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ABSTRACT: Internal variability is the dominant cause of projection uncertainty of Arctic sea ice
in the short and medium term. However, it is difficult to determine the realism of simulated internal
variability in climate models, as observations only provide one possible realization while climate
models can provide numerous different realizations. To enable a robust assessment of simulated
internal variability of Arctic sea ice, we use a resampling technique to build synthetic ensembles for
both observations and climate models, focusing on interannual variability which is the dominant
timescale of Arctic sea ice internal variability. We assess the realism of the interannual variability
of Arctic sea ice cover as simulated by six models from the Coupled Model Intercomparison Project
5 (CMIPS) that provide large ensembles compared to four observational datasets. We augment the
standard definition of model and observational consistency by representing the full distribution of
resamplings, analogous to the distribution of variability which could have randomly occurred. We
find that modeled interannual variability typically lies within observational uncertainty. The three
models with the smallest mean state biases are the only ones consistent in the pan-Arctic for all
months, but no model is consistent for all regions and seasons. Hence, choosing the right model for
a given task as well as using internal variability as additional metric to assess sea ice simulations is
important. The fact that CMIP5 large ensembles broadly simulate interannual variability consistent
within observational uncertainty gives confidence in the internal projection uncertainty for Arctic

sea ice based on these models.
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SIGNIFICANCE STATEMENT: The purpose of this study is to evaluate the historical simulated
internal variability of Arctic sea ice in climate models. Determining model realism is important
to have confidence in the projected sea ice evolution from these models, but so far only mean state
and trends are commonly assessed metrics. Here we assess internal variability with a focus on the
interannual variability, which is the dominant timescale for internal variability. We find that, in
general, models agree well with observations, but as no model is within observational uncertainty
for all months and locations, choosing the right model for a given task is crucial. Further refinement

of internal variability realism assessments will require reduced observational uncertainty.

1. Introduction

Arctic sea ice has declined precipitously since 1979, at a faster rate than at any time over the last
millennium (Brennan and Hakim 2022), with less than half the summer area and one quarter the
summer volume remaining (Schweiger et al. 2011; Notz and Stroeve 2018). This observed decline
is due to both anthropogenic climate change and internal variability, which can act to amplify or
dampen the trend from external forcing alone (Kay et al. 2011; Notz and Marotzke 2012). The
relative contribution of internal variability to the observed September sea ice area decline remains
uncertain but has been estimated at 43-53% (Stroeve et al. 2007; Kay et al. 2011; Ding et al. 2019).
Internal variability also influences future sea ice projections, leading to large internal variability
uncertainty, especially for the next few decades (Kay et al. 2011; Jahn et al. 2016; Bonan et al.
2021). As internal variability is such a large contributor to the observed and projected changes in
Arctic sea ice cover, but Global Climate Models (GCMs) differ in the magnitude of their simulated
sea ice internal variability (Olonscheck and Notz 2017), it is imperative that we understand how

realistically models simulate internal variability.

Internal variability of Arctic sea ice has been shown to be spatially heterogeneous (England et al.
2019), and act on multiple time scales from annual to multi-decadal (Zhang and Wallace 2015;
Ding et al. 2017, 2019; Brennan et al. 2020). Over the historical period, internal variability has
been the dominant cause of sea ice decline in many regions, most notably parts of the Kara Sea
in summer and the Barents Sea in winter (Li et al. 2017; England et al. 2019; Dorr et al. 2021).

Sea ice loss in recent decades has been most rapid and expansive in the summer, particularly in
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the shelf seas which have transitioned from mainly ice-covered to ice-free for more of the summer,
facilitating high internal variability (Onarheim et al. 2018; Mioduszewski et al. 2019). These areas
of rapid and unpredictable change coincide with the most impactful areas for a range of stakeholders
from shipping and oil interests to indigenous peoples and biodiversity (Kovacs et al. 2011; Petrick

et al. 2017; Christensen and Nilsson 2017; Chen et al. 2020).

The established way to estimate internal variability in GCMs is to use multiple realizations
of single model initial-condition large ensembles (SMILEs) or long constant forcing model runs
to assess the ensemble spread or standard deviation (Olonscheck and Notz 2017; Lehner et al.
2020; Mabher et al. 2020). SMILEs have successfully been used to study internal variability in
the context of polar temperatures England (2021), precipitation trends (Dai and Bloecker 2019),
and regional trends (McKinnon and Deser 2018; Hu et al. 2019). However, such analysis can
not be done on observations, due to only one realization of reality and a limited length of the
observational record. It is this single realization of reality over a relatively short period of time
that has previously prevented direct assessment of internal variability of Arctic sea ice in models
compared to observations. Hence, previous sea ice model assessments have been focused on the
trends (e.g. Swart et al. 2015; Rosenblum and Eisenman 2017), sensitivity to warming (e.g. Winton
2011; Niederdrenk and Notz 2018), and mean state (e.g. Davy and Outten 2020). Furthermore,
even if we were able to precisely disentangle internal variability from the forced response in
observations, comparisons with GCMs are still challenging because we do not know where the one
realization seen in the observations falls within the probability distribution obtained from a model

ensemble (Notz 2015).

Here, we provide the first direct comparison of internal variability of Arctic sea ice from a suite
of SMILE:s from the Coupled Model Intercomparison Project Phase 5 (CMIPS5) with observations,
by using a statistical technique to construct a ’synthetic ensemble’ of Arctic sea ice variability,
following McKinnon et al. (2017). Synthetic ensembles have been used for several climate
variability questions such as for sea surface temperature (Chan et al. 2020), climate extremes
(Deser et al. 2020a), precipitation (McKinnon and Deser 2021), ocean chlorophyll concentration
(Elsworth et al. 2021), and Antarctic sea ice trends (Chemke and Polvani 2020). Here we present
the first use of a synthetic ensemble for studying Arctic sea ice, specifically to assess the realism of

internal variability on interannual timescales. Using the synthetic ensemble method, we are able to
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show that generally the simulated interannual variability fits within the observational uncertainty
derived from different datasets, but that there are considerable seasonal and spatial differences,
and that some models perform better than others for a given task. We also show that internannual
variability makes up approximately three quarters of the total Arctic sea ice internal variability,

and hence the majority of the sea ice internal variability over the past 42 years.

2. Data Sources

a. Observational data

We primarily use two observational datasets for sea ice concentrations (SIC), the National Snow
and Ice Data Center (NSIDC) Climate Data Record (CDR) version 4 (Meier et al. 2021), and the
Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST1) (Rayner et al. 2003).
In order to further test the sensitivity of our results to the observational dataset used, we also
utilize datasets derived from the satellite algorithums NASA Team (NT) (Cavalieri et al. 1984)
and NASA Bootstrap (BT) (Comiso 1986). Together, these datasets are a representative sample
of interpretations of past sea ice conditions, with both the mean state and variability differing
between the datasets due to observational uncertainties (Comiso et al. 2017; Kern et al. 2019). Sea
ice area (SIA) was chosen over sea ice extent (SIE) as the variability of SIA is more independent
of satellite algorithms and is intrinsically more precise and thus better for comparing internal
variability between models (Notz 2014). All analysis is performed using monthly data for 1979 to
2020. Missing data for NSIDC datasets, and discontinuities in the HadISST1 dataset, were filled
using the same month’s data in a different year, instead of interpolating to avoid unrealistic SIC

values (see Table S1) for the specific replacements used).

b. Model data

Six models from the Climate Variability and Predictability Program (CLIVAR) Multi-Model
Large Ensemble Archive (Deser et al. 2020b) are utilized in this analysis, as detailed in Table
1. EC-Earth was excluded from this analysis due to no available SIC output. All models are

CMIP5-class and use historical and representative concentration pathway (RCP) 8.5 forcing, the



122

123

110

111

112

113

114

115

116

17

118

19

120

121

124

125

126

127

128

129

130

131

TABLE 1. Models used in this analysis from the CLIVAR Multi-Model Large Ensemble Archive (Deser et al.
2020b)

Modeling Center | Model Members | Years Reference

CCCma CanESM2 | 50 1950-2100 | Kirchmeier-Young et al. (2017)
NCAR CESM1 40 1920-2100 | Kay et al. (2015)

CSIRO MK3.6 30 1850-2100 | Jeffrey et al. (2013)

GFDL CM3 20 1920-2100 | Sun et al. (2018)

GFDL ESM2M 30 1950-2100 | Rodgers et al. (2015)

MPI ESM1 100 1850-2100 | Maher et al. (2019)

high emissions CMIP5 scenario. The models from the Multi-Model Large Ensemble Archive are
diverse in their mean state and trends, spanning nearly the full range of CMIP5 sea ice projections
(see Figure 1 in Bonan et al. 2021). In winter, model mean-state biases are typically smaller
in absolute and relative terms than summer (see Table S2). The notable outliers in summer are
CanESM?2 with the largest negative mean-state bias of —54% in September and CSIRO MK3.6
being an extreme positive outlier for all seasons and +83% in September. Although GFDL CM3
is not as large an outlier in mean state in September, its SIA loss over the period 1979-2020 is by
far the most rapid. The six models range in ensemble size between 20 and 100 (see Table 1). We
present results for all members of the SMILES to assess each GCM’s ability to realistically simulate
the observed interannual variability. We also provide subsampled results, scaled to 20 members,
the size of the smallest large ensemble, for model inter-comparison with our consistency metric.

Subsampling is discussed in more detail in section 3c.

3. Methods

a. Resampling technique

We estimate interannual variability in a single model member or observational time series
by assuming the forced response is represented by an ordinary least squares regression linear
trend. This assumption is deemed appropriate for 1979-2020, but may not be applicable for time
periods extending further back (England et al. 2019; England 2021), and allows us to follow
the methodology from McKinnon et al. (2017). Anomalies from this linear trend are therefore

considered largely due to interannual variability alone. Typically the ensemble mean is a more
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accurate measure of the forced response, but as discussed in section 3d and 4c, detrending using

the individual member produces similar results and is chosen here for reasons detailed in 3d.

By using this technique we can calculate a consistent metric of interannual variability to directly
compare model members and observations. We consider all months in the pan-Arctic and present
spatial results for the minimum and maximum SIA months September and March respectively.
We resample the anomalies from the linear trend 10,000 times for SIA and 1000 times for each
SIC grid box, with replacement, and use a 2 year bootstrap block size. This can be considered
analogous to shuffling independent anomalies to produce a range of alternative scenarios which
would have been equally likely to occur, allowing us to calculate metrics of interannual variability
for a representative sample of all possible scenarios (see Figure 1). As suggested by McKinnon
et al. (2017) and McKinnon and Deser (2018), we retain spatial coherence by resampling in the
time dimension for all grid boxes at once. 10,000 resamplings in the pan-Arctic were chosen for
increased reliability of consistency classifications, whereas spatially 1000 was determined sufficient
as each grid box has a lower impact on results if a classification were to change from rerunning the
experiment. A 2 year block size is chosen because normalized autocorrelation frequently exceeds
0.4 for a lag of 1 year, and a marked drop-off in autocorrelation between a lag of 1 and 2 years
occurs in comparison with years 2 and 3 (not shown), occurring both spatially and in the pan-Arctic
time series. Resampling with a 1 year or 2 year block size leads to almost identical results (not

shown).

We focus our analysis on the standard deviation of sea ice state over the 42-year period 1979-2020,
not the trends, as we want to assess the realism of the models’ simulated interannual variability,
rather than the realism of the simulated trends (see Swart et al. (2015) for a discussion of simulated
trends compared to observations). The standard deviation with respect to time is computed either
for the 10,000 pan-Arctic SIA resampling or the 1000 SIC resamplings in each grid cell. To
represent the distribution of these resamplings or ensemble members we use the standard deviation
(o) and mean (). Here, o can be considered analogous to the range of interannual variability
which could have occurred, given the underlying data; u is analogous to the typical interannual

variability represented in the resamplings.



151

152

153

154

155

156

166

167

168

170

171

o
(-3

t 3 -
< 61 2 ;1 0=0.469
© — \ ©
o 5 </ €
: '\ : .
s W c
% 4] \ ~.\;~\‘ & o 0 dln
T :
kel -
0 34 < ’JJM\ g
© 1980 1985 1990 1995 2000 2005 2010 2015 2020 1980 1985 1990 1995 2000 2005 2010 2015 2020
C e

©
o
o

] 0=0.403

o

== Observed standard deviation
1 E=1 Resampled standard deviations

o]
o
o

Resampled anomalies
o

(%)
C
o
2
©
S
[}
e
® T
3 600 / N
1 5 / \
1980 1985 1990 1995 2000 2005 2010 2015 2020 §5°°‘ \
g d 2 400
£ [o0=0433 5
()
£ Y 300
e G
© > 4
E 0 5200
g & 100 -
®-14 o
%] w
2 , , , , , , , — 0 T ; : } .
1980 1985 1990 1995 2000 2005 2010 2015 2020 02 025 03 035 04 045 0.5 055 0.6

Year Standard deviation [10° km?]

FiG. 1. Resampling methodology, applied to the observed September SIA. (a): Observed sea ice area from
CDR (dots) with linear trend (grey dashed line). (b): Anomalies from the linear trend. (c,d) Two randomly
different resamplings of the anomalies in (b), color coded to match the year of anomaly. (e): Distribution of the
standard deviation with respect to time for all 10,000 resamplings. The printed statistics represent o for standard
deviation. In (e) the red vertical line represents the standard deviation of the original data and gray refers to the

distribution of standard deviations for the 10,000 resamplings.

In order to directly compare interannual variability between models and observations we define
three measures of variability as follows, where o is internal variability in SMILEs and both

Omem and o, are the interannual variability within a synthetic ensemble:

* orr and upp - Standard deviation and mean of standard deviations within a single large

ensemble, without resampling, an established measure of the full range of internal variability.

* Omem and e - Standard deviation and mean of the standard deviations of all resamplings of

a single model member. The resampling process for a given ensemble member is equivalent
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to that of the observations in Figure 1. The median member’s value across all members of the

SMILE is denoted G,em and fy,em-

* 0,ps and pyps - Standard deviations and mean of the standard deviation of all resamplings
of the single realization of the observational dataset. These metrics relate to Figure 1 as the

standard deviation and mean of the distribution in panel e.

b. Consistency

To assess the realism of simulated internal variability, we utilize a consistency metric to provide
a binary classification as to whether the modeled variability is within or outside the range of
observational uncertainty. For sea ice analysis in the past, consistency has typically been defined
by at least one member of a large ensemble overlapping with observations (e.g. Notz 2015;
Swart et al. 2015; Jahn 2018). However, this is a relatively low bar for models to reach. Other
more elaborate consistency methods have been applied for other aspects of the climate system,
e.g. Santer et al. (2008), and applied to Arctic sea ice by Stroeve et al. (2012). However
the methodology of Santer et al. (2008) bases consistency assessments on trends rather than the
internal variability independent of the trends, as is the goal here. Hence, we here use resampling and
define consistency by comparing distributions, as it allows us to compare whether the resampled
distributions overlap. Comparing distributions is a more stringent decision about consistency
than comparing single values for each ensemble member or observational dataset that would be
available without resampling. Further augmentation to this binary classification is achieved by
comparing SMILEs with four diverse observational datasets independently, adding the category
of ’consistent within observational uncertainty’. We only use this three-category consistency
classification rather than a significance or probability value (e.g., from a student t-test), as both the
resampled average variability (u,.,) and standard deviation of variability (07,.,,) are positively
skewed across members. Nonetheless, we find that a 95% confidence interval is in fact similar to
our consistency classification, but classifies fewer instances of inconsistency in the pan-Arctic than

our method.

Applying this consistency metric to Arctic SIA, each SMILE realization or observational dataset

has a different value of interannual variability for each of the 10,000 resamplings. These 10,000
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resamplings from a single member or observational time series are approximately normally dis-
tributed and as such can be thought of as probability distribution functions (PDFs) (see Figure 2).
The width of the PDFs show the distribution of the 10,000 resamplings, indicating the range of pos-
sible interannual variabilities (proportional to 07,.,, and o,ps). The location on the horizontal-axis
indicates the average interannual variability (e, and yps). For models and observations to be
considered ‘consistent’ in the following, we require their means (their position on the horizontal-
axis in Figure 2) and their standard deviations (height on the vertical-axis) to overlap such that at
least one member is greater than the lowest observational dataset and one member is lower than
the highest observations for each o and u metric independently. Average SIC differences does not
preclude a consistent classification as variability may be equal between a SMILE and observational
datasets but about different means. However, due to the zero-bound nature of SIC, if a mean state
differs so much that SMILE members have at least some sea ice where there is no sea ice in the
observational datasets, we exclude those regions from the analysis rather than classifying them as
inconsistent. We do this as the focus of our analysis is on assessing the realism of actual sea ice

variability, so we only compare regions where there is variability in both models and observations.

c. Ensemble size

We have included SMILEs with ensemble members as low as 20 in our analysis as the standard
deviation between members (o g ), representing the full range of internal variability, increases only
marginally beyond approximately 8-12 members, compared to the full range of 20-100 members
(see Figure S2). This leads us to consider SMILEs of at least 12 members to generate enough
diversity between realizations to capture most aspects of internal variability. The selection of a
minimum number of members for SMILEs when assessing different time periods or other aspects
of the climate system may require considerably more members (Milinski et al. 2020). With
increasing ensemble size, the values of the minimum and maximum o0,., diverge, making it
easier for a SMILE to overlap with observations (see Figure S1). Our primary goal is to assess
SMILESs’ individual realism when compared with observations, using as much information from
each model as is available. Hence, we present results without subsampling the members to a
consistent ensemble size. However, as others may be interested in a direct comparison of the

interannual variability in CMIP5 SMILEs, we provide subsampled results in the supplementary

10
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section, where consistency is standardized to 20 members, the size of the smallest SMILE, in the

pan-Arctic (Figure S5) and spatially (Figure S6).

d. Detrending

The ensemble mean of a SMILE is considered a good representation of ‘forced response’
of the model to the changing climate (Frankcombe et al. 2018). However, observations only
have one realization, and hence the observed forced trend must be computed from that single
realization. Hence, in our analysis we use the individual members’ trends over the period 1979-
2020 as representation of the forced response, to enable the same methodology to be applied to
observations and models, for direct comparisons. The SMILEs provide the perfect place to test
the impact of this method: we find that linear detrending rather than removing the ensemble mean,
results in only a marginal decrease in variability (8% reduction for 07,,,, and 11% for o g) yielding

a very similar ratio (see Figure S11).

Applying linear detrending largely removes low frequency variability. We reached this conclusion
as detrending ensemble members and observations using a 2 year Sth order lowpass Butterworth
filter (Roberts and Roberts 1978), which explicitly removes low-frequency variability, obtains
almost identical consistency results as with a simple linear trend (see Figure S7 in comparison to
Figure 8). This lowpass filter removes variability on frequencies in excess of 2 years, the time
period beyond which autocorrelation in the sea ice is negligible. Good agreement between the
linear detrending and the lowpass filtered data suggests that both anomaly calculation methods
effectively isolate interannual variability. The variability in our resampled anomalies of individual
SMILE members (07, ) capture approximately three quarters of internal variability across SMILE
realizations without resampling (opg), as discussed further in section 4c. This enables us to
conclude that our detrending and resampling analysis primarily assesses interannual variability,
and that this is the dominant timescale of internal variability for Arctic sea ice for the period

1979-2020.

In the spatial analysis we obtain a linear trend for each grid cell, using the same method of
detrending as we did for the pan-Arctic. While we find some isolated incidences of grid cells

where the linear SIC trend exceeds 100% or is lower than 0%, extremely small differences are
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found in consistency if a different detrending method is used, such as a 2 year low pass filter (see
Figure S7) or trends capped to physical bounds (not shown). Hence, the detrending method does

not affect the conclusions drawn from the analysis.

e. Time periods

The time period considered is the observational period 1979-2020, focused on the seasonal
extremes of March and September for the spatial analysis. 1979-2020 is chosen for observations
due to high quality spatial data from 1979 onward, which is particularly important for assessing
interannual sea ice variability. We found that shifting the time period used from the models to
better match the observed mean sea ice state yielded negligible differences spatially and minimally
affected pan-Arctic results for shifts of a few years to a decade. When matching the observed mean
state required adjustments of many decades, the changes in the results were larger. However, in
some instances a model did not have a time period where the mean state matched the observed mean
state in the whole historical and future simulations. Furthermore, we want to assess the realism
of the simulated interannual variability as simulated, to complement previous model assessments
of trends and mean state which were done over the same periods in models and observations (e.g.
Swart et al. 2015; SIMIP Community 2020). Hence, although internal variability has been shown
to be sensitive to mean state (Goosse et al. 2009; Jahn et al. 2016; Olonscheck and Notz 2017;
Massonnet et al. 2018), and some models have more linear SIA and SIC declines than others over

1979-2020, we find the choice of exact period analyzed did not materially impact our results.

As the use of a 42-year time period is out of necessity, this raises the question of whether a
42-year period is sufficient for our analyses. To assess this question different time period lengths
were assessed within the models (see Figure 3). Time periods longer than approximately 20 years
yield similar ratios in oy,e,/07ps ratios, which gives confidence in our results for this metric being
representative of a broad range of time periods. Similarly, the ratio oy,.,»/0 g changes rapidly for
short time periods but becomes relatively stable for time periods of at least a few decades. To
confirm this, we conducted a similar time period analysis for the period 1953-2020 using lowpass
filtered SIA. This more clearly indicates the stabilization of the ratio 0, to o g, at approximately

75%, independent of the length of the time period in excess of approximately 30 years (see Figure
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standard deviation across resamplings (0ye5;) to standard deviation across resampled observations (07 ) in the

HadISST1 dataset for the period 1979-2020 in March (c) and September (d).

S3). Spatially, when we compare the shorter 32-year time periods 1979-2010 and 1989-2020 to
the full time period of 1979-2020, we find that there are small consistency differences between

the time periods for some regions, but these differences are not substantial enough for our main

conclusions to be altered (see Figure S4).
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4. Results

a. Resampled variability in models and observations

Resampling the observations and SMILE models, we find that the variability of models is
generally similar to observations, but with considerable seasonal and regional variability. Both the
variability in models (0,.,) and observations (o,s) show distinct seasonality in the pan-Arctic,
peaking in the autumn with the exception of CSIRO MK3.6 (see Figure 4 and shown for average
variability (u) in Figure S8). In spring we find larger variation between different realizations
of the same model than between model averages. This highlights the sensitivity of interannual
variability to realization, and why we assess realism based on consistency rather than comparison
between median SMILE member and observations (see section 3b). The results of this consistency

assessment are discussed further in section 4b.

Observations have substantial uncertainties that impact the value of observational interannual

variability (o,ps). Hence, the choice of which dataset to use for comparison with models can affect
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whether observations fall within the large ensemble range, both for the pan-Arctic and spatially
(see Figures 4 and 6). Furthermore, the uncertainties vary seasonally, with the largest relative
uncertainty of pan-Arctic observational variability in the winter and spring (see Figure 5). Hence,
it is easier for models to fall within the observational uncertainty in the winter and spring than in
the summer and autumn. For most months we find the majority of the ensemble median variability
(Omem» grey bars in Figure 4) are similar or higher than observations (o,s, in red). However, as

we do not know how typical observations are, we cannot use these differences to diagnose model

biases.
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Spatially, there is considerable difference in the locations of maximum variability between models
and the observational datasets in September (see Figure 6). We find large magnitude differences
throughout the ice covered region between different models and when comparing models with
observations. Despite these large differences in the ensemble medians between models, we find
that the range between members for a given model is considerably larger in most instances. Again
this draws attention to the difference of interannual variability between realizations. In comparison
to September, the location and magnitude of highest variability in March is more similar between
different models, with the range between members very large for the ice edge region (see Figure S9).
Observational uncertainty is also highly variable between regions, for example NT exhibits much
higher variability in the central Arctic in September than the other datasets (see Figure 6). When we
combine both the spread of model simulations across realizations and the spread of interpretations
of the observational record, we find broad agreement between models and observations. This
is true both in the pan-Arctic and spatially in their representation of Arctic sea ice interannual

variability.

b. Consistency of models and observations

When utilizing the range of observational datasets for the pan-Arctic, we find model consistency
for a majority of the time (57%) across models and months (see Figure 71). Models consistent within
observational uncertainty accounts for 33% of months, far greater than the 10% of months identified
as inconsistent. It is important to note that these proportions relate to the specific six models we
analyzed, which capture the full spread of the CMIP5 sea ice simulations (Bonan et al. 2021).
Nonetheless, the common pattern is for GCMs to be predominantly consistent within observational
uncertainty. By our definition of consistency, all models except CSIRO MK3.6 and GFDL CM3
are consistent in September for all observational datasets. In the spring, when observational
uncertainty is largest, we find all models are consistent within observational uncertainty and in
April and May all models are consistent with all observational datasets. When looking across all
months we find that only MPI ESM1 is unambiguously consistent with all observational datasets
and CESM1 and GFDL ESM2M are consistent but not for all observational datasets. CanESM?2,
CSIRO MK3.6 and GFDL CM3 (the models with the largest mean-state bias) are the only models

with inconsistent classifications beyond observational uncertainty. Our ability to more stringently
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bottom row. The color bar applies to all subplots on this figure. The same analysis for March is shown in Figure

S9.

assess realism by using the two metrics is demonstrated by CanESM2 and GFDL CM3 being
considered consistent for all months for o, but when also considering u, we find both have two

months with inconsistencies.

When considering consistency spatially, each grid cell can be considered to have a distribution
of PDFs similar to Figure 2 and thus can be categorized in the same way. Consistency in o and u

are highly correlated but with some differences, indicating the benefit of using both metrics (areas
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between the observational datasets, indicating consistency within observational uncertainty.
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of light blue and light red in Figure 8). As noted earlier, we focus on the seasonal minimum and
maximum sea ice area, September and March respectively and present a consistency classification

only where both the model and observations exhibit non-zero sea ice.

Similarly to the pan-Arctic, we find no areas where the o~ and u metrics produce different signs
of inconsistency. With the exception of CSIRO MK3.6, the shelf and marginal seas in September
in all models are broadly consistent within observational uncertainty, with CESM1 and GFDL
ESM2M performing the best. CSIRO MK3.6 shows the largest inconsistencies in March with
underestimation of variability in the Barents Sea. All other models simulate consistent variability
in the Barents Sea where atypically rapid SIC decline has occurred (Li et al. 2017). Both regions
of too high variability and too low variability occur for MPI ESM1 in September, yet this model
is consistent for September in the pan-Arctic, indicating these regions counteract each other for
SIA. For March the models are more dissimilar than in September, with no regions of over or
underestimation of interannual variability common to all models. Large portions of the central
Arctic Ocean have very little observed and modeled variability in March, due to the 100% bounding
of SIC. This means that small absolute biases in the modeled interannual variability can cause an
inconsistent classification (see Figure S9). With our consistency classification we conclude that
more models have greater realism of simulated interannual variability in September than in March.
However, even well performing models in some regions in September or March generally do a
poorer job in the other month, indicating that the skill of a certain model in simulating interannual

variability is highly seasonally and regionally dependent.

c. Internal variability captured by resampling versus ensemble spread

Our best estimate of the full range of internal variability, on high and low frequency time scales, is
through SMILEs, here we use the standard deviation between detrended members (o ) to represent
this. As we consider the resampled standard deviation of SMILE members and observations to
be representative of interannual variability and not the full range of internal variability, we would
expect the ratio oy,.;,/0 L to be less than one. For all seasons, when looking at pan-Arctic SIA,
interannual variability simulated by the median standard deviation across resamplings (0enm ) 1S

less than the internal variability simulated by multiple realizations without resampling (ozg), an
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and blue indicate inconsistency in at least one metric, using the same color scheme as in Figure 7.
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annual average of 75.9% across models (Figure 9). This ratio is robust irrespective of detrending
method with an average of 74.4% and 82.4% when the ensemble mean or a 2 year lowpass filter

respectively is used for detrending (see Figure S11).

This ratio of three quarters interannual variability and one quarter lower frequency variability
also holds for different time period lengths, as discussed in section 3e, and is relatively stable
for a given 42 year time period sometime between 1950-1991 and 2050-2091 (see Figure 2?7?).
Hence, we expect interannual variability to remain the dominant portion of internal variability
for the near future. The general underestimation of the resampled variability, compared with the
benchmark of large ensemble spread, is in agreement with previous uses of this methodology
on surface temperature, precipitation and sea level pressure (McKinnon et al. 2017; McKinnon
and Deser 2018). When considering the difference between o7 g and oy, spatially, we find the
largest underestimations along the ice edge but in general the signal in the pan-Arctic is replicated

homogeneously across the Arctic (see Figure S10).
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5. Discussion

Sea ice poses unique challenges in assessing internal variability: short time period of high
quality observations, physical bounds of 0 to 100%, and changes in variability as mean state
changes. Despite this, we were able to apply the synthetic ensemble method to Arctic sea ice as
used in McKinnon et al. (2017) and McKinnon and Deser (2018) for temperature, precipitation
and sea level pressure. Similarly to previous research, we found that resampling leads to an
underestimation of the full range of internal variability captured by a large ensemble, both in the
pan-Arctic (where 5,0, = 0.76 0 g, see Figure 9), and also locally across the Arctic Ocean (Figure
S10). This agrees with the expectation that low frequency variability is not fully captured by the
resampling (McKinnon and Deser 2018). Hence our analysis primarily assesses the interannual
component of internal variability. Interestingly, this proportion of three quarters of the internal
variability being due to interannual variability matches closely with the 75% contribution from
atmospheric temperature fluctuation to Arctic sea ice variability found by Olonscheck et al. (2019)
via a ’decoupling” methodology. Both of these independent analyses hence suggest that Arctic sea

ice interannual variability is largely unpredictable.

Our analysis assumes that a given anomaly is equally likely to have occurred in 1979 or 2020.
This is a dependable assumption, despite the fact that it has been shown that variability increases
as sea ice extent decreases (Goosse et al. 2009; Jahn et al. 2016; Olonscheck and Notz 2017;
Massonnet et al. 2018), as we showed that neither the length of the period considered (Figure
3) nor the period itself (Figure S12) substantially change the results. However, as the Arctic
approaches seasonally ice-free conditions, an "equally likely" assumption will no longer be a valid
approach. For example, it would not be appropriate to assume a September SIA negative anomaly
of one million square km (as occurred in 2007) would be equally likely to occur when the mean

state in September is practically zero in most models.

All of the SMILESs, except CSIRO MK3.6, capture the seasonal cycle of 0,0, and e With
highest values in the summer. However, the magnitude of observational uncertainty also needs to
be taken into account as it factors into how stringent consistent classifications are. Observational
uncertainty is largest in the winter for the pan-Arctic (see Figure 5), therefore it is easier for

models to be consistent during this part of the year. Spatially we find the largest differences in
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variability between observational datasets in the central Arctic during September (see Figure 6).
Nevertheless, we still find that most models simulate too high variability in this region in September,
and it is only the extreme variability of NT compared with the other observational datasets that
allow a ‘consistent within observational uncertainty’ classification for most models (see Figure
8). Consensus regarding which observational dataset is the most realistic for these areas would be
required before determining which models have the better representation of variability in the high

SIC regions.

As we have shown that almost all models can simulate consistent members across seasons,
we can say most of the SMILE models are realistic in their simulation of historical interannual
variability. Realism of internal variability is a complementary assessment to the analysis of mean
state, sensitivity to warming, and trends (Swart et al. 2015; Rosenblum and Eisenman 2017; Winton
2011; Niederdrenk and Notz 2018; Davy and Outten 2020). Some of these metrics are inter-related
but each provide part of the picture for a full model assessment for Arctic sea ice. We show
the CMIP5 models with inconsistent months or large regions of inconsistency are those with the
largest mean state biases, but even these models are consistent for several months of the year in the
pan-Arctic and for most regions in March and September. This suggests that avoiding mean state
biases is important for correctly simulating the evolution of the Arctic sea ice cover (see Massonnet
et al. (2018)), but models can have moderately large mean-state biases and still simulate realistic
sea ice interannual variability. Furthermore, as we find that most CMIP5 SMILE models agree
with observations in terms of their interannual variability for the pan-Arctic in September, the
internal variability prediction uncertainty of an ice-free Arctic of over two decades from climate
models (Notz 2015; Jahn et al. 2016) is likely realistic. However, no SMILE model performs well
in all months and regions. But if one wishes to only focus on one season or region, one can find
a CMIP5 SMILE model where the interannual variability is consistent with observations. This is
true even for hotspots of internal variability such as the Barents Sea in winter and the shelf seas
in summer (England et al. 2019; Bonan et al. 2021), showing the robustness of the consistency

classification.
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6. Conclusions

In this study, we showed that simulated interannual variability of CMIP5 large ensemble models
is typically within observational uncertainty, by generating a synthetic ensemble of Arctic sea ice
variability and using a binary classification of consistency that considers the full distribution of
resamplings to aid the assessment of model realism. This analysis method considers approximately
three quarters of Arctic sea ice internal variability, on the dominant interannual timescale for the
period 1979-2020. Sea ice variability is another metric that augments the realism assessment of
GCMs in the context of Arctic sea ice beyond the typical mean state and trend consistency and the
assessment of sea ice sensitivity (Swart et al. 2015; Rosenblum and Eisenman 2017; Winton 2011;

Niederdrenk and Notz 2018; Davy and Outten 2020).

We showed that all models are able to simulate the seasonal cycle of interannual variability
with peaks in the summer, except CSIRO MK3.6 which has by far the largest mean state biases
(see Table 4), caused by aerosol issues (Uotila et al. 2013). We demonstrate that all modeled
interannual variability is within observational uncertainty, except for CanESM?2 in January and
November, GFDL CM3 in August and November, and CSIRO MK3.6 in August-October for the
pan-Arctic. Except for areas of low absolute variability in the central Arctic Ocean, there are
no inconsistencies that are common across all six models we assessed. Spatially, we find the
models underestimate interannual variability for most regions in March, and in September most
models overestimate variability in the central Arctic. The marginal seas, which have high absolute
variability, are generally realistically simulated, although our assessment is limited to where both
models and observations have sea ice. No model simulated the spatial interannual variability in
both March and September without inconsistencies, but most models simulated at least one of the
two months realistically. CESM1 and GFDL ESM2M simulate September spatial variability very
well, with very few areas of inconsistency, including the highly variable shelf seas. In March, MPI

ESMI1 performs best, with only the Siberian coast displaying too high variability.

In summary, in this first direct comparison of interannual variability between observations and
models, we have shown that estimates of interannual variability from models are largely consistent
with observations. However, model skill varies by month and region, highlighting that the best

model to use for a study varies based on the context. To be able to assess the impact of the
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full range of internal variability, including the low frequency variability (McKinnon and Deser
2018), first requires an improved understanding of the drivers of low-frequency variability on
Arctic sea ice. Generally, the fact that the simulated interannual variability of most CMIPS5 large
ensembles agrees quite well with historical observations, especially in September, increases trust

in the internal variability uncertainty of Arctic sea ice projections.
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TaBLE S1. Replacement months for datasets with missing data for NSIDC or with discontinuities as for

HadISST1.

Dataset Discontinuity Month | Replacement Month

NSIDC CDR,BT,NT | 1984-07 1985-07

NSIDC CDR,BT,NT | 1987-12 1988-12

NSIDC CDR,BT,NT | 1988-01 1989-01

HadISST! 2009-03 2007-03

HadISSTI 2009-04 2008-04

Model
Month| CanEsM2 CESM1 CSIROMK36 | GFDLCM3 | GFDLESM2M |  MPIESM1 n:::' Mean N;l)?‘c
Bias

Jan 11.97| -142| 1353 013 14.88] 149 11.90] -1.49] 1328 -0.11| 12,01 -1.39] 12.93[ -0.46] 13.39
Feb 1336] -095] 14.25] 0.06] 1569 138 1291] 141 1473 042] 1289 -142] 13.97] -034] 1431
Mar | 13.78] 065] 1439 0.03[ 1593 150 1321] -1.22] 15.06] 064] 13.11] -1.31] 14.25] -0.18] 14.43
Apr 1209| 057 1383 027] 1561 205 1271] -0.85| 1425 o069| 12.56] -1.00] 13.66] 0.10] 13.56
May | 11.3s| o064] 1230] 030] 14.88] 2.88| 11.41] 0.8 12.09] 0.09] 11.18] 081] 12.20] 0.21] 11.99
Jun 869 -1.39| 1032] o0.24] 1369] 362] 937 0.71] 953] -0s55| 871] -137] 10.05] -0.03] 10.08
Jul 5.10 793 o021 11500 378 657 -115] 691 -081] 584 -188] 731 041 7.72
Aug 2.75 s.68] -0.03] 1011 a.44] 126 83| o0s8| 401 -170] 5.30] -0.40] .70
sep 2.44 s.42| 014] 964 3.87| -140] 463] 065 3.73] -1s5| 496] -032] s5.28
Oct 4.10 7.25] 012 977 264| s37| 176] 672 -0.41] s.44] 169 6.0a] 069] 7.3
Nov 7.04 964 o00s| 1121] 162 796] -163] 947 -012] 813] -145] 891 068 o959
Dec 991 1.87| 11.82] o0.04] 1332] 154] 1018] 160] 11.32] -046| 1026] -152| 11.13] 065| 1178

TABLE S2. Mean SIA for the period 1979-2020 for all models and observations. SIA in 10° km?2, biases

relative to CDR observations.
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FiG. S2. Influence of ensemble size on standard deviation of pan-Arctic SIA. Standard deviation with

respect to time for a number of subsampled members between 2 and the lesser of 51 and the full ensemble for

the time period 1979-2020. (a, c): average standard deviation across members (org) for 1000 bootstrapped

members of a given number, for March (a) and September (c). (b, d): the derivative of the average standard

deviation per member shown in (a) and (c).
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F1G. S3. Influence of length of time period on standard deviation of pan-Arctic SIA. Standard deviation
with respect to time for time periods between 6 and 66 years in SIA derived from anomalies relative to a 2 year
lowpass Butterworth filter with 10 random start times for 0., and 1000 for o g and ops. Thick lines show the
median ensemble member, shading shows + 1 standard deviation. (a, b): the ratio of standard deviation across
resamplings (Ojnerm) to standard deviation across members (ozg) over a subset of the time periods for March
(a) and September (b). (c, d): the ratio of standard deviation across resamplings (0,erm) to standard deviation

across resampled observations (0,ps) in the HadISST1 dataset in March (c) and September (d).
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FiG. S4. Influence of time period on spatial consistency. SIC is detrended using a linear trend. Same as
‘All opps and pops’ columns in Figure 8 for ‘1979-2020° columns. Model and observational data for 1979-2010

and 1989-2020 are shown in the columns labeled accordingly.
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(a) Minimum, Oops (b) Minimum, Uops (c) Minimum, 0ps and Uops
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Feb Feb Feb
Mar Mar Mar
Apr Apr Apr
May May May
Jun Jun Jun
Jul Jul Jul
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(d) Maximum, Oops (e) Maximum, Uops (f) Maximum 0ops and Uops
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F1G. S5. Consistency between models and observations in pan-Arctic SIA, subsampled to 20 members.

Same as Figure 7, except now subsampled 1000 times to 20 members.
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F1G. S6. Spatial consistency of internal variability between large ensemble members, subsampled to 20

members. Same as Figure 8 except now members are subsampled 1000 times to a size of 20 members.
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FiG. S7. Spatial consistency of internal variability between large ensemble members and observations
using lowpass filtered data. Same as Figure 8 except now SICs are detrended using a 2 year lowpass filter

before resampling.

S8



0.8| =Em CanESM2 EEN GFDL ESM2M

E:.: — gig‘&":’l';&fi mm Observations
%os l l ll i
= fl I l ! |

Jan Feb Mar Apr May  Jun Jal Alg Sep Oct Nov Dec
Month

F1G. S8. Seasonality of average resampled variability in members and observations for pan-Arctic sea

ice area. Same as Figure 4, except now for u instead of o.
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F1G. S9. Resampled modeled and observed variability of March SIC. Same as Figure 6, but now for March.
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FiGc. S10. Spatial distribution of the ratio of internal variability in large ensembles and resampled
members. The ratio G, to o g for March and September in all models represents the proportion of large

ensemble variability captured via the resampling technique.
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FiG. S11. Seasonality of the ratio of internal variability across SMILEs and interannual variability of
resampled members for pan-Arctic sea ice area, using ensemble mean detrended data and lowpass filtered
datta. Same as Figure 9, except now SIA anomalies were detrended relative to the linear trend of the ensemble

mean for (a) and relative to a 2 year lowpass filter for (b).
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FiG. S12. Effect of starting year on G,.,, / o ratio for a 42-year time period. The ratio of Jy,e;, to
o is calculated for 42-year time periods between 1950-1991 and 2050-2091 for the annual mean. Gyep, 1S

calculated from 1000 resamplings.
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