
Discontinuous Galerkin method for linear wave

equations involving derivatives of the Dirac delta

distribution

Scott E. Field, Sigal Gottlieb, Gaurav Khanna, and Ed McClain

Abstract Linear wave equations sourced by a Dirac delta distribution 𝛿(𝑥) and its

derivative(s) can serve as a model for many different phenomena. We describe a dis-

continuous Galerkin (DG) method to numerically solve such equations with source

terms proportional to 𝜕𝑛𝛿/𝜕𝑥𝑛. Despite the presence of singular source terms, which

imply discontinuous or potentially singular solutions, our DG method achieves global

spectral accuracy even at the source’s location. Our DG method is developed for the

wave equation written in fully first-order form. The first-order reduction is carried

out using a distributional auxiliary variable that removes some of the source term’s

singular behavior. While this is helpful numerically, it gives rise to a distributional

constraint. We show that a time-independent spurious solution can develop if the

initial constraint violation is proportional to 𝛿(𝑥). Numerical experiments verify

this behavior and our scheme’s convergence properties by comparing against exact

solutions.

1 Introduction

In this article we describe a discontinuous Galerkin (DG) method [20, 15, 6, 8, 5, 7]

for solving the wave equation

−𝜕2
𝑡 𝜓 + 𝜕2

𝑥𝜓 +𝑉 (𝑥)𝜓 =

𝑁∑︁

𝑛=0

𝑎𝑛 (𝑡, 𝑥)𝛿 (𝑛) (𝑥) , (1)
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where 𝑥 ∈ [𝑎, 𝑏], 𝑉 is a potential, 𝛿 (𝑛) (𝑥) = 𝜕𝑛𝑥 𝛿(𝑥) is the 𝑛th distributional deriva-

tive [14] of a Dirac delta distribution 𝛿(𝑥), and 𝑎𝑛 (𝑡, 𝑥) are arbitrary (classical)

functions. We let the functions 𝜓0 (𝑥) = 𝜓(0, 𝑥) and ¤𝜓0 (𝑥) = 𝜕𝑡𝜓(0, 𝑥) specify the

initial data. Differential equations of the form (1) arise when modeling phenomena

driven by well-localized sources and have found applications as diverse as neuro-

science [4, 1], seismology [18, 21], and gravitational wave physics [24, 19]. As one

example, when a rotating blackhole is perturbed by a small, compact object the

relevant (Teukolsky) equation features terms proportional to 𝛿 (2) (𝑥) on the right-

hand-side [24]. To solve Eq. (1), various “regularized" numerical approaches [9, 26]

and schemes [24, 25, 11, 3, 2, 16, 17, 22] have been proposed. Most of these methods

only treat source terms proportional to 𝛿(𝑥) and 𝛿 (1) (𝑥) and do not achieve spectral

accuracy at 𝑥 = 0.

Discontinuous Galerkin methods are especially well suited for solving Eq. (1)

and, more broadly, problems with delta distributions. Indeed, the solution’s non-

smoothness can be “hidden" at an interface between subdomains. Furthermore, the

DG method solves the weak form of the problem, a natural setting for the delta

distribution.

To the best of our knowledge, two distinct DG-based strategies have appeared

in the literature for solving hyperbolic equations with 𝛿-singularities. Yang and

Shu [27] show that when the source term features a Dirac delta distribution (but

no distributional derivatives of them), by using 𝑘 th degree polynomials the error

will converge in a negative-order norm. Post-processing techniques are then used to

recover high-order accuracy in the 𝐿2 norm so long as the solution is not required

near the singularity. A different approach, and the one we follow here, is based on the

observation that (i) the solution is smooth to the left and the right of the singularity

and (ii) if the singularity is collocated with a subdomain interface then the effect

of the Dirac delta distribution is to modify the numerical flux. This framework was

originally proposed by Fan et al. [10] for the Schrödinger equation sourced by a

delta distribution 𝛿(𝑥) and later extended by Field et al. [12] to solve Eq. (1) with

source terms proportional to 𝛿(𝑥) and 𝛿 (1) (𝑥). Building on previous work [10, 12],

the main contributions of our paper are (i) to show how the DG method proposed

in Refs. [10, 12] can be readily extended to solve Eq. (1) as well as (ii) to clarify

the importance of satisfying a distributional constraint that arises when performing

a first-reduction of this equation. We also derive equations that directly relate the

coefficients 𝑎𝑛 (𝑡, 𝑥) to the numerical flux modification rule.

To motivate the main idea, consider the advection equation

𝜕𝑡𝜓 + 𝜕𝑥𝜓 = cos(𝑡)𝛿 (1) (𝑥) , (2)

whose inhomogeneous solution is

𝜓(𝑡, 𝑥) = cos(𝑡)𝛿(𝑥) + 𝐻 (𝑥) sin(𝑡 − 𝑥) , (3)

where the Heaviside step function obeys 𝐻 (𝑥) = 0 for 𝑥 < 0, and 𝐻 (𝑥) = 1 for

𝑥 ≥ 0. Away from 𝑥 = 0 the solution is smooth, suggesting a spectrally-convergent
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•! Remark

When the coefficients 𝑎𝑛 (𝑡, 𝑥) appearing in Eq. (1) are functions of both inde-

pendent variables, they can be put into the form assumed by Theorem (1) by the

selection property of delta distributions. For example, 𝑎0 (𝑡, 𝑥)𝛿(𝑥) = 𝑎0 (𝑡, 0)𝛿(𝑥)
or 𝑎1 (𝑡, 𝑥)𝛿 (1) (𝑥) = 𝑎1 (𝑡, 0)𝛿 (1) (𝑥) − 𝜕𝑥𝑎1 (𝑡, 𝑥) |𝑥=0𝛿(𝑥). Consequently, to stream-

line the discussion, we will exclusively focus on source terms of the form∑𝑁
𝑛=0 𝑎𝑛 (𝑡)𝛿 (𝑛) (𝑥) for the remainder of this paper.

2 Reduction to a first-order system

Throughout, we use both an over–dot and superscript to denote 𝜕/𝜕𝑡 differentiation,

for example 𝜕𝑎/𝜕𝑡 = ¤𝑎(𝑡) = 𝑎 (1) (𝑡), and both a prime and superscript to denote

𝜕/𝜕𝑥, for example 𝜕𝛿/𝜕𝑥 = 𝛿′(𝑥) = 𝛿 (1) (𝑥).

2.1 Removing singular behavior

The simple advection example introduced in Sec. 1 demonstrates how to remove a

certain amount of singular behavior in the source term such that the new dependent

variable, 𝜓̄, contains no terms proportional to 𝛿(𝑥). The following theorem shows

how to apply the same procedure to Eq. (1).

Theorem 1 Consider Eq. (1) with 𝑉 = 0. Assume 𝑎𝑛 (𝑡) has at least 𝑛 derivatives. If

𝜓 is the exact solution to Eq. (1), then

𝜓̄ = 𝜓 −
𝑁−1

2
−1∑︁

𝑖=0


𝛿 (2𝑖) (𝑥)

𝑁−1
2

−1−𝑖∑︁

𝑛=0

𝑎
(2𝑛)
2𝑛+2𝑖+2

(𝑡) + 𝛿 (2𝑖+1) (𝑥)
𝑁−1

2
−1−𝑖∑︁

𝑛=0

𝑎
(2𝑛)
2𝑛+2𝑖+3

(𝑡)

, (7)

solves

−𝜕2
𝑡 𝜓̄ + 𝜕2

𝑥 𝜓̄ = 𝐺 (𝑡)𝛿(𝑥) + 𝐹 (𝑡)𝛿′(𝑥) , (8)

where

𝐺 (𝑡) =
(𝑁−1)/2∑︁

𝑛=0

𝑎
(2𝑛)
2𝑛

(𝑡) , 𝐹 (𝑡) =
(𝑁−1)/2∑︁

𝑛=0

𝑎
(2𝑛)
2𝑛+1

(𝑡) . (9)

Proof Assume 𝑁 is odd, which is always possible by taking 𝑎𝑁 (𝑡, 𝑥) = 0 if neces-

sary. Eq. (1) can be transformed into Eq. (8) by a sequence of (𝑁 − 1) /2 substitutions

of the form

𝜓̄𝑖+1 = 𝜓̄𝑖 −
𝑁−2𝑖−2∑︁

𝑛=0

𝑎
(2𝑖)
𝑛+2𝑖+2

(𝑡)𝛿 (𝑛) (𝑥) ,
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where we define 𝜓̄0 = 𝜓. For example, we first substitute 𝜓̄1 into Eq. (1), generating

a new wave equation for 𝜓̄1 with source terms proportional to 𝛿𝑁 (𝑥) and 𝛿𝑁−1 (𝑥)
removed. Next, we substitute 𝜓̄2 into the PDE for 𝜓̄1, generating a new wave equation

for (2) 𝜓̄ with the source terms proportional to 𝛿𝑁−2 (𝑥) and 𝛿𝑁−3 (𝑥) removed. This

process continues until we arrive at an equation for 𝜓̄ = 𝜓̄ (𝑁−1)/2 whose source

terms are 𝐺 (𝑡)𝛿(𝑥) and 𝐹 (𝑡)𝛿 (1) (𝑥). The final result can also be checked by direct

computation. �

•! Remark

When 𝑉 ≠ 0 we can still remove singular behavior from the source term, although

we do not provide a general expression as in Theorem 1. As a direct example, and

assuming 𝑉 is differentiable, the differential equation

−𝜕2
𝑡 𝜓+𝜕2

𝑥𝜓+𝑉 (𝑥)𝜓 = 𝑎0 (𝑡)𝛿(𝑥)+𝑎1 (𝑡)𝛿 (1) (𝑥)+𝑎2 (𝑡)𝛿 (2) (𝑥)+𝑎3 (𝑡)𝛿 (3) (𝑥) , (10)

can be transformed into

−𝜕2
𝑡 𝜓̄+𝜕2

𝑥 𝜓̄+𝑉 (𝑥)𝜓̄ =

[
𝑎0 + 𝑎

(2)
2

− 𝑎2𝑉 (0) + 𝑎3𝑉
(1) (0)

]
𝛿+

[
𝑎1 + 𝑎

(2)
3

− 𝑎3𝑉 (0)
]
𝛿 (1) ,

(11)

where 𝜓̄ = 𝜓 − 𝑎2 (𝑡)𝛿(𝑥) − 𝑎3 (𝑡)𝛿 (1) (𝑥).

2.2 First-order reduction

Thanks to Theorem 1, we can develop our DG method for the modified problem (8)

and numerically solve for 𝜓̄. At this point, we follow the approach of Ref. [12] and

introduce the auxiliary variables,

𝜙 = 𝜕𝑥𝜓̄ , 𝜋 = −𝜕𝑡 𝜓̄ , (12)

from which the original second-order wave equation (1) can be rewritten as the

following first-order system,



𝜓̄

𝜋

𝜙

 𝑡
+


0 0 0

0 0 1

0 1 0





𝜓̄

𝜋

𝜙

 𝑥
+


𝜋

𝑉𝜓̄

0


=



0

𝐺 (𝑡)𝛿(𝑥) + 𝐹 (𝑡)𝛿′(𝑥)
0


. (13)

We find it convenient (this will be helpful in when deriving the numerical flux in

Sec. 3.3) to define a new distributional auxiliary variable

𝜙 = 𝜙 − 𝐹 (𝑡)𝛿(𝑥) , (14)

which removes all terms proportional to 𝛿′(𝑥),
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

𝜓̄

𝜋

𝜙

 𝑡
+


0 0 0

0 0 1

0 1 0





𝜓̄

𝜋

𝜙

 𝑥
+


𝜋

𝑉𝜓̄

0


=



0

𝐺 (𝑡)𝛿(𝑥)
− ¤𝐹 (𝑡)𝛿(𝑥)


. (15)

System (15) can be written more compactly as,

𝜕𝑡𝑈 + 𝜕𝑥𝐹 + 𝑉̂ = 𝑆(𝑡)𝛿(𝑥) , (16)

for the system vector 𝑈, flux vector 𝐹, potential 𝑉̂ , and source vector 𝑆:

𝑈 =
[
𝜓̄, 𝜋, 𝜙

]𝑇
, 𝐹 (𝑈) = [0, 𝜙, 𝜋]𝑇 ,

𝑉̂ =
[
𝜋,𝑉𝜓̄, 0

]𝑇
, 𝑆 =

[
0, 𝐺 (𝑡),− ¤𝐹 (𝑡)

]𝑇
.

(17)

2.3 Distributional constraint

A solution to the first-order system (15) is also a solution to the original PDE (1)

provided the distributional constraint

𝐶 (𝑡, 𝑥) = 𝜙 − 𝜕𝑥𝜓̄ + 𝐹 (𝑡)𝛿(𝑥) , (18)

vanishes. One can show that 𝐶 (𝑡, 𝑥) obeys (upon setting 𝐺 = 𝑉 = 0 for simplicity):

−𝜕2
𝑡 𝐶 + 𝜕2

𝑥𝐶 = 0 . (19)

Thus we conclude that if the initial data implies 𝐶 (0, 𝑥) = ¤𝐶 (0, 𝑥) = 0, and our

physical boundary condition is compatible with Eq. (18), then 𝐶 = 0 for all future

times.

For certain applications, the exact initial data is unknown. If one is interested

in the late-time behavior of the problem due to the forcing term, trivial initial data

(𝜓̄ = 𝜙 = 𝜋 = 0) is often supplied instead. Trivial data results in an impulsive (i. e.

discontinuous in time) start-up, and a key question is if a physical solution eventually

emerges from such trivial initial data. The answer is unfortunately no. Under the

assumption of trivial initial data we have 𝐶 (0, 𝑥) = 𝐹 (0)𝛿(𝑥) and ¤𝐶 (0, 𝑥) = 0 1,

giving

𝐶 (𝑡, 𝑥) = 1

2
𝐹 (0) [𝛿(𝑥 + 𝑡) + 𝛿(𝑥 − 𝑡)] . (20)

In numerical simulations, this manifests as a localized feature that advects off the

computational grid. We also observe a constraint-violating spurious (or “junk")

solution develop in it’s wake. At arbitrarily late times, the physical and numerical

solution will appear to differ by a time-independent offset. To see this, let 𝜓̄exact be

the exact particular solution to Eq. (8) and 𝜓̄impulsive be the solution to the first-order

1 The term ¤𝜙 (0, 𝑥) is found from evaluation of the evolution equation (15), ¤𝜙 = −𝜋′ − ¤𝐹 (𝑡) 𝛿 (𝑥) ,
at 𝑡 = 0.
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system (15) subject to trivial initial data. Then 𝜓̄CV = 𝜓̄impulsive−𝜓̄exact is the spurious

solution due to constraint violation. In Sec. 5 we provide numerical evidence that

𝜓̄CV =
1

2
𝐹 (0) [𝐻 (𝑥 + 𝑡)𝐻 (−𝑥) + 𝐻 (𝑥 − 𝑡)𝐻 (𝑥)] . (21)

is the spurious solution, as well as showing two ways to remove it.

3 Discontinuous Galerkin Method

To solve the wave equation (1) we first transform it into a simpler form using Theo-

rem (1) then carry out a fully first-order reduction. This section describes the nodal

DG method we have implemented to numerically solve the resulting system (16) sub-

ject to the constraint (18). The method is exactly the one first proposed in Ref. [12],

and so we only briefly summarize the key ideas. Indeed, a key contribution of our pa-

per is to show the methods of Ref. [12] continue to be applicable for more challenging

problems such as Eq. (1).

3.1 The source-free method

We divide the spatial domain into 𝑁 non-overlapping subdomains 𝑎 = 𝑥0 < 𝑥1 <

· · · < 𝑥𝑁 = 𝑏 and denote D
𝑗 = [𝑥 𝑗−1, 𝑥 𝑗 ] as the 𝑗 th subdomain. In this one-

dimensional setup, the points {𝑥𝑖}𝑁−1
𝑖=1

locate the internal subdomain interfaces, and

we require one of them to be 𝑥 = 0. In each subdomain, each component of the

vectors 𝑈, 𝐹, and 𝑉 are expanded in a polynomial basis, which are taken to be

degree-𝑘 Lagrange interpolating polynomials {ℓ𝑖 (𝑥)}𝑘𝑖=0
defined from Legendre-

Gauss-Lobatto nodes. The time-dependent coefficients of this expansion (e.g. on

subdomain 𝑗 : 𝜋
𝑗

ℎ
=

∑𝑘
𝑖=0 𝜋𝑖 (𝑡)ℓ𝑖 (𝑥)) are the unknowns we solve for. We directly

approximate 𝜓̄, 𝜋, 𝜙, and 𝑉 and other terms arising in Eq. (16), such as 𝜓̄𝑉 , are

achieved through pointwise products, for example 𝜓̄ℎ𝑉ℎ .

On each subdomain, we follow the standard DG procedure by requiring the

residual to satisfy

∫

D 𝑗

[
𝜕𝑈

𝑗

ℎ

𝜕𝑡
+
𝜕𝐹

𝑗

ℎ

𝜕𝑥
+𝑉 𝑗

ℎ

]
ℓ
𝑗

𝑖
𝑑𝑥 =

[(
𝐹

𝑗

ℎ
− 𝐹∗

)
ℓ
𝑗

𝑖

] 𝑥 𝑗

𝑥 𝑗−1

, (22)

for all basis functions. Here we use an upwind numerical flux, 𝐹∗ (𝑈ℎ), that depends

on the values of the numerical solution from both sides of the interface. These

integrals can be pre-computed on a reference interval, leading to a coupled system

of ordinary differential equations (see Eq. 47 of Ref. [12]) that can be integrated in

time.
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3.3 Defining the Heaviside function on the DG grid

In our multi-domain setup, 𝑥 = 0 is both one of the interface locations and the

location of the solution’s discontinuity. When providing initial data, for example, we

will sometimes need to evaluate the Heaviside function at 𝑥 = 0. Given the expected

behavior of the solution, we will evaluate the Heaviside differently depending on the

problem. Consider, for example, the advection equation, 𝜕𝑡𝜓 + 𝜕𝑥𝜓 = cos(𝑡)𝛿 (1) (𝑥),
describing a right-moving wave and a two-subdomain setup, D

1 = [𝑎, 0] and D
2 =

[0, 𝑏]. In this case, we would evaluate the Heaviside according to 𝐻 (𝑥) |D1 = 0 and

𝐻 (𝑥) |D2 = 1. Now consider an advection equation describing a left-moving wave,

−𝜕𝑡𝜓 + 𝜕𝑥𝜓 = cos(𝑡)𝛿 (1) (𝑥). For this problem, we would instead use 𝐻 (𝑥) |D1 = 1

and 𝐻 (𝑥) |D2 = 0.

4 Distributional solutions to the 1+1 wave equation

This section presents exact solutions to the distributionally-forced 1+1 wave equation.

These solutions will be used in Sec. 5 for testing our numerical scheme.

Our recipe for solving

−𝜕2
𝑡 Ψ(𝑡, 𝑥) + 𝜕2

𝑥Ψ(𝑡, 𝑥) = 𝐹 (𝑡)𝛿 (𝑠) (𝑥) , (25)

amounts to first solving

−𝜕2
𝑡 Ψ(𝑡, 𝑥; 𝑐, 𝑠) + 𝜕2

𝑥Ψ(𝑡, 𝑥; 𝑐, 𝑠) = 𝐹 (𝑡)𝛿 (𝑠) (𝑥 + 𝑐) , (26)

for 𝑠 = 0 followed by an application of Eq. (28). We shall view 𝑐 ∈ R and 𝑠 ∈ Z≥0

as parameters, and the solution Ψ(𝑡, 𝑥; 𝑐, 𝑠) as parameterized by them.

A solution to (26) can be found by the method of Green’s function. Recall the

fundamental solution, 𝐺 (𝑡, 𝑥; 𝑡̃, 𝑥̃), for

−𝜕2
𝑡 𝐺 + 𝜕2

𝑥𝐺 = 𝛿(𝑡 − 𝑡̃)𝛿(𝑥 − 𝑥̃) ,

can be written in terms of the Heaviside [23]

𝐺 (𝑡, 𝑥; 𝑡̃, 𝑥̃) = −1

2
𝐻 (𝑡 − 𝑡̃ − |𝑥 − 𝑥̃ |) .

Thus the solution to Eq. (26) with 𝑠 = 0 can be written as

Ψ(𝑡, 𝑥; 𝑐, 𝑠 = 0) = −1

2

∫ 𝑡

0

∫ ∞

−∞
𝐻 (𝑡 − 𝑡̃ − |𝑥 − 𝑥̃ |)𝐹 (̃𝑡)𝛿(𝑥̃ + 𝑐)𝑑𝑡̃𝑑𝑥̃

= −1

2

∫ 𝑡−|𝑥+𝑐 |

0

𝐹 (𝑡 − |𝑥 + 𝑐 | − 𝑦)𝑑𝑦 , (27)
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where 𝑦 = 𝑡− 𝑡̃− |𝑥+𝑐 |, and we have restricted to times 𝑡 ≥ 0 for which the Heaviside

is zero whenever 𝑡 − |𝑥 + 𝑐 | < 0. This 𝑠 = 0 solution generates an entire family of

solutions corresponding to 𝑠 > 0. Clearly 𝜕𝑠𝑐Ψ(𝑡, 𝑥; 𝑐, 𝑠 = 0) solves Eq. (26), and so

the particular solution of

−𝜕2
𝑡 Ψ(𝑡, 𝑥; 0, 𝑠) + 𝜕2

𝑥Ψ(𝑡, 𝑥; 0, 𝑠) = 𝐹 (𝑡)𝛿𝑠 (𝑥) ,

is given by

Ψ(𝑡, 𝑥; 0, 𝑠) = 𝜕𝑠𝑐Ψ(𝑡, 𝑥; 𝑐, 0)
����
𝑐=0

. (28)

We now provide explicit constructions for the cases considered in the numerical

experiment section.

Let 𝐹 (𝑡) = cos(𝑡) and 𝑠 = 0, then the generating function is

Ψ𝑐 (𝑡, 𝑥; 𝑐, 0) = −1

2
sin(𝑡 − |𝑥 + 𝑐 |) ,

and setting 𝑐 = 0 gives

Ψ(𝑡, 𝑥) = −1

2
sin(𝑡 − |𝑥 |) .

Let 𝐹 (𝑡) = cos(𝑡) and 𝑠 = 1, then the generating function is

𝜕𝑐Ψ𝑐 (𝑡, 𝑥; 𝑐, 0) = 1

2
sgn(𝑥 + 𝑐) cos(𝑡 − |𝑥 + 𝑐 |) ,

and setting 𝑐 = 0 gives

Ψ(𝑡, 𝑥) = 1

2
sgn(𝑥) cos(𝑡 − |𝑥 |) . (29)

Let 𝐹 (𝑡) = cos(𝑡) and 𝑠 = 2, then the generating function is

𝜕2
𝑐Ψ𝑐 (𝑡, 𝑥; 𝑐, 0) = 𝛿(𝑥 + 𝑐) cos(𝑡 − |𝑥 + 𝑐 |) + 1

2
sgn(𝑥 + 𝑐) sin(𝑡 − |𝑥 + 𝑐 |)sgn(𝑥 + 𝑐)

= 𝛿(𝑥 + 𝑐) cos(𝑡) + 1

2
sin(𝑡 − |𝑥 + 𝑐 |) ,

and setting 𝑐 = 0 gives

Ψ(𝑡, 𝑥) = 𝛿(𝑥) cos(𝑡) + 1

2
sin(𝑡 − |𝑥 |) . (30)
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is the offset that develops inside the future domain influenced by (𝑡, 𝑥) = (0, 0).
Figure 4 (left) shows the numerical solution (black circles) offset from the exact

solution (dashed black line) at 𝑇 = 8, and by 𝑇 = 40 the spurious solution has

contaminated the entire computational domain (black circles). When 𝑎1 (𝑡) = sin(𝑡),
the constraint violation and spurious solution vanish; this too is confirmed by Fig. 4

(red data on both left and right panels). And so we see that the problematic spurious

solution can be made to vanish if it is possible to arrange the problem such that

𝐹 (0) = 0.

With neither the correct initial data nor the ability to arrange 𝐹 (0) = 0, a more

general solution to this problem is to modify the source term

𝐹 (𝑡) →
{
𝑓 (𝑡; 𝜏, 𝛿)𝐹 (𝑡) for 0 ≤ 𝑡 ≤ 𝜏

𝐹 (𝑡) for 𝑡 > 𝜏,
, (34)

where 𝑓 (𝑡; 𝜏, 𝛿) =
1
2
[erf (

√
𝛿(𝑡 − 𝜏/2) + 1] turns on the source term [13] over the

timescale 𝜏. We select 𝜏 = 30 and 𝛿 = .15, which yields 𝑓 (0) ≈ 10−16 and 𝑓 (𝑡) = 1

for 𝑡 > 30. Both the constraint violation and spurious solution now vanish, as shown

in the right panel of Fig. 4 (Blue circles).

6 Final Remarks

We have shown that the high–order accurate discontinuous Galerkin method de-

veloped in Ref. [12] is applicable to the wave equation (1) when written in fully

first-order form (16). In particular, Ref. [12] considered a wave equation with source

terms of the form 𝑎(𝑡, 𝑥)𝛿(𝑥) + 𝑎1 (𝑡, 𝑥)𝛿′(𝑥). In theorem 1 we show that one can

always write Eq. (1) in this form, allowing for immediate application of their method

to this generalized problem. The method maintains pointwise spectral convergence

even at the source’s location where the solution may be discontinuous, singular, or

both. The numerical error has been quantified by comparing against exact distribu-

tional solutions, and we have presented a procedure for finding particular solutions

for any 𝛿 (𝑛) (𝑥).
Our choice for writing the second-order scalar equation (1) in first-order form (16)

relies on an auxiliary variable that must satisfy a distributional constraint (18). While

this constraint vanishes for all times if it does at the initial time, for many realistic

problems the initial data is not known and satisfying the distributional constraint

may be challenging. For trivial initial data, we show the constraint violation advects

off the computational grid, leaving behind a time-independent constraint-violating

spurious (or “junk") solution in it’s wake. We discuss two remedies that can be used

to prevent the problematic spurious solution from appearing.
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