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Abstract
A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through 
agricultural fertilization or atmospheric deposition is considered to be one of the 
most widespread drivers of global change. Modifying biomass allocation is one pri-
mary strategy for maximizing plant growth rate, survival, and adaptability to various 
biotic and abiotic stresses. However, there is much uncertainty as to whether and how 
plant biomass allocation strategies change in response to increased N inputs in ter-
restrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass 
and their components related to N additions across terrestrial ecosystems worldwide. 
Our meta-analysis reveals that N addition (ranging from 1.08 to 113.81 g m−2 year−1) 
increased terrestrial plant biomass by 55.6% on average. N addition has increased 
plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, 
and 13.4%, respectively, but with an associated decrease in plant reproductive mass 
(including flower and fruit biomass) fraction by 3.4%. We further documented a re-
duction in plant root-shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 
14.7% (11.6%–17.8%), respectively, in response to N addition. Meta-regression results 
showed that N addition effects on plant biomass were positively correlated with mean 
annual temperature, soil available phosphorus, soil total potassium, specific leaf area, 
and leaf area per plant. Nevertheless, they were negatively correlated with soil total 
N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount 
and duration of N addition. In summary, our meta-analysis suggests that N addition 
may alter terrestrial plant biomass allocation strategies, leading to more biomass 
being allocated to aboveground organs than belowground organs and growth versus 
reproductive trade-offs. At the global scale, leaf functional traits may dictate how 
plant species change their biomass allocation pattern in response to N addition.
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1  |  INTRODUC TION

Plant growth and development depend on environmental variables, 
such as temperature, light intensity, and the availability of carbon, 
water, and mineral nutrients (Hermans et al., 2006). As a plant cap-
tures carbon and nutrients, the newly formed biomass is allocated to 
leaves, stems (including bole, branch, and bark), roots, or reproduc-
tive parts (Reich et al., 2014). To sustain the required physiological 
functions and grow normally, a plant must balance the distribution 
of biomass among its leaves, branches, stems, and roots (Shipley & 
Meziane,  2002; Yin et al.,  2019). Modifying biomass allocation is 
one of the most fundamental ways to maximize plant growth rate, 
survival, and adaptability under various biotic and abiotic stresses 
(Poorter et al., 2015; Puglielli et al., 2021). Consequently, altered bio-
mass allocation has profound implications for plant growth.

Nitrogen (N) is a necessary nutrient for plant growth and eco-
system production in both terrestrial and marine habitats (Elser 
et al., 2007). N deficit inhibits plant growth and development, low-
ers photosynthesis and leaf area, accelerates plant senescence, and 
eventually diminishes plant production (Mu & Chen, 2021). Therefore, 
N fertilization has been widely used to promote plant growth and 
production (Frink et al., 1999; Xia & Wan, 2008). Increased reactive 
N emissions through agricultural fertilization and fossil fuel com-
bustion have resulted in a large amount of atmospheric inorganic 
N deposition at a global average rate of 105 Tg N year−1 (Galloway 
et al., 2008; Lu et al., 2011). Global N deposition rates are expected 
to increase 2.5-fold by the end of the century (Janssens et al., 2010; 
Lamarque et al., 2005). As a result, N addition to terrestrial ecosys-
tems is now considered one of the most widespread drivers of global 
change (Galloway et al., 2008; Humbert et al., 2016).

In most terrestrial ecosystems, plant growth is typically restricted 
by soil N  availability (LeBauer & Treseder,  2008; Lu et al.,  2011). 
Some previous studies have shown a strong covariation between 
soil N availability and plant biomass allocation in natural ecosystems 
(Cambui et al., 2011; Hermans et al., 2006). Therefore, plants, as a 
fundamental component of the terrestrial ecosystem, may be sensi-
tive to enhanced N deposition in their growth (Bobbink et al., 2010; 
Phoenix et al., 2012). However, there is still much uncertainty about 
whether or how plant biomass allocation will change in response 
to increased N inputs in terrestrial ecosystems. A previous study 
has shown that plants adapt to environmental changes by chang-
ing biomass distribution across different plant organs (Hermans 
et al., 2006). Besides, leaf functional traits such as leaf carbon and 
N content (LCC and LNC), specific leaf area (SLA), and leaf area per 
plant (PLA) have a significant impact on the efficiency of assimi-
lation of photosynthetic active radiation, and hence, plant photo-
synthetic capacity (Marron et al.,  2005; Scott Green et al., 2003). 
Some research has suggested that leaf functional traits can also be 
used as potential covariates for understanding biomass allocation 
(Li et al., 2021; Yin et al., 2019). However, it is unclear whether leaf 
functional traits and environmental factors jointly drive the response 
of plant biomass allocation to N addition. Therefore, a quantitative 
synthesis across multiple studies is urgently needed to quantify the 

effects of reactive N addition on terrestrial plant biomass and its 
composition and identify the key drivers accurately.

Previous manipulation experiments have improved our un-
derstanding of N addition effects on the allocation of plant bio-
mass (Högberg et al.,  2006; Holub & Tůma,  2010; Palmqvist & 
Dahlman, 2006). However, studies that rely on individual cases or 
are constrained to specific habitats make it difficult to get a com-
plete picture of the effects of N addition on terrestrial plants. 
Moreover, the role of global change in promoting the feedback of 
terrestrial ecosystems and atmospheric N deposition has not been 
fully elucidated. Previous research has reported the effects of N 
deposition on plant photosynthesis (Liang et al., 2020), plant diver-
sity (Bobbink et al., 2010), and plant species richness and abundance 
(Midolo et al., 2019); however, due to a lack of data, a synthesis was 
not produced. To date, although several studies have attempted 
to quantify N addition effect on plant biomass (Li et al., 2020; Yue 
et al., 2020), none of these studies considered the effects of envi-
ronmental variables (e.g., climate, soil, and N deposition background 
values) and plant leaf functional traits (such as SLA, PLA, and leaf 
carbon/nitrogen ratio [LCN]) on the response of terrestrial plants to 
N addition. Since N availability affects carbon sequestration across 
terrestrial ecosystems (Gruber & Galloway, 2008), a better under-
standing of how and to what extent N addition affects biomass allo-
cation in terrestrial plants is essential for accurate quantification of 
carbon sequestration.

In this study, we compiled a global dataset of 3516 paired sets of 
experimental field observations from 255 studies covering the ma-
jority of the dominant plant species in terrestrial ecosystems. The 
objectives of this study were to (1) clarify the effects of N addition 
on plant biomass in terrestrial ecosystems and (2) identify the key 
drivers and global patterns of biomass accumulation and allocation 
in response to reactive N addition. We hypothesized that (i) N ad-
dition promotes plants to allocate more biomass to vegetative (i.e., 
roots, stems, and leaves) rather than reproductive (i.e., flowers and 
fruits) organs and (ii) environmental factors and leaf functional traits 
jointly drive the response of plant biomass to N addition.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

We systematically searched the peer-reviewed published literature 
from the ISI Web of Science and Google Scholar databases for specific 
search terms (Table S1; Figure S1). Each paper was then screened to 
determine whether it met the following criteria: (1) the climatic, soil, 
and vegetation variables (or conditions) were the same between the 
control and the N addition treatment sites (i.e., studies along gradi-
ents of N deposition were not considered); (2) the research only in-
cluded species that naturally exist in terrestrial habitats; (3) means, 
standard deviations (SDs), or errors (SEs), and the sampling sizes for 
both the control and treatment groups could be directly obtained or 
could be calculated; (4) the statistical assumption of independence 
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across observations for the long-term N addition study were met and, 
only the most recent results were included; (5) only data from control 
and N addition plots were collected when global change treatments 
(e.g., added CO2 or increased temperature) other than N addition were 
tested; and (6) data from transgenic plants or plants that had been 
handled with herbicides, hormones, and/or heavy metals were elimi-
nated since they might have presented a different pattern of biomass 
distribution. Subsequently, if a publication included several experi-
ments in different locations, these observations were considered in-
dependent cases. As supplements, articles used in previous relevant 
meta-analyses (Liang et al., 2020; Xia & Wan, 2008; Yue et al., 2020) 
were also included and rescreened according to the above criteria.

For the literature that meets our criteria, we acquired the mean 
values, SD, and sample size directly from the table, text, and sup-
plementary files or extracted these data indirectly from figures by 
using GetData software (version 2.26). We also collected geographic 
variables (i.e., latitude, longitude, and elevation), environmental 
variables (i.e., MAT, mean annual temperature; MAP, mean annual 
precipitation), and other reported variables including experimental 
duration (years, the number of years with N applied repeatedly), the 
magnitude of N applied (quantity of N addition per year, ranging from 
0.3 to 112 g m−2 year−1), and the form of N applied (the type or types 
of N fertilizer). If N addition varied during the N addition experiment, 
we estimated the total applied dosage based on the amount of N 
fertilizer used and the duration of the treatment (total N applica-
tion/duration; Xu et al.,  2021). Data on atmospheric inorganic N 
(ranging from 0.02 to 2.52 g m−2 year−1) were acquired from global 
N deposition maps (Ackerman et al., 2018). Other climatic data such 
as precipitation in the warmest quarter (WQP) were obtained from 
WorldClim2 at 1 km spatial resolution (Fick & Hijmans, 2017).

For each species, plants were classified to the family and genus 
level, and grouped according to their photosynthesis pathway (e.g., 
C3, C4, or CAM), functional types (i.e., tree, shrub, grass, forb, fern, 
lichen, and moss), plant N fixation capacity (N-fixing plant or non-
N-fixing plant), and life cycles (i.e., annual, biennial, or perennial). As 
categorical predictors, seven commonly measured plant leaf func-
tional traits were obtained from the TRY plant trait database for 
each species (Kattge et al.,  2020): SLA (mm2 mg−1), PLA (m2), LCN, 
leaf nitrogen/phosphorus (N/P) ratio (LNP), leaf photosynthesis rate 
(LPR, μmol m−2 s−1), LCC (g m−2), and LNC (g m−2). We averaged every 
functional trait observed for each species after excluding duplicate 
functional trait measurements and outliers (values larger than tri-
ple standard deviations from the trait mean for each species; Adler 
et al., 2014). As continuous predictors, four soil variables including soil 
total nitrogen (TN, %), soil total potassium (TK, %), soil available phos-
phorus (AP, mg kg−1), soil pH, and aridity index (AI) were extracted 
from Global Soil Datasets in Earth System Models (GSDE; Shangguan 
et al.,  2014) and the CGIAR Consortium for Spatial Information 
(CGIAR-CSI) dataset (Antonio & Robert, 2019) at a 30 arc-second (ap-
proximately 1 km2) spatial resolution. Finally, we compiled a database 
from 255 published articles, containing a total of 3516 paired obser-
vations of 401 terrestrial plant species (see Figure 1; Dataset S1).

2.2  |  Data analysis

We used the log response ratio (RR) to conduct a meta-analysis to 
assess how plant biomass and biomass allocation responded to N ad-
dition in terrestrial ecosystems (Hedges et al., 1999). The following is 
how the RR was calculated:

where Xt and Xc were the means of each observation for the treatment 
(i.e., elevated N) and the control (i.e., ambient N) groups, respectively. 
The sampling variation (v) for each RR was calculated as:

where Nt and Nc represent the sample size of the treatment and con-
trol groups, St and Sc were the standard deviation of the treatment and 
control groups.

For each study, the weighting factor (w) was calculated as:

where �2 was the estimated between-study variance of estimates. 
Following that, the overall effects (RR) for all observations was esti-
mated as:

where m (i = 1, 2, … m) and n (j = 1, 2, … n) indicate the number of groups 
(e.g., functional type) and the number of observations in the ith group, 
respectively. For a better interpretation, the mean effect size was 
transformed back to the percentage change induced by the experi-
mental N addition treatment (Bai et al., 2013):

Then, the multilevel mixed-effect meta-analysis was con-
ducted with the rma.mv function in the “metafor” R package 
(Viechtbauer,  2010) to determine whether N addition had a sub-
stantial impact on the biomass accumulation and biomass allocation 
of terrestrial plants. The effects of the treatment were considered 
significantly different from the control if their 95% confidence in-
tervals did not include zero (Hedges & Olkin, 1985). The heteroge-
neity of effect sizes was tested with the Q statistic to determine 
whether the variability of the observed effect sizes was greater 
than that anticipated by chance (Cauvy-Fraunié & Dangles, 2019). 
As projected, a significant residual heterogeneity was found in the 
mixed effect meta-analysis for the N treatment on plant biomass 
(Qt = 160,533.5, p < .0001) and biomass allocation (Qt = 18,879.8, 

(1)RR = ln
(

Xt ∕Xc

)

,

(2)v =

S2
t

NtX
2

t

+

S2
c

NcX
2

c

,

(3)w =
1

v + �
2
,

(4)RR =

∑m

i=1

∑n

j=1
wijlnRRij

∑m

i=1

∑n

j=1
wij

,

(5)Percentage (%) =
[

1 − exp (RR)
]

× 100.

 13652486, 2023, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16731 by U

niversity O
f M

innesota Lib, W
iley O

nline Library on [30/06/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



    |  3973FENG et al.

p < .0001), which we tried to interpret with various moderators 
(Table S2).

In addition, we used single mixed-effect meta-regression model-
ing to investigate the link across effect sizes with moderators. The 
explained heterogeneity Q statistic (Qm) was developed to assess for 
significance in single covariance meta-regressions (Guo et al., 2023). 
A significant Qm denotes a statistic in which moderators contribute 
to the heterogeneity in effect sizes (Cauvy-Fraunié & Dangles, 2019). 
All parameter estimates reported in this meta-analysis were from 
the best models fitted by a restricted maximum likelihood approach.

To avoid overfitting, we used the chart.Correlation function in 
the “PerformanceAnalytics” R package (Peterson & Carl,  2020) to 
perform Pearson correlation analysis of the predictors to test for 
multi-collinearity, and then exclude variables with correlation coef-
ficients larger than .7 (Dormann et al., 2013). As a sensitivity test, 
we ran a model-selection procedure with the maximum likelihood 
method (Terrer et al.,  2021). We used the glmulti function in the 
“glmulti” package (Calcagno & de Mazancour, 2010) to list all alter-
native models based on the corrected Akaike information criterion 
(AICc) values. All models with a ΔAICc value less than 2 were consid-
ered equivalent to the best-fitting model (Guo et al., 2023; Table S3).

The robustness of our findings to publication bias was evaluated 
using the funnel plots, Egger's test (Egger et al., 1997), and Rosenberg's 
fail-safe numbers (Rosenberg,  2005). The funnel plots found no 

evidence for funnel asymmetry (Figure S2). Egger's test suggested that 
the overall effect sizes for N treatment on plant biomass (including bio-
mass accumulation and biomass allocation) were robust (Egger's test: 
z = .176, p = .860). Rosenberg's fail-safe numbers were large enough 
(fail-safe N: 3.86 × 107, p < .0001) to be convincing with respect to the 
estimate's robustness. As a consequence, we did not consider publica-
tion bias to be a problem in interpreting the findings. All analyses were 
carried out using the R 4.1.3 software (R Core Team, 2022).

3  |  RESULTS

3.1  |  Effects of nitrogen addition on plant biomass 
accumulation

For all of the terrestrial plants evaluated in this study, N addition increased 
biomass by 55.6% (back-transformed 95% CI: 51.4–59.8; Figure 2). The 
biomass of N-fixing plants increased by 53.6% (41.9%–65.4%), which 
was more variable but on average only slightly less than that of non-
N-fixing plants 55.9% (51.4%–60.4%; Figure  3; Table  S4). The great-
est increase in biomass was for deciduous trees and broadleaved trees 
which increased by 74.2% (63.3%–85.2%) and 81.3% (70.8%–91.9%), 
respectively. This was considerably higher than evergreen trees and co-
niferous trees, which both increased by 57.1% (48%–66.2%) and 40.2% 

F I G U R E  1  Geographical location of study sites in the meta-analysis. The point sizes represent the number of replications. Red, magenta, 
purple, lime, green, saddle brown, and pink points indicate functional types of tree, shrub, grass, forb, fern, lichen, and moss. Map lines 
delineate study areas and do not necessarily depict accepted national boundaries. [Colour figure can be viewed at wileyonlinelibrary.com]
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(33.2%–47.2%). For different photosynthesis pathways, N addition in-
creased biomass by 55.2% (50.8%–59.6%) in C3 plants and by 81.5% 
(56.7%–106.3%) in C4 plants. Our evaluation by life history traits showed 
that N addition increased the biomass of annual herbs and perennial 
herbs by 63.7% (50.0%–77.4%) and 55.5% (48.3%–62.6%), respectively.

By the growth forms of plants, we observed that N addition in-
creased the biomass of herbaceous plants and woody plants by 60.1% 
(53.6%–66.6%) and 53.8% (48.2%–59.5%), respectively (Figure  4; 
Table S5). Our evaluation of biological realms of plants showed that 
N addition increased the biomass of seed plants by 56.6% (52.3%–
60.9%) but had no effects on spore plants (Figure  3; Table  S4). 
Furthermore, the effects of N addition differed among taxonomic 
groups, with biomass increasing by 65% for trees (57.9%–72%), 33% 
for shrubs (24%–42%), 71.4% for grasses (62.4%–80.4%), and 42.7% 
for forbs (33.6%–51.8%), but had no effects on lichens and mosses.

3.2  |  Effects of nitrogen addition on plant 
biomass allocation

Overall, the meta-analysis demonstrated that N addition had different 
effects on different functional organs (or tissues) of plants (Figure 5). For 
the whole plant, N addition increased the biomass by 76.6% (Figure 5a; 
Table  S6). Furthermore, more biomass appeared to be allocated to 
aboveground (61.7%) than belowground (i.e., root; 42.7%) biomass in 

response to N addition. Within the components of the aboveground 
plant structure, plant shoots showed the strongest positive response 
to N addition, with biomass increasing by 67.3%. Plant leaf and stem 
biomass, on the other hand, were increased by the addition of N, by 
33.2% and 37.2%, respectively The addition of N increased the mass 
fractions of stem, shoot, and leaf by 13.8%, 12.9%, and 13.4%, respec-
tively (Figure 5b; Table S7). In contrast, plant root-shoot ratio and root 
mass fraction showed a negative response to N addition, which de-
creased by 27% and 14.7%, respectively. Although there were no clear 
directional effects on the reproductive (i.e., flowers and fruits) biomass 
of plants, more biomass from plants was allocated to vegetative organs 
than to reproductive organs. And we did note that plant reproductive 
mass fraction decreased by 3.4% in response to N addition.

3.3  |  Moderators of nitrogen addition effects on 
plant biomass

The meta-regression results revealed that N addition effects on 
terrestrial plant biomass were positively correlated with MAT 

F I G U R E  2  Overall effect size estimates of N addition on 
terrestrial plant biomass at a global scale. RR, log response ratios 
(effect sizes). RR = 0, black dashed line; overall effect size, red 
dashed line, and green diamond (with 95% CI in black line). [Colour 
figure can be viewed at wileyonlinelibrary.com] F I G U R E  3  Effect size of N addition on terrestrial plant 

biomass, expressed on the global scale (RR [±95% confidence 
interval]). The vertical dashed red line denotes a null effect size 
(RR = 0). The number of observations is beside each attribute 
without parentheses, and the number of plant species is in 
parentheses. RR, log response ratio. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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(p < .0001), AP (p < .01), and TK (p < .01; Table 1). On the contrary, 
N addition effects on plant biomass showed a significantly negative 
correlation with soil TN (p < .0001), the duration of the N addition 

(p < .0001), and the amount of N addition (p < .01). Furthermore, 
there was a negative relationship between N addition effects on 
plant biomass and latitude (p < .05). For plant functional traits, the 
effect size of N addition on plant biomass was positively correlated 
with SLA (p < .0001) and PLA (p < .01) and negatively correlated with 
LCN (p < .01), LCC (p < .0001), and LNC (p < .0001).

4  |  DISCUSSION

4.1  |  Mechanisms of plant biomass allocation in 
response to nitrogen addition

For most parts of the plants, N resources are limited. Reduced 
photosynthesis occurs in N-deficient plants due to sugar accumu-
lation, as sugar exerts metabolite feedback and influences many 
genes responsible for photosynthesis (Bläsing et al.,  2005). N ad-
dition can therefore reduce sugar accumulation in leaves (Hermans 
et al., 2006), increase N allocation to photosynthetic apparatus (Li 
et al., 2019), and promote biomass allocation to vegetative organs 
(Yan et al.,  2019). Consistent with the regulatory mechanisms de-
scribed above and confirming our hypothesis, our meta-analysis 
shows that N addition results in a lower biomass fraction of roots 
and reproductive organs and a decrease in the root-shoot ratio. This 
indicates that for terrestrial plants, N deficiency may constrain pho-
tosynthesis more strongly than reproduction.

Previous research has demonstrated that C4 plants have a higher 
photosynthetic potential compared to C3 plants. (Zhu et al., 2008). 
Our research shows that C4 plants also respond more strongly 
than C3 plants in terms of biomass gain with N addition. Compared 
with herbaceous plants, the carbon and nutrient storage capacity 
of woody plants is expected to be much larger (Eyles et al., 2009). 

FI G U RE 4 Effect size of N addition on terrestrial plant biomass 
of different growth forms, expressed on the global scale (RR [±95% 
confidence interval]). The vertical dashed red line denotes a null effect 
size (RR = 0). The number of observations is beside each attribute without 
parentheses, and the number of plant species is in parentheses. RR, log 
response ratio. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5  Effect size of N addition on terrestrial plant biomass for different tissue types (a) and mass fractions and root-shoot ratio (b), 
expressed on the global scale (RR [±95% confidence interval]). The vertical dashed red line denotes a null effect size (RR = 0). The number 
of observations is beside each attribute without parentheses, and the number of plant species is in the parentheses. RR, log response ratio. 
[Colour figure can be viewed at wileyonlinelibrary.com]
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Therefore, herbaceous plants are theoretically more responsive to 
changes in biomass than woody plants to N addition, which we con-
firmed in this study. Furthermore, the results of our study revealed 

a significant positive impact of N addition on the biomass of seed 
plants, but not spore plants. There are several factors that may 
explain this outcome. Firstly, seed plants typically require higher 

TA B L E  1  Effect sizes and regression coefficient of the factors affecting terrestrial plant biomass response to N addition on the global 
scale.

Fixed effects/
moderators

Mean effect 
size/regression 
coefficient LCI UCI N

Model support based on omnibus tests 
(Qm, df)

MAT 1888 Qm,1 = 29.446, p < .0001

Intercept 0.2914 0.2476 0.3351

Slope 0.0101 0.0065 0.0138

Latitude 1909 Qm,1 = 4.667, p = .0307

Intercept 0.4199 0.3690 0.4709

Slope −0.0012 −0.0023 −0.0001

AP 821 Qm,1 = 7.469, p = .0063

Intercept 0.2209 0.0908 0.3510

Slope 0.0270 0.0076 0.0464

TK 1658 Qm,1 = 6.999, p = .0082

Intercept 0.2257 0.1256 0.3257

Slope 0.0934 0.0242 0.1626

TN 1772 Qm,1 = 20.416, p < .0001

Intercept 0.4330 0.3933 0.4727

Slope −0.1803 −0.2585 −0.1021

SLA 1987 Qm,1 = 25.405, p < .0001

Intercept 0.3138 0.2491 0.3784

Slope 0.0089 0.0055 0.0124

PLA 897 Qm,1 = 6.744, p = .0094

Intercept 0.4373 0.3878 0.4867

Slope 0.0006 0.0002 0.0011

LCN 1641 Qm,1 = 10.608, p = .0011

Intercept 0.5698 0.4939 0.6439

Slope −0.0036 −0.0058 −0.0015

LCC 1510 Qm,1 = 37.941, p < .0001

Intercept 0.5769 0.5192 0.6346

Slope −0.0032 −0.0042 −0.0022

LNC 1863 Qm,1 = 34.477, p < .0001

Intercept 0.6211 0.5556 0.6866

Slope −0.0997 −0.1330 −0.0664

N.addition 1607 Qm,1 = 10.087, p = .0015

Intercept 0.3777 0.3344 0.4210

Slope −0.0027 −0.0044 −0.0010

Duration 2662 Qm,1 = 28.239, p < .0001

Intercept 0.4835 0.4496 0.5174

Slope −0.0259 −0.0354 −0.0163

Note: LCI and UCI represent the lower and upper bounds of the 95% confidence intervals. Significant influence of moderators is indicated in bold.
Abbreviations: AP, soil available phosphorus; LCC, leaf carbon content per leaf area; LCN, leaf carbon/nitrogen ratio; LNC, leaf nitrogen content per 
leaf area; MAP, mean annual precipitation; MAT, mean annual temperature; N, number of effect sizes; N.addition, nitrogen addition amount (include 
the experimental N addition and atmospheric inorganic N deposition); Photopathway, photosynthesis pathway; PLA, leaf area per plant; SLA, specific 
leaf area; TK, soil total potassium; TN, soil total nitrogen.
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levels of N than spore plants due to their more intricate vascular 
system, which allows for more efficient nutrient uptake and trans-
port. In contrast, spore plants lack this specialized system and, thus, 
may be less responsive to N addition (Xia & Wan, 2008). Secondly, 
seed plants possess a higher photosynthetic rate than spore plants, 
enabling them to use the additional N availability to produce more 
biomass (Sage, 2004). In contrast, spore plants have lower rates of 
photosynthesis and may not fully benefit from the increased N avail-
ability (Flexas & Carriquí,  2020). Overall, the disparate responses 
of seed and spore plants to N addition can be attributed to their 
differing nutrient demands, vascular systems, and photosynthetic 
capacities.

The results of the study indicate that deciduous trees exhibit a 
more pronounced growth response to N addition compared to ev-
ergreen trees. One possible reason for this is that deciduous trees 
are capable of promptly adjusting their photosynthetic capacity in 
response to fluctuations in N availability, whereas evergreen trees 
maintain a relatively stable photosynthetic capacity owing to their 
long-lived foliage (Li et al., 2020). Additionally, deciduous trees may 
have a greater requirement for N during the production and replace-
ment of leaves, while evergreen trees demand less N due to their 
prolonged leaf life (Weng et al.,  2017). Another factor that could 
account for the superior biomass response of deciduous trees to N 
addition is their greater nutrient-use efficiency (Hiremath,  2000). 
Research has demonstrated that deciduous trees possess higher N-
use efficiency relative to evergreen trees (Liu et al., 2018), enabling 
them to maintain higher growth rates with reduced N inputs.

The findings from the study indicate that broadleaved trees ex-
perience a more substantial increase in biomass following N addition 
compared to coniferous trees. This phenomenon can be attributed 
to various factors, including N utilization efficiency and leaf traits. 
Broadleaved trees typically exhibit higher N utilization efficiency 
than coniferous trees, which refers to their ability to efficiently 

acquire and use N for growth and development (Wyka et al., 2012). 
Furthermore, broadleaved trees possess a more extensive and shal-
low root system that enables them to take up N from a larger volume 
of soil (Schenk & Jackson, 2002). In addition, broadleaved trees have 
a higher leaf N concentration that enhances their photosynthetic 
capacity and growth rate (Sardans et al., 2011). Leaf traits such as 
SLA and leaf lifespan can also affect plant response to N addition. 
Broadleaved trees generally have higher SLA and shorter leaf lifes-
pan compared to coniferous trees (Adler et al.,  2014). The higher 
SLA allows for rapid leaf growth, which results in greater carbon 
fixation and biomass accumulation following N addition (Augusto & 
Boča, 2022). The shorter leaf lifespan reduces the carbon costs asso-
ciated with maintaining old leaves, enabling faster replacement with 
new, more efficient leaves. Overall, our findings highlight the poten-
tial of broadleaved trees as a target for N management strategies 
aiming at increasing carbon sequestration in terrestrial ecosystems.

4.2  |  Leaf functional traits affect plant biomass 
allocation to nitrogen addition

Plants with high SLA and PLA are capable of high photosynthetic 
capacity and are considered nitrogennuse efficient as they have 
a higher capacity to capture nutrients in response to higher N 
availability in soils (Laliberté et al.,  2012). A higher LNC is indica-
tive of more effective N absorption, retention, or both (Gornish & 
Prather, 2014). We found that the positive effect of N addition on 
biomass decreased as plant N capture or storage capacity (i.e., LNC) 
improved, suggesting that when plants have high N-use efficiency 
or reabsorption efficiency, N resources are not the main source of 
stress-limiting plant growth. By contrast, the higher the SLA and PLA 
of terrestrial plants, the higher the positive effect of N addition on 
biomass (Figure 6a; Table 1), leading to a significantly increased leaf 

F I G U R E  6  Specific leaf area (SLA; a) and leaf N content per leaf area (LNC; b) affecting plant biomass response to N addition. Circles 
represent the individual experiments under experimental N addition in the meta-analysis. RR, log response ratio. RR = 0, dashed grey line; 
predicted mean effect size (with 95% CI in grey dashed lines), medium violet red lines. [Colour figure can be viewed at wileyonlinelibrary.com]

 13652486, 2023, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16731 by U

niversity O
f M

innesota Lib, W
iley O

nline Library on [30/06/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

www.wileyonlinelibrary.com


3978  |    FENG et al.

mass fraction and a decreased root-shoot ratio. Therefore, terres-
trial plants are projected to increase SLA and PLA to be more com-
petitive for light in environments where the N supply is sufficient.

Biomass allocation has been well reported to be a plastic trait of 
plants adapted to various habitats (Yan et al., 2016). The leaf econom-
ics spectrum (Wright et al., 2004) refers to the continuous transition 
in leaf traits from thin, N-rich, short-lived leaves with high photo-
synthetic rates, known as the exploitative strategy (Grime, 1977), to 
thicker, more fibrous, N-poor, long-lived leaves with lower photo-
synthetic rates, and is known as the conservative growth strategy 
(Lavorel & Grigulis, 2012). Previous studies have shown that SLA and 
LNC are effective predictors of where a plant is situated along the 
leaf economic spectrum. High SLA and LNC imply an exploitative 
strategy for plants, while low SLA and LNC imply a conservative 
strategy (Wright et al., 2004). We found that when plants adopt con-
servative strategies (low SLA and LNC), N addition has a consistently 
positive effect on plant biomass. However, when plants adopt an ex-
ploitative strategy, the positive effect of N addition on plant biomass 
decreases as LNC increases. It then becomes negative when LNC is 
greater than 6.23 g m−2 (Figure 6b). As a result, whereas flexibility in 
biomass allocation might improve plant adaptation to N addition, the 
underlying leaf functional traits may dictate how much plant species 
modify their allocation patterns in response to N addition.

4.3  |  Uncertainties and implications for 
future studies

This global meta-analysis enhances our understanding of the effects 
of N addition-driven environmental change on biomass accumula-
tion and allocation of terrestrial plants and provides a useful refer-
ence for future policymaking and implementation of ecological and 
environmental protection. However, there are some caveats to be 
aware of when interpreting the results. First, this meta-analysis fo-
cused on the impact of N addition on plant biomass and its compo-
nents in the terrestrial ecosystem and does not include interactions 
between other global change factors (e.g., increasing temperature 
and changing precipitation). Second, a meta-analysis of the effects 
of N addition on terrestrial plant biomass and its composition was 
carried out based on the most comprehensive dataset; however, the 
uneven distribution of field-observed datasets (i.e., the lack of ob-
served data in eastern Africa, Russia, and northern Asia) may cause 
a bias in the worldwide distribution impacts of increasing N avail-
ability. Therefore, more field observations in relevant regions are ur-
gently required to enhance our understanding of the consequences 
of global N deposition on terrestrial ecosystems.

5  |  CONCLUSIONS

Our global synthesis quantified the effects of reactive N addition on 
terrestrial plant biomass and its allocation in plants, as well as identi-
fying the key drivers of terrestrial plant biomass response to reactive 

N addition on a global scale. Our findings revealed that N addition 
had a positive effect on plant biomass, but the positive effect gradu-
ally decreased as N load and fertilization duration increased. On the 
global scale, more plants tend to increase vegetative growth and 
reduce reproductive allocation under increasing N decomposition. 
Furthermore, the effects of N addition on plant biomass increased 
significantly with increasing MAT, AP, TK, SLA, and PLA. However, 
they decreased significantly with increasing TN, amount of N addi-
tion, LCN, LCC, LNC, and duration of the addition. By accelerating 
growth and reducing reproductive allocations, terrestrial plants may 
alter their reproductive trade-offs to enhance their competitiveness 
in response to enhanced competition in N-added plots. Therefore, 
when simulating global changes related to N deposition and terres-
trial carbon sequestration, Earth System Models should be improved 
to predict the response of plant biomass and its allocations to future 
N deposition in combination with plant leaf functional traits and en-
vironmental variables.
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