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Abstract
Leguminous plants are an important component of terrestrial ecosystems and sig-
nificantly increase soil nitrogen (N) cycling and availability, which affects productiv-
ity in most ecosystems. Clarifying whether the effects of legumes on N cycling vary 
with contrasting ecosystem types and climatic regions is crucial for understanding 
and predicting ecosystem processes, but these effects are currently unknown. By 
conducting a global meta-analysis, we revealed that legumes increased the soil net 
N mineralization rate (Rmin) by 67%, which was greater than the recently reported 
increase associated with N deposition (25%). This effect was similar for tropical (53%) 
and temperate regions (81%) but was significantly greater in grasslands (151%) and 
forests (74%) than in croplands (−3%) and was greater in in situ incubation (101%) 
or short-term experiments (112%) than in laboratory incubation (55%) or long-term 
experiments (37%). Legumes significantly influenced the dependence of Rmin on N 
fertilization and experimental factors. The Rmin was significantly increased by N fer-
tilization in the nonlegume soils, but not in the legume soils. In addition, the effects 
of mean annual temperature, soil nutrients and experimental duration on Rmin were 
smaller in the legume soils than in the nonlegume soils. Collectively, our results high-
lighted the significant positive effects of legumes on soil N cycling, and indicated that 
the effects of legumes should be elucidated when addressing the response of soils to 
plants.
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1  |  INTRODUC TION

Nitrogen (N) availability is the most important factor influencing 
many terrestrial ecosystems and their responses to global changes 
(Fernández-Martínez et al., 2014; Reich et al., 2006). Plants can have 
positive or negative effects on ecosystem N dynamics and avail-
ability by influencing N inputs or losses (Chen et al., 2021; Mueller 
et al., 2013). As an important component of terrestrial ecosystems 
and a source of proteins and nutrients for human and animal con-
sumption, legumes are the most diverse and widespread group 
of plants with the capacity to fix N from the atmosphere (Foyer 
et al., 2016; Vitousek et al., 2013). For example, half of the N de-
mand in agricultural systems is met by leguminous crops (Fowler 
et al., 2013), which mitigates the chemical N fertilizer inputs to soils 
and their negative environmental impacts (Drinkwater et al., 1998; 
Foyer et al.,  2016). In addition, in comparison to nonleguminous 
species, leguminous plants have higher N concentrations and de-
composition rates of litter, usually increasing soil N availability 
and facilitating a better environment for the growth of coexisting 
plants by increasing soil organic carbon (C), soil nutrients and humus 
content (Pirhofer-Walzl et al., 2012; Xu et al., 2020). In light of the 
combined the importance of legumes in affecting N cycling and of 
N cycling in regulating the feedback of ecosystems to global change 
factors, there is an urgent need to identify how legumes affect soil 
N cycling in the context of global change and agricultural demand.

As a key N cycling process that has been widely used to as-
sess soil N availability and plant growth (Chen et al.,  2021; Risch 
et al., 2019), soil N mineralization has been reported to be enhanced 
by legumes in various ecosystems by increasing substrate availabil-
ity, alleviating microbial nutrient constraints and changing soil prop-
erties (Gei & Powers, 2013; Mueller et al., 2013; Wei et al., 2019). 
Given that these processes have been shown to differ significantly 
between managed (i.e., croplands) and unmanaged ecosystems (i.e., 
grasslands and forests; Elrys et al., 2021; Li et al., 2021), the effects 
of legumes on N cycling are likely dependent on ecosystem types. 
Generally, managed ecosystems experience extensive anthropo-
genic activities (e.g., fertilization), which may inhibit the effects of 
legumes on soil N cycling because of the downregulation of N fix-
ation in N-rich environments (Liu et al., 2011; Menge et al., 2009). 
For example, Tamagno et al. (2018) found that N fertilizer reduced 
the peak of biological N fixation by up to 16% in applications at the 
full flowering stage of soybean at 23 sites across the US Midwest. 
In addition, the harvest of legume biomass in managed ecosystems 
may also reduce the effects of legumes. On the other hand, in un-
managed ecosystems, legumes play an important role in forcing N 
cycling (Batterman et al., 2013; Gei et al., 2018). Such ecosystems 
do not receive anthropogenic N fertilizers and are thus subject to 
strong N limitation (Du et al., 2020). Given that the growth and N 
fixation of legumes are stronger in the absence of management 
(Ma & Chen, 2021), their effects on N cycling should be stronger in 
unmanaged ecosystems than in managed ecosystems. In addition, 
the return of legume biomass as litter into soils in unmanaged eco-
systems would increase the effects of legumes on N cycling due to 

the high N content of legume litter (Makkonen et al., 2012; Wang 
et al., 2010). Moreover, unmanaged ecosystems are usually affected 
by natural processes (e.g., fire and grazing), which have significant 
impacts on the succession of legume communities and thus on the 
growth and N fixation of legumes (Houseman et al., 2020; Tierney 
et al., 2019). Nevertheless, such a hypothesis regarding how legumes 
impact N cycling in contrasting ecosystem types is not examined at 
the global scale.

In addition, the growth and N fixation ability of legumes are sig-
nificantly affected by climate (Liao et al., 2017; Menge et al., 2014). 
N fixation allows legumes to maintain high foliar N concentrations; 
thus, they use water more efficiently than nonlegumes (Adams 
et al., 2016), which may further regulate the effects of climate on 
the ecosystem because of the alteration in the supply and demand 
of both N and water in legumes and nonlegumes (Pellegrini, 2016). 
For example, it has been shown that climate plays a greater role 
than fire frequency and biome type in determining the distribution 
of N-fixers across tropical savanna and forest biomes (Pellegrini 
et al.,  2016). Similarly, warming has been shown to increase the 
growth of legumes in a long-term grassland experiment in Minnesota 
(Cowles et al., 2016). Moreover, warming increases N fixation at the 
middle and high latitudes but reduces N fixation in low-latitude 
tropical regions in analyses based on a theoretical framework that 
considers interactions of C and nutrients to estimate rates of ter-
restrial N fixation (Wang & Houlton, 2009). In addition, drought can 
restrict legume growth through lowered stomatal conductance and 
metabolic processes and can limit N fixation directly by decreasing 
root nodule function (Dovrat et al.,  2018; Serraj,  2003). Legumes 
preferentially support N fixation on root sections under conditions 
of ample water relative to root sections of the same plant grown 
under dry conditions (Marino et al., 2007), suggesting downregula-
tion of N fixation under drought (Dovrat et al., 2018; Wurzburger 
& Miniat, 2014), even if the growth of legumes is less affected than 
that of nonlegumes under drought conditions (Pellegrini et al., 2016). 
For instance, drought has been shown to reduce nodule biomass and 
nitrogenase activity (33% and 27%, respectively) in eight species of 
neotropical woody legumes in a greenhouse experiment (McCulloch 
et al., 2021). This current knowledge highlights the highly complex 
and interwoven effects of legumes, biomes and climate on terres-
trial N cycling. Addressing such complex effects is a crucial step to-
ward better understanding terrestrial biogeochemical cycling and is 
essential for ecosystem N management. However, it is difficult to 
quantitatively understand such complex effects based on studies 
conducted within a single ecosystem or at a small scale and requires 
analysis based on a global dataset across different climatic regions 
and ecosystem types.

Herein, to address how the effects of legumes vary with eco-
system types, climatic regions and experimental management, we 
conducted a global examination on the effects of legumes on the soil 
net N mineralization rate (Rmin) based on a meta-analysis with 406 
observations from 97 publications. We aimed to answer the follow-
ing questions: (1) How do the effects of legumes on Rmin vary with 
ecosystem types, climatic regions and experimental management as 
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these factors significantly affect the growth and N fixation of le-
gumes (Liao et al.,  2017; Menge et al.,  2014)? (2) How do the re-
lationships between N cycling and their driving factors (climate, 
experimental management, soil properties) vary between legume 
and nonlegume systems because both ecosystems have contrast-
ing N limitations? The duration of the experiment can significantly 
influence the growth and N fixation of legumes in the community 
(Eisenhauer et al., 2011; Mueller et al., 2013) and thus influence the 
effects of legumes on N cycling. In addition, researchers may use 
various approaches to determine N cycling (Robertson et al., 1999). 
We therefore included the duration of the experiment and the 
method for measuring N mineralization as aspects of experimen-
tal management to examine their influence on legume effects. Our 
global dataset includes paired legume treatments (i.e., legumes vs. 
nonlegumes), ecosystem types (croplands, forests and grasslands), 
climatic regions (tropical and temperate regions), durations of ex-
periments (short- vs. long-term experiments) and methods of Rmin 
measurement (in situ vs. laboratory incubation methods). Some 
important soil properties, including soil pH, soil organic C, total N, 
nitrate N, ammonium N, available phosphorus, soil moisture, micro-
bial biomass C and microbial biomass N, were also collected. This 
allowed us to conduct various comparisons and analyses to answer 
the above scientific questions. Overall, our meta-analysis sought to 
capture the effects of legumes on N cycling across various climatic 
regions and ecosystem types to advance our current understanding 
of soil N cycling based on plant functional groups.

2  |  MATERIAL S AND METHODS

2.1  |  The global dataset

Our global dataset was collected by searching published peer-
reviewed articles using the Web of Science (http://apps.webof​
knowl​edge.com) and the China National Knowledge Infrastructure 
Database (http://www.cnki.net/). We screened articles using the 
keywords “legume” or “N-fixing species” or “land use” AND “soil N 
mineralization” or “soil N cycling” or “soil N transformation” or “soil 

N availability.” The following criteria were applied in selecting the 
studies. (1) Legume and nonlegume (control) plots were compared 
within the same independent experiment, and the experiments were 
conducted under the same climate, soil and management conditions 
to avoid confounding noise. (2) Target variables were estimated by 
utilizing topsoil samples (mostly within a depth of 10 cm). (3) The de-
tails of the experimental conditions (i.e., temperature, moisture, and 
incubation period) for measuring the net N mineralization rate (Rmin), 
nitrification rate (Rnit), and ammonification rate (Ramm) were explicitly 
described in the original articles. (4) The means, standard deviation 
(SD), and sample size (n) of the target variables were reported in the 
text or could be calculated from the reported data, and the stand-
ard error (SE) was converted to SD using the following equation: 
SD = SE×

√

n. (5) If multiple independent experiments conducted 
under different environmental conditions or ecosystem types were 
reported in the same article, each experiment was considered an in-
dependent data record. (6) For studies with multiple factors being 
manipulated (e.g., plant species richness and elevated CO2), we only 
extracted data from legume and nonlegume treatments of control 
treatments. (7) For forest ecosystems, the data from the organic 
soil layer were excluded because of the significant variations in soil 
properties between organic soils and mineral soils, which would pre-
vent comparisons among ecosystem types. The review and search 
of the dataset was conducted by following the preferred reporting 
items for meta-analysis (PRISMA) guidelines (Moher et al.,  2009; 
Figure S1). Finally, 406 records from 97 articles were selected for 
the meta-analysis (Figure 1 and Notes S1).

When the functional groups of the plants (i.e., legume vs. nonle-
gume) were clearly provided in the article, we directly extracted the 
data that met the criteria. Otherwise, we queried the characteristics 
of the plants from the Royal Horticultural Society website (https://
www.rhs.org.uk/). In addition, when studies included multiple spe-
cies of either legumes or nonlegumes, we extracted multiple data 
points and averaged the data for legumes or nonlegumes, generat-
ing one effect size. For studies that included multiple plant func-
tional groups (i.e., C3 grasses, C4 grasses, forbs, legumes), we used 
legumes as a treatment and the other functional groups as controls 
to generate multiple effect sizes.

F I G U R E  1  Global distribution of 
study sites included in this meta-analysis. 
Graded colors illustrate the number 
of experimental sites per country. All 
sites are grouped to three ecosystem 
types (croplands, forests and grasslands) 
and two climatic regions (tropical and 
temperate regions). Map lines delineate 
study areas and do not necessarily depict 
accepted national boundaries.
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In our dataset, manipulations of legume and nonlegume plots 
varied with ecosystem types. In croplands, legume and nonlegume 
crops were usually planted each year and harvested during the har-
vest season. In grasslands and forests, legume plants were planted 
(98.2% of observations in our dataset) or naturally existed (1.8%) in 
the legume plots, while legume plants were naturally absent (8.9%) or 
nonlegume plants were planted (91.1%) in the nonlegume plots. The 
plots from which legumes were manually removed to create control 
treatments were not included in our dataset for the three ecosystem 
types. Therefore, in our dataset, both the legume and nonlegume 
plots that were included had similar initial conditions, which allowed 
us to examine the effects of legumes by comparing legume and non-
legume plots. In our dataset, only a few articles (11.8%) provided in-
formation on legume density (number of legumes in the community), 
so we did not include it as a factor in our statistical models.

For each independent experiment, Rmin, Ramm and Rnit were ex-
tracted from the legume and nonlegume (control) treatments. For 
studies that reported mineralization rates at various incubation 
times (n = 36), we extracted the results for approximately 1 month of 
incubation because most samples were incubated for this amount of 
time. For the studies that only reported one-time incubation results 
(n = 333), we directly extracted those results. Some important soil 
properties, including soil pH, soil organic carbon (SOC), total N (TN), 
nitrate N (NO3

−), ammonium N (NH4
+), available phosphorus (AP), 

soil moisture (SM), microbial biomass carbon (MBC) and microbial 
biomass N (MBN), were also collected. In addition to soil properties, 
site information, which included latitude (with a range from 43.63°S 
to 66.52°N), longitude (155.25°W to 172.50°E), mean annual tem-
perature (MAT, −6.2 to 27.9°C), and mean annual precipitation (MAP, 
72 to 4600 mm), was obtained to the extent possible from the orig-
inal articles, from relevant studies or from the climatic database 
(https://power.larc.nasa.gov/data-acces​s-viewe​r/). For studies that 
lacked climate data, we derived MAT and MAP from the WorldClim 
Database based on latitude and longitude (Fick & Hijmans,  2017). 
For the experiments that included N fertilizer (or N deposition), the 
rate of N fertilizer was included in the dataset.

The net N mineralization collected in our global dataset was 
measured using either laboratory (n = 160) or in situ measurements 
(n = 209). The laboratory measurements were taken from soils in-
cubated under standard moisture and temperature conditions. The 
soils used in the laboratory measurements were collected from 
field experimental plots (mostly within a depth of 10 cm). The in situ 
measurements were collected using an undisturbed capped buried 
core method (mostly within a depth of 10 cm in our dataset; Risch 
et al., 2020; Robertson et al., 1999). The concentrations of NO3

− and 
NH4

+ in the soils at the beginning and end of either laboratory or 
in situ incubation were analyzed to calculate the metrics for net N 
mineralization. For soil N cycling metrics, we examined whether the 
effects of legumes varied with measuring conditions (i.e., incubation 
temperature, moisture and time) using a linear mixed-effect model 
with measuring conditions as fixed factors and the “study” as a ran-
dom factor. Our results showed that the effects of legumes on N cy-
cling metrics were not affected by measuring conditions (Table S1); 

thus, these factors could be neglected in our comparison between 
legumes and nonlegumes.

To examine whether the effects of legumes varied with ecosys-
tem types, climatic regions, and experimental factors, we grouped 
the dataset according to ecosystem types, climatic regions, exper-
imental durations and methods of N mineralization measurements. 
The ecosystem types were grouped into croplands, forests and 
grasslands. The climatic regions were grouped into tropical re-
gions (i.e., tropical and subtropical regions) and temperate regions 
(i.e., temperate and boreal regions) according to the 2010 Global 
Ecological Zones mapping (https://data.apps.fao.org/). The experi-
mental duration was categorized into short- (<5 years) and long-term 
experiments (≥5 years) because of imbalanced sampling numbers for 
each duration of experiment (Figure S2). Five years was used as the 
time threshold to group short- and long-term experiments because 
this was based on a large survey of long-term research in the fields 
of ecology and evolution (Kuebbing et al., 2018). The measurement 
method for net N mineralization was divided into laboratory incu-
bation and in situ measurements. Our primary examinations on the 
interactive influences among factors showed nonsignificant interac-
tions on legume effects (p > .05), suggesting that the effects of such 
influencing factors were independent of each other. We therefore 
did not consider such interactive effects when examining legume 
effects within any subgroup.

2.2  |  Meta-analysis

Since some N cycling metrics have negative values, this precluded 
the use of the response ratio (calculated as the natural log of the ex-
perimental mean over the control mean) as a metric for comparison 
between studies (Hedges et al., 1999). Here we utilized the stand-
ardized mean difference metric “Hedge's d” for analysis, which is less 
biased by small sample size (Hedges & Olkin, 1985). The effect size 
(d) and pooled standard deviation (S) were calculated as follows:

where Xt and Xc are the values of a given variable in the treatment 
(legume) and control (nonlegume) groups, respectively. nt and nc the 
sample sizes and St and Sc the standard deviations of the treatment 
and control groups, respectively.

The interpretation of the standardized mean effect size differs 
from the response ratio, as the standardized mean effect size cannot 
be expressed as a percent change in response to an experimental 
treatment compared with a control. Rather, it represents how far 
removed the standardized mean of the experimental treatment is 
from the standardized mean of the control measured in standard 
deviation.

(1)d =
Xt − Xc

S
×

(

1 −
3

4 ×

(

nt + nc − 2
)

− 1

)

(2)S =

√

(

nt − 1
)

× St2 +
(

nc − 1
)

× Sc2

nt + nc − 2
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The effect size was weighted using the inverse of the pooled 
variance (v) as follows:

A weakness of meta-analyses is that experimental treatments 
(i.e., legumes) are compared with several controls (i.e., C3 grasses, C4 
grasses and forbs) within a study. This artificially increases the num-
ber of replicate pairs and violates the assumption of independence. 
Therefore, to prevent overestimation of the precision of the mean 
effect size, the resulting pairs were combined into one composite 
effect size using the variance (v′) as follows (Aguilera et al., 2013; 
Hungate et al., 2009):

where m represents the number of correlated pairs, di and Vi the 
effect size and variance of pairs, respectively, and r the correlation 
coefficient, which is equal to 0.5 because all pairs shared a common 
treatment.

The weighted effect size (d+) and its corresponding 95% con-
fidence intervals (CIs) were calculated using Metawin 2.1 software 
with a categorical random effect model. This method provides an 
inference about the average effect in the entire population from 
which the included studies are assumed to be a random selection 
(Viechtbauer, 2010), and thus does not include either random effect 
or fixed factor (Hedges & Vevea, 1998). The CIs were generated by 
bootstrapping (9999 iterations; Hedges & Olkin,  1985; Rosenberg 
et al., 2000). The effect of a response variable can be considered 
significant at p < .05 if the 95% CIs do not intersect at zero. To test 
whether the effects of legumes on soil N cycling metrics differed by 
subgroup, a between-group heterogeneity (QB) test was performed. 
A significant QB indicates that the metrics are significantly different 
among subgroups (Rosenberg et al., 2000).

There is no rigorously applied framework for the interpreta-
tion of standardized means in terms of “effect sizes” because, un-
like response ratios, they are probabilistic. That is, they describe 
the probability that a sample drawn from the control treatments 
would fall between the experimental mean and the control mean, 
assuming a normal distribution. By convention, for variables that 
do not overlap with Hedge's d of zero, a d value higher than 0.8 
indicates a large effect, a d value of 0.2–0.8 shows a moderate 
effect and a d value of 0.0–0.2 displays a small effect (Hedges 
et al., 1999; Jeffery et al., 2016). A key point is that, using Hedge's 
d metric, an effect size of a variable analysis does not equate to the 
effect size of others in the independent analyses presented in this 
study. Only categories within individual analyses can be compared 
on a relative basis.

Publication bias may influence our meta-analysis results. 
We assessed the publication bias for each response metric by 
Spearman's rank correlating effect sizes and their variations 

(Rosenberg et al., 2000). We found that there was no publication 
bias for the metrics except for Rmin and NO3

− (Spearman p = .04 for 
Rmin and p = .01 for NO3

−; Table S2). We examined whether publi-
cation bias influenced our meta-analysis results by estimating the 
fail-safe number (Nfs) of Rmin and NO3

− (Orwin, 1983). The result 
from meta-analysis is assumed to be stable (or not influenced 
by publication bias) when the ratio of Nfs to (5n + 10) is greater 
than 1, where n is the sampling size (Jeffery et al.,  2016; Zhao 
et al., 2022). In our analysis, the ratios were 4.73 and 2.57 for Rmin 
and NO3

−, respectively. Therefore, we did not consider publication 
bias in our analysis.

2.3  |  Structural equation modeling

We constructed the conceptual framework of structural equa-
tion models (SEMs) on the basis of the bivariate relationships be-
tween Rmin change and N fertilization and environmental factors 
(Figure S3). The SEMs require a relatively small sampling size (10 
times the number of paths; Grace, 2006) and have been used in 
many studies with sampling sizes of 25–69 (Feng et al., 2022; Lu 
et al., 2022; Vieira et al., 2020). Hence, this approach can provide 
robust results with a relatively small sample group size and was 
appropriate for our study. All variables included in the SEMs were 
continuous. The climatic factors used in the above analysis were 
MAT and MAP for the experimental sites. The first axis of the prin-
cipal component analysis (PCA) represents changes in soil nutrients 
based on SOC, TN, NO3

−, and NH4
+. PCA was conducted using the 

“FactoMineR” and “factoextra” packages in R software (version 
4.2.1). In SEMs, the fixed variables were the environmental factors 
and the random variable was the “study.” Shipley's d-separation 
test was used to examine whether any paths were missing from 
the model, and p > .05 indicated that no paths were missing and 
that the model was a good fit (Shipley, 2009, 2013). We reported 
the standardized coefficient for each path from each component 
model, and Fisher's C statistic and AIC values of the overall model 
by using the piecewiseSEM package (https://github.com/jslef​che/
piece​wiseSEM) in R software (version 4.2.1). Moreover, to exam-
ine the relative importance of factors influencing Rmin in systems 
with and without legumes, we independently ran two SEMs by 
using the same procedure as above. All figures showing d+ values 
were plotted in OriginPro 2018 (OriginLab Corp.).

3  |  RESULTS

3.1  |  Overall effects of legumes on soil net nitrogen 
mineralization and soil properties

As expected, our meta-analysis showed that legumes increased the 
soil N cycling rate across the global dataset. On average, the Rmin, 
Rnit and Ramm in soils with legumes were higher than those in soils 
without legumes (d+ = 0.97, 0.95 and 0.07, respectively; Figure  2). 

(3)v =
nc + nt

nc × nt
+

d2

2 ×

(

nc + nt
)

(4)

v�
�

1

m
×

�m

i=1
di

�

=

�

1

m

�2

×

�
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�

i≠j

�

rij ×
√
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Moreover, in comparison to soils without legumes, soils with leg-
umes had significantly higher SOC (d+ = 0.46), TN (d+ = 0.85), NO3

− 
(d+ = 1.10) and NH4

+ (d+ = 0.16) values but similar values of other soil 
properties (Figure 3).

3.2  |  Variations in legume effects with 
climatic regions, ecosystem types and 
experimental management

The effects of legumes on Rmin and Rnit varied with ecosystem types, 
with significantly higher effect sizes in grasslands (d+ = 1.39 and 
1.17) and forests (d+ = 0.89 and 0.99) than in croplands (d+ = 0.38 
and − 0.13; p < .001 and p = .020; Figure 2a,b). However, the effect of 
legumes on Ramm was not influenced by ecosystem types, with effect 
sizes of 1.23, 0.21 and − 0.36 for croplands, grasslands and forests, 
respectively (p = .113; Figure 2c).

The effects of legumes on most soil N cycling metrics were 
independent of climatic regions (Figure 2). Among the climatic re-
gions examined, the effects on Rmin and Ramm were not affected 
by climatic regions (p = .752 and .905; Figure 2a,c). However, the 
effect of legumes on Rnit was significantly higher in tropical re-
gions (d+ = 1.21) than in temperate regions (d+ = 0.59; p = .032; 
Figure 2b).

The effect of legumes on Rmin was greater in short-term experi-
ments (d+ = 1.29) than in long-term experiments (d+ = 0.77; p = .018; 
Figure 2a). Moreover, the legume effect on Rmin measured by in situ 
incubation (d+ = 1.45) was significantly higher than that measured by 
laboratory incubation (d+ = 0.43; p < .001; Figure 2a). However, the 
effects of legumes on Rnit and Ramm were not affected by experiment 

duration and measurement method (Figure 2b,c). Hence, the effects 
of legumes on soil N cycling were climate-, ecosystem- and experi-
mental management dependent.

3.3  |  Key factors influencing the effects of legumes 
on soil net nitrogen mineralization

Structural equation modeling showed that N fertilization and 
changes in soil nutrients had important regulatory effects on 
the response of Rmin to legumes (Figure  4). The environmental 
factors examined in our SEM explained 33.0% of the total vari-
ation in legume effects. N fertilization significantly decreased 
the response of Rmin to legumes. Changes in soil nutrients in-
duced by legumes significantly altered MBC change, which had 
a negative effect on the response of Rmin to legumes. However, 
climatic conditions (MAT and MAP) had no impact on the effect 
of legumes on Rmin.

3.4  |  Legumes shifted the dependence of soil net 
nitrogen mineralization on influencing factors

We independently examined the relative importance of factors in-
fluencing Rmin in systems with and without legumes (Figure 5). The 
Rmin was affected by N fertilization in soils from both the legume and 
nonlegume treatments, but the effect in the nonlegume treatments 
was greater than that in the legume treatments. In addition, climatic 
conditions (MAT and MAP) not only directly influenced Rmin, but also 
indirectly affected Rmin by altering MBC, and the effect of MAT was 

F I G U R E  2  Effects of legumes on the rates of soil net N mineralization (Rmin, a), net nitrification (Rnit, b) and net ammonification (Ramm, c). 
All plots represent the weighted effect size of different variables with 95% confidence intervals (CIs). The observation of each variable is 
displayed beside each bar in parentheses. If the 95% CIs do not overlap with zero the effect is significant at p < .05 (filled circles), otherwise 
the effect is not significant (p > .05; open circles). QB represents the heterogeneity in effect among groups, and the significant value of QB 
indicates significant differences among groups (p < .05). The vertical dash line indicates effect size of 0.
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greater in nonlegume soils than in legume soils. Therefore, legumes 
significantly altered the dependence of Rmin on N fertilization and 
environmental factors.

4  |  DISCUSSION

In this study, we provide the first global assessment demonstrating 
that legumes significantly enhanced soil N cycling, and this effect 
was similar for tropical and temperate regions but was significantly 
greater in grasslands and forests than in croplands and greater in 
in situ incubation or short-term experiments than in laboratory in-
cubation or long-term experiments. Moreover, N fertilization and 
changes in soil nutrients were the dominant factors that influenced 
the effects of legumes on Rmin. The results from our study advance 
the current understanding of the effects of legumes on N cycling 
from the site scale to the global scale across ecosystem types and 
climatic regions.

4.1  |  Legumes increase the rate of nitrogen 
cycling worldwide

Our global analysis showed that legumes accelerated soil N cy-
cling processes (Figure 2). We ascribed this result to the following 
three factors. First, organic materials (leaf litter, fine roots, and/or 
root nodules, C rhizodeposition) derived from legumes have high N 
content and provide many substrates for decomposers, which ac-
celerates N mineralization because soil N cycling is dominated by 
microbes (Makkonen et al., 2012; Wang et al., 2010). Second, leg-
umes decrease the soil C/N ratio due to the greater increase in N 
relative to C and increase soil moisture (Figure 3). Both low C/N ra-
tios and high soil moisture stimulate microbial growth (Wendlandt 
et al.,  2022), thus resulting in higher Rmin in legume soils than in 
nonlegume soils. Third, the greater biomass of legumes leads to 
higher C input to soils than with nonlegumes (Yang et al.,  2019), 
which accelerates N mineralization due to the priming effect (Gei 

F I G U R E  3  Effects of legumes on soil properties. The plot 
represents the weighted effect size of different variables with 
95% confidence intervals (CIs). The observation of each variable 
is displayed beside each bar in parentheses. If the 95% CIs do not 
overlap with zero, then the effect is considered significant (p < .05; 
filled circles), otherwise the effect is not significant (p > .05; open 
circles). The vertical dash line indicates effect size of 0. SOC, soil 
organic carbon; TN, total nitrogen; NO3

−, nitrate nitrogen; NH4
+, 

ammonium nitrogen; AP, available phosphorus; SM, soil moisture; 
MBC, microbial biomass carbon; MBN, microbial biomass nitrogen.

F I G U R E  4  Piecewise structural equation model (SEM) assessing 
the direct and indirect effects of climatic factors (MAT and MAP), 
N fertilization, experimental duration, changes in soil nutrients 
(the first axis of the principal component analysis based on SOC, 
TN, NO3

− and NH4
+) and microbial biomass (MBC) on the response 

of net N mineralization to legumes. Numbers adjacent to arrows 
show standardized path coefficients. Blue and gray lines indicate 
positive and negative relationships, respectively, with the thickness 
representing the extent of influence. The R2 values indicate the 
proportion of variance explained for each endogenous variable. 
ES, effect size; MAT, mean annual temperature; MAP, mean 
annual precipitation; MBC, microbial biomass carbon; Duration, 
experimental duration. Asterisks denote significant differences 
based on the Wilcoxon test. *p < .05 and **p < .01.
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& Powers,  2013; Wei et al.,  2019). This explanation is supported 
by the “microbial activation” hypothesis, which proposes that large 
amounts of C, N and other nutrients can be released in soils in a 
short span of time because of microbial activities caused by fresh C 
inputs (Kuzyakov et al., 2000).

It should be noted that the density of legumes in the community 
may have an important influence on the effects of legumes on N 
cycling (Rodriguez et al., 2020; Wei et al., 2019). However, because 
most of the articles only reported that their soil samples were col-
lected or that N cycling was measured in legume plots but did not 
report the legume density in the legume plots, it is impossible for 
us to disentangle the influence of legume density from the effect of 
legume presence in our dataset. This may have led to uncertainties in 
our results. We hence recommend that the effect of legume density 
should be carefully quantified by manipulation experiments across 
multiple sites or by model prediction at the global scale.

4.2  |  Variations in the effects of legumes with 
ecosystem types but not climatic regions

We found that the responses of Rmin and Rnit to legumes varied 
with ecosystem types (Figure 2). The greater effects of legumes 
on soil N cycling in forests and grasslands were ascribed to the 

fact that the overall background N level (available N in soils from 
nonlegume plots) in forests and grasslands was significantly lower 
than that in croplands (Figure S4). Croplands receive not only at-
mospheric N deposition, but also chemical N fertilizers, while for-
ests and grasslands receive only N deposition, and most of this 
deposited N is intercepted by the plant canopy, and only a small 
fraction enters the soil (Gaige et al., 2007; Guerrieri et al., 2015). 
Meanwhile, the effects of legumes on N fixation and soil N cycling 
were greater in soils with low N than in soils with high N (Mueller 
et al., 2013; Wei et al., 2019). In addition, this low background soil 
N level leads to a greater relative effect of legumes on soil NH4

+ in 
forests and grasslands than in croplands (Figure S5a), which thus 
leads to higher Rmin and Rnit given the significant contribution of 
Rnit to Rmin (Raghurama & Sankaran, 2022; Yao et al., 2019). The 
significantly smaller effects of legumes in croplands were primar-
ily because of the harvest of aboveground biomass and due to 
severe anthropogenic perturbations, such as tillage and fertiliza-
tion. The removal of aboveground biomass significantly decreases 
C input to soils, which accelerates microbial C limitation and thus 
restricts N mineralization (O'Connell et al., 2015). In addition, am-
monia oxidizers (i.e., oxidizing ammonium to nitrite) and the amoA 
gene that encodes ammonia monooxygenase (i.e., oxidizing am-
monia to hydroxylamine) play critical roles in nitrification (Seeley 
et al., 2020), while legumes decrease the abundances of ammonia 

F I G U R E  5  Piecewise structural equation model (SEM) assessing the direct and indirect effects of climatic factors (MAT and MAP), N 
fertilization, experimental duration, soil nutrients (the first axis of the principal component analysis based on SOC, TN, NO3

− and NH4
+) 

and microbial biomass (MBC) on soil net N mineralization in legume (a) and nonlegume (b) treatments. Numbers adjacent to arrows show 
standardized path coefficients. Blue and gray lines indicate positive and negative relationships, respectively, with the thickness representing 
the extent of influence. The R2 values indicate the proportion of variance explained for each endogenous variable. MAT, mean annual 
temperature; MAP, mean annual precipitation; MBC, microbial biomass carbon; Duration, experimental duration. Asterisks denote significant 
differences based on the Wilcoxon test. *p < .05, **p < .01, and ***p < .001.
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oxidizers and the amoA gene in agricultural systems (Paungfoo-
Lonhienne et al., 2017; Yu et al., 2019) but not in forests (Rachid 
et al., 2013) and grasslands (Le Roux et al., 2013), which could also 
lead to a minimal effect on nitrification. Therefore, the positive ef-
fects of legumes on soil N cycling were greater in ecosystems with 
greater limitation by and competition for N.

We found that the effects of legumes on most soil N cycling met-
rics were not influenced by climatic regions (Figure 2), probably be-
cause of the contrasting impacts of MAP and MAT on legume effects 
(Figure 4). Generally, symbiotic N fixation by legumes is highly sensi-
tive to water availability (Dovrat & Sheffer, 2019). A number of trop-
ical and temperate legumes exhibit a reduction in N fixation when 
subjected to soil moisture deficiencies (Elli et al.,  2022; Markham 
& Anderson, 2021; Rousk et al., 2017), mainly because nitrogenase 
activities rely on the quantity of carbohydrates supplied to nodules, 
and the supply decreases under water-limited conditions (Arfin-
Khan et al., 2014). In addition, the limitations in legume growth in-
duced by drought result in lower nodule biomass and N fixation rates 
(McCulloch et al., 2021). However, high temperature can inhibit the 
function of legume root nodules (Wang & Houlton, 2009), thus de-
creasing the N fixation capabilities of legumes and the effects on 
soil N cycling. Therefore, the positive effect of high MAP on legume 
effects offsets the negative influence of high MAT, leading to the 
result that legume effects on soil N cycling were not affected by 
climatic regions.

4.3  |  Variations in the effects of legumes with 
experimental factors

We demonstrated that the increase in Rmin caused by legumes was 
significantly greater in short-term experiments than in long-term ex-
periments (Figure 2a), indicating that the effects of legumes on soil 
N cycling may decline over time. Such a variation between the dura-
tion of experiments was probably due to the effects of increased 
P limitation on legume growth during the later stage of the experi-
ments. Legumes require large amounts of P to supply energy for N 
fixation (Mitran et al.,  2018), and with increasing legume growth 
duration, soil P becomes depleted. For example, Zhang et al. (2021) 
found that soil P linearly decreased with increasing plantation age 
on the Loess Plateau. In our meta-analysis, legumes resulted in de-
creased available P in the short-term (d+ = −0.10; n = 15) and long-
term experiments (d+ = −0.60; n = 25; Figure  S5b), supporting this 
explanation. Some other N fixation-related nutrients (e.g., molybde-
num, iron and manganese) might also decrease over the course of 
legume growth. Although this hypothesis was not confirmed herein 
because none of these elements was measured in any independ-
ent experiment collected in our global dataset, an early study in a 
woodland in central coastal Florida showed that a reduced availabil-
ity of molybdenum explained the elevated CO2-induced long-term 
decline in N fixation (Hungate et al.,  2004), indirectly supporting 
this hypothesis. Therefore, the time dependence of legume effects 
on N cycling might be influenced by the progressive limitation of N 

fixation-related nutrients in soils. However, our dataset did not con-
tain the information necessary to verify this mechanism, highlighting 
the necessity of exploring interactions among such factors in future 
research.

The significantly greater effects of legumes on Rmin occurred 
during in situ incubation relative to laboratory incubation under 
standard temperature and moisture conditions (Figure 2). This might 
be because soil disturbance during soil transport to the laboratory 
(often with homogenization of the soil samples) and sample prepa-
ration methods (mixing, sieving, root removal) during laboratory in-
cubation studies sufficiently change Rmin (Risch et al., 2019, 2020), 
which decreases the relative importance of legume effects. In ad-
dition, the greater effects in in situ conditions might be ascribed 
to the diurnal variation in temperature and moisture under field 
conditions, which has been reported to accelerate soil N mineral-
ization (Eviner et al., 2006; Wang et al., 2016). For example, Wang 
et al.  (2016) showed that high temporal variations in temperature 
and moisture enhance soil N mineralization in montane grasslands 
of Central Europe.

4.4  |  Legumes altered the dependence of soil net 
nitrogen mineralization on influencing factors

Our results demonstrated that legumes significantly altered the 
dependence of soil N cycling on N fertilization and environmental 
factors (Figure 5). N fertilization increased Rmin in both legume and 
nonlegume soils, probably due to the increased soil N pools and re-
duced soil C/N ratios (Gruber & Galloway, 2008; Mueller et al., 2013). 
This result is consistent with previous results reported from global 
analyses (Hao et al., 2018; Risch et al., 2019, 2020) and experimental 
studies (Lu et al., 2011; Wei et al., 2019). However, in this study, we 
showed that the effect of N fertilization on Rmin was lower in leg-
ume soils than in nonlegume soils (Figure 5), primarily because leg-
umes can satisfy much of their own N needs by biological N fixation 
(Pirhofer-Walzl et al., 2012; Vitousek et al., 2013). Therefore, plants 
and microbes have a lower need for fertilizer N in legume treatments 
than in nonlegume treatments (Mueller et al., 2013; Wei et al., 2019), 
leading to the smaller effect of N fertilization on Rmin in legume soils.

Our global analysis further showed that MAT was an important 
driver of Rmin in treatments with and without legumes (Figure  5), 
mainly because higher temperatures may increase microbial metab-
olism and enzymatic activity, resulting in greater organic matter de-
composition and N mineralization (Bai et al., 2013; Dai et al., 2020). 
For example, a previous global assessment showed that experimen-
tal warming resulted in a 52.2% increase in Rmin (Bai et al., 2013). 
Increasing temperatures also indirectly affect N cycling processes 
by increasing net ecosystem production (Dai et al., 2020), which, in 
turn, increases inputs of root exudates and litter to soils (Dusenge 
et al., 2018). In our analysis, the effect of MAT on MBC was greater in 
nonlegume treatments than in legume treatments (Figure 5), mainly 
due to the higher C/N ratios of the litter in nonlegumes. Generally, 
high temperatures can promote plant growth and N cycling (Dai 
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et al., 2020; Dusenge et al., 2018), but whether N is incorporated 
into microbial biomass or released as ammonium to the soil environ-
ment depends strongly on the C/N ratios of plant litter/exudate in-
puts (Mooshammer et al., 2014). The higher C/N ratios of the litter in 
nonlegumes would require microbes to acquire inorganic N from the 
soil (i.e., microbial immobilization) to meet their N assimilation needs 
when processing plant C inputs (Cleveland & Liptzin, 2007), thus re-
sulting in a greater effect of MAT on MBC in nonlegume treatments 
than in legume treatments.

4.5  |  Implications for nitrogen 
cycling and management

Our examination advances the current knowledge of the effects of 
legumes on terrestrial biogeochemical cycles by providing robust 
evidence that legumes have strong global impacts on soil N cycling. 
Across our dataset, soils with legumes had 67% higher Rmin than 
those without legumes, and this value was significantly higher than 
the effect of N deposition. For instance, we observed 151% and 74% 
higher Rmin in global grasslands and forests that contained legumes 
than in those without legumes, respectively, whereas N deposition 
(10 g N m−2 year−1) resulted in 34% (with grazers) and 66% (without 
grazers) increases in Rmin in global grasslands (Risch et al., 2020) and 
had no impact on the mineral soils of northern temperate forests 
(Nave et al., 2009).

Since soil mineral N is the dominant form of N taken up by ter-
restrial plants and its concentration in soils is primarily regulated by 
N mineralization processes (Chen et al.,  2021; Risch et al.,  2020), 
the legume effect on Rmin shown in this study, which varied with 
ecosystem types, could provide important implications for man-
aged ecosystems (i.e., agricultural ecosystems) and for N limitation 
predictions in unmanaged ecosystems under the context of global 
change. For managed ecosystems with leguminous crops (i.e., solely 
leguminous crops, intercropped or rotated leguminous crops), the 
rate of chemical N fertilizers could be adequately reduced not only 
for upregulating the N fixation of legumes and satisfying the N need 
for plant growth (Liu et al., 2011; Menge et al., 2009), but also for 
preventing the loss of fertilizer N and related environmental prob-
lems (Drinkwater et al., 1998; Foyer et al., 2016), which is important 
because the global legume planting area has continually increased 
over the past half century (Figure S6). For unmanaged ecosystems, 
legumes are significantly affected by global change drivers, with 
increased abundance under warming (Cowles et al.,  2016; Liao 
et al.,  2017) and drought (Gei et al.,  2018; Pellegrini et al.,  2016) 
but decreased abundance under N enrichment conditions (Isbell 
et al., 2013; Tognetti et al., 2021). For this reason, legumes are in-
creasingly and complexly intertwined with global change drivers in 
influencing N cycling (and N limitation) and even with the succession 
of unmanaged ecosystems, all of which call for an urgent under-
standing of such knowledge for better elucidation and prediction of 
ecosystem processes for a changing planet.

Natural processes (e.g., fire and grazing) impact N cycling in land 
ecosystems, and these processes are independent of legume effects 
but are dependent on ecosystem types and/or climatic regions. 
Frequent fire and disturbances (e.g., grazing) significantly change 
the cycling and availability of N (Dannenmann et al.,  2018; Jiang 
et al., 2022) and can also remove large quantities of N from unman-
aged ecosystems, which stimulates rapid regeneration of N-fixing 
species and individuals to replenish N deficits (Batterman et al., 2013; 
Vitousek et al., 2013). For example, Batterman et al.  (2013) found 
that N-fixers dynamically act to replenish N deficits caused by dis-
turbance events in tropical forests and soils. In addition, the initial 
stage of community succession (i.e., after fire and grazing) may not 
favor the growth of nonlegumes due to a limitation in N (Pellegrini 
et al., 2015), which may amplify the effects of legumes. Therefore, 
how these natural processes influence the effects of legumes should 
be further explicitly tested at the global scale.
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