condition (p° P°) is attained in the following weak sense for every f €
CX(R):

i | FCdp(er) = JRf(x)de ():  Jim JRf(x)dP(x, = JRf(x)dPO (). (62)

t—0+ R

6.1. Construction of the solution

Let us start by introducing the generalized inverse of a nondecreasing function M, defined as

11
M '(m) =inf{x € R: M(x) > m}, m € (—E,E]
It is a left-continuous function.
Now, we construct our solution through the procedure in the following theorem,

which aligns with the formal derivation in Section 2.1.

Theorem 6.3 (The entropic selection principle). Let p° € P.(R), u® € L*(dp°) and
P% = p%u®. We construct a unique pair (p,P) from the following procedure:

(i) Let M%(x) = p°((—o0,x]) =1 and y°=u®+ ®xp°. Define a Lipschitz flux
A: -1 —>Rby

A(m) = Jia(m/)dm', where  a(m) = y° o (M°)"(m). (63)

2

(i) Let M be the unique entropy solution of (15) associated to the initial data M° and
the flux A.
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(iii)  Define (p,P) from M via the formulas
p=0M, P=—0M=0d(AoM)— (¢*MOIM. (64)

Then (p,P) is a weak solution of the 1D Euler-alignment system (61) in the sense of
Definition 6.2. Moreover, we can define u(-,t) = 31;—8; to be the Radon-Nikodym derivative
of P(t) with respect to p(t). u(t) is uniquely defined p(t)-a.e.

Remark 6.1. The definition (63) of the flux A is made to guarantee that A(M°) = Q° =

j(ioo,‘]l,bodpo (c.f. Section 2.1). However, the identity A(M°) = Q° determines A uniquely
only on ImM?°, which is a proper subset of [—1,1] if p° has a singular part. What if one
defines A differently away from ImM?°? It turns out that if A is a Lipschitz function that
agrees with A on ImM?°, and such that A > A, then the procedure above produces the
same M (and thus the same (p, u)) regardless of whether A or A is used. Making sure
A is chosen according to these conditions can be thought of as enforcing the ‘stickiness’
at time zero. We have already seen the discrete version of this observation in Remark

4.1. We leave the details to the interested reader.

Proof. Our first step is to check that M° and A satisfy the assumptions of Theorem 5.1.
The required properties of M° follow directly from the fact that p° is a nonnegative,
compactly supported probability measure. Indeed, the number R® can be chosen so that
suppp® C [-R%, R°]. As for A, we note that

11 e a0y < 180l a0y + PRR),

which is bounded. It follows that A as defined in (63) is Lipschitz. Since M® and A are
of the desired form, we can apply Theorem 5.1 and obtain a unique entropy solution
M € BV(R x [0, T]) of (46), for any fixed time T > 0.

Now, we verify (p,P) is a weak solution of (61). First, p € C([0, T]; P.(R)) follows
from (47), and P(t) = —O:M(t)e M(R) is a direct consequence of (48). Let us turn
our attention to u. Since M € BV(R x [0, T]), we can perform BV calculus, e.g. [Lemma
4.2, 48], and deduce that there exists a measurable function y = /(x,t), bounded by
|Alp;, and uniquely defined p(t)-a.e., such that

Ox(A(M)) = YO:M, OH(AM)) = YoM, (65)
in the sense of measures. Then P(t) defined by (64) is given by
P(t) = (Y — (¢ M))0M(t) = (Y — D p)p(t),
so that u = — @ * p inherits the required boundedness and uniqueness properties
from  and p.

Next, we show that (p,u) satisfies (61) in a distributional sense. From (46), (64) and
(65) we get

Op = O (OM) = 0, (O:M) = —0,P = —0x(pu),
O (pY) = OL(A(M)) = O (YOM) = —0,(YP) = —Ox(pu).
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We then recover the momentum equation in exactly the form (61), as follows:

Oi(pu) + x(pu®) = (Dr(py) + Ox(pup)) — B:(p(® * p)) — De(pu(® * p))
= —(0ip + Ox(pw)) (@ * p) + p(@ * Ox(pu)) — pu((0: @) * p)
= p(¢ = (pu)) — pu(¢ * p).
Finally, we check the initial conditions (62). From continuity of p in time, we have

Wi(p(t), p°) — 0, which implies the first equation in (62). For the second equation, we
apply (64) to obtain

j F()dP(x £) = j F()AM(x, 1) dx — ij<x><¢ « M) (3 1)dp(x, ).

R R

We can pass to the limit as t — 0+ for the two terms separately. For the first one, we have

URf%x)A(M(x, 1) dx - ij'<x>A<M0<x>> dx| < |4 Il 1M £) — MO, — 0.

As for the second one, we write

\ | 70 « 20 08050 = | 7310+ M) 0120

<

J f)((@ -+ p)(x,1) — (@ p°)(x))dp(x, t)’ +

R

| 7@ 7)) [apts -0 0]
We note that the weak-* convergence p(t) — p° implies that the second term above
vanishes as t — 0+, and also that @ * p(t) — ® x p° pointwise; the latter allows us to
conclude that the first term also vanishes as t — 0+, after an application of the domi-
nated convergence theorem.

From our construction, we have P(0) = (y° — @ % p°)p® = p°u® = P°, so the above
calculations finish the proof. O

6.2. Approximation by sticky particle Cucker-Smale dynamics

One of the most important features of our entropic selection principle is that it associates
to atomic initial data a solution of the Euler-alignment system that is described by the
sticky particle Cucker-Smale dynamics. The proposition below gives the precise statement.

Proposition 6.4. Consider the 1D Euler-alignment system (61) with atomic initial data

N N
P (x) = Zmi,Né(x — ng), P(x) = Zmi,NvgNé(x — ng), (66)
i=1 i=1
where the x)\’s all belong to a fixed compact set and the my’s satisfy (28). Let
(xin(t), vin(t)) be the solution of the sticky particle Cucker-Smale dynamics with initial
data (min, X}y, V?,N),Iil- The solution of the 1D Euler-alignment system selected by the
procedure in Theorem 6.3 takes the form

N N
pn(t) = mind(x —xin(t),  Pu(xt) =Y minvin(0)3(x — xin(1)).  (67)
i=1 i=1
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Proof. Let MY, l//?\,, Ay, and ay be defined as in the step (i) of the procedure in

Theorem 6.3. Let O,y = >

j—1mjn for i =0,..,N. Clearly MY, can be expressed as

1 N
My (x) = - 5 + Zmi,NH(x - ng), (68)
=1
and we have
(MY) ' (m) =xly,  me (01,0, i=1,..,N.

It follows that ay is piecewise constant and Ay is piecewise linear, with breakpoints
at the 0;’s. Thus the hypotheses of Theorem 4.1 are satisfied. Furthermore, the quanti-

ties l,ng defined as in (42) satisfy

iy = Ay(m) = ax(m) = d(xiy),  me (0i-1,0).

We define ¥, by (43) and verify that it coincides with )y, from (66):
1N = 1N Zm]N(D ) (le (I)*p?\])(ng) :VgN'

Next, we apply Theorem 4.1 to obtain the entropy solution My of (38) associated to
MY, and Ay. According to (44) and (45), we have

N
My (x, t) = —1 + Zmi,NH<x —xin (1)),
i=1 (69)

An o My(x,t Zmleﬁ,N (x — x;n (1)),

where

N
Yin(t) = vin(t) + ij,Nq)(xi,N(t) —xn(t), i=1,..,N.
=

It immediately follows that py, = 9,My is given by (67).
As for Py, we write

Pyn(x,t) = Oy(AN o My)(x, 1) — (¢ * My)O My (x, t)

= me,wi,N(tﬁ(x —xi(1) = (@ py) (x, 1)) _mind(x — xin(t))

i=1

= me Vin(t) = > min®(xin () — xin (1) | 6(x — xin (1))

j=1

N
Z minVin ()0 (x — xin (1)),

which finishes the proof. O
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A direct application of Theorem 5.1(b) gives a convergence result for the sticky par-
ticle approximation.

Theorem 6.5. Let (p°, P°) satisfy the hypotheses of Theorem 6.3, and let (p,P) be the
unique weak solution to (61) that it generates. There exists a sequence of (explicitly con-
structed) atomic initial data (p3, PY) -, such that if (py,Py) denotes the solution associ-
ated to (p%, P;) by the entropic selection principle, then for any time t > 0, as N — oo,
we have

Wi(pn(t), p(t))— 0, (70)

and

Py(t) = P(t), in M(R). (71)

Proof. Let A, a, M, and (p,u) be defined from (p° u°) through Theorem 6.3. We take

(p%> PY) as in (66), with (m;y,x0y)Y, chosen according to (51) and (52), and ()Y

defined by

Oin N
Wy = 1 J a(m)dm — > “mn®(xy — ). (72)
MiN Jo,_1n =1
By the proof of the above proposition, the solution (py,Py) generated by the entropic
selection principle is given by (67). Moreover, defining discretized initial data MY and
flux Ay from (p%, PY), we have that My defined by (69) is the associated entropy solu-
tion of (38). Now, we can apply Theorem 5.1(b). In particular, (70) is equivalent to
(47). Since O;My = —Py and O;M = —P in the sense of measures, we get (71) directly
from (48). O

Next, we provide a refined estimate of (70), with an explicit convergence rate on the
sticky particle approximation to our solution.
For p° € P.(R), let us denote by [x),x?] the smallest interval such that suppp® C
[x),x?]. The diameter D° is defined as
D° = diam suppp® := x? — x).
We start by constructing a well-prepared atomic approximation of p°, described in the

next proposition.

Proposition 6.6. Let p° € P.(R). For any fixed N € N, there exists (m,-,N,ng)fil such
that

D° D°

1M° — Ml gy < N’ (M) ™" = (M)l - (73)

where MY, is defined in (68).

Proof. We first locate all the large internal vacuum intervals of p°, namely I, =
(ar, bx) C [x0,x%] such that by — ax > 2 and p°(Iy) = 0. There are clearly fewer than N

such intervals. Let Sl(\}) = {ak}Ik{:l be the collection of all left endpoints of the I;’s. We
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Figure 1. A sample construction of the N-tuple (X}?N)L. The shaded areas represent the support of

p°. In this example, N = 10, and there are two large vacuum intervals (aq,b;) and (ay, b,). Thus
1) = {a,a,}, and the set S( ) is constructed by taking 8 equally distributed points in [0, L] and
mappmg back to [x?,x°].

take N — K additional points, equally distributed, to partition [x),x?] into a total of N

intervals. More precisely, we map [x),x"]\UK_ Ix to a single interval [0, L], with L <

(N—K)D°

+—, and we take equally distributed nodes (gt )?:L. Note that the distance

N-K)i=1
between adjacent nodes is ip < %0. If the location of some node coincides with the

N
image of a point in Sﬁ?, we can perturb the node slightly, in such a way that the dis-

tance in [0, L] between any two adjacent nodes is still less than %0. Now, we can take
the inverse map of the selected nodes to [x),x"]\UK_ I and form a set S(z) We then

order the set Sy = Sz(\}) U Sg) to obtain an N-tuple (x IN) . Our construction is illus-
trated in Figure 1.

We define an important quantity xjy as follows. If i — 1 € SI(\?, ie, x) | v = ak, we

* : (2) x40 S x40
set xjy = by. If i — 1€ Sy, we set xjy = x;_ | . For i =1, we set x]y = x;. Our con-

struction clearly guarantees

DO
0<x)y—Xy<—, i=1L.,N. (74)
N
Next, we define m;y = p°((x]_, y»x0y]) for each i=1,..,N. (We take xJ, = —oo for

convenience.) By construction, each m;y is strictly positive. As usual, define 0;y =

-3+ Z]l::lmj,N, i=0,1,..,N. It is easy to check that the x{\’s as defined above satisfy
xEN = inf{x : M°(x) > Gi,N}, i=1,..,N.

Moreover, we have

M (x) :—1+Zm,NHx—x ) < MO(x),

with equality attained at x = x{y, as well as when x € I;. This implies

DO

|| o) = e |dx<Zm,N ) <o

where we have used (74) and Zfilm,»,N =1.
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For the second inequality in (73), take any i = 1,...,N and m € (0,_1n, 0;n]. By def-
inition, (MY) ™' (m) = x?y. We claim that (M°)™'(m) € [x}y,x%]. Indeed, in the case
x) N € S(ﬁ), we have M°(xiy) =01y < m and therefore (M°)™'(m) > xiy; on the
other hand, if x) € Sﬁ) or if i=1, then since p((x]_,y,xfy)) =0, we have
M°(xiy—) = 0i_1y < m, which also implies (M°)~'(m) > x;. Finally, we apply (74)
and conclude by writing

0 < (M) (m) — (M®) ' (m) < x}y —xy < 57
O

Under an additional regularity assumption on ¢ and on u’, we can now apply the

stability estimate (49) in Theorem 5.1(c) to obtain an explicit error estimate for a sticky
particle approximation to our solution, with the approximate initial density chosen
according to the previous proposition.

Theorem 6.7. Let f§,s € (0,1]. Assume there exists a neighbourhood of 0 inside which

o (x) < c|x["" for some ¢, > 0. Suppose p° € P.(R) and u® € CP([x),x°]). There exists a
sequence of (explicitly constructed) atomic initial data (p%,PY)y._, such that the corre-
sponding solution of (61) satisfies

Wip(8), py(8)) < CA+ N,y =min{s, B}, (75)
for any t > 0, where the constant C depends on D°, ¢, c;, s, f, and |u°|c.
Proof. First, we construct the approximated initial data (p%,P%) via (66), with
(m,«,N,ng)fil chosen according to Proposition 6.6, and (V?,N)fil defined as follows. Set

° = u® + @ % p° as in Theorem 6.3. Note that our assumption on ¢ guarantees that ®
is locally C%; the same is therefore true of @ * p°. Thus ° € C'([x?,x°]), with

|w0|C'/([X?’x9]> < |u0|cy(|:x?’x9:|> + |(D * p0|CT([x?,x9])~ (76)
We can then simply take 7 = y°(x{y) and define v?y using (43).
Next, we apply the stability estimate (49) with M = My, to get
Wi(p(t), oy (1) =l M(t) = My (> H)llp gy < IM° = MYl + tlla — anll i sy-

The first term can be estimated directly from (73). We calculate the second term as
follows:

la = axllpe gy = 197 0 (M) = P o (M) ™y
< Wl 1M = 42071

< W lo N

] +||( lﬂo - lpON) o (ng)_lHLoc(,%)%]

11
272

Here, since (M%)~ maps (—1,1] to (x ?N)f\il, we only need to make sense of the func-

tion Y3 on (x¥y)N, where we have Yy (x%) =y (x%) by construction. This
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eliminates the last term in the penultimate line. The last inequality is then obtained
using (73), and (75) follows immediately. O

7. Asymptotic behavior of the solution

In this section, we discuss the asymptotic behaviors of our weak solutions (p,P) to the
1D Euler-alignment system (61). The expected flocking phenomenon has two main
ingredients.

First, we denote by D(t) the diameter of the support of p(, t),

D(t) := diam suppp(t) = x,(t) — x4(t), (77)
where [x/(t), x,(t)] is the smallest interval that contains suppp(t). We say that the solu-

tion experiences flocking if D(t) remains uniformly bounded for all time, i.e., there
exists a constant D > 0 such that

D(t) <D, forall t>0. (78)

Second, we say that the solution experiences velocity alignment if the variation of the
velocity u(-,t) decays to zero as time approaches infinity. Since our weak solutions
(p,P) only determine the velocity u(-,t) uniquely p(t)-a.e., we shall make sense of the
maximum and minimum velocities as follows:

L)

e SRS & rrerprrers Jof (x)dP( ) (79)
fe}' >

ui () = feF [of (x)dp(x, t)’

where
- {f € C*(R) : JRf(x)dp(x, ) > 0}.

One can check that the definition of u, in (79) is equivalent to the essential supremum
of u:

uy(t) =inf{c: p(t)({x: u(x,t) > c}) = 0}.
Now, we are ready to define V(t), the variation of u(-,t), by
V(t) = up(t) —u(t). (80)

Velocity alignment happens when V(¢) — 0 as time approaches infinity. In particular, if
V(t) decays to zero exponentially in time, we say the solution has the fast alignment
property.

The fact that both mass and momentum are conserved for the Euler-alignment sys-
tem implies that whenever velocity alignment occurs, the limiting state of u must be

given by the ratio 4 = [ g We say that strong flocking occurs (c.f. [1]) if p also

fp“dx
converges to a limiting state p_, in the following sense:
Wi(p(- + ut,t), p,,) — 0, as t —+00 . (81)

For regular solutions, it has been shown in [33] that if ¢ has a fat tail (9), then strong
solutions must flock: any smooth solution (p,u) of the Euler-alignment system (1)
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experiences flocking and fast alignment. (See also [68] for strong flocking in the sense
above.) We will show that the same flocking phenomenon occurs for our weak solu-
tions. Our strategy is to obtain flocking estimates for solutions to the sticky particle
Cucker-Smale dynamics which are uniform in the number of particles N. Then we will
use the convergence results for the approximations from Section 6.2 to pass the proper-
ties to (p, P).

7.1. Uniform flocking estimates on the sticky particle approximations

The flocking phenomenon for the Cucker-Smale dynamics (2) has been first studied for
general protocols ¢ in [7]. The idea can be easily adapted to the sticky particle
dynamics.

Consider a sequence of sticky particle Cucker-Smale dynamics (m;n, x;n(t), vin(t))
that approximates the Euler-alignment system (p, P). The discrete analog of the diam-
eter is

DN(t) = 12?§N|xi,N(t) — Xj)N(t)|: XN,N(t> — xl,N(t), (82)

and the variation of velocity becomes

Vn(t) = éni,]'glngM,N(t) —vin(t)|= 12%)1(\1Vi’N(t) - élilgr}vvi’N(t)' (83)

Note that using the approximations of the initial data (m;y,x]y,v}y) constructed in
Theorem 6.5, it is easy to verify that

Dy(0) < D°,  Vy(0) < V' (84)
We are ready to establish uniform flocking estimates for the sticky particle Cucker-
Smale dynamics.
Theorem 7.1. Let (xin(t),vin(t))~, be a sequence of sticky particle Cucker-Smale
dynamics associated to the initial data (m,»,N,ng,vgN)fil. Define Dy(t) and Vy(t) as in
(82) and (83). Assume (84) holds, and that

sup®(R) > &° := ®(D°) 4 V°, (85)
R>0

where we recall the definition (17) of ®. Then for all t > 0, the sticky particle dynamics
satisfy the following estimates, uniformly in N.

Flocking : sup Dy(t) < D := & (&%) < +oo; (86)
>0
Fast alignment : Vn(t) < V° exp (—¢(D)t); (87)

Proof. Tt is well-known that on time intervals where (x;(t),v;(t))), follow the (collision-
less) Cucker-Smale dynamics, the quantities Dy(#) and Vy(t) are Lipschitz continuous
and satisfy the following differential inequalities at every time t where they are differen-
tiable:
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Dy(t) < V(1) (88)

Vn(t) < —(Dn(t)) Va(t). (89)
Define a Lyapunov functional En(t) = ®(Dy(t)) + Vn(t). It clearly follows from (88)
and (89) that Ex(t) is nonincreasing along intervals during which no collisions occur.
On the other hand, if ¢ is a collision time, then Vy(t) < Vy(t—) by the maximum prin-
ciple, while ®(Dy(t)) is continuous at time t. Therefore Ey(t) is nonincreasing on all
of [0,00).

Let us now assume that (85) holds. Since Ex(t) is nonincreasing, we have
D(Dy(t)) <E n(t) < En(0) < E° for all t>0.

This implies (86). Note that @ is a nondecreasing function in [0, 00), and the assumption
(85) guarantees that £ lies in its range. Therefore, D = ®~!(£°) = inf{R : ®(R) > £°} is
well-defined and takes a nonnegative finite value.

Finally, combining (86) and (89) and using the fact that ¢ is radially decreasing, we
obtain (87). O

7.2. Flocking for the 1D Euler-alignment system

Theorem 7.2. Let (p°, P°) satisfy the hypotheses of Theorem 6.3, and (p, P) be the associ-
ated solution. Assume (85) holds. Then the solution (p, P) experiences

Flocking : sup D(t) < D := ® (&) < +o0; (90)

0
Fast alignment : V(t) < V? exp (—p(D)t); (91)
Strong Flocking : Wi(p(-+ut,t),p) — 0, ast——+oo, for some p,, € P(R).
(92)

When the communication protocol ¢ has a fat tail (9), we get limg ., ®(R) = oco.
Therefore, (85) holds for any finite D® and V°. Hence, Theorem 7.2 implies that our
weak solutions must flock in the presence of a fat-tailed ¢.

Before giving the proof, we state the following Lemma.

Lemma 7.3. Let p, p € P.(R). Denote D and D the diameter of the support of p and p,
respectively. Suppose D < D. Then, there exists a constant ¢ > 0, depending only on p
and D — D, such that W (p, p) > c.

Proof. Let [xs,x,] be the smallest interval that contains suppp, so that D = x, — x;.
Define ¢ = D — D > 0. Since suppp has the smaller diameter, we must have p(I) = 0
for at least one of the intervals I = [x;, %, + %) or (x, —%,x,]. Consider the first case. Let
fv be a Lipschitz function which is supported in [x; — & x;, + %), takes the value 1 in
[xe(t), x¢(t) + 5, and satisfies |fy|;;, < 4¢~'. Then
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B 4 Xty
Wi(p,p) > —J dp(x) = ci(p.€) >0

€ Jx

A similar argument works for the other case and yields W (p,p) > ¢,(p,€) > 0.
Thus, we get a positive lower bound ¢ = min{¢/(p, ¢), c:(p,€)} > 0, which only depends
on p and . O

Proof of Theorem 7.2. Let (py,Pn)n-; be a sequence of sticky particle approximations.
We will establish (90) and (91) using the uniform flocking estimates on (py,Py) fur-
nished by Theorem 7.1, as well as the convergence results for the sticky particle
approximation in Theorem 6.5. Note that (72) guarantees that > 1 ,m;xv?y = [ p%u® dx
for each Nj therefore we may assume without loss of generality that both are zero, by
Galilean invariance.

We first show (90) by contradiction. Assume there exists a time ¢ such that D(t) =
D + ¢, with some ¢ > 0. We apply Lemma 7.3 below with p = p(t) and p = py(t) and
get Wi(p(t), py(t)) > ¢ > 0, where ¢ = ¢(p, ¢) is independent of N. This uniform posi-
tive lower bound contradicts the convergence (70).

Next, we turn to (91). Fix a time ¢ > 0. In view of (79), we can find a sequence of
test functions f; € COO(]R), normalized by [fi(x)dp(x,t) =1, such that wu,(t) =
limy_o [ofk(x)dP(x, t). For each k, we apply the convergence results (70) and (71) to
get

dm | f@dpy0) = | Adpet) =1, lim | AlodryGen) = | fdp(eo),
R R R R
We therefore obtain

= 1l1im —ijk "
JRfk(x)dP(x, )= Jim P aer

Similarly, we find a sequence of normalized test functions gy such that u_(t) =
limy_o [rgk(x)dP(x, t). We may thus write

J fi(x)dP(x, t) — J gk(x)dP(x,t) = lim (‘[Rﬁ‘ )dPr(6t)  Jpgr(x)dPy(x, t)>
R R

N=oo \ [pfi(x)dpn(x.t)  [pgi(x)dpy(x.t)
< lim sup(ma)l(\]v,N(t) — min V,N(t)) = limsupVy(t) < V° exp (—¢(D)t),

N—oo 1<i<N N—oo
where we have used the uniform fast alignment estimate (87) in the last inequality.
Finally, we take k — oo and use the definition (80) to conclude (91).

We finish by showing that the sequence (p(t)),., is Cauchy in (P.(R), W), which
allows us to conclude the existence of a p., such that (81) holds. We compute as fol-
lows, leveraging the estimates (90) and (91) that we have just established. For 0 < #; <
t,, we have
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NE

N 153
Wi(pn(t), pn(82)) < ) minlxin(t) — xin(f2)|< Zmi,NJ vin(t)] dt

1 i=1 h

m,-,NrZVO exp (—¢(Dt)) dt

f

NE

1

2V0 -
< —=exp (—¢(D)ty),
Pick t; large enough so that the right side of the above is small. Choosing any t, > t;,
then N = N(t;,t,) large enough, we may conclude that

Wi(p(t), p(t2)) <Wa(p(tr), pn(0)) +W (o (81), py(82)) +Wa(pn (), p(82)

can be made as small as desired. This completes the proof. O

Remark 7.1. The structure of the measure p,, has been analyzed extensively in [68] in
the context of classical solutions (c.f. also [69]). In [68], the authors studied mass con-
centration in the limiting profile p,, by demonstrating a correspondence between the
set where ¢’ is zero and the singular support of p_.. It would be interesting to study the
structure of p_, for the weak solutions considered in this paper—it is far from straight-
forward to predict the outcome from the initial data. We leave further consideration of
this question for future work.
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