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Scientific Significance Statement

Watershed ecosystem monitoring has been underway for more than five decades, producing hundreds of long-term records of
streamflow, water chemistry, and their environmental controls. Within the last decade, data synthesis efforts have provided a
basis for continental-scale hydrologic analysis of watersheds larger than 10 km2. However, to date there has been no synthesis
of small-watershed hydrology and water chemistry that would allow for comparison of chemical concentration and flux on a
similar scale. MacroSheds is an ongoing synthesis of small-watershed datasets that enables the search for general principles
describing functional capacity across watersheds, including relative rates of weathering and chemical processing, and
responses to climate change.

Abstract
The US Federal Government supports hundreds of watershed monitoring efforts from which solute fluxes can
be calculated. Although instrumentation and methods vary between studies, the data collected and their moti-
vating questions are remarkably similar. Nevertheless, little effort toward their compilation has previously been
made. The MacroSheds project has developed a future-friendly system for harmonizing daily time series of
streamflow, precipitation, and solute chemistry from 169+ watersheds, and supplementing each with water-
shed attributes. Here, we describe the breadth of MacroSheds data, and detail the steps involved in rendering
each data product. We provide recommendations for usage and discuss when other datasets might be more suit-
able. The MacroSheds dataset is an unprecedented resource for watershed science, and for hydrology, as a
small-watershed supplement to existing collections of streamflow predictors, like CAMELS and GAGES-II. The
MacroSheds platform includes a web dashboard for visualization and an R package for data access and analysis.
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URL of the dataset and metadata with permanent
identifier: https://portal.edirepository.org/nis/mapbrowse?
scope=edi&identifier=1262

Code URL with permanent identifier: https://zenodo.
org/record/7633926

Measurement(s): 185 distinct stream chemistry variables
and 63 distinct watershed attributes (climate, hydrology, geol-
ogy, terrain, vegetation, soil, landcover).

Technology type(s): remote sensing, long-term dataset
synthesis.

Temporal range: 1963–2022.
Frequency or sampling interval: daily.
Spatial scale: Watershed site-based data synthesized for

169 gauged stream sites; water chemistry and/or streamflow for
495 sites primarily across North America at the time of this
publication.

Background and motivation
Watershed ecosystem science began in the late 1960s, when

Herb Bormann and Gene Likens began estimating precipitation
inputs and stream water exports for small gauged watersheds in
the Hubbard Brook Experimental Forest (Bormann et al. 1968,
1969). These input and output fluxes and their differences were

used to detect trends in air pollution, climate, rates of chemical
weathering, nutrient limitation, and nutrient saturation, and to
detect the magnitude, duration, and severity of disturbance on
ecosystem element retention and loss (Likens 2013). All of these
insights were gained from the consistent comparison of precipi-
tation and streamflow volumes and chemistry conducted over
long time scales. The simplicity of the watershed ecosystem
approach and the magnitude of its scientific impact has led to
similar watershed ecosystem studies being conducted in thou-
sands of watersheds around the globe.

Altogether, hydrology labs and experimental forests oper-
ated by the US Forest Service, Department of Energy, and the
National Science Foundation’s Long Term Ecological Research,
National Ecological Observatory Network (NEON), and Criti-
cal Zone Collaborative Network (CZNet, formerly CZO) pro-
grams, support hundreds of small watershed studies around
the United States (Fig. 1). Each of these programs collects
nearly identical types of data. Yet to date, there has been no
attempt to collate these datasets into a synthetic data platform
that would facilitate comparison across sites. The notable
examples where cross-site analyses have been performed
(Williard et al. 1997; Kaushal et al. 2014; Zhang et al. 2017)
have been limited in spatial scope or applied to only one ele-
ment (like N) or general water balance. Each of these

Fig. 1. Locations of watershed biogeochemical records included in version 1 of the MacroSheds dataset. Colors represent EPA ecoregions. Additional
sites in Sweden and Antarctica are not associated with EPA ecoregions and are not shown. Please visit macrosheds.org for an interactive map of sites.
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individual efforts required significant supplemental funding
and data expertise to enable synthesis. Kaushal et al. (2014)
found that processing and retention of carbon and nitrogen
varied significantly on a scale of kilometers, stressing the need
for more studies across spatial scales. Synthesis work by Zhang
et al. (2017) yielded important insights on cross-scale hydro-
logic response to forest changes using routine statistical tests,
but synthesizing data used in those tests required a much
larger effort. Differences in data structure, access method, time
and location representation, and other challenges inherent to
merging even relatively consistent datasets have ultimately
limited the scale of inference in watershed ecosystem science.

Indeed, watershed scientists have become increasingly self-criti-
cal, recognizing the failure of our community to develop generali-
ties and theories that apply across scales (McDonnell et al. 2007;
Kirchner 2009; Lohse et al. 2009). Much of recent watershed sci-
ence has focused on gaining ever finer detail on the spatial and
temporal heterogeneity of flow paths, water residence times, and
biogeochemical processes (McClain et al. 2003; Bernhardt
et al. 2017). This fine-scale focus has identified many unique idio-
syncrasies of individual watersheds but has not helped us develop
general theories about watershed dynamics that can be applied at
regional to global scales. It is a fair critique to suggest that most
watershed ecosystem studies remain rather parochial, involving
detailed studies of individual or paired watersheds, or surveys of a
small set of attributes across multiple watersheds. Macroscale
watershed science, or the search for general principles that describe
functional capacity and behavior across watersheds, has been lim-
ited. A major reason for this lack of large-scale focus is the chal-
lenge of data access and integration across sites. New requirements
for data sharing have made it possible to access most National Sci-
ence Foundation (NSF)-funded watershed science data, yet individ-
ual datasets are rarely interoperable across research sites, even
when stored in the same repositories.

We find inspiration for harmonizing large datasets in the
hydrology community, where there are two major modern efforts
to synthesize records of discharge, precipitation, and watershed/
catchment attributes: GAGES-II and CAMELS (Falcone 2011;
Newman et al. 2014; Addor et al. 2017). GAGES-II provides
geospatial data and classifications (reference vs. nonreference) for

the watersheds of 9322 US Geological Survey (USGS) stream
gages. The CAMELS dataset builds on progress from GAGES-II by
identifying 671 minimally disturbed watersheds, compiling their
precipitation and runoff time series, and generating watershed
attributes for each. Though preeminent examples of data aggrega-
tion and distribution, these datasets are limited in their scope to
physical hydrology, mostly in watersheds too large to meet the
assumptions of the watershed ecosystem concept, that is, uniform
geology and a minimally permeable base of rock or permafrost
(Fig. 2; Bormann and Likens 1969). Whereas, with the conditions
of the watershed ecosystem concept satisfied, it is possible to con-
struct budgets of inputs, outputs, and net loss or gain for count-
less solutes of ecological importance. Still, CAMELS and GAGES-II
provide a roadmap for synthesizing analysis-ready data for macro-
scale watershed ecosystem work. With 500 combined citations,
they also demonstrate the value of such syntheses to the hydrol-
ogy community. These datasets have enabled foundational shifts
in the ways we make predictions at scale, especially through
recent machine-learning advances in rainfall-runoff modeling
(Kratzert et al. 2018, 2022). MacroSheds opens this landscape of
opportunity to the biogeochemistry community.

Our primary goal in developing the MacroSheds dataset is to
merge all US federally funded watershed ecosystem studies into a
common platform, and to use that platform to develop a classifi-
cation of watershed ecosystems that identifies differences in
watershed functional traits (sensu McDonnell et al. 2007). Under-
standing these functional traits will allow us to predict how water-
shed biogeochemical cycles will respond to changing patterns of
climate and element deposition. Ultimately, we hope that macro-
scale watershed science can build a mechanistic understanding of
how variation in soil chemistry and biological demand for ele-
ments will alter the stoichiometric ratios of watershed outputs rel-
ative to inputs (in deposition and weathering). Merging records
from hundreds of watershed ecosystem studies into a common
format is the first step in developing macroscale watershed sci-
ence. With this feat accomplished, a nearly limitless number of
questions can be asked by researchers across the disciplines of
hydrology, climate science, and ecology. We aim to facilitate
these analyses through the MacroSheds dataset, R package, and
web portal, which together constitute an open data platform.

Fig. 2. Comparison of watershed areas as represented in the MacroSheds, CAMELS, and GAGES-II datasets. Each vertical bar represents a single watershed, but
note that pink and blue bars have been widened for visibility. The tail of the pink arrow marks the upper limit of MacroSheds watershed areas. The MacroSheds
dataset fills out two orders of magnitude at the small end, with 122 watersheds under 10 km2 and 68 under 1 km2. For CAMELS, these numbers are 8 and
0, respectively. For GAGES-II, they are 207 and 2. Only those MacroSheds sites for which discharge data are publicly available are included in this figure.
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In the MacroSheds dataset, we have unified publicly available
data records of precipitation, streamflow, precipitation chemis-
try, and stream chemistry from watershed ecosystem studies that
meet a requirement of at least monthly stream chemistry sam-
pling. We used a common procedure to delineate the watersheds
of any gauged stream sites without published boundaries, and
daily, gridded climate data from PRISM (Daly et al. 2008) and
Daymet (Thornton et al. 2020) to provide standardized estimates
of precipitation, air temperature, and other climatological
parameters within each watershed boundary. For each delin-
eated watershed we summarized publicly available, gridded
products encompassing topography, geology, soil, vegetation,
and landcover attributes. A subset of watershed summary statis-
tics and climate forcings included with the MacroSheds dataset
are immediately commensurable with those of the published
CAMELS dataset. MacroSheds therefore functions secondarily as
a supplement to CAMELS, enhancing the predictive power of
the combined set, especially for small watersheds.

Data description
Access methods and dataset contents

The MacroSheds dataset and all associated documentation can
be found on the Environmental Data Initiative (EDI) data portal,

at https://portal.edirepository.org/nis/mapbrowse?scope=edi&ide
ntifier=1262. This URL will always point to the most recent
dataset version, and at the time of this writing is synonymous
with https://portal.edirepository.org/nis/mapbrowse?scope=edi&
identifier=1262&revision=1 (Version 1). When new versions are
published, the old versions will still be accessible by appending a
version number to the end of the base URL in the above fashion.
Throughout our current funding cycle, we intend to update this
dataset annually with newly available data.

The dataset can also be downloaded through the
“macrosheds” package for R (https://github.com/MacroSHEDS/
macrosheds; Rhea et al. 2023a), or explored without down-
loading, through the visualization platform at macrosheds.org.
An interactive data catalog is available under the Data tab on
macrosheds.org. See Table 1 for terms used throughout the fol-
lowing sections.

This dataset is derived from data already published in pub-
lic repositories, primarily from US federally funded watershed
studies, and in compliance with existing grant requirements.
We report combined discharge and chemistry for 169 water-
shed studies (Fig. 1). The core dataset consists of seven data
products (Table 2) grouped into two components, referred to
below as “time series” and “watershed attributes.” Each of
these components of the core dataset has a supplementary

Table 1. Common terms as used within the MacroSheds dataset and this paper.

Term Definition

Watershed All land area contributing runoff to a point of interest along a stream, regardless of contributing area. Does not
necessarily account for inputs from subsurface flow or human-constructed diversions. The terms “catchment” and
“basin” are sometimes used in this way.

Site An individual gauging station or stream sampling location and its watershed.
Domain One or more sites under common management.
Network One or more domains under common funding/leadership.
Product A collection of data, possibly including multiple datasets/tables. Primary sources may separate products by temporal

extent/interval, scientific category, detection method, and/or sampling location. MacroSheds products are detailed in
Table 2.

Site-
product

The collection of all data for a single MacroSheds product, available at a single site.

Table 2. MacroSheds data products. All but watershed attributes constitute time-series products.

Product Definition

Discharge Streamflow; water volume over time; reported in L s�1.
Stream chemistry Concentration of chemical constituents in stream water; reported in mg L�1 or mEq L�1.
Stream flux Mass of chemical constituents in stream water, per watershed area, over time; reported in kg ha�1 d�1.
Precipitation Rainfall, snowfall, or both combined; reported per watershed in mm.
Precipitation
chemistry

Concentration of chemical constituents in precipitation; reported in mg L�1 or mEq L�1; averaged across
watershed area.

Precipitation flux Mass of chemical constituents in precipitation, per watershed area, over time; reported in kg ha�1d�1.
Watershed attributes Areal watershed summary statistics, describing climate, hydrology, geology, terrain, vegetation, soil, and

landcover.
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counterpart in which data structure, variables, and methods
parallel the CAMELS dataset, to maximize interoperability
between MacroSheds and CAMELS.

Time-series data
For the time-series component, we harmonized both physi-

cal hydrology and stream chemistry variables, capturing tre-
mendous variation in hydrologic regimes and solute
concentrations. MacroSheds data span a wide range of mean
annual runoff (three orders of magnitude; Fig. 3). The distribu-
tion of flows is quite variable, with high frequency of high
flow events as is typical of small, steep catchments that domi-
nate this dataset. A significant fraction of streams goes
completely dry in the average year with baseflow index rang-
ing from 0 to 0.9. Water quality varies greatly among streams
in the MacroSheds dataset, with pH covering almost the full

range of that reported for natural waters (3–8; Wetzel 2001).
Dissolved phosphorus and nitrogen concentrations are gener-
ally low compared with previously published data compila-
tions (Falcone 2011; Newman et al. 2014), largely because this
dataset is dominated by undisturbed, smaller watersheds. In
contrast, dissolved organic carbon (DOC) ranges from near
detection to > 30 mg L�1—nearly black water—reflecting a
wide variation in wetland habitat. The MacroSheds dataset
does include some site-specific sample collection biases in that
fewer than half of sites routinely collect total suspended solids
(TSS), dissolved inorganic carbon (DIC), and alkalinity data
(Fig. 4). These water quality patterns arise because of geologic
variation, incoming precipitation chemistry, vegetation cover,
and patterns of ecosystem productivity (Fig. 5). The specific
variables available within each watershed study vary widely,
but the MacroSheds dataset includes at a minimum stream

Fig. 3. Distributions of hydrologic conditions across MacroSheds sites, computed on site-years with at least 85% temporal coverage, or on ≥ 50% maxi-
mum coverage for polar or arid sites where a full year of flow is never measured. Each vertical bar represents a single site. Krycklan (Sweden) and
McMurdo (Antarctica) domains appear as black bars.
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discharge or major stream ion concentrations (Ca, Mg, K, SO4,
etc.) for each site. In all, the MacroSheds dataset contains
185 stream and precipitation variables, including concentra-
tions of nutrients, metals, photosynthetic pigments, and dis-
solved gases, temperature, turbidity, and other common
water quality metrics where available. The total numbers of
sites with discharge and chemistry data are 181 and
484, respectively. The total number with both is 169. A
breakdown of data availability and data sources by domain
is given in Table 4, but for a complete list of variables by site
and temporal range, consult variables_timeseries.csv on EDI
or visit the interactive data catalogs under the Data tab at
macrosheds.org.

MacroSheds time-series data are tiered by domain
according to the restrictiveness of licensing and intellectual
rights (IR) terms associated with their primary sources. Tier

1 domains have minimal restrictions, requiring at most stan-
dard attribution, while Tier 2 domains require some additional
action on the part of data users. Data tiers and license/IR
information are detailed in our Data Use Agreements
(data_use_agreements.docx on EDI), and citations for all
MacroSheds primary sources are included in Tables 4 and 6 of
this document. A full compendium of attribution, contact,
and legal information can be found in our documentation on
EDI (attribution_and_intellectual_rights CSV files). The “Data
Use and Recommendations for Reuse” section of this docu-
ment contains instructions on efficiently achieving license/IR
compliance as a user of MacroSheds data.

MacroSheds time-series data are provided as CSV files, sepa-
rated by domain and indexed by date, site code, and variable.
The column structure is laid out in Table 3 and later referred
to as “MacroSheds format.”

Fig. 4. Distributions of chemical properties across MacroSheds sites. Each vertical bar represents a single site. For every panel except “pH,” values are
log10 transformed to increase the visibility of the bar colors. Krycklan (Sweden) and McMurdo (Antarctica) domains appear as black bars.
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Fig. 5. Distributions of 24 watershed attributes across MacroSheds sites. Each vertical bar represents a single site. Inset letter codes stand for attribute
categories: Climate, Landcover, Vegetation, Parent material, Terrain. In all, 83 summary attributes and 185 temporally explicit attributes are available.
Dep., deposition; Dur., duration; Frac., fraction; GPP, gross primary productivity, NPP, net primary productivity; Perm., permeability. Krycklan (Sweden)
and McMurdo (Antarctica) domains appear as black bars.
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Table 4. MacroSheds time-series data breakdown by domain. End-dates of hydrologic and chemical records (Columns 3 and 4) vary
according to primary source publication schedules. Water chemistry sample frequencies (Column 6) are occasionally irregular; up to
three of the most common (mode) sample frequencies are shown for each domain.

Domain code Sites

Dur. of
hydro
record

Dur. of
chem
record Solutes

Chem sample
freqs. Citations

arctic 5 1978–2019 1978–2019 46 Daily, weekly Kling 2016a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,
s, 2019; Shaver 2019; Zarnetske 2020;
Zarnetske et al. 2020a,b; Bowden 2021a,b,
c,d

baltimore 9 1957–2022 1998–2019 17 Weekly, 2 monthly Cary Institute of Ecosystem Studies
et al. 2017; Groffman and Martel 2020;
Groffman et al. 2020a,b; Welty and
Lagrosa 2020

bear 2 1988–2016 1986–2016 19 Daily Patel et al. 2020a,b
bonanza 3 1969–2020 1994–2018 17 Daily, weekly, 2

weekly
Chapin et al. 2014, 2018; Jones et al. 2016;
Van Cleve et al. 2018; Jones, Chapin,
et al. 2020

boulder 4 1996–2022 2008–2020 31 Daily, weekly, 2
weekly

Rock and Anderson 2020; Anderson 2021;
Anderson and Jensen 2021a,b,c; Anderson
and Ragar 2021a,b,c,d; Anderson
et al. 2021

calhoun 1 2014–2017 2014–2018 23 � monthly Foroughi et al. 2019; Mallard 2020, 2021;
Wang et al. 2021

catalina_Jemez 12 2006–2021 2005–2020 66 Daily, weekly, 2
weekly

Troch and Abramson 2019, 2020, 2021;
Troch et al. 2019, 2020a,b, 2021; Litvak
and Brooks 2020a,b; Chorover et al. 2021a,
b; McIntosh et al. 2021a,b; Papuga
et al. 2021a,b,c

east_river 11 2014–2020 2014–2020 47 Daily, weekly Carroll et al. 2019, 2021; Carroll and
Williams 2019; Dong et al. 2020a,b,c;
Newcomer and Rogers 2020; Williams
et al. 2020a,b

(Continues)

Table 3. Structure of MacroSheds core time-series data CSV files. Referred to throughout as “MacroSheds format.” Within the
macrosheds package for R, the val_err column may be omitted if uncertainty is included with the val column (see section on “Detection
Limits and Propagation of Uncertainty”).

Header
value Column definition

datetime Date and time in UTC. Time is specified in order to accommodate subdaily time-series data in future updates, though at
present all time components are 00:00:00.

site_code A unique identifier for each MacroSheds site. Identical to primary source site code where possible. See sites.csv metadata
on EDI or run ms_load_sites() from the macrosheds package for more information.

var Variable code, including sample type prefix (described in “Tracking of Sampling Methods for Each Record” section). see
variables_timeseries.csv on EDI or run ms_load_variables() from the macrosheds package for more information.

val The data value.
ms_status QC flag. See “Technical Validation” section. Lowercase “ms” here stands for “MacroSheds.”
ms_interp Imputation flag, described in “Temporal Imputation and Aggregation” section.
val_err The combined standard uncertainty associated with the corresponding data point, if estimable. See “Detection Limits

and Propagation of Uncertainty” section for details.
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In addition to our core time-series dataset, we provide
a separate, supplementary collection of “CAMELS-
compliant Daymet forcings” that conforms to the Daymet

variables and methods used in the CAMELS dataset
(Newman et al. 2014; Addor et al. 2017; Thornton
et al. 2020).

Table 4. Continued

Domain code Sites

Dur. of
hydro
record

Dur. of
chem
record Solutes

Chem sample
freqs. Citations

fernow 9 1951–2019 1983–2019 11 Weekly, 2 weekly Edwards and Wood 2011a,b,c,d
hbef 9 1956–2022 1963–2021 31 Weekly USDA Forest Service 2020, 2021; Hubbard

Brook Watershed Ecosystem Record
(HBWatER) 2021

hjandrews 10 1949–2019 1968–2019 26 Daily Rothacher 2017; Fredriksen 2019a,b; Johnson
et al. 2020

konza 4 1985–2020 1983–2021 10 Daily, 2 daily Dodds 2019, 2020a,b,c, 2021a,b,c,d,e;
Blackmore 2020; Blair 2021; Nippert 2021

krew 8 2003–2015 2003–2021 12 Daily, 2 weekly Hunsaker and Safeeq 2017, 2018; Hunsaker
and Padgett 2019

krycklan 15 1981–2021 1985–2021 91 Daily, 2 weekly Laudon et al. 2013
luquillo 10 1945–2022 1983–2018 19 Weekly Gonzalez 2015, 2017; Ramirez 2020, 2021;

McDowell 2021a,b
mcmurdo 18 1969–2020 1990–2020 18 Daily, weekly Gooseff and McKnight 2021a,b,c,d,e,f,g,h,i,j,

k,l,m,n,o,p,q; Gooseff and Lyons 2022a,b,c;
McKnight and Gooseff 2022a,b,c

niwot 7 1981–2021 1982–2021 31 Daily, weekly Niwot Ridge LTER and Caine 2018;
Caine 2019a,b,c, 2021a,b,c,d,e,f,
g; Williams 2019, 2021a,b; Caine
et al. 2020a,b,c, 2021; Caine and Niwot
Ridge LTER 2021a,b; Morse et al. 2021a,b,
c; Williams et al. 2021

plum 4 2001–2015 1993–2019 26 Daily, monthly Giblin 2013a,b,c,d, 2015a,b, 2016, 2017,
2018, 2019, 2020; Hopkinson 2013a,b,c,d,
e,f,g,h,i; Wollheim 2013a,b,c,d,e,f,g,h,i,j,k,l,
m,n, 2014a,b,c,d,e,f,g,h,i,j,k,l,m,n,o, 2016a,
b,c,d,e,f,g,h,i,j,k,l, 2018a,b,c,d, 2019a,b,c,d,
e,f; Wollheim and Vorosmarty 2014a,b,c,d,
e,f; Wollheim and Green 2018a,b,c,d,e,f,g,h,
i,j,k,l,m,n,o,p, 2019a,b,c,d,e,f,g,h,i;
Wollheim et al. 2019; Wollheim and Plum
Island Ecosystems LTER 2019, 2021

santa_Barbara 12 1970–2022 2000–2018 10 Daily Santa Barbara Coastal LTER and
Melack 2014a,b,c,d,e,f,g,h,i,j, 2019a,b,c,d,e,
f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,aa,ab,
ac,ad,ae,af,ag,ah,ai,aj,ak,al,am,an,ao,ap,aq,
ar,as,at, 2020

santee 4 1964–2018 1976–2017 24 Daily USDA Forest Service 2011; 2017; Amatya and
Trettin 2012a,b, 2018

shale_hills 4 2006–2021 2006–2015 25 Daily, diverse Li 2018; Brantley 2019
suef 4 1963–2018 1969–1981 21 3 weekly Fredriksen and Johnson 2017a,b; Jones and

Rothacher 2019
usgs 1 2009–2022 2009–2022 12 Daily Courtesy of the US Geological Survey
walker_Branch 2 1969–2014 1989–2013 28 Weekly Mulholland and Griffiths 2016a,b,c
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Watershed attribute data
The core watershed attributes component of the

MacroSheds dataset is an extensive spatial summary product,
compiled from published, gridded products (Table 6). It
describes climate, geology, terrain, vegetation and land cover
(Fig. 5). We also provide a separate, supplementary collection
of “CAMELS-compliant watershed attributes” that conforms
to the variables, data sources and methods used in the
CAMELS dataset. Importantly, the MacroSheds dataset covers
much smaller watersheds than those included in the CAMELS
dataset (Fig. 2). Due to the time cost of delineating water-
sheds, we elected to summarize attributes only for watersheds
with discharge data, as they have substantially higher analyti-
cal potential. As an example, MacroSheds sites in Mediterra-
nean California tend to have porous bedrock with high sulfur
content, and to receive little nitrogen deposition, while east-
ern temperate forest sites have the highest geologic nitrogen
content and receive the most nitrogen and sulfate deposition
(Fig. 5). Concentrations of nitrogen and sulfur species in the
stream water of each ecoregion will depend on these and
other factors such as mineralization, plant uptake, and erosion
rates, and cumulative fluxes will further depend on the long-
term hydraulic output of each stream. Not only that, but the
relationship between concentration and flux may change with
hydraulic regime over the course of seasons or decades.

Watershed attribute data are provided as CSV files in two
formats, representing different levels of aggregation. At the
coarsest level, gridded spatial data are summarized to a single
value per variable per watershed, and provided in wide for-
mat. However, some watershed attributes are temporally

explicit, and our second format preserves the dates associated
with each model estimation or satellite pass. Column struc-
ture for this format is given in Table 5.

Methods
Criteria for dataset discovery and inclusion in the
MacroSheds dataset

Sites included in the MacroSheds dataset were primarily
identified through the NSF-funded LTER, LTREB, and CZNet
(formerly CZO) programs (113 of 169 sites, as of MacroSheds
v1.0). Additional sites funded or managed by the US Geologi-
cal Survey, Department of Energy, and Forest Service were

Table 6. Watershed attribute datasets included in MacroSheds,
and their primary sources. Datasets retrieved from Google Earth
Engine, rather than the primary source, are indicated by “GEE.”

Attribute(s) Source Citation

Evapotranspiration
reference

Gridmet
(GEE)

Abatzoglou 2012

LAI, fPAR MODIS
(GEE)

Myneni et al. 2015

NDVI MODIS
(GEE)

Didan 2015

Vegetation cover MODIS
(GEE)

Townshend 2016

Atmospheric chemical
fluxes

NADP NADP Program
Office 2022

Landcover classes NLCD (GEE) Dewitz 2021
Soil composition and
properties

NRCS-
gSSURGO

Soil Survey
Staff 2022

SWE, snow depth NSIDC Broxton et al. 2019
NPP and GPP NTSG (GEE) Robinson et al. 2018
Soil thickness ORNL DAAC Pelletier et al. 2016
Wetness Oxford MAP

(GEE)
Weiss et al. 2014

Temperature and
precipitation

PRISM (GEE) Daly et al. 2008

Base flow index USGS Wolock 2003
Bedrock composition
and properties

USGS Olson and
Hawkins 2014

Climate* Daymet
(GEE)

Thornton et al. 2020

Subsurface permeability,
porosity*

GLHYMPS Gleeson 2018

Geologic classes* GLiM Hartmann and
Moosdorf 2012

Landcover classes* MODIS
(GEE)

Friedl and Sulla-
Menashe 2019

*The corresponding attributes are included in the CAMELS-compliant sup-
plement to the core MacroSheds dataset, but not necessarily in the core
dataset itself.

Table 5. Structure of MacroSheds temporally explicit
watershed attribute data.

Header
value Column definition

network MacroSheds network.
domain MacroSheds domain.
site_code A unique identifier for each MacroSheds site.

Identical to primary source site code where
possible. See sites.csv metadata on EDI or run
ms_load_sites() from the macrosheds package for
more information.

var Variable code, including prefix with data source
and category codes. See
variables_ws_attr_timeseries.csv on EDI or run
ms_load_variables (var_set = “ws_attr”) from the
macrosheds package for more information.

date Calendar date.
val The data value.
pctCellErr Percent of watershed raster cells with missing

values. Not currently retrieved for Google Earth
Engine products.
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identified through personal communication, literature search
(long*term AND [watershed* OR basin* OR catchment*]), or
by perusing government websites. The Krycklan Catchment
Study in Sweden is currently the only domain within
MacroSheds that is not associated with the federal govern-
ment of the United States, but it will be joined by other US
and international watershed studies as the MacroSheds project
expands. NEON provides data products that will be integral to
a future version of the MacroSheds dataset. Currently, NEON
remains in its early operational phase, and its data products
will be included in MacroSheds pending resolution of water
quality and continuous discharge data anomalies that require
further attention (Rhea et al. 2023b).

To be considered for inclusion in MacroSheds, a site
requires either automated monitoring of stream discharge or
routine sampling of stream chemistry, for at least a full year
(minus periods of freezing or drying), as well as public data
hosting. Additional data describing the quantity and chemis-
try of precipitation are highly valuable, but not required.
Watershed boundaries can be delineated and geospatial sum-
maries generated via MacroSheds tools, so these are not
required.

Data processing system: Design and overview
The data acquisition and processing routines used to build

the MacroSheds dataset comprise a system of cyclical

ingestion pipelines (Fig. 6), written entirely in R (R Core
Team 2022). Source code is designed functionally and orga-
nized hierarchically, mirroring the hierarchy of network-
domain-site organization across institutions that manage
watershed studies. This allows routines specific to a domain,
or shared across a network, to be loaded as modules, minimiz-
ing code redundancy and simplifying inclusion of new sites.
Improvement of this design is ongoing, and will enable user
data contributions, in exchange for watershed boundaries,
summary statistics, and derived time-series products, in the
near future.

For each domain, time series of discharge, precipitation,
and chemistry are first downloaded and saved locally in what-
ever form and format they are provided. They are then
processed by site-product into MacroSheds format. If a water-
shed boundary is not provided, it is delineated. Additional
products are then derived, namely watershed-mean precipita-
tion depth and chemistry (and daily solute flux may be gener-
ated via the “macrosheds” R package if desired; see the “Flux
Calculation” section). Finally, we generate spatial summary
statistics for each watershed.

The processing system is designed insofar as possible to
accommodate future deviations from the ways primary
sources currently structure and serve their products. Each
pipeline is fault-tolerant, so if provider-side changes introduce
errors at any stage of data access or processing, the errors are

Fig. 6. Visualization of the four phases of MacroSheds data processing for a single domain: retrieval, harmonization (munging), derivation, and post-
processing, focusing on the evolution of precipitation data (P) from raw to final form as part of a domain dataset. Gold circles represent processing
“kernels”—modular and customizable sets of routines that carry out the core steps of the first three phases. Within each phase, zero or more kernels are
called in sequence, depending on which products need to be updated, as determined by the progress tracker. In Phase 1, retrieval kernels download pri-
mary source data. During Phase 2, kernels are called by one of four “munge engines” (pentagons) depending on whether primary source files are sepa-
rated by site, by time, by product, or some combination. After Phase 3, time-series and geospatial data are organized into one file for each of the core
MacroSheds products (discharge, stream chemistry, precipitation, precipitation chemistry, gauge locations, watershed boundaries). After Phase 4, a com-
plete dataset has been generated for a single domain, and the process repeats for the next domain.
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logged, the developers are notified by email, and the system
moves on. Any change involving file headers, URL paths, or
splitting/combining of datasets requires careful accommoda-
tion by the MacroSheds team (and anyone else who directly
reuses primary data), so we encourage data providers to main-
tain structural consistency across dataset versions whenever
feasible.

Time-series data access and amenity to harmonization
Among the 25 domains currently included in the

MacroSheds dataset, we have identified five distinct tiers of
“harmonization amenity,” or the convenience with which we
were able to access discharge, precipitation, and chemistry
data and unify their idiosyncratic differences within a
domain. Harmonization amenity encompasses the core ele-
ments of FAIR principles: Findability, Accessibility, Interopera-
bility, and Reusability of data and metadata (Wilkinson
et al. 2016), but also whether conceptually adjacent datasets
share internal structure, and whether and how revisions are
designated. Together, these elements determine the usability
of public data, and the long-term practicality of including a
source dataset in an ongoing synthesis effort like MacroSheds.
Importantly, harmonization amenity tiers say nothing of the
quality of a domain’s data–only of its data structure and infra-
structure. Licensing and IR restrictions are also a separate
issue, with a separate tiering system (see data_use_agreements.
docx). Our harmonization amenity tiers range from A, the
most amenable, to E, the least amenable.

At Tier-E, data access is through personal correspondence
only. As such, internal file structure is unpredictable and pro-
grammatic version-checking is impractical. We have generally
avoided Tier-E domains and make no guarantees about their
continued inclusion in MacroSheds, as they require an ongo-
ing time commitment from our developers. We encourage
watershed data managers to contribute routinely to public
repositories like EDI, DataONE, HydroShare, or ESS-DIVE, so
that we can build automated connections to MacroSheds.

Many datasets are hosted as hyperlinked, static files (Tier-
D). This way of serving data is standardized only by the rules
of transfer protocols (HTTP, FTP, etc.), which do not facilitate
reliable file versioning (Postel and Reynolds; Belshe
et al. 2015); however, it is possible to use the “last-modified”
date in the header of a static file as a proxy for file version, as
MacroSheds does. Many USFS and DOE domains, and even
some CZNet domains, are Tier-D.

By hosting data in any public data repository that follows
FAIR data standards, a domain can easily achieve Tier-C har-
monization amenity or higher, meaning related files are natu-
rally grouped or linked in a way that aids discovery. Most
repositories permit straightforward versioning of files and file
collections; however, in Tier-C the onus is on data managers
to establish that an uploaded resource is a new version of
some existing resource. Most CZNet domains are housed on
CUAHSI’s HydroShare, a premier environmental data and

code repository that allows for easy creation of new versions
of “formally published” resources. However, some CZNet
domains have not published their data formally and edit their
existing resources rather than creating official new versions.
This makes programmatic identification of new file versions at
least as difficult as with Tier-D harmonization amenity.

Datasets associated with Tier-B domains are easily found
and fully versioned. Within MacroSheds, most domains asso-
ciated with the LTER network are Tier-B, owing in part to the
strict metadata and publishing requirements of the EDI data
portal and underlying PASTA+ repository, which all but
ensure proper versioning and within-domain findability of
related files. Still, for Tier-B domains, neither data hosting
architecture nor management dictate the internal structure or
naming of files; however, the EDI repository does provide an
effective set of recommendations to help contributors adhere
to best practices: https://edirepository.org/resources/cleaning-
data-and-quality-control.

At the forefront (Tier-A) of harmonization amenity are the
USGS and NEON domains—each also networks per se—which
provide systematic access and consistent data structure across
all the sites they manage. This means, for example, the URL
for water quality time series at site X is intuitively related to
that for site Y, and that once downloaded, the two datasets
are structured and formatted identically. Moreover, NEON
and the USGS provide web servicesthrough which to explore,
retrieve, and even manipulate their collections programmati-
cally. In R, we conveniently queried these endpoints through
official client packages (Lunch et al. 2021; Cicco et al. 2022).
Because Tier-A institutions control data collection, storage,
and hosting, they are able to establish a consistency of access
and internal structure that is much more difficult to achieve
post hoc.

Time-series data processing
This section details major steps taken to harmonize dispa-

rate chemistry, discharge, and precipitation data into
MacroSheds format (see the “Data Description” section) and
extract useful metadata. In any harmonization effort, there is
a tradeoff between fidelity to the original datasets as they are,
and cohesion of the aggregate set. We have endeavored for a
MacroSheds dataset that is parsimonious but high in analyti-
cal potential, and that assimilates provided metadata where
practical.

Each MacroSheds data ingestion pipeline performs a
wide variety of basic processing routines. For a technical
account of the steps involved in (1) conforming site and vari-
able names, (2) resolving datetime formats and time zones,
(3) converting units, and (4) reshaping data tables, consult
code_autodocumentation.zip on EDI, and our complete
codebase at https://github.com/MacroSHEDS/data_processing.
The rest of this section covers assimilation of metadata on
sampling methods and detection limits, propagation of uncer-
tainty, and temporal imputation/aggregation.
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Tracking of sampling methods for each record
The MacroSheds dataset includes measurements recorded

by installed equipment and by hand (grab sample), and end
users may wish to filter it accordingly. We further distinguish
between measurements made via sensors vs. analytical or
visual means. The former distinction is made programmati-
cally with simple heuristics (e.g., inconsistent sample interval
precludes autosampling), and the latter by consulting primary
metadata. These distinctions are summarized as two-letter
“sample regimen” codes prefixed to each MacroSheds variable
code: “I” or “G” for “installed” vs. “grab,” and “S” or “N” for
“sensor” vs. “non-sensor.” For example, “IS_discharge.”

At present, we do not report specific analytical methods for
time-series variables, effectively assuming that commensurate
units imply commensurability. We know this to be misleading
for some variables—in particular those measured via fluores-
cence or absorbance—and intend to include more detailed
methods for at least these variables (e.g., FDOM, turbidity) in
a future release.

Detection limits and propagation of uncertainty
We were able to locate published limits of detection

(LODs) for solute concentrations of only 10 of the 24 domains
included in Version 1 of the MacroSheds dataset. For the rest,
we assumed each variable’s LOD to be the minimum LOD for
that variable across the 10 domains with reported values. We
do not attempt to infer LODs from the data, for example, by
assuming they are approximated by the minimum reported
absolute value. This risks egregious overestimation wherever
measured values never approach the LOD, or underestimation
wherever reported values have been transformed or deter-
mined via a calibration or rating curve.

Accurate cumulative flux calculations depend on relatively
complete data records. It is thus critical that below-detection-
limit (BDL) samples be given a numeric value, so they are not
confused with records for which a measurement is truly miss-
ing, and must be naively imputed. BDL measurements are var-
iously reported by primary sources as ½ LOD, 1/4 LOD, LOD,
0, missing, and so on. Some domains do not report BDL mea-
surements. For consistency, we replace any value flagged as
BDL with ½ of the reported/estimated LOD and set the
corresponding ms_status to 1 (“questionable” vs. 0 for “clean”;
see the “Technical Validation” section). Only values explicitly
flagged as BDL are replaced in this way. For the rare case
in which a value is flagged as BDL, and no LOD is reported
for the corresponding variable at the reporting domain or
any other domain, we set the value to 0 and the ms_status
to 1. Within the MacroSheds dataset, BDL values are not
flagged as such, but BDL flags can be reconstructed if neces-
sary by cross referencing any time-series dataset with
detection_limits.csv on EDI.

Before the MacroSheds processing system performs any
mathematical transformation on raw data, uncertainty is
attached to each record. Due to the scarcity of reported

measurement or analytical precision/uncertainty, we have
chosen not to propagate reported values. Instead, initial
uncertainty for each domain-variable is determined by
u¼10�p, where p is the precision of the variable’s reported
LOD, after conversion to MacroSheds standard units. For
example, a LOD of 0.008mgL�1 has a precision of 3 (digits
after the decimal), resulting in initial uncertainty of
0.001mgL�1. For domains that do not report LODs, we set
the initial uncertainty for each variable according to the mini-
mum (coarsest) reported p across all domains that do report
LODs. For some variables, we have no basis by which to infer
initial uncertainty, so we report it as missing. The two excep-
tions are discharge and precipitation, both required for com-
puting solute flux. For these, we set initial uncertainty to zero.
Uncertainty is then propagated through all MacroSheds math-
ematical transformations via the errors package (Ucar
et al. 2018). A table of all known detection limits can be
found in our documentation on EDI (detection_limits.csv).

Temporal imputation and aggregation
We currently report all time-series data (not including tem-

porally explicit spatial summary data) at a daily interval. The
timestamp associated with each incoming record is floored to
midnight (0 h, 0 min, 0 s), and series with a subdaily interval
are aggregated across each 24-h span. Precipitation, which is
reported in mm, is aggregated by sum, while discharge and
chemistry are aggregated by mean. After aggregation, any
implicit missing values are made explicit, so that there are no
missing timestamps within a series. Linear interpolation is
then used to fill gaps of no more than 3 d in each discharge
series, and no more than 15 d in each stream chemistry series.
Next-observation-carried-backward interpolation is used for
precipitation chemistry series. Precipitation volume/depth
series are rarely published with missing values during periods
of gauge deployment, but when these are encountered, we use
source metadata or direct contact to determine whether mea-
sured values represent multiday accumulation. If not, we fill
gaps with 0 s, indicating no precipitation; if so (we have not
yet encountered this), we distribute measured precipitation
values evenly across preceding missing values. For precipita-
tion and precipitation chemistry, gaps of up to 45 d are inter-
polated. In the case of solute flux series provided by primary
sources, the maximum gap length we interpolate is 15 d. Gaps
larger than the aforementioned maximum lengths retain their
missing values, and no extrapolation is performed. Records
interpolated by the MacroSheds processing system are given
an ms_interp value of 1; otherwise 0. A future version of the
MacroSheds dataset may include subdaily records where
available.

Watershed attributes retrieval and processing
The MacroSheds dataset includes 185 watershed attributes–

spatial summary statistics that may act as drivers of eco-
hydrological processes. These attributes are derived from
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modeled and remotely sensed gridded data products from var-
ious platforms. Attributes were chosen to capture the range of
physical and biological variation seen in natural watersheds,
and to allow comparison with other large-scale watershed/
catchment descriptor datasets such as StreamCat (Hill
et al. 2016) and CAMELS. Note that most of the watersheds in
the MacroSheds dataset are too small to appear in the
National Hydrography Dataset Plus Version 2 (McKay
et al. 2012), and therefore cannot be directly linked to Stream-
Cat metrics.

Attributes are organized into six categories: vegetation, climate,
terrain, parent material, landcover, and hydrology. Every spatial
variable in the MacroSheds dataset has a two-letter prefix to indi-
cate first the variable category, and second the data source. For
example, Leaf Area Index (LAI) variables from the MODIS satellite
have a prefix of “v” to indicate the vegetation category and “b”
for MODIS, so the median LAI for a watershed in the MacroSheds
dataset has the name “vb_lai_median.” Watershed attribute prefix
codes are catalogued in variable_category_codes_ws_attr.csv and
variable_data_source_codes_ws_attr.csv on EDI.

Gridded products are summarized to watershed boundaries
using one of two methods, based on where the source data
product is held. For data accessible through Google Earth
Engine (GEE), we used the R package “rgee” (Gorelick
et al. 2017; Aybar 2021). First watershed boundaries are
uploaded to GEE and stored as an asset. Then median and
standard deviation values for each watershed at each reported
time-step are summarized using the rgee function
“reduceRegions.” For products not housed on GEE, gridded
data are locally processed using the “terra” package for R
(Hijmans 2021). A list of gridded data products and their
sources is in Table 6.

Most watershed attributes included in the MacroSheds
dataset are temporally explicit, with sampling/modeling inter-
vals varying from daily to decadal. We provide all watershed
attributes in their native (as reported by primary source) tem-
poral intervals, and a subset of attributes as averages by site.
We do not provide all watershed attributes for all sites, as
some gridded products are only available for the contiguous
United States.

Derivation of additional products
One of the core aims of the MacroSheds project is to enable

engagement with continental-scale questions about whole-
watershed solute and hydrologic flux. We do not yet publish
stream or precipitation flux estimates, except for a few daily
solute flux series that are provided by primary sources, but the
next release of this dataset will include cumulative monthly
and annual flux estimates for each site. For now, daily flux
can be easily computed via the “macrosheds” R package.

Estimation of watershed solute influx and outflux requires
information not consistently provided alongside the time-
series data described above, namely watershed-mean precipita-
tion and precipitation chemistry, and the watershed

boundaries needed to compute them. Below we describe the
derivation of these products.

Watershed delineation
For any watershed boundary not already published as a

georeferenced spatial file, the MacroSheds processing system
performs a delineation from the point of the stream gauge or
sampling site (pour point). This process cannot be reliably
automated for all pour points, due in part to imperfections in
digital elevation models (DEMs), and in part to the fact that
stream site locations are usually recorded from the banks
nearby. Sometimes the watershed “found” by a delineation
algorithm is actually a subset of, or adjacent to, the target
watershed, and only visual inspection reveals the error. We
rely on a semi-automated, interactive approach that delineates
one or more candidate watersheds for each site, starting from
one or more unique pour points. DEMs are retrieved using the
“elevatr” package (Hollister et al. 2020) for R, and iteratively
expanded any time a proceeding delineation meets the DEM
edge. Candidate watersheds are presented for visual inspec-
tion and topographic comparison via package “mapview”
(Appelhans et al. 2021). Hydrologic conditioning, pour
point snapping, and delineation leverage the “whitebox”
package (Wu 2021). If none of the candidates appears to rep-
resent the target watershed, the process can be conveniently
repeated using updated parameters. For a detailed discussion
of delineation parameters, see the “macrosheds” R package
documentation.

Spatial interpolation of precipitation data
Each MacroSheds watershed is rasterized, or gridded, from

the DEM used during delineation, or from one so retrieved.
Precipitation chemistry is then imputed to each cell of the
watershed raster by inverse squared-distance weighted inter-
polation, or IDW (Shepard 1968), using information from all
precipitation gauges associated with the domain. Watershed-
mean precipitation chemistry is then computed as the mean
across all raster cells, separately for each solute and each day
with data.

Due to the orographic effect in mountainous regions, pre-
cipitation depth at a given elevation can be estimated from a
local, linear relationship (Hevesi et al. 1992). Daily precipita-
tion depth in the MacroSheds dataset is computed as a
weighted ensemble of two predictions, one generated by IDW
(weight = 1) and the other from the empirical elevation-
precipitation relationship among all domain-associated gauges
(weight = coefficient of determination). On days for which
fewer than three precipitation gauges are in operation, only
the IDW prediction is used.

Flux calculation
In Version 2 of the MacroSheds dataset, we will include

cumulative monthly and annual solute flux estimates for each
site. For now, we provide discharge, precipitation, and
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concentration data, and allow users to compute daily solute
flux or volume-weighted concentration (VWC) via the
“macrosheds” R package, using the ms_calc_flux function. Sol-
ute flux is computed according to Eqs. 1 and 2,

Fs ¼QCs

A
ð1Þ

Fp ¼ PCp ð2Þ

where Fs and Fp are solute flux in stream water and precipita-
tion, Q is discharge, P is mean precipitation depth over the
watershed, C is solute concentration, and A is watershed area.
F is reported in kg ha�1 d�1, and is calculated on each day for
which Q or P, and corresponding C, are measured or interpo-
lated. If ms_status or ms_interp are equal to 1 for either factor
(i.e., if either record has been flagged as “questionable” or has
been interpolated by the MacroSheds processing system),
resulting F inherits the same.

VWC is computed according to Eq. 3,

VWC¼
PN

i¼1Ci �Vi
PN

i¼1Vi
ð3Þ

where N is the number of days in the aggregation period
(e.g., a month or a year), C is solute concentration, and V is
daily volume of streamflow or precipitation.

Technical validation
Quality control (QC) practices in watershed ecosystem sci-

ence are almost as diverse as watersheds themselves; however,
there are common currents that run through every QC flag
and comment. For example, if a sensor is buried in sediment
for a week, that week’s data should be omitted from analyses.
Likewise with a sensor that is wildly malfunctioning or a
water sample that is severely contaminated. Ultimately, when
data are analyzed, each record is included, omitted, or
included with caution. Thus, we have distilled each domain’s
QC flags and comments down to either “bad data,” which is
excised during processing, “questionable,” or “clean.” If a flag
definition or comment makes any mention of insufficient
sample volume, minor contamination, sensor drift, or some
other condition that could, but does not necessarily, invalidate
the corresponding record, we designate it “questionable,” and
set its ms_status value to 1. Only if flags and comments are
absent, or specify no issues of potential concern, do we desig-
nate a record “clean,” and set its ms_status to 0.

Almost every domain reports per-observation QC flags or
comments of some kind. When these are restricted to a pre-
determined set that is well documented, parsing their mean-
ings is straightforward. In some cases, flags and/or comments
are free-form and quite difficult to catalog. Like other obsta-
cles to data harmonization, QC flag proliferation can be

resolved by using professionally managed data repositories,
where metadata standards control flag values and definitions
by design. In attribution_and_intellectual_rights_timeseries.
csv, MacroSheds data users can find DOIs and source URLs of
primary time-series data and metadata, where fully detailed
flag information can be found.

The MacroSheds processing system currently performs
minimal QC beyond assimilating primary source flags and
comments; however, we do filter each time-series record
through a very loose “range check,” intended to ensure that
physically impossible values that happen to have evaded pri-
mary source QC are omitted from our aggregate dataset. Mini-
mum and maximum reasonable values have been chosen so
as not to risk any encroachment on the true natural range for
each variable. A full list of these filter ranges can be found in
range_check_limits.csv on EDI. Beyond range checking, we
currently rely on the expertise of primary data providers to
publish data that have been vetted. We intend to implement
more sophisticated anomaly detection in a subsequent release
of the MacroSheds dataset and portal.

Data use and recommendations for reuse
The MacroSheds dataset is intended to provide analytical

material for diverse investigations of watershed form and
function. It is especially suited to comparing watersheds in
terms of inputs and outputs of energy and material. In addi-
tion to precipitation, solute chemistry, and streamflow time-
series data, it contains a comprehensive set of potentially pre-
dictive watershed attributes for each of 177 stream monitoring
sites. A visual summary of relationships between watershed
attributes and stream solute concentrations reveals strong cor-
relations between land development and major anion concen-
tration in streams, and between bedrock chemistry and
inorganic ion concentration, possibly mediated by weathering
(Fig. 7). These and other relationships may be used to classify
watersheds. They may also be leveraged in the fitting of statis-
tical models, or the training of machine learning algorithms
to predict watershed solute outflows from watershed features.
To our knowledge, the MacroSheds dataset is the most com-
prehensive analysis-ready collection of watershed biogeo-
chemical data for North America. As of this writing, there is
also a soon-to-be-published CAMELS-Chem dataset, which
supplements 506 of the original CAMELS sites with measure-
ments of 18 common stream chemistry constituents (Sterle
et al. 2022).

The MacroSheds dataset can also be used as a small-
watershed supplement to hydrological datasets like CAMELS
and GAGES-II. Note that in addition to the original US-based
CAMELS dataset, there are now equivalent products for Chile
(Alvarez-Garreton et al. 2018), Great Britain (Coxon
et al. 2020), Brazil (Chagas et al. 2020), and Australia (Fowler
et al. 2021). These and others have been merged into a single
resource called Caravan (Kratzert et al. 2023).

Vlah et al. MacroSheds

433

 23782242, 2023, 3, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lol2.10325, W

iley O
nline Library on [30/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Because MacroSheds time-series data are currently represen-
ted at daily intervals, this dataset is not well suited to sub-daily
analyses, such as those focused on stormflow dynamics. A
future version may include time-series data at 15-min
resolution.

To meet acceptable use requirements of the MacroSheds
dataset, one must comply with the licensing and IR stipula-
tions of all applicable primary sources. At minimum, this
entails citing the MacroSheds dataset (Vlah et al. 2022), which
is linked to source datasets through Ecological Metadata Lan-
guage provenance. However, users must first check section 4.1
of data_use_agreements.docx, where our datasets are tiered
according to the restrictiveness of source data licenses, as
some sources require additional compliance. In any case, we
provide tools that make citation/acknowledgement of all or a
subset of MacroSheds data sources trivial, and we recommend
acknowledgement/citation of source datasets even where
attribution is not required. The first tool, for users of
the “macrosheds” R package, is the ms_generate_attribution
function, which produces a list of acknowledgements,
citations, contact emails, and IR notifications based on a
given data.frame in MacroSheds format. We also
provide attribution_and_intellectual_rights_timeseries.csv and
attribution_and_intellectual_rights_ws_attr.csv, which con-
tain essentially the output of the ms_generate_attribution
function, assuming the entire MacroSheds dataset is being

used. The content of these documents can be copied and
pasted, in whole or in part, depending on how much of the
overall dataset is actually used.

Future directions for the MacroSheds project
Future developments will focus on the longevity of the

MacroSheds project through targeted outreach and by better
enabling community contribution. Outreach efforts will focus
on encouraging data managers to leverage the FAIR-by-design
standards of professionally managed data repositories like EDI
and DataONE and to adopt open data licenses where possible.
The long-term success of living, synthetic datasets like
MacroSheds depends on consistency of source data and meta-
data from version to version, or at least predictability of
changes (e.g., to file names). The long-term continued growth
of MacroSheds will be aided by community contribution,
inspired by the success of StreamPULSE (streampulse.org) and
other projects that add value to user-uploaded datasets, incen-
tivizing contributions that eventually become public. Toward
this end, we plan to adapt the MacroSheds data processing
system into an interactive web application complete with QC,
which will allow anyone with stream data to delineate and
summarize watersheds, estimate flux, and so on, and contrib-
ute to the MacroSheds dataset after an optional embargo
period.

Fig. 7. Pearson correlations between a subset of MacroSheds watershed attributes and concentrations of major solutes by category. Concentrations
were computed as mean annual volume-weighted concentration, in equivalents where applicable. Numbers inside each circle represent the number of
sites included in the correlation. Records prior to 01 January 2000 were omitted before computing correlations.
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In the near term, the MacroSheds team will continue to
identify and assimilate data from established watershed ecosys-
tem studies. Globally, there are many networks of watershed
observatories that we hope to coalesce into a more international
MacroSheds dataset. These include ECN (United Kingdom;
Lane 1997), SAEON (South Africa; Van Jaarsveld et al. 2007),
CERN (China; Fu et al. 2010), TERENO (Germany; Zacharias
et al. 2011), TERN (Australia; Karan et al. 2016), OZCAR
(France; Gaillardet et al. 2018), eLTER (Europe; Mollenhauer
et al. 2018), and ILTER (global; Mirtl et al. 2018).
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Draining Cedar Swamp, Reading, MA. Ver. 3. Environmen-
tal Data Initiative. doi:10.6073/pasta/887454139328652
5af94a172471dc9b7

Wollheim, W. 2014j. Year 2009, 15 minute measurements of
stage in a small headwater stream draining a highly subur-
ban catchment (72% residential), Saw Mill Brook, Burling-
ton, MA. Ver. 2. Environmental Data Initiative. doi:10.
6073/pasta/902cb1feabbe6d08979ab9d8709ed071

Wollheim, W. 2014k. Year 2009, 15 minute measurements of
stage, water temperature in a small headwater stream
draining draining a mainly wetland catchment (49%
wetlands/swamp + 36% Forest), Bear Meadow Brook,
Draining Cedar Swamp, Reading, MA. Ver. 3. Environmen-
tal Data Initiative. doi:10.6073/pasta/9baf54e4636773cd36
3499eeb5d53272

Wollheim, W. 2014l. Year 2010, 15 minute measurements of
stage in a small headwater stream draining a highly subur-
ban catchment (72% residential), Saw Mill Brook, Burling-
ton, MA. Ver. 2. Environmental Data Initiative. doi:10.
6073/pasta/ee0eb4e0b721d0b3bcf2c9e98718097d

Wollheim, W. 2014m. Year 2010, 15 minute measurements of
stage, water temperature in a small headwater stream
draining draining a mainly wetland catchment (49%
wetlands/swamp + 36% forest), Bear Meadow Brook,
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Draining Cedar Swamp, Reading, MA. Ver. 2. Environmen-
tal Data Initiative. doi:10.6073/pasta/19f976afa80e44a
faef2f971316c5959

Wollheim, W. 2014n. Year 2011, 15 minute measurements of
stage in a small headwater stream draining a highly subur-
ban catchment (72% residential), Saw Mill Brook, Burling-
ton, MA. Ver. 2. Environmental Data Initiative. doi:10.
6073/pasta/ced55f3fb23c42fdca5dbfb055758b79

Wollheim, W. 2014o. Year 2011, 15 minute measurements of
stage, water temperature in a small headwater stream
draining draining a mainly wetland catchment (49%
wetlands/swamp + 36% forest), Bear Meadow Brook,
Draining Cedar Swamp, Reading, MA. Ver. 2. Environmen-
tal Data Initiative. doi:10.6073/pasta/d4e8c510a7c65daa94
15341e2185e835

Wollheim, W. 2016a. Year 2012, 15 minute measurements of
stage in a small headwater stream draining a highly subur-
ban catchment (72% residential), Saw Mill Brook, Burling-
ton, MA. Ver. 1. Environmental Data Initiative. doi:10.
6073/pasta/e83a3c4830402d1af184e7a99cb38aa0

Wollheim, W. 2016b. Year 2012, 15 minute measurements of
stage, water temperature in a small headwater stream
draining a mainly wetland catchment (49% wetlands/
swamp + 36% forest), Bear Meadow Brook, Draining Cedar
Swamp, Reading, MA. Ver. 1. Environmental Data
Initiative. doi:10.6073/pasta/d30be6f97c015ef0fb382e529e
1f6c09

Wollheim, W. 2016c. Year 2012, 15 minute measurements of
stage, water temperature in a small headwater stream
draining draining a mainly forested catchment (55% Forest
+ 19% wetland), Cart Cr., Newbury, MA. Ver. 1. Environ-
mental Data Initiative. doi:10.6073/pasta/3f796334243b96
89f915b75ef1c031df

Wollheim, W. 2016d. Year 2013, 15 minute measurements of
stage in a small headwater stream draining a highly subur-
ban catchment (72% residential), Saw Mill Brook, Burling-
ton, MA. Ver. 1. Environmental Data Initiative. doi:10.
6073/pasta/79d7abb62dd1408050b38bd6defe970d

Wollheim, W. 2016e. Year 2013, 15 minute measurements of
stage, water temperature in a small headwater stream
draining a mainly wetland catchment (49% wetlands/
swamp + 36% Forest), Bear Meadow Brook, Draining Cedar
Swamp, Reading, MA. Ver. 1. Environmental Data Initia-
tive. doi:10.6073/pasta/9d1a8e967c6b2b7129543d3c8a
44a504

Wollheim, W. 2016f. Year 2013, 15 minute measurements of
stage, water temperature in a small headwater stream
draining draining a mainly forested catchment (55% forest
+ 19% wetland), Cart Cr., Newbury, MA. Ver. 2. Environ-
mental Data Initiative. doi:10.6073/pasta/9b8898013e88
54c27ef9b68075fd3e34

Wollheim, W. 2016g. Year 2014, 15 minute measurements of
stage in a small headwater stream draining a highly

suburban catchment (72% residential), Saw Mill Brook,
Burlington, MA. Ver. 1. Environmental Data Initiative. doi:
10.6073/pasta/b43fee44931dcfa8c3f421cf44cf300d

Wollheim, W. 2016h. Year 2014, 15 minute measurements of
stage, water temperature in a small headwater stream
draining a mainly wetland catchment (49% wetlands/
swamp + 36% forest), Bear Meadow Brook, Draining Cedar
Swamp, Reading, MA. Ver. 1. Environmental Data Initia-
tive. doi:10.6073/pasta/b2997d347abb931b1f931ef70122
e323

Wollheim, W. 2016i. Year 2014, 15 minute measurements of
stage, water temperature in a small headwater stream
draining draining a mainly forested catchment (55% forest
+ 19% wetland), Cart Cr., Newbury, MA. Ver. 2. Environ-
mental Data Initiative. doi:10.6073/pasta/5047bde6991964
356049fb7fbe8366e9

Wollheim, W. 2016j. Year 2015, 15 minute measurements of
stage in a small headwater stream draining a highly subur-
ban catchment (72% residential), Saw Mill Brook, Burling-
ton, MA. Ver. 1. Environmental Data Initiative. doi:10.
6073/pasta/d760bfb128f25d84c72b1a85fd166cf1

Wollheim, W. 2016k. Year 2015, 15 minute measurements of
stage, water temperature in a small headwater stream
draining a mainly wetland catchment (49% wetlands/
swamp + 36% Forest), Bear Meadow Brook, Draining Cedar
Swamp, Reading, MA. Ver. 1. Environmental Data Initia-
tive. doi:10.6073/pasta/6e878d943a29d13e88efd4f00a8c
72d3

Wollheim, W. 2016l. Year 2015, 15 minute measurements of
stage, water temperature in a small headwater stream
draining draining a mainly forested catchment (55% forest
+ 19% wetland, Cart Cr.). doi:10.6073/pasta/db079f15eec
7fcea7de3b59eb165bfe8

Wollheim, W. 2018a. PIE LTER year 2013, 15 minute mea-
surements of dissolved oxygen, water temperature in a
small headwater stream draining draining a mainly forested
catchment (55% Forest + 19% wetland), Cart Cr.,
Newbury, MA. Ver. 1. Environmental Data Initiative. doi:
10.6073/pasta/1f5fad0357c4440e6ded5e592e51cae6

Wollheim, W. 2018b. PIE LTER year 2014, 15 minute mea-
surements of dissolved oxygen, water temperature in a
small headwater stream draining draining a mainly forested
catchment (55% Forest + 19% wetland), Cart Cr.,
Newbury, MA. Ver. 1. Environmental Data Initiative. doi:
10.6073/pasta/d76b9162674e10faf4de025e5b40b034

Wollheim, W. 2018c. PIE LTER year 2015, 15 minute measure-
ments of dissolved oxygen, water temperature at the Ips-
wich River head of tide, Sylvania dam in Ipswich, MA. Ver.
1. Environmental Data Initiative. doi:10.6073/pasta/
a49a6117c8f7d6514b627b75cc9939ab

Wollheim, W. 2018d. PIE LTER year 2015, 15 minute mea-
surements of dissolved oxygen, water temperature in a
small headwater stream draining draining a mainly forested
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catchment (55% forest + 19% wetland), Cart Cr., Newbury,
MA. Ver. 2. Environmental Data Initiative. doi:10.6073/
pasta/443379fe7c98d16a9321600ee82409da

Wollheim, W. 2019a. PIE LTER year 2016, 15 minute mea-
surements of dissolved oxygen, water temperature at the
Ipswich River Head of Tide, Sylvania Dam in Ipswich,
MA. Ver. 1. Environmental data initiative. doi:10.6073/
pasta/f5443b4f2c945d0701abaf793cbf8d7f

Wollheim, W. 2019b. PIE LTER year 2016, 15 minute mea-
surements of dissolved oxygen, water temperature in a
small headwater stream draining draining a mainly forested
catchment (55% forest + 19% wetland), Cart Cr., Newbury,
MA. Ver. 1. Environmental Data Initiative. doi:10.6073/
pasta/95f91e4282221adaf7360958103cbf64

Wollheim, W. 2019c. PIE LTER year 2017, 15 minute measure-
ments of dissolved oxygen, water temperature at the Ips-
wich River head of tide, Sylvania dam in Ipswich, MA. Ver.
1. Environmental data initiative. doi:10.6073/pasta/
8f1b2522788c6b1e6bc43605e4a61c50

Wollheim, W. 2019d. PIE LTER year 2017, 15 minute mea-
surements of dissolved oxygen, water temperature in a
small headwater stream draining draining a mainly forested
catchment (55% Forest + 19% wetland), Cart Cr.,
Newbury, MA. Ver. 1. Environmental Data Initiative. doi:
10.6073/pasta/0e32bbdb5a88fae9e84471839658413c

Wollheim, W. 2019e. PIE LTER year 2018, 15 minute measure-
ments of dissolved oxygen, water temperature at the Ips-
wich River Head of Tide, Sylvania Dam in Ipswich,
MA. Ver. 1. Environmental Data Initiative. doi:10.6073/
pasta/7c69b449417a936f005758d1a183c303

Wollheim, W. 2019f. PIE LTER year 2018, 15 minute measure-
ments of dissolved oxygen, water temperature in a small
headwater stream draining draining a mainly forested
catchment (55% forest + 19% wetland), Cart Cr., Newbury,
MA. Ver. 1. Environmental Data Initiative. doi:10.6073/
pasta/e513582796b7c02ce1fd35ac51cf5f93

Wollheim, W., and C. Vorosmarty. 2014a. Year 2001,
15 minute measurements of stage, water temperature, con-
ductivity, dissolved oxygen, and pH on the Ipswich
R. mainstem at North Reading, just upstream of
Rt. 28 (�48 km2 drainage area). Ver. 5. Environmental Data
Initiative. doi:10.6073/pasta/b71c0da20e68cdab9ddf390f5
8e75956

Wollheim, W., and C. Vorosmarty. 2014b. Year 2002,
15 minute measurements of stage, water temperature, con-
ductivity, dissolved oxygen, and pH on the Ipswich
R. mainstem at North Reading, just upstream of
Rt. 28 (�48 km2 drainage area). Ver. 5. Environmental Data
Initiative. doi:10.6073/pasta/3f73c76c496834a437da817de
95c8138

Wollheim, W., and C. Vorosmarty. 2014c. Year 2003,
15 minute measurements of stage, water temperature, con-
ductivity, dissolved oxygen, and pH on the Ipswich
R. mainstem at North Reading, just upstream of

Rt. 28 � 48 km2 drainage area. Ver. 5. Environmental Data
Initiative. doi:10.6073/pasta/eb84e2dfdfdb96dd0c1b8da96
54592ec

Wollheim, W., and C. Vorosmarty. 2014d. Year 2005, 15–30
minute measurements of stage, water temperature, conduc-
tivity in a small headwater stream draining draining a
mainly wetland catchment (49% wetlands/swamp + 36%
forest), Bear Meadow Brook, Draining Cedar Swamp, Read-
ing, MA. Ver. 3. Environmental Data Initiative. doi:10.
6073/pasta/d3c106dfafbc14ae46e55dbd084a7c68

Wollheim, W., and C. Vorosmarty. 2014e. Year 2006,
10, 15 or 30 minute measurements of stage, water tempera-
ture, conductivity in a small headwater stream draining
draining a mainly wetland catchment (49% wetlands/
swamp + 36% forest), Bear Meadow Brook, Draining
Cedar Swamp, Reading, MA. Ver. 3. Environmental Data
Initiative. doi:10.6073/pasta/ea350e307ecfdd5f01b7b74675
b251f1

Wollheim, W., and C. Vorosmarty. 2014f. Year 2007,
10 minute measurements of stage, water temperature in a
small headwater stream draining draining a mainly wet-
land catchment (49% wetlands/swamp + 36% forest), Bear
Meadow Brook, Draining Cedar Swamp, Reading, MA. Ver.
3. Environmental Data Initiative. doi:10.6073/pasta/c63dd
9e7af5f3669ee77414f34b176da

Wollheim, W., and M. Green. 2018a. PIE LTER year 2012,
5 minute and 15 minute measurements of conductivity,
water temperature at the Ipswich River Head of Tide,
Sylvania Dam in Ipswich, MA. Ver. 1. Environmental Data
Initiative. doi:10.6073/pasta/
dd13da5c5bd69174e00dfacf3ca8c39f

Wollheim, W., and M. Green. 2018b. PIE LTER year 2012,
5 minute and 15 minute measurements of conductivity,
water temperature at the Parker River Head of Tide, Central
St. Dam in Newbury, MA. Ver. 1. Environmental Data Ini-
tiative. doi:10.6073/pasta/1a29fe7e3c5476b3c1e90de7db02
a5db

Wollheim, W., and M. Green. 2018c. PIE LTER year 2012,
5 minute and 15 minute measurements of conductivity,
water temperature in a small headwater stream draining
draining a mainly forested catchment (55% forest + 19%
wetland), Cart Cr., Newbury, MA. Ver. 1. Environmental
Data Initiative. doi:10.6073/pasta/eafdcd41043312ed62839
d8e24faecc6

Wollheim, W., and M. Green. 2018d. PIE LTER year 2012,
5 minute and 15 minute measurements of specific conduc-
tance, water temperature in a small headwater stream
draining a highly suburban catchment (72% residential),
Saw Mill Brook, Burlington, MA. Ver. 1. Environmental
Data Initiative. doi:10.6073/pasta/ebdded14a39ad80350fe
860521bd57f5

Wollheim, W., and M. Green. 2018e. PIE LTER year 2013,
15 minute measurements of conductivity, water tempera-
ture at the Ipswich River Head of Tide, Sylvania Dam in
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