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ABSTRACT: Internal variability is the dominant cause of projection uncertainty of Arctic sea ice

in the short and medium term. However, it is di�cult to determine the realism of simulated internal

variability in climate models, as observations only provide one possible realization while climate

models can provide numerous di�erent realizations. To enable a robust assessment of simulated

internal variability of Arctic sea ice, we use a resampling technique to build synthetic ensembles for

both observations and climate models, focusing on interannual variability which is the dominant

timescale of Arctic sea ice internal variability. We assess the realism of the interannual variability

of Arctic sea ice cover as simulated by six models from the CoupledModel Intercomparison Project

5 (CMIP5) that provide large ensembles compared to four observational datasets. We augment the

standard definition of model and observational consistency by representing the full distribution of

resamplings, analogous to the distribution of variability which could have randomly occurred. We

find that modeled interannual variability typically lies within observational uncertainty. The three

models with the smallest mean state biases are the only ones consistent in the pan-Arctic for all

months, but no model is consistent for all regions and seasons. Hence, choosing the right model for

a given task as well as using internal variability as additional metric to assess sea ice simulations is

important. The fact that CMIP5 large ensembles broadly simulate interannual variability consistent

within observational uncertainty gives confidence in the internal projection uncertainty for Arctic

sea ice based on these models.
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SIGNIFICANCE STATEMENT: The purpose of this study is to evaluate the historical simulated26

internal variability of Arctic sea ice in climate models. Determining model realism is important27

to have confidence in the projected sea ice evolution from these models, but so far only mean state28

and trends are commonly assessed metrics. Here we assess internal variability with a focus on the29

interannual variability, which is the dominant timescale for internal variability. We find that, in30

general, models agree well with observations, but as no model is within observational uncertainty31

for all months and locations, choosing the right model for a given task is crucial. Further refinement32

of internal variability realism assessments will require reduced observational uncertainty.33

1. Introduction34

Arctic sea ice has declined precipitously since 1979, at a faster rate than at any time over the last35

millennium (Brennan and Hakim 2022), with less than half the summer area and one quarter the36

summer volume remaining (Schweiger et al. 2011; Notz and Stroeve 2018). This observed decline37

is due to both anthropogenic climate change and internal variability, which can act to amplify or38

dampen the trend from external forcing alone (Kay et al. 2011; Notz and Marotzke 2012). The39

relative contribution of internal variability to the observed September sea ice area decline remains40

uncertain but has been estimated at 43-53% (Stroeve et al. 2007; Kay et al. 2011; Ding et al. 2019).41

Internal variability also influences future sea ice projections, leading to large internal variability42

uncertainty, especially for the next few decades (Kay et al. 2011; Jahn et al. 2016; Bonan et al.43

2021). As internal variability is such a large contributor to the observed and projected changes in44

Arctic sea ice cover, but Global Climate Models (GCMs) di�er in the magnitude of their simulated45

sea ice internal variability (Olonscheck and Notz 2017), it is imperative that we understand how46

realistically models simulate internal variability.47

Internal variability of Arctic sea ice has been shown to be spatially heterogeneous (England et al.48

2019), and act on multiple time scales from annual to multi-decadal (Zhang and Wallace 2015;49

Ding et al. 2017, 2019; Brennan et al. 2020). Over the historical period, internal variability has50

been the dominant cause of sea ice decline in many regions, most notably parts of the Kara Sea51

in summer and the Barents Sea in winter (Li et al. 2017; England et al. 2019; Dörr et al. 2021).52

Sea ice loss in recent decades has been most rapid and expansive in the summer, particularly in53
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the shelf seas which have transitioned from mainly ice-covered to ice-free for more of the summer,54

facilitating high internal variability (Onarheim et al. 2018; Mioduszewski et al. 2019). These areas55

of rapid and unpredictable change coincide with themost impactful areas for a range of stakeholders56

from shipping and oil interests to indigenous peoples and biodiversity (Kovacs et al. 2011; Petrick57

et al. 2017; Christensen and Nilsson 2017; Chen et al. 2020).58

The established way to estimate internal variability in GCMs is to use multiple realizations59

of single model initial-condition large ensembles (SMILEs) or long constant forcing model runs60

to assess the ensemble spread or standard deviation (Olonscheck and Notz 2017; Lehner et al.61

2020; Maher et al. 2020). SMILEs have successfully been used to study internal variability in62

the context of polar temperatures England (2021), precipitation trends (Dai and Bloecker 2019),63

and regional trends (McKinnon and Deser 2018; Hu et al. 2019). However, such analysis can64

not be done on observations, due to only one realization of reality and a limited length of the65

observational record. It is this single realization of reality over a relatively short period of time66

that has previously prevented direct assessment of internal variability of Arctic sea ice in models67

compared to observations. Hence, previous sea ice model assessments have been focused on the68

trends (e.g. Swart et al. 2015; Rosenblum and Eisenman 2017), sensitivity to warming (e.g. Winton69

2011; Niederdrenk and Notz 2018), and mean state (e.g. Davy and Outten 2020). Furthermore,70

even if we were able to precisely disentangle internal variability from the forced response in71

observations, comparisons with GCMs are still challenging because we do not know where the one72

realization seen in the observations falls within the probability distribution obtained from a model73

ensemble (Notz 2015).74

Here, we provide the first direct comparison of internal variability of Arctic sea ice from a suite75

of SMILEs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) with observations,76

by using a statistical technique to construct a ’synthetic ensemble’ of Arctic sea ice variability,77

following McKinnon et al. (2017). Synthetic ensembles have been used for several climate78

variability questions such as for sea surface temperature (Chan et al. 2020), climate extremes79

(Deser et al. 2020a), precipitation (McKinnon and Deser 2021), ocean chlorophyll concentration80

(Elsworth et al. 2021), and Antarctic sea ice trends (Chemke and Polvani 2020). Here we present81

the first use of a synthetic ensemble for studying Arctic sea ice, specifically to assess the realism of82

internal variability on interannual timescales. Using the synthetic ensemble method, we are able to83
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show that generally the simulated interannual variability fits within the observational uncertainty84

derived from di�erent datasets, but that there are considerable seasonal and spatial di�erences,85

and that some models perform better than others for a given task. We also show that internannual86

variability makes up approximately three quarters of the total Arctic sea ice internal variability,87

and hence the majority of the sea ice internal variability over the past 42 years.88

2. Data Sources89

a. Observational data90

We primarily use two observational datasets for sea ice concentrations (SIC), the National Snow91

and Ice Data Center (NSIDC) Climate Data Record (CDR) version 4 (Meier et al. 2021), and the92

Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST1) (Rayner et al. 2003).93

In order to further test the sensitivity of our results to the observational dataset used, we also94

utilize datasets derived from the satellite algorithums NASA Team (NT) (Cavalieri et al. 1984)95

and NASA Bootstrap (BT) (Comiso 1986). Together, these datasets are a representative sample96

of interpretations of past sea ice conditions, with both the mean state and variability di�ering97

between the datasets due to observational uncertainties (Comiso et al. 2017; Kern et al. 2019). Sea98

ice area (SIA) was chosen over sea ice extent (SIE) as the variability of SIA is more independent99

of satellite algorithms and is intrinsically more precise and thus better for comparing internal100

variability between models (Notz 2014). All analysis is performed using monthly data for 1979 to101

2020. Missing data for NSIDC datasets, and discontinuities in the HadISST1 dataset, were filled102

using the same month’s data in a di�erent year, instead of interpolating to avoid unrealistic SIC103

values (see Table S1) for the specific replacements used).104

b. Model data105

Six models from the Climate Variability and Predictability Program (CLIVAR) Multi-Model106

Large Ensemble Archive (Deser et al. 2020b) are utilized in this analysis, as detailed in Table107

1. EC-Earth was excluded from this analysis due to no available SIC output. All models are108

CMIP5-class and use historical and representative concentration pathway (RCP) 8.5 forcing, the109
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T���� 1. Models used in this analysis from the CLIVAR Multi-Model Large Ensemble Archive (Deser et al.

2020b)

122

123

Modeling Center Model Members Years Reference

CCCma CanESM2 50 1950-2100 Kirchmeier-Young et al. (2017)

NCAR CESM1 40 1920-2100 Kay et al. (2015)

CSIRO MK3.6 30 1850-2100 Je�rey et al. (2013)

GFDL CM3 20 1920-2100 Sun et al. (2018)

GFDL ESM2M 30 1950-2100 Rodgers et al. (2015)

MPI ESM1 100 1850-2100 Maher et al. (2019)

high emissions CMIP5 scenario. The models from the Multi-Model Large Ensemble Archive are110

diverse in their mean state and trends, spanning nearly the full range of CMIP5 sea ice projections111

(see Figure 1 in Bonan et al. 2021). In winter, model mean-state biases are typically smaller112

in absolute and relative terms than summer (see Table S2). The notable outliers in summer are113

CanESM2 with the largest negative mean-state bias of �54% in September and CSIRO MK3.6114

being an extreme positive outlier for all seasons and +83% in September. Although GFDL CM3115

is not as large an outlier in mean state in September, its SIA loss over the period 1979-2020 is by116

far the most rapid. The six models range in ensemble size between 20 and 100 (see Table 1). We117

present results for all members of the SMILEs to assess each GCM’s ability to realistically simulate118

the observed interannual variability. We also provide subsampled results, scaled to 20 members,119

the size of the smallest large ensemble, for model inter-comparison with our consistency metric.120

Subsampling is discussed in more detail in section 3c.121

3. Methods124

a. Resampling technique125

We estimate interannual variability in a single model member or observational time series126

by assuming the forced response is represented by an ordinary least squares regression linear127

trend. This assumption is deemed appropriate for 1979-2020, but may not be applicable for time128

periods extending further back (England et al. 2019; England 2021), and allows us to follow129

the methodology from McKinnon et al. (2017). Anomalies from this linear trend are therefore130

considered largely due to interannual variability alone. Typically the ensemble mean is a more131
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accurate measure of the forced response, but as discussed in section 3d and 4c, detrending using132

the individual member produces similar results and is chosen here for reasons detailed in 3d.133

By using this technique we can calculate a consistent metric of interannual variability to directly134

compare model members and observations. We consider all months in the pan-Arctic and present135

spatial results for the minimum and maximum SIA months September and March respectively.136

We resample the anomalies from the linear trend 10,000 times for SIA and 1000 times for each137

SIC grid box, with replacement, and use a 2 year bootstrap block size. This can be considered138

analogous to shu�ing independent anomalies to produce a range of alternative scenarios which139

would have been equally likely to occur, allowing us to calculate metrics of interannual variability140

for a representative sample of all possible scenarios (see Figure 1). As suggested by McKinnon141

et al. (2017) and McKinnon and Deser (2018), we retain spatial coherence by resampling in the142

time dimension for all grid boxes at once. 10,000 resamplings in the pan-Arctic were chosen for143

increased reliability of consistency classifications, whereas spatially 1000was determined su�cient144

as each grid box has a lower impact on results if a classification were to change from rerunning the145

experiment. A 2 year block size is chosen because normalized autocorrelation frequently exceeds146

0.4 for a lag of 1 year, and a marked drop-o� in autocorrelation between a lag of 1 and 2 years147

occurs in comparison with years 2 and 3 (not shown), occurring both spatially and in the pan-Arctic148

time series. Resampling with a 1 year or 2 year block size leads to almost identical results (not149

shown).150

We focus our analysis on the standard deviation of sea ice state over the 42-year period 1979-2020,157

not the trends, as we want to assess the realism of the models’ simulated interannual variability,158

rather than the realism of the simulated trends (see Swart et al. (2015) for a discussion of simulated159

trends compared to observations). The standard deviation with respect to time is computed either160

for the 10,000 pan-Arctic SIA resampling or the 1000 SIC resamplings in each grid cell. To161

represent the distribution of these resamplings or ensemble members we use the standard deviation162

(f) and mean (`). Here, f can be considered analogous to the range of interannual variability163

which could have occurred, given the underlying data; ` is analogous to the typical interannual164

variability represented in the resamplings.165
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F��. 1. Resampling methodology, applied to the observed September SIA. (a): Observed sea ice area from

CDR (dots) with linear trend (grey dashed line). (b): Anomalies from the linear trend. (c,d) Two randomly

di�erent resamplings of the anomalies in (b), color coded to match the year of anomaly. (e): Distribution of the

standard deviation with respect to time for all 10,000 resamplings. The printed statistics represent f for standard

deviation. In (e) the red vertical line represents the standard deviation of the original data and gray refers to the

distribution of standard deviations for the 10,000 resamplings.

151

152

153

154

155

156

In order to directly compare interannual variability between models and observations we define166

three measures of variability as follows, where f!⇢ is internal variability in SMILEs and both167

f<4< and f>1B are the interannual variability within a synthetic ensemble:168

• f!⇢ and `!⇢ - Standard deviation and mean of standard deviations within a single large169

ensemble, without resampling, an established measure of the full range of internal variability.170

• f<4< and `<4< - Standard deviation and mean of the standard deviations of all resamplings of171

a single model member. The resampling process for a given ensemble member is equivalent172
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to that of the observations in Figure 1. The median member’s value across all members of the173

SMILE is denoted f̄<4< and ¯̀<4<.174

• f>1B and `>1B - Standard deviations and mean of the standard deviation of all resamplings175

of the single realization of the observational dataset. These metrics relate to Figure 1 as the176

standard deviation and mean of the distribution in panel e.177

b. Consistency178

To assess the realism of simulated internal variability, we utilize a consistency metric to provide179

a binary classification as to whether the modeled variability is within or outside the range of180

observational uncertainty. For sea ice analysis in the past, consistency has typically been defined181

by at least one member of a large ensemble overlapping with observations (e.g. Notz 2015;182

Swart et al. 2015; Jahn 2018). However, this is a relatively low bar for models to reach. Other183

more elaborate consistency methods have been applied for other aspects of the climate system,184

e.g. Santer et al. (2008), and applied to Arctic sea ice by Stroeve et al. (2012). However185

the methodology of Santer et al. (2008) bases consistency assessments on trends rather than the186

internal variability independent of the trends, as is the goal here. Hence, we here use resampling and187

define consistency by comparing distributions, as it allows us to compare whether the resampled188

distributions overlap. Comparing distributions is a more stringent decision about consistency189

than comparing single values for each ensemble member or observational dataset that would be190

available without resampling. Further augmentation to this binary classification is achieved by191

comparing SMILEs with four diverse observational datasets independently, adding the category192

of ’consistent within observational uncertainty’. We only use this three-category consistency193

classification rather than a significance or probability value (e.g., from a student t-test), as both the194

resampled average variability (`<4<) and standard deviation of variability (f<4<) are positively195

skewed across members. Nonetheless, we find that a 95% confidence interval is in fact similar to196

our consistency classification, but classifies fewer instances of inconsistency in the pan-Arctic than197

our method.198

Applying this consistency metric to Arctic SIA, each SMILE realization or observational dataset199

has a di�erent value of interannual variability for each of the 10,000 resamplings. These 10,000200
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resamplings from a single member or observational time series are approximately normally dis-201

tributed and as such can be thought of as probability distribution functions (PDFs) (see Figure 2).202

The width of the PDFs show the distribution of the 10,000 resamplings, indicating the range of pos-203

sible interannual variabilities (proportional to f<4< and f>1B). The location on the horizontal-axis204

indicates the average interannual variability (`<4< and `>1B). For models and observations to be205

considered ‘consistent’ in the following, we require their means (their position on the horizontal-206

axis in Figure 2) and their standard deviations (height on the vertical-axis) to overlap such that at207

least one member is greater than the lowest observational dataset and one member is lower than208

the highest observations for each f and ` metric independently. Average SIC di�erences does not209

preclude a consistent classification as variability may be equal between a SMILE and observational210

datasets but about di�erent means. However, due to the zero-bound nature of SIC, if a mean state211

di�ers so much that SMILE members have at least some sea ice where there is no sea ice in the212

observational datasets, we exclude those regions from the analysis rather than classifying them as213

inconsistent. We do this as the focus of our analysis is on assessing the realism of actual sea ice214

variability, so we only compare regions where there is variability in both models and observations.215

c. Ensemble size224

We have included SMILEs with ensemble members as low as 20 in our analysis as the standard225

deviation between members (f!⇢ ), representing the full range of internal variability, increases only226

marginally beyond approximately 8-12 members, compared to the full range of 20-100 members227

(see Figure S2). This leads us to consider SMILEs of at least 12 members to generate enough228

diversity between realizations to capture most aspects of internal variability. The selection of a229

minimum number of members for SMILEs when assessing di�erent time periods or other aspects230

of the climate system may require considerably more members (Milinski et al. 2020). With231

increasing ensemble size, the values of the minimum and maximum f<4< diverge, making it232

easier for a SMILE to overlap with observations (see Figure S1). Our primary goal is to assess233

SMILEs’ individual realism when compared with observations, using as much information from234

each model as is available. Hence, we present results without subsampling the members to a235

consistent ensemble size. However, as others may be interested in a direct comparison of the236

interannual variability in CMIP5 SMILEs, we provide subsampled results in the supplementary237
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F��. 2. Distribution of pan-Arctic SIA standard deviations across members, resamplings, and observa-

tions. Probability distribution functions (PDFs) for detrended standard deviation of pan-Arctic SIA, for March

(a-f) and September (h-l). PDFs are produced from the mean (`) and standard deviation (f) across the 10000

resamplings. Each individual resampled member (f<4<) is plotted with a thin lines colored according to the

legend, the average resampled member (f̄<4<) is colored similarly with a thick line, and the resampled obser-

vations (f>1B) are in red for the four datasets according to the legend. Percentiles noted on the figure are the

single values of f>1B or `>1B for the observational datasets relative to the distribution of f<4< and `<4< across

members.
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section, where consistency is standardized to 20 members, the size of the smallest SMILE, in the238

pan-Arctic (Figure S5) and spatially (Figure S6).239

d. Detrending240

The ensemble mean of a SMILE is considered a good representation of ‘forced response’241

of the model to the changing climate (Frankcombe et al. 2018). However, observations only242

have one realization, and hence the observed forced trend must be computed from that single243

realization. Hence, in our analysis we use the individual members’ trends over the period 1979-244

2020 as representation of the forced response, to enable the same methodology to be applied to245

observations and models, for direct comparisons. The SMILEs provide the perfect place to test246

the impact of this method: we find that linear detrending rather than removing the ensemble mean,247

results in only a marginal decrease in variability (8% reduction for f<4< and 11% for f!⇢ ) yielding248

a very similar ratio (see Figure S11).249

Applying linear detrending largely removes low frequency variability. We reached this conclusion250

as detrending ensemble members and observations using a 2 year 5th order lowpass Butterworth251

filter (Roberts and Roberts 1978), which explicitly removes low-frequency variability, obtains252

almost identical consistency results as with a simple linear trend (see Figure S7 in comparison to253

Figure 8). This lowpass filter removes variability on frequencies in excess of 2 years, the time254

period beyond which autocorrelation in the sea ice is negligible. Good agreement between the255

linear detrending and the lowpass filtered data suggests that both anomaly calculation methods256

e�ectively isolate interannual variability. The variability in our resampled anomalies of individual257

SMILEmembers (f<4<) capture approximately three quarters of internal variability across SMILE258

realizations without resampling (f!⇢ ), as discussed further in section 4c. This enables us to259

conclude that our detrending and resampling analysis primarily assesses interannual variability,260

and that this is the dominant timescale of internal variability for Arctic sea ice for the period261

1979-2020.262

In the spatial analysis we obtain a linear trend for each grid cell, using the same method of263

detrending as we did for the pan-Arctic. While we find some isolated incidences of grid cells264

where the linear SIC trend exceeds 100% or is lower than 0%, extremely small di�erences are265
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found in consistency if a di�erent detrending method is used, such as a 2 year low pass filter (see266

Figure S7) or trends capped to physical bounds (not shown). Hence, the detrending method does267

not a�ect the conclusions drawn from the analysis.268

e. Time periods269

The time period considered is the observational period 1979-2020, focused on the seasonal270

extremes of March and September for the spatial analysis. 1979-2020 is chosen for observations271

due to high quality spatial data from 1979 onward, which is particularly important for assessing272

interannual sea ice variability. We found that shifting the time period used from the models to273

better match the observed mean sea ice state yielded negligible di�erences spatially and minimally274

a�ected pan-Arctic results for shifts of a few years to a decade. When matching the observed mean275

state required adjustments of many decades, the changes in the results were larger. However, in276

some instances a model did not have a time period where the mean state matched the observedmean277

state in the whole historical and future simulations. Furthermore, we want to assess the realism278

of the simulated interannual variability as simulated, to complement previous model assessments279

of trends and mean state which were done over the same periods in models and observations (e.g.280

Swart et al. 2015; SIMIP Community 2020). Hence, although internal variability has been shown281

to be sensitive to mean state (Goosse et al. 2009; Jahn et al. 2016; Olonscheck and Notz 2017;282

Massonnet et al. 2018), and some models have more linear SIA and SIC declines than others over283

1979-2020, we find the choice of exact period analyzed did not materially impact our results.284

As the use of a 42-year time period is out of necessity, this raises the question of whether a285

42-year period is su�cient for our analyses. To assess this question di�erent time period lengths286

were assessed within the models (see Figure 3). Time periods longer than approximately 20 years287

yield similar ratios in f<4</f>1B ratios, which gives confidence in our results for this metric being288

representative of a broad range of time periods. Similarly, the ratio f<4</f!⇢ changes rapidly for289

short time periods but becomes relatively stable for time periods of at least a few decades. To290

confirm this, we conducted a similar time period analysis for the period 1953-2020 using lowpass291

filtered SIA. This more clearly indicates the stabilization of the ratio f<4< to f!⇢ , at approximately292

75%, independent of the length of the time period in excess of approximately 30 years (see Figure293
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F��. 3. Influence of length of time period on standard deviation of pan-Arctic SIA. Standard deviation with

respect to time for time periods between 6 years and the maximum length of a linear trend in SIA, bootstrapped

1000 times. Thick lines show the median ensemble member, shading shows ± 1 standard deviation. (a, b):

the ratio of standard deviation across resamplings (f<4<) to standard deviation across members (f!⇢ ) over

a subset of the time periods 1965-2066 for March (a) and 1970-2040 for September (b). (c, d): the ratio of

standard deviation across resamplings (f<4<) to standard deviation across resampled observations (f>1B) in the

HadISST1 dataset for the period 1979-2020 in March (c) and September (d).

298

299

300

301

302

303

304

S3). Spatially, when we compare the shorter 32-year time periods 1979-2010 and 1989-2020 to294

the full time period of 1979-2020, we find that there are small consistency di�erences between295

the time periods for some regions, but these di�erences are not substantial enough for our main296

conclusions to be altered (see Figure S4).297
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F��. 4. Seasonality of resampled variability in members and observations for pan-Arctic sea ice area.

The distribution of Standard deviations (f<4<) across members is shown for each model and month as a box and

whisker charts, where whiskers show the full range of members, boxes show the interquartile range, and gray

bars indicate the median member. Values of resampled variability in observations (f>1B) are shown as horizontal

lines for each of the four datasets.

316

317

318

319

320

4. Results305

a. Resampled variability in models and observations306

Resampling the observations and SMILE models, we find that the variability of models is307

generally similar to observations, but with considerable seasonal and regional variability. Both the308

variability in models (f<4<) and observations (f>1B) show distinct seasonality in the pan-Arctic,309

peaking in the autumn with the exception of CSIRO MK3.6 (see Figure 4 and shown for average310

variability (`) in Figure S8). In spring we find larger variation between di�erent realizations311

of the same model than between model averages. This highlights the sensitivity of interannual312

variability to realization, and why we assess realism based on consistency rather than comparison313

between median SMILE member and observations (see section 3b). The results of this consistency314

assessment are discussed further in section 4b.315

Observations have substantial uncertainties that impact the value of observational interannual321

variability (f>1B). Hence, the choice of which dataset to use for comparison with models can a�ect322
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F��. 5. Resampled variability of pan-Arctic sea ice area for the four observational datasets. Absolute

values shown in a) and c), and percentage uncertainty shown in b) and d) as calculated from the range of f>1B

divided by the mean of f>1B.

331

332

333

whether observations fall within the large ensemble range, both for the pan-Arctic and spatially323

(see Figures 4 and 6). Furthermore, the uncertainties vary seasonally, with the largest relative324

uncertainty of pan-Arctic observational variability in the winter and spring (see Figure 5). Hence,325

it is easier for models to fall within the observational uncertainty in the winter and spring than in326

the summer and autumn. For most months we find the majority of the ensemble median variability327

(f̄<4<, grey bars in Figure 4) are similar or higher than observations (f>1B, in red). However, as328

we do not know how typical observations are, we cannot use these di�erences to diagnose model329

biases.330
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Spatially, there is considerable di�erence in the locations ofmaximumvariability betweenmodels334

and the observational datasets in September (see Figure 6). We find large magnitude di�erences335

throughout the ice covered region between di�erent models and when comparing models with336

observations. Despite these large di�erences in the ensemble medians between models, we find337

that the range between members for a given model is considerably larger in most instances. Again338

this draws attention to the di�erence of interannual variability between realizations. In comparison339

to September, the location and magnitude of highest variability in March is more similar between340

di�erent models, with the range betweenmembers very large for the ice edge region (see Figure S9).341

Observational uncertainty is also highly variable between regions, for example NT exhibits much342

higher variability in the central Arctic in September than the other datasets (see Figure 6). Whenwe343

combine both the spread of model simulations across realizations and the spread of interpretations344

of the observational record, we find broad agreement between models and observations. This345

is true both in the pan-Arctic and spatially in their representation of Arctic sea ice interannual346

variability.347

b. Consistency of models and observations353

When utilizing the range of observational datasets for the pan-Arctic, we find model consistency354

for amajority of the time (57%) acrossmodels andmonths (see Figure 7i). Models consistent within355

observational uncertainty accounts for 33%ofmonths, far greater than the 10%ofmonths identified356

as inconsistent. It is important to note that these proportions relate to the specific six models we357

analyzed, which capture the full spread of the CMIP5 sea ice simulations (Bonan et al. 2021).358

Nonetheless, the common pattern is for GCMs to be predominantly consistent within observational359

uncertainty. By our definition of consistency, all models except CSIRO MK3.6 and GFDL CM3360

are consistent in September for all observational datasets. In the spring, when observational361

uncertainty is largest, we find all models are consistent within observational uncertainty and in362

April and May all models are consistent with all observational datasets. When looking across all363

months we find that only MPI ESM1 is unambiguously consistent with all observational datasets364

and CESM1 and GFDL ESM2M are consistent but not for all observational datasets. CanESM2,365

CSIRO MK3.6 and GFDL CM3 (the models with the largest mean-state bias) are the only models366

with inconsistent classifications beyond observational uncertainty. Our ability to more stringently367
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F��. 6. Resampled modeled and observed variability of September sea ice concentration. Standard

deviation of resamplings for the six models (f<4<) for the maximum, median and minimum member for each

grid cell in rows 1-3. Standard deviation of resamplings for the four observational datasets (f>1B) along the

bottom row. The color bar applies to all subplots on this figure. The same analysis for March is shown in Figure

S9.

348

349

350

351

352

assess realism by using the two metrics is demonstrated by CanESM2 and GFDL CM3 being368

considered consistent for all months for f, but when also considering `, we find both have two369

months with inconsistencies.370

When considering consistency spatially, each grid cell can be considered to have a distribution380

of PDFs similar to Figure 2 and thus can be categorized in the same way. Consistency in f and `381

are highly correlated but with some di�erences, indicating the benefit of using both metrics (areas382
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F��. 7. Consistency between models and observations in pan-Arctic SIA. White indicates consistency

between models and all observational datasets, while reds and blues indicate inconsistency in at least one metric.

Specifically, dark blue indicates the model is inconsistent with observations as all members are too low while

dark red indicates inconsistency due to all members being too high. In the third column (c, f, i), where two

metrics are combined, light blue means one of the metrics classifies the model as too low while the other metric

is consistent, light red indicates that the model is too high in one metric but consistent in the other metric. There

are no instances of too high and too low classifications for a given month by the di�erent metrics. Finally, in the

bottom row (g-i), where all observational products are combined, black indicates disagreement in classification

between the observational datasets, indicating consistency within observational uncertainty.
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of light blue and light red in Figure 8). As noted earlier, we focus on the seasonal minimum and383

maximum sea ice area, September and March respectively and present a consistency classification384

only where both the model and observations exhibit non-zero sea ice.385

Similarly to the pan-Arctic, we find no areas where the f and ` metrics produce di�erent signs386

of inconsistency. With the exception of CSIRO MK3.6, the shelf and marginal seas in September387

in all models are broadly consistent within observational uncertainty, with CESM1 and GFDL388

ESM2M performing the best. CSIRO MK3.6 shows the largest inconsistencies in March with389

underestimation of variability in the Barents Sea. All other models simulate consistent variability390

in the Barents Sea where atypically rapid SIC decline has occurred (Li et al. 2017). Both regions391

of too high variability and too low variability occur for MPI ESM1 in September, yet this model392

is consistent for September in the pan-Arctic, indicating these regions counteract each other for393

SIA. For March the models are more dissimilar than in September, with no regions of over or394

underestimation of interannual variability common to all models. Large portions of the central395

Arctic Ocean have very little observed andmodeled variability inMarch, due to the 100% bounding396

of SIC. This means that small absolute biases in the modeled interannual variability can cause an397

inconsistent classification (see Figure S9). With our consistency classification we conclude that398

more models have greater realism of simulated interannual variability in September than in March.399

However, even well performing models in some regions in September or March generally do a400

poorer job in the other month, indicating that the skill of a certain model in simulating interannual401

variability is highly seasonally and regionally dependent.402

c. Internal variability captured by resampling versus ensemble spread409

Our best estimate of the full range of internal variability, on high and low frequency time scales, is410

throughSMILEs, herewe use the standard deviation between detrendedmembers (f!⇢ ) to represent411

this. As we consider the resampled standard deviation of SMILE members and observations to412

be representative of interannual variability and not the full range of internal variability, we would413

expect the ratio f<4</f!⇢ to be less than one. For all seasons, when looking at pan-Arctic SIA,414

interannual variability simulated by the median standard deviation across resamplings (f̄<4<) is415

less than the internal variability simulated by multiple realizations without resampling (f!⇢ ), an416
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All members too low
Too low in one metric

All members too high
Too high in one metric

Consistent
Consistent within
observational uncertainty

No sea ice

F��. 8. Spatial consistency of interannual variability between large ensemblemembers and observations.

Members of the large ensembles which have at least one member overlapping with the variability of resampled

observed SIC is shown in white, indicating consistency. Regions where the classification di�ers between the

maximum and minimum observational datasets are shaded black indicating consistency within observational

uncertainty. Areas without sea ice, either in the model or observations, are shaded beige. Shaded areas of red

and blue indicate inconsistency in at least one metric, using the same color scheme as in Figure 7.
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F��. 9. Seasonality of the ratio of internal variability across SMILEs and interannual variability of

resampled members for pan-Arctic sea ice area. Lines show the ratio of the standard deviation of the median

resampled member to the standard deviation across members without resampling (f̄<4< to f!⇢ ), shading shows

the interquartile range of the ratios for all members.

430

431

432

433

annual average of 75.9% across models (Figure 9). This ratio is robust irrespective of detrending417

method with an average of 74.4% and 82.4% when the ensemble mean or a 2 year lowpass filter418

respectively is used for detrending (see Figure S11).419

This ratio of three quarters interannual variability and one quarter lower frequency variability420

also holds for di�erent time period lengths, as discussed in section 3e, and is relatively stable421

for a given 42 year time period sometime between 1950-1991 and 2050-2091 (see Figure ??).422

Hence, we expect interannual variability to remain the dominant portion of internal variability423

for the near future. The general underestimation of the resampled variability, compared with the424

benchmark of large ensemble spread, is in agreement with previous uses of this methodology425

on surface temperature, precipitation and sea level pressure (McKinnon et al. 2017; McKinnon426

and Deser 2018). When considering the di�erence between f!⇢ and f<4< spatially, we find the427

largest underestimations along the ice edge but in general the signal in the pan-Arctic is replicated428

homogeneously across the Arctic (see Figure S10).429
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5. Discussion434

Sea ice poses unique challenges in assessing internal variability: short time period of high435

quality observations, physical bounds of 0 to 100%, and changes in variability as mean state436

changes. Despite this, we were able to apply the synthetic ensemble method to Arctic sea ice as437

used in McKinnon et al. (2017) and McKinnon and Deser (2018) for temperature, precipitation438

and sea level pressure. Similarly to previous research, we found that resampling leads to an439

underestimation of the full range of internal variability captured by a large ensemble, both in the440

pan-Arctic (where f̄<4< ⇡ 0.76 f!⇢ , see Figure 9), and also locally across the Arctic Ocean (Figure441

S10). This agrees with the expectation that low frequency variability is not fully captured by the442

resampling (McKinnon and Deser 2018). Hence our analysis primarily assesses the interannual443

component of internal variability. Interestingly, this proportion of three quarters of the internal444

variability being due to interannual variability matches closely with the 75% contribution from445

atmospheric temperature fluctuation to Arctic sea ice variability found by Olonscheck et al. (2019)446

via a ’decoupling’ methodology. Both of these independent analyses hence suggest that Arctic sea447

ice interannual variability is largely unpredictable.448

Our analysis assumes that a given anomaly is equally likely to have occurred in 1979 or 2020.449

This is a dependable assumption, despite the fact that it has been shown that variability increases450

as sea ice extent decreases (Goosse et al. 2009; Jahn et al. 2016; Olonscheck and Notz 2017;451

Massonnet et al. 2018), as we showed that neither the length of the period considered (Figure452

3) nor the period itself (Figure S12) substantially change the results. However, as the Arctic453

approaches seasonally ice-free conditions, an "equally likely" assumption will no longer be a valid454

approach. For example, it would not be appropriate to assume a September SIA negative anomaly455

of one million square km (as occurred in 2007) would be equally likely to occur when the mean456

state in September is practically zero in most models.457

All of the SMILEs, except CSIRO MK3.6, capture the seasonal cycle of f<4< and `<4< with458

highest values in the summer. However, the magnitude of observational uncertainty also needs to459

be taken into account as it factors into how stringent consistent classifications are. Observational460

uncertainty is largest in the winter for the pan-Arctic (see Figure 5), therefore it is easier for461

models to be consistent during this part of the year. Spatially we find the largest di�erences in462
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variability between observational datasets in the central Arctic during September (see Figure 6).463

Nevertheless, we still find thatmostmodels simulate too high variability in this region in September,464

and it is only the extreme variability of NT compared with the other observational datasets that465

allow a ‘consistent within observational uncertainty’ classification for most models (see Figure466

8). Consensus regarding which observational dataset is the most realistic for these areas would be467

required before determining which models have the better representation of variability in the high468

SIC regions.469

As we have shown that almost all models can simulate consistent members across seasons,470

we can say most of the SMILE models are realistic in their simulation of historical interannual471

variability. Realism of internal variability is a complementary assessment to the analysis of mean472

state, sensitivity to warming, and trends (Swart et al. 2015; Rosenblum and Eisenman 2017;Winton473

2011; Niederdrenk and Notz 2018; Davy and Outten 2020). Some of these metrics are inter-related474

but each provide part of the picture for a full model assessment for Arctic sea ice. We show475

the CMIP5 models with inconsistent months or large regions of inconsistency are those with the476

largest mean state biases, but even these models are consistent for several months of the year in the477

pan-Arctic and for most regions in March and September. This suggests that avoiding mean state478

biases is important for correctly simulating the evolution of the Arctic sea ice cover (see Massonnet479

et al. (2018)), but models can have moderately large mean-state biases and still simulate realistic480

sea ice interannual variability. Furthermore, as we find that most CMIP5 SMILE models agree481

with observations in terms of their interannual variability for the pan-Arctic in September, the482

internal variability prediction uncertainty of an ice-free Arctic of over two decades from climate483

models (Notz 2015; Jahn et al. 2016) is likely realistic. However, no SMILE model performs well484

in all months and regions. But if one wishes to only focus on one season or region, one can find485

a CMIP5 SMILE model where the interannual variability is consistent with observations. This is486

true even for hotspots of internal variability such as the Barents Sea in winter and the shelf seas487

in summer (England et al. 2019; Bonan et al. 2021), showing the robustness of the consistency488

classification.489

24



6. Conclusions490

In this study, we showed that simulated interannual variability of CMIP5 large ensemble models491

is typically within observational uncertainty, by generating a synthetic ensemble of Arctic sea ice492

variability and using a binary classification of consistency that considers the full distribution of493

resamplings to aid the assessment of model realism. This analysis method considers approximately494

three quarters of Arctic sea ice internal variability, on the dominant interannual timescale for the495

period 1979-2020. Sea ice variability is another metric that augments the realism assessment of496

GCMs in the context of Arctic sea ice beyond the typical mean state and trend consistency and the497

assessment of sea ice sensitivity (Swart et al. 2015; Rosenblum and Eisenman 2017; Winton 2011;498

Niederdrenk and Notz 2018; Davy and Outten 2020).499

We showed that all models are able to simulate the seasonal cycle of interannual variability500

with peaks in the summer, except CSIRO MK3.6 which has by far the largest mean state biases501

(see Table 4), caused by aerosol issues (Uotila et al. 2013). We demonstrate that all modeled502

interannual variability is within observational uncertainty, except for CanESM2 in January and503

November, GFDL CM3 in August and November, and CSIRO MK3.6 in August-October for the504

pan-Arctic. Except for areas of low absolute variability in the central Arctic Ocean, there are505

no inconsistencies that are common across all six models we assessed. Spatially, we find the506

models underestimate interannual variability for most regions in March, and in September most507

models overestimate variability in the central Arctic. The marginal seas, which have high absolute508

variability, are generally realistically simulated, although our assessment is limited to where both509

models and observations have sea ice. No model simulated the spatial interannual variability in510

both March and September without inconsistencies, but most models simulated at least one of the511

two months realistically. CESM1 and GFDL ESM2M simulate September spatial variability very512

well, with very few areas of inconsistency, including the highly variable shelf seas. In March, MPI513

ESM1 performs best, with only the Siberian coast displaying too high variability.514

In summary, in this first direct comparison of interannual variability between observations and515

models, we have shown that estimates of interannual variability from models are largely consistent516

with observations. However, model skill varies by month and region, highlighting that the best517

model to use for a study varies based on the context. To be able to assess the impact of the518
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full range of internal variability, including the low frequency variability (McKinnon and Deser519

2018), first requires an improved understanding of the drivers of low-frequency variability on520

Arctic sea ice. Generally, the fact that the simulated interannual variability of most CMIP5 large521

ensembles agrees quite well with historical observations, especially in September, increases trust522

in the internal variability uncertainty of Arctic sea ice projections.523
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T���� S1. Replacement months for datasets with missing data for NSIDC or with discontinuities as for

HadISST1.

Dataset Discontinuity Month Replacement Month

NSIDC CDR,BT,NT 1984-07 1985-07

NSIDC CDR,BT,NT 1987-12 1988-12

NSIDC CDR,BT,NT 1988-01 1989-01

HadISST1 2009-03 2007-03

HadISST1 2009-04 2008-04

T���� S2. Mean SIA for the period 1979-2020 for all models and observations. SIA in 106 km2, biases

relative to CDR observations.
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F��. S1. E�ect of ensemble size on maximum and minimum resampled standard deviations. The

maximum and minimum ensemble member for f<4< when subsampled from 2-100 members 100 times is

compared with the minimum and maximum values of f>1B for December.

F��. S2. Influence of ensemble size on standard deviation of pan-Arctic SIA. Standard deviation with

respect to time for a number of subsampled members between 2 and the lesser of 51 and the full ensemble for

the time period 1979-2020. (a, c): average standard deviation across members (f!⇢ ) for 1000 bootstrapped

members of a given number, for March (a) and September (c). (b, d): the derivative of the average standard

deviation per member shown in (a) and (c).
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F��. S3. Influence of length of time period on standard deviation of pan-Arctic SIA. Standard deviation

with respect to time for time periods between 6 and 66 years in SIA derived from anomalies relative to a 2 year

lowpass Butterworth filter with 10 random start times for f<4< and 1000 for f!⇢ and f>1B. Thick lines show the

median ensemble member, shading shows ± 1 standard deviation. (a, b): the ratio of standard deviation across

resamplings (f<4<) to standard deviation across members (f!⇢ ) over a subset of the time periods for March

(a) and September (b). (c, d): the ratio of standard deviation across resamplings (f<4<) to standard deviation

across resampled observations (f>1B) in the HadISST1 dataset in March (c) and September (d).
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1979-2010 1979-2020 1989-2020

F��. S4. Influence of time period on spatial consistency. SIC is detrended using a linear trend. Same as

‘All f>1B and `>1B’ columns in Figure 8 for ‘1979-2020’ columns. Model and observational data for 1979-2010

and 1989-2020 are shown in the columns labeled accordingly.
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F��. S5. Consistency between models and observations in pan-Arctic SIA, subsampled to 20 members.

Same as Figure 7, except now subsampled 1000 times to 20 members.
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F��. S6. Spatial consistency of internal variability between large ensemble members, subsampled to 20

members. Same as Figure 8 except now members are subsampled 1000 times to a size of 20 members.
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F��. S7. Spatial consistency of internal variability between large ensemble members and observations

using lowpass filtered data. Same as Figure 8 except now SICs are detrended using a 2 year lowpass filter

before resampling.
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F��. S8. Seasonality of average resampled variability in members and observations for pan-Arctic sea

ice area. Same as Figure 4, except now for ` instead of f.
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F��. S9. Resampled modeled and observed variability of March SIC. Same as Figure 6, but now for March.

S10



F��. S10. Spatial distribution of the ratio of internal variability in large ensembles and resampled

members. The ratio f̄<4< to f!⇢ for March and September in all models represents the proportion of large

ensemble variability captured via the resampling technique.
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F��. S11. Seasonality of the ratio of internal variability across SMILEs and interannual variability of

resampled members for pan-Arctic sea ice area, using ensemble mean detrended data and lowpass filtered

datta. Same as Figure 9, except now SIA anomalies were detrended relative to the linear trend of the ensemble

mean for (a) and relative to a 2 year lowpass filter for (b).
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F��. S12. E�ect of starting year on f̄<4< / f!⇢ ratio for a 42-year time period. The ratio of f̄<4< to

f!⇢ is calculated for 42-year time periods between 1950-1991 and 2050-2091 for the annual mean. f̄<4< is

calculated from 1000 resamplings.
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