

# Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types

Xiaomei Gou<sup>1,2,3</sup>  | Peter B. Reich<sup>4,5</sup>  | Liping Qiu<sup>1,2</sup> | Mingan Shao<sup>1,2,6</sup> |  
Gehong Wei<sup>1</sup> | Jingjing Wang<sup>1</sup> | Xiaorong Wei<sup>1,2,6</sup> 

<sup>1</sup>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China

<sup>2</sup>Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, China

<sup>3</sup>University of Chinese Academy of Sciences, Beijing, China

<sup>4</sup>Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA

<sup>5</sup>Institute for Global Change Biology, University of Michigan, Ann Arbor, Michigan, USA

<sup>6</sup>CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi, China

## Correspondence

Xiaorong Wei, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xinong Road, Yangling, Shaanxi 712100, China.

Email: [weixr@nwsuaf.edu.cn](mailto:weixr@nwsuaf.edu.cn);  
[xrwei78@163.com](mailto:xrwei78@163.com)

## Funding information

National Key Research and Development Program, Grant/Award Number: 2022YFF1302804; National Natural Science Foundation of China, Grant/Award Number: 41977068, 41977105 and 42277349; Programs from Chinese Academy of Sciences, Grant/Award Number: QYZDB-SSW-DQC039; Strategic Priority Research Program of the Chinese Academy of Sciences, Grant/Award Number: XDA23070202 and XDB40020000; the US National Science Foundation (NSF) Biological Integration Institutes grant, Grant/Award Number: NSF-DBI-2021898; the US National Science Foundation (NSF) Long-Term Ecological Research (LTER) grant, Grant/Award Number: DEB-1831944 and LTREB DEB-1753859

## Abstract

Leguminous plants are an important component of terrestrial ecosystems and significantly increase soil nitrogen (N) cycling and availability, which affects productivity in most ecosystems. Clarifying whether the effects of legumes on N cycling vary with contrasting ecosystem types and climatic regions is crucial for understanding and predicting ecosystem processes, but these effects are currently unknown. By conducting a global meta-analysis, we revealed that legumes increased the soil net N mineralization rate ( $R_{min}$ ) by 67%, which was greater than the recently reported increase associated with N deposition (25%). This effect was similar for tropical (53%) and temperate regions (81%) but was significantly greater in grasslands (151%) and forests (74%) than in croplands (-3%) and was greater in *in situ* incubation (101%) or short-term experiments (112%) than in laboratory incubation (55%) or long-term experiments (37%). Legumes significantly influenced the dependence of  $R_{min}$  on N fertilization and experimental factors. The  $R_{min}$  was significantly increased by N fertilization in the nonlegume soils, but not in the legume soils. In addition, the effects of mean annual temperature, soil nutrients and experimental duration on  $R_{min}$  were smaller in the legume soils than in the nonlegume soils. Collectively, our results highlighted the significant positive effects of legumes on soil N cycling, and indicated that the effects of legumes should be elucidated when addressing the response of soils to plants.

## KEY WORDS

climatic regions, ecosystem types, experimental management, legumes, meta-analysis, net nitrogen mineralization

## 1 | INTRODUCTION

Nitrogen (N) availability is the most important factor influencing many terrestrial ecosystems and their responses to global changes (Fernández-Martínez et al., 2014; Reich et al., 2006). Plants can have positive or negative effects on ecosystem N dynamics and availability by influencing N inputs or losses (Chen et al., 2021; Mueller et al., 2013). As an important component of terrestrial ecosystems and a source of proteins and nutrients for human and animal consumption, legumes are the most diverse and widespread group of plants with the capacity to fix N from the atmosphere (Foyer et al., 2016; Vitousek et al., 2013). For example, half of the N demand in agricultural systems is met by leguminous crops (Fowler et al., 2013), which mitigates the chemical N fertilizer inputs to soils and their negative environmental impacts (Drinkwater et al., 1998; Foyer et al., 2016). In addition, in comparison to nonleguminous species, leguminous plants have higher N concentrations and decomposition rates of litter, usually increasing soil N availability and facilitating a better environment for the growth of coexisting plants by increasing soil organic carbon (C), soil nutrients and humus content (Pirhofer-Walzl et al., 2012; Xu et al., 2020). In light of the combined the importance of legumes in affecting N cycling and of N cycling in regulating the feedback of ecosystems to global change factors, there is an urgent need to identify how legumes affect soil N cycling in the context of global change and agricultural demand.

As a key N cycling process that has been widely used to assess soil N availability and plant growth (Chen et al., 2021; Risch et al., 2019), soil N mineralization has been reported to be enhanced by legumes in various ecosystems by increasing substrate availability, alleviating microbial nutrient constraints and changing soil properties (Gei & Powers, 2013; Mueller et al., 2013; Wei et al., 2019). Given that these processes have been shown to differ significantly between managed (i.e., croplands) and unmanaged ecosystems (i.e., grasslands and forests; Elrys et al., 2021; Li et al., 2021), the effects of legumes on N cycling are likely dependent on ecosystem types. Generally, managed ecosystems experience extensive anthropogenic activities (e.g., fertilization), which may inhibit the effects of legumes on soil N cycling because of the downregulation of N fixation in N-rich environments (Liu et al., 2011; Menge et al., 2009). For example, Tamagno et al. (2018) found that N fertilizer reduced the peak of biological N fixation by up to 16% in applications at the full flowering stage of soybean at 23 sites across the US Midwest. In addition, the harvest of legume biomass in managed ecosystems may also reduce the effects of legumes. On the other hand, in unmanaged ecosystems, legumes play an important role in forcing N cycling (Batterman et al., 2013; Gei et al., 2018). Such ecosystems do not receive anthropogenic N fertilizers and are thus subject to strong N limitation (Du et al., 2020). Given that the growth and N fixation of legumes are stronger in the absence of management (Ma & Chen, 2021), their effects on N cycling should be stronger in unmanaged ecosystems than in managed ecosystems. In addition, the return of legume biomass as litter into soils in unmanaged ecosystems would increase the effects of legumes on N cycling due to

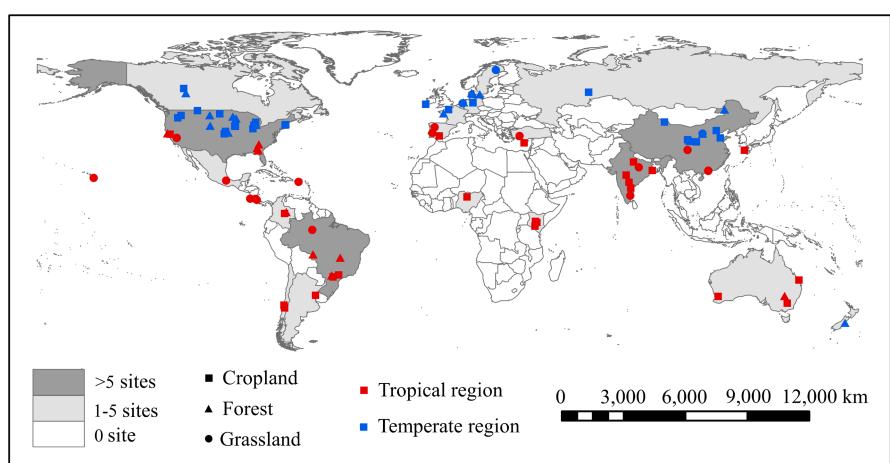
the high N content of legume litter (Makkonen et al., 2012; Wang et al., 2010). Moreover, unmanaged ecosystems are usually affected by natural processes (e.g., fire and grazing), which have significant impacts on the succession of legume communities and thus on the growth and N fixation of legumes (Houseman et al., 2020; Tierney et al., 2019). Nevertheless, such a hypothesis regarding how legumes impact N cycling in contrasting ecosystem types is not examined at the global scale.

In addition, the growth and N fixation ability of legumes are significantly affected by climate (Liao et al., 2017; Menge et al., 2014). N fixation allows legumes to maintain high foliar N concentrations; thus, they use water more efficiently than nonlegumes (Adams et al., 2016), which may further regulate the effects of climate on the ecosystem because of the alteration in the supply and demand of both N and water in legumes and nonlegumes (Pellegrini, 2016). For example, it has been shown that climate plays a greater role than fire frequency and biome type in determining the distribution of N-fixers across tropical savanna and forest biomes (Pellegrini et al., 2016). Similarly, warming has been shown to increase the growth of legumes in a long-term grassland experiment in Minnesota (Cowles et al., 2016). Moreover, warming increases N fixation at the middle and high latitudes but reduces N fixation in low-latitude tropical regions in analyses based on a theoretical framework that considers interactions of C and nutrients to estimate rates of terrestrial N fixation (Wang & Houlton, 2009). In addition, drought can restrict legume growth through lowered stomatal conductance and metabolic processes and can limit N fixation directly by decreasing root nodule function (Dovrat et al., 2018; Serraj, 2003). Legumes preferentially support N fixation on root sections under conditions of ample water relative to root sections of the same plant grown under dry conditions (Marino et al., 2007), suggesting downregulation of N fixation under drought (Dovrat et al., 2018; Wurzburger & Miniat, 2014), even if the growth of legumes is less affected than that of nonlegumes under drought conditions (Pellegrini et al., 2016). For instance, drought has been shown to reduce nodule biomass and nitrogenase activity (33% and 27%, respectively) in eight species of neotropical woody legumes in a greenhouse experiment (McCulloch et al., 2021). This current knowledge highlights the highly complex and interwoven effects of legumes, biomes and climate on terrestrial N cycling. Addressing such complex effects is a crucial step toward better understanding terrestrial biogeochemical cycling and is essential for ecosystem N management. However, it is difficult to quantitatively understand such complex effects based on studies conducted within a single ecosystem or at a small scale and requires analysis based on a global dataset across different climatic regions and ecosystem types.

Herein, to address how the effects of legumes vary with ecosystem types, climatic regions and experimental management, we conducted a global examination on the effects of legumes on the soil net N mineralization rate ( $R_{min}$ ) based on a meta-analysis with 406 observations from 97 publications. We aimed to answer the following questions: (1) How do the effects of legumes on  $R_{min}$  vary with ecosystem types, climatic regions and experimental management as

these factors significantly affect the growth and N fixation of legumes (Liao et al., 2017; Menge et al., 2014)? (2) How do the relationships between N cycling and their driving factors (climate, experimental management, soil properties) vary between legume and nonlegume systems because both ecosystems have contrasting N limitations? The duration of the experiment can significantly influence the growth and N fixation of legumes in the community (Eisenhauer et al., 2011; Mueller et al., 2013) and thus influence the effects of legumes on N cycling. In addition, researchers may use various approaches to determine N cycling (Robertson et al., 1999). We therefore included the duration of the experiment and the method for measuring N mineralization as aspects of experimental management to examine their influence on legume effects. Our global dataset includes paired legume treatments (i.e., legumes vs. nonlegumes), ecosystem types (croplands, forests and grasslands), climatic regions (tropical and temperate regions), durations of experiments (short- vs. long-term experiments) and methods of  $R_{\min}$  measurement (in situ vs. laboratory incubation methods). Some important soil properties, including soil pH, soil organic C, total N, nitrate N, ammonium N, available phosphorus, soil moisture, microbial biomass C and microbial biomass N, were also collected. This allowed us to conduct various comparisons and analyses to answer the above scientific questions. Overall, our meta-analysis sought to capture the effects of legumes on N cycling across various climatic regions and ecosystem types to advance our current understanding of soil N cycling based on plant functional groups.

## 2 | MATERIALS AND METHODS


### 2.1 | The global dataset

Our global dataset was collected by searching published peer-reviewed articles using the Web of Science (<http://apps.webofknowledge.com>) and the China National Knowledge Infrastructure Database (<http://www.cnki.net/>). We screened articles using the keywords "legume" or "N-fixing species" or "land use" AND "soil N mineralization" or "soil N cycling" or "soil N transformation" or "soil

N availability." The following criteria were applied in selecting the studies. (1) Legume and nonlegume (control) plots were compared within the same independent experiment, and the experiments were conducted under the same climate, soil and management conditions to avoid confounding noise. (2) Target variables were estimated by utilizing topsoil samples (mostly within a depth of 10 cm). (3) The details of the experimental conditions (i.e., temperature, moisture, and incubation period) for measuring the net N mineralization rate ( $R_{\min}$ ), nitrification rate ( $R_{\text{nitr}}$ ), and ammonification rate ( $R_{\text{amm}}$ ) were explicitly described in the original articles. (4) The means, standard deviation (SD), and sample size ( $n$ ) of the target variables were reported in the text or could be calculated from the reported data, and the standard error (SE) was converted to SD using the following equation:  $SD = SE \times \sqrt{n}$ . (5) If multiple independent experiments conducted under different environmental conditions or ecosystem types were reported in the same article, each experiment was considered an independent data record. (6) For studies with multiple factors being manipulated (e.g., plant species richness and elevated  $CO_2$ ), we only extracted data from legume and nonlegume treatments of control treatments. (7) For forest ecosystems, the data from the organic soil layer were excluded because of the significant variations in soil properties between organic soils and mineral soils, which would prevent comparisons among ecosystem types. The review and search of the dataset was conducted by following the preferred reporting items for meta-analysis (PRISMA) guidelines (Moher et al., 2009; Figure S1). Finally, 406 records from 97 articles were selected for the meta-analysis (Figure 1 and Notes S1).

When the functional groups of the plants (i.e., legume vs. nonlegume) were clearly provided in the article, we directly extracted the data that met the criteria. Otherwise, we queried the characteristics of the plants from the Royal Horticultural Society website (<https://www.rhs.org.uk/>). In addition, when studies included multiple species of either legumes or nonlegumes, we extracted multiple data points and averaged the data for legumes or nonlegumes, generating one effect size. For studies that included multiple plant functional groups (i.e., C3 grasses, C4 grasses, forbs, legumes), we used legumes as a treatment and the other functional groups as controls to generate multiple effect sizes.

**FIGURE 1** Global distribution of study sites included in this meta-analysis. Graded colors illustrate the number of experimental sites per country. All sites are grouped to three ecosystem types (croplands, forests and grasslands) and two climatic regions (tropical and temperate regions). Map lines delineate study areas and do not necessarily depict accepted national boundaries.



In our dataset, manipulations of legume and nonlegume plots varied with ecosystem types. In croplands, legume and nonlegume crops were usually planted each year and harvested during the harvest season. In grasslands and forests, legume plants were planted (98.2% of observations in our dataset) or naturally existed (1.8%) in the legume plots, while legume plants were naturally absent (8.9%) or nonlegume plants were planted (91.1%) in the nonlegume plots. The plots from which legumes were manually removed to create control treatments were not included in our dataset for the three ecosystem types. Therefore, in our dataset, both the legume and nonlegume plots that were included had similar initial conditions, which allowed us to examine the effects of legumes by comparing legume and nonlegume plots. In our dataset, only a few articles (11.8%) provided information on legume density (number of legumes in the community), so we did not include it as a factor in our statistical models.

For each independent experiment,  $R_{\min}$ ,  $R_{\text{amm}}$  and  $R_{\text{nit}}$  were extracted from the legume and nonlegume (control) treatments. For studies that reported mineralization rates at various incubation times ( $n=36$ ), we extracted the results for approximately 1 month of incubation because most samples were incubated for this amount of time. For the studies that only reported one-time incubation results ( $n=333$ ), we directly extracted those results. Some important soil properties, including soil pH, soil organic carbon (SOC), total N (TN), nitrate N ( $\text{NO}_3^-$ ), ammonium N ( $\text{NH}_4^+$ ), available phosphorus (AP), soil moisture (SM), microbial biomass carbon (MBC) and microbial biomass N (MBN), were also collected. In addition to soil properties, site information, which included latitude (with a range from 43.63°S to 66.52°N), longitude (155.25°W to 172.50°E), mean annual temperature (MAT, -6.2 to 27.9°C), and mean annual precipitation (MAP, 72 to 4600 mm), was obtained to the extent possible from the original articles, from relevant studies or from the climatic database (<https://power.larc.nasa.gov/data-access-viewer/>). For studies that lacked climate data, we derived MAT and MAP from the WorldClim Database based on latitude and longitude (Fick & Hijmans, 2017). For the experiments that included N fertilizer (or N deposition), the rate of N fertilizer was included in the dataset.

The net N mineralization collected in our global dataset was measured using either laboratory ( $n=160$ ) or in situ measurements ( $n=209$ ). The laboratory measurements were taken from soils incubated under standard moisture and temperature conditions. The soils used in the laboratory measurements were collected from field experimental plots (mostly within a depth of 10 cm). The in situ measurements were collected using an undisturbed capped buried core method (mostly within a depth of 10 cm in our dataset; Risch et al., 2020; Robertson et al., 1999). The concentrations of  $\text{NO}_3^-$  and  $\text{NH}_4^+$  in the soils at the beginning and end of either laboratory or in situ incubation were analyzed to calculate the metrics for net N mineralization. For soil N cycling metrics, we examined whether the effects of legumes varied with measuring conditions (i.e., incubation temperature, moisture and time) using a linear mixed-effect model with measuring conditions as fixed factors and the "study" as a random factor. Our results showed that the effects of legumes on N cycling metrics were not affected by measuring conditions (Table S1);

thus, these factors could be neglected in our comparison between legumes and nonlegumes.

To examine whether the effects of legumes varied with ecosystem types, climatic regions, and experimental factors, we grouped the dataset according to ecosystem types, climatic regions, experimental durations and methods of N mineralization measurements. The ecosystem types were grouped into croplands, forests and grasslands. The climatic regions were grouped into tropical regions (i.e., tropical and subtropical regions) and temperate regions (i.e., temperate and boreal regions) according to the 2010 Global Ecological Zones mapping (<https://data.apps.fao.org/>). The experimental duration was categorized into short- (<5 years) and long-term experiments ( $\geq 5$  years) because of imbalanced sampling numbers for each duration of experiment (Figure S2). Five years was used as the time threshold to group short- and long-term experiments because this was based on a large survey of long-term research in the fields of ecology and evolution (Kuebbing et al., 2018). The measurement method for net N mineralization was divided into laboratory incubation and in situ measurements. Our primary examinations on the interactive influences among factors showed nonsignificant interactions on legume effects ( $p > .05$ ), suggesting that the effects of such influencing factors were independent of each other. We therefore did not consider such interactive effects when examining legume effects within any subgroup.

## 2.2 | Meta-analysis

Since some N cycling metrics have negative values, this precluded the use of the response ratio (calculated as the natural log of the experimental mean over the control mean) as a metric for comparison between studies (Hedges et al., 1999). Here we utilized the standardized mean difference metric "Hedge's  $d$ " for analysis, which is less biased by small sample size (Hedges & Olkin, 1985). The effect size ( $d$ ) and pooled standard deviation ( $S$ ) were calculated as follows:

$$d = \frac{X_t - X_c}{S} \times \left( 1 - \frac{3}{4 \times (n_t + n_c - 2) - 1} \right) \quad (1)$$

$$S = \sqrt{\frac{(n_t - 1) \times St^2 + (n_c - 1) \times Sc^2}{n_t + n_c - 2}} \quad (2)$$

where  $X_t$  and  $X_c$  are the values of a given variable in the treatment (legume) and control (nonlegume) groups, respectively.  $n_t$  and  $n_c$  the sample sizes and  $St$  and  $Sc$  the standard deviations of the treatment and control groups, respectively.

The interpretation of the standardized mean effect size differs from the response ratio, as the standardized mean effect size cannot be expressed as a percent change in response to an experimental treatment compared with a control. Rather, it represents how far removed the standardized mean of the experimental treatment is from the standardized mean of the control measured in standard deviation.

The effect size was weighted using the inverse of the pooled variance ( $v$ ) as follows:

$$v = \frac{n_c + n_t}{n_c \times n_t} + \frac{d^2}{2 \times (n_c + n_t)} \quad (3)$$

A weakness of meta-analyses is that experimental treatments (i.e., legumes) are compared with several controls (i.e., C3 grasses, C4 grasses and forbs) within a study. This artificially increases the number of replicate pairs and violates the assumption of independence. Therefore, to prevent overestimation of the precision of the mean effect size, the resulting pairs were combined into one composite effect size using the variance ( $v'$ ) as follows (Aguilera et al., 2013; Hungate et al., 2009):

$$v' \left( \frac{1}{m} \times \sum_{i=1}^m d_i \right) = \left( \frac{1}{m} \right)^2 \times \left( \sum_{i=1}^m v_i + \sum_{i \neq j} \left( r_{ij} \times \sqrt{v_i} \times \sqrt{v_j} \right) \right) \quad (4)$$

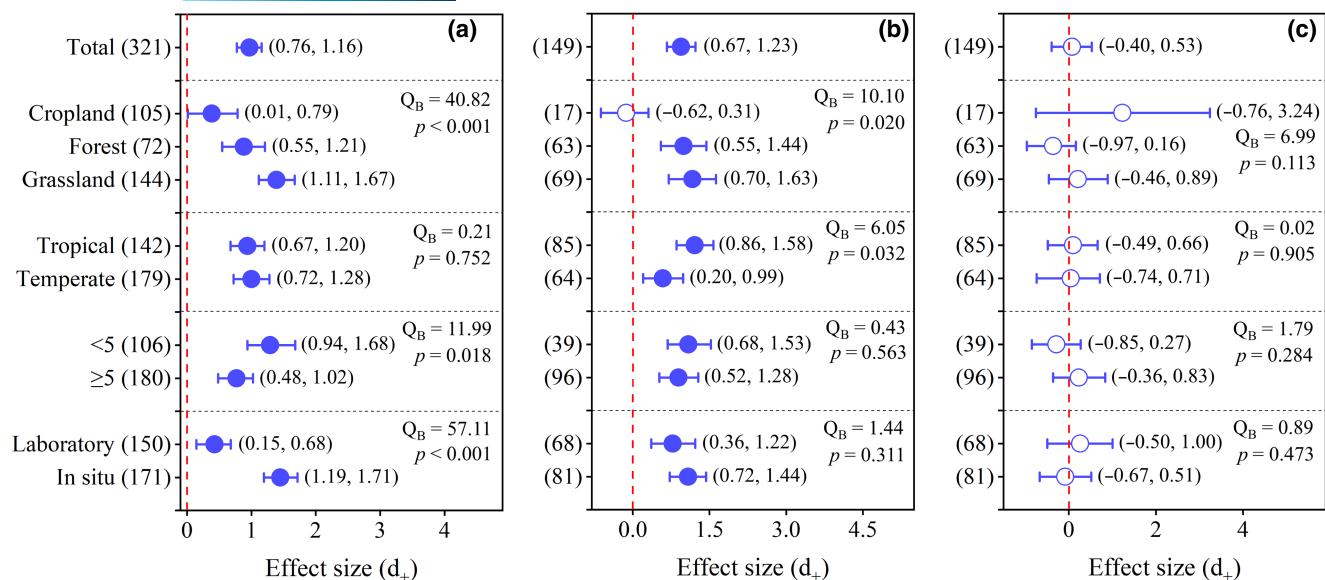
where  $m$  represents the number of correlated pairs,  $d_i$  and  $V_i$  the effect size and variance of pairs, respectively, and  $r$  the correlation coefficient, which is equal to 0.5 because all pairs shared a common treatment.

The weighted effect size ( $d_+$ ) and its corresponding 95% confidence intervals (CIs) were calculated using METAWIN 2.1 software with a categorical random effect model. This method provides an inference about the average effect in the entire population from which the included studies are assumed to be a random selection (Viechtbauer, 2010), and thus does not include either random effect or fixed factor (Hedges & Vevea, 1998). The CIs were generated by bootstrapping (9999 iterations; Hedges & Olkin, 1985; Rosenberg et al., 2000). The effect of a response variable can be considered significant at  $p < .05$  if the 95% CIs do not intersect at zero. To test whether the effects of legumes on soil N cycling metrics differed by subgroup, a between-group heterogeneity ( $Q_B$ ) test was performed. A significant  $Q_B$  indicates that the metrics are significantly different among subgroups (Rosenberg et al., 2000).

There is no rigorously applied framework for the interpretation of standardized means in terms of "effect sizes" because, unlike response ratios, they are probabilistic. That is, they describe the probability that a sample drawn from the control treatments would fall between the experimental mean and the control mean, assuming a normal distribution. By convention, for variables that do not overlap with Hedge's  $d$  of zero, a  $d$  value higher than 0.8 indicates a large effect, a  $d$  value of 0.2–0.8 shows a moderate effect and a  $d$  value of 0.0–0.2 displays a small effect (Hedges et al., 1999; Jeffery et al., 2016). A key point is that, using Hedge's  $d$  metric, an effect size of a variable analysis does not equate to the effect size of others in the independent analyses presented in this study. Only categories within individual analyses can be compared on a relative basis.

Publication bias may influence our meta-analysis results. We assessed the publication bias for each response metric by Spearman's rank correlating effect sizes and their variations

(Rosenberg et al., 2000). We found that there was no publication bias for the metrics except for  $R_{\min}$  and  $\text{NO}_3^-$  (Spearman  $p = .04$  for  $R_{\min}$  and  $p = .01$  for  $\text{NO}_3^-$ ; Table S2). We examined whether publication bias influenced our meta-analysis results by estimating the fail-safe number (Nfs) of  $R_{\min}$  and  $\text{NO}_3^-$  (Orwin, 1983). The result from meta-analysis is assumed to be stable (or not influenced by publication bias) when the ratio of Nfs to  $(5n + 10)$  is greater than 1, where  $n$  is the sampling size (Jeffery et al., 2016; Zhao et al., 2022). In our analysis, the ratios were 4.73 and 2.57 for  $R_{\min}$  and  $\text{NO}_3^-$ , respectively. Therefore, we did not consider publication bias in our analysis.


## 2.3 | Structural equation modeling

We constructed the conceptual framework of structural equation models (SEMs) on the basis of the bivariate relationships between  $R_{\min}$  change and N fertilization and environmental factors (Figure S3). The SEMs require a relatively small sampling size (10 times the number of paths; Grace, 2006) and have been used in many studies with sampling sizes of 25–69 (Feng et al., 2022; Lu et al., 2022; Vieira et al., 2020). Hence, this approach can provide robust results with a relatively small sample group size and was appropriate for our study. All variables included in the SEMs were continuous. The climatic factors used in the above analysis were MAT and MAP for the experimental sites. The first axis of the principal component analysis (PCA) represents changes in soil nutrients based on SOC, TN,  $\text{NO}_3^-$ , and  $\text{NH}_4^+$ . PCA was conducted using the "FactoMineR" and "factoextra" packages in R software (version 4.2.1). In SEMs, the fixed variables were the environmental factors and the random variable was the "study." Shipley's d-separation test was used to examine whether any paths were missing from the model, and  $p > .05$  indicated that no paths were missing and that the model was a good fit (Shipley, 2009, 2013). We reported the standardized coefficient for each path from each component model, and Fisher's C statistic and AIC values of the overall model by using the piecewiseSEM package (<https://github.com/jlslefche/piecewiseSEM>) in R software (version 4.2.1). Moreover, to examine the relative importance of factors influencing  $R_{\min}$  in systems with and without legumes, we independently ran two SEMs by using the same procedure as above. All figures showing  $d_+$  values were plotted in OriginPro 2018 (OriginLab Corp.).

## 3 | RESULTS

### 3.1 | Overall effects of legumes on soil net nitrogen mineralization and soil properties

As expected, our meta-analysis showed that legumes increased the soil N cycling rate across the global dataset. On average, the  $R_{\min}$ ,  $R_{\text{nit}}$  and  $R_{\text{amm}}$  in soils with legumes were higher than those in soils without legumes ( $d_+ = 0.97$ , 0.95 and 0.07, respectively; Figure 2).



**FIGURE 2** Effects of legumes on the rates of soil net N mineralization ( $R_{\min}$ , a), net nitrification ( $R_{\text{nit}}$ , b) and net ammonification ( $R_{\text{amm}}$ , c). All plots represent the weighted effect size of different variables with 95% confidence intervals (CIs). The observation of each variable is displayed beside each bar in parentheses. If the 95% CIs do not overlap with zero the effect is significant at  $p < .05$  (filled circles), otherwise the effect is not significant ( $p > .05$ ; open circles).  $Q_B$  represents the heterogeneity in effect among groups, and the significant value of  $Q_B$  indicates significant differences among groups ( $p < .05$ ). The vertical dash line indicates effect size of 0.

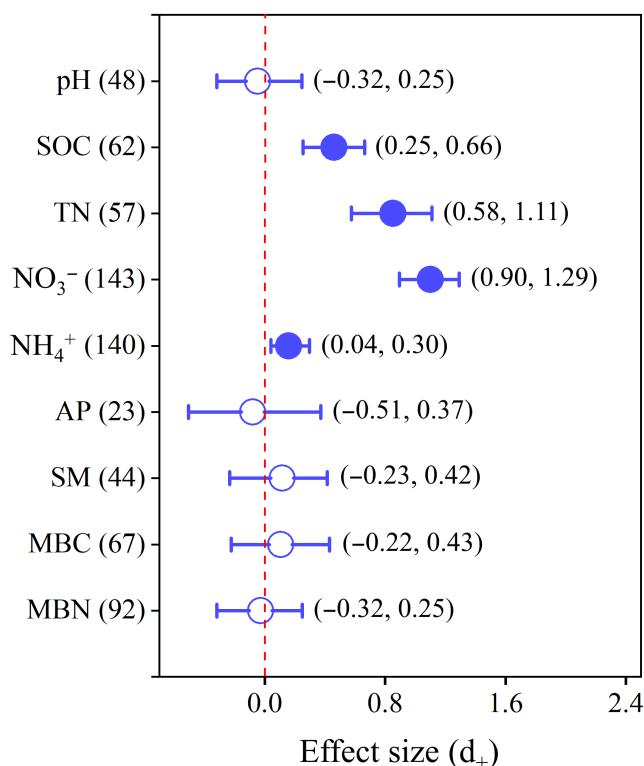
Moreover, in comparison to soils without legumes, soils with legumes had significantly higher SOC ( $d_+ = 0.46$ ), TN ( $d_+ = 0.85$ ),  $\text{NO}_3^-$  ( $d_+ = 1.10$ ) and  $\text{NH}_4^+$  ( $d_+ = 0.16$ ) values but similar values of other soil properties (Figure 3).

### 3.2 | Variations in legume effects with climatic regions, ecosystem types and experimental management

The effects of legumes on  $R_{\min}$  and  $R_{\text{nit}}$  varied with ecosystem types, with significantly higher effect sizes in grasslands ( $d_+ = 1.39$  and 1.17) and forests ( $d_+ = 0.89$  and 0.99) than in croplands ( $d_+ = 0.38$  and  $-0.13$ ;  $p < .001$  and  $p = .020$ ; Figure 2a,b). However, the effect of legumes on  $R_{\text{amm}}$  was not influenced by ecosystem types, with effect sizes of 1.23, 0.21 and  $-0.36$  for croplands, grasslands and forests, respectively ( $p = .113$ ; Figure 2c).

The effects of legumes on most soil N cycling metrics were independent of climatic regions (Figure 2). Among the climatic regions examined, the effects on  $R_{\min}$  and  $R_{\text{amm}}$  were not affected by climatic regions ( $p = .752$  and  $.905$ ; Figure 2a,c). However, the effect of legumes on  $R_{\text{nit}}$  was significantly higher in tropical regions ( $d_+ = 1.21$ ) than in temperate regions ( $d_+ = 0.59$ ;  $p = .032$ ; Figure 2b).

The effect of legumes on  $R_{\min}$  was greater in short-term experiments ( $d_+ = 1.29$ ) than in long-term experiments ( $d_+ = 0.77$ ;  $p = .018$ ; Figure 2a). Moreover, the legume effect on  $R_{\min}$  measured by in situ incubation ( $d_+ = 1.45$ ) was significantly higher than that measured by laboratory incubation ( $d_+ = 0.43$ ;  $p < .001$ ; Figure 2a). However, the effects of legumes on  $R_{\text{nit}}$  and  $R_{\text{amm}}$  were not affected by experiment

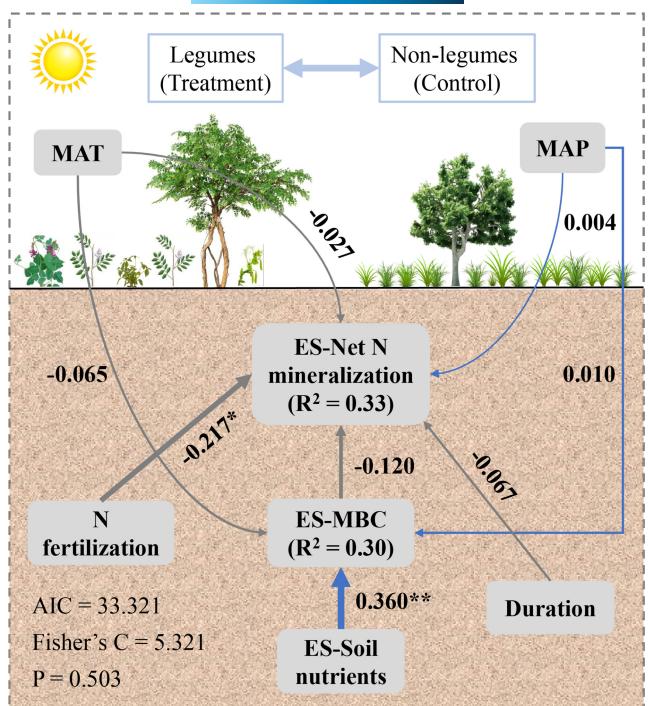

duration and measurement method (Figure 2b,c). Hence, the effects of legumes on soil N cycling were climate-, ecosystem- and experimental management dependent.

### 3.3 | Key factors influencing the effects of legumes on soil net nitrogen mineralization

Structural equation modeling showed that N fertilization and changes in soil nutrients had important regulatory effects on the response of  $R_{\min}$  to legumes (Figure 4). The environmental factors examined in our SEM explained 33.0% of the total variation in legume effects. N fertilization significantly decreased the response of  $R_{\min}$  to legumes. Changes in soil nutrients induced by legumes significantly altered MBC change, which had a negative effect on the response of  $R_{\min}$  to legumes. However, climatic conditions (MAT and MAP) had no impact on the effect of legumes on  $R_{\min}$ .

### 3.4 | Legumes shifted the dependence of soil net nitrogen mineralization on influencing factors

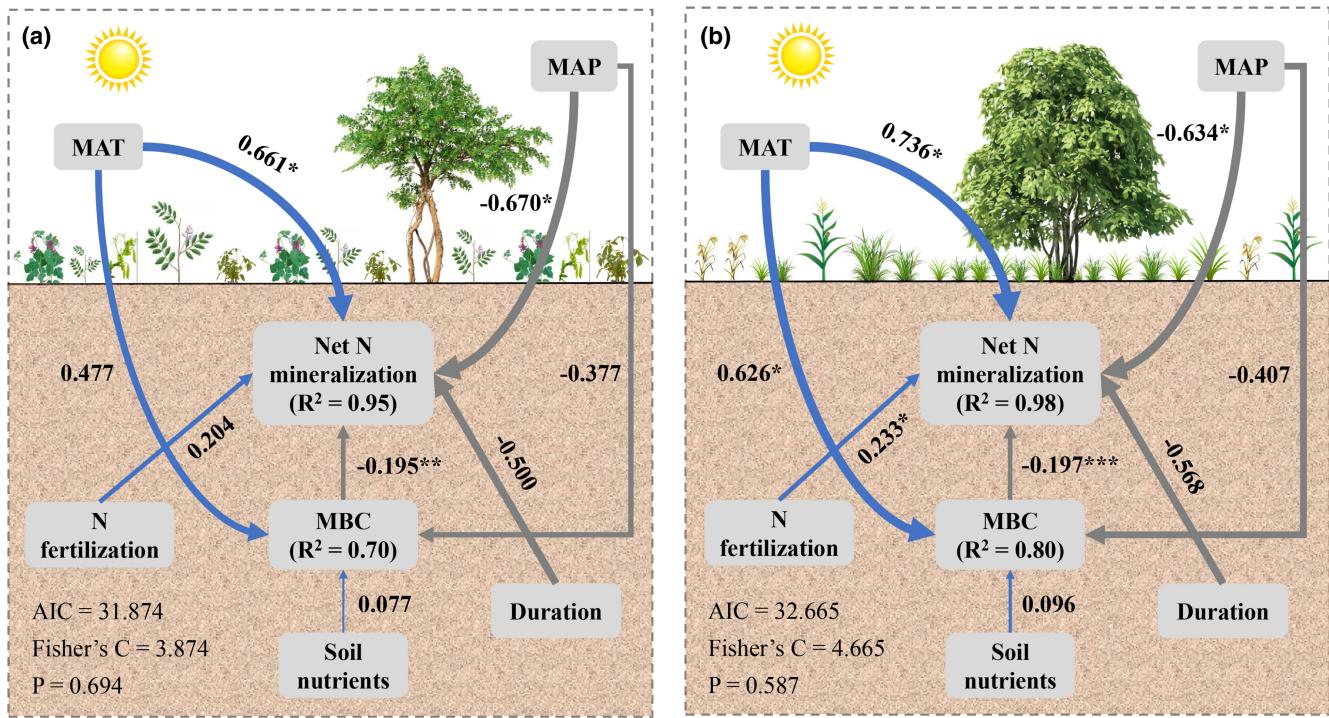
We independently examined the relative importance of factors influencing  $R_{\min}$  in systems with and without legumes (Figure 5). The  $R_{\min}$  was affected by N fertilization in soils from both the legume and nonlegume treatments, but the effect in the nonlegume treatments was greater than that in the legume treatments. In addition, climatic conditions (MAT and MAP) not only directly influenced  $R_{\min}$ , but also indirectly affected  $R_{\min}$  by altering MBC, and the effect of MAT was




**FIGURE 3** Effects of legumes on soil properties. The plot represents the weighted effect size of different variables with 95% confidence intervals (CIs). The observation of each variable is displayed beside each bar in parentheses. If the 95% CIs do not overlap with zero, then the effect is considered significant ( $p < .05$ ; filled circles), otherwise the effect is not significant ( $p > .05$ ; open circles). The vertical dash line indicates effect size of 0. SOC, soil organic carbon; TN, total nitrogen;  $\text{NO}_3^-$ , nitrate nitrogen;  $\text{NH}_4^+$ , ammonium nitrogen; AP, available phosphorus; SM, soil moisture; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen.

greater in nonlegume soils than in legume soils. Therefore, legumes significantly altered the dependence of  $R_{\min}$  on N fertilization and environmental factors.

## 4 | DISCUSSION


In this study, we provide the first global assessment demonstrating that legumes significantly enhanced soil N cycling, and this effect was similar for tropical and temperate regions but was significantly greater in grasslands and forests than in croplands and greater in *in situ* incubation or short-term experiments than in laboratory incubation or long-term experiments. Moreover, N fertilization and changes in soil nutrients were the dominant factors that influenced the effects of legumes on  $R_{\min}$ . The results from our study advance the current understanding of the effects of legumes on N cycling from the site scale to the global scale across ecosystem types and climatic regions.



**FIGURE 4** Piecewise structural equation model (SEM) assessing the direct and indirect effects of climatic factors (MAT and MAP), N fertilization, experimental duration, changes in soil nutrients (the first axis of the principal component analysis based on SOC, TN,  $\text{NO}_3^-$  and  $\text{NH}_4^+$ ) and microbial biomass (MBC) on the response of net N mineralization to legumes. Numbers adjacent to arrows show standardized path coefficients. Blue and gray lines indicate positive and negative relationships, respectively, with the thickness representing the extent of influence. The  $R^2$  values indicate the proportion of variance explained for each endogenous variable. ES, effect size; MAT, mean annual temperature; MAP, mean annual precipitation; MBC, microbial biomass carbon; Duration, experimental duration. Asterisks denote significant differences based on the Wilcoxon test. \* $p < .05$  and \*\* $p < .01$ .

### 4.1 | Legumes increase the rate of nitrogen cycling worldwide

Our global analysis showed that legumes accelerated soil N cycling processes (Figure 2). We ascribed this result to the following three factors. First, organic materials (leaf litter, fine roots, and/or root nodules, C rhizodeposition) derived from legumes have high N content and provide many substrates for decomposers, which accelerates N mineralization because soil N cycling is dominated by microbes (Makkonen et al., 2012; Wang et al., 2010). Second, legumes decrease the soil C/N ratio due to the greater increase in N relative to C and increase soil moisture (Figure 3). Both low C/N ratios and high soil moisture stimulate microbial growth (Wendlandt et al., 2022), thus resulting in higher  $R_{\min}$  in legume soils than in nonlegume soils. Third, the greater biomass of legumes leads to higher C input to soils than with nonlegumes (Yang et al., 2019), which accelerates N mineralization due to the priming effect (Gei



**FIGURE 5** Piecewise structural equation model (SEM) assessing the direct and indirect effects of climatic factors (MAT and MAP), N fertilization, experimental duration, soil nutrients (the first axis of the principal component analysis based on SOC, TN,  $\text{NO}_3^-$  and  $\text{NH}_4^+$ ) and microbial biomass (MBC) on soil net N mineralization in legume (a) and nonlegume (b) treatments. Numbers adjacent to arrows show standardized path coefficients. Blue and gray lines indicate positive and negative relationships, respectively, with the thickness representing the extent of influence. The  $R^2$  values indicate the proportion of variance explained for each endogenous variable. MAT, mean annual temperature; MAP, mean annual precipitation; MBC, microbial biomass carbon; Duration, experimental duration. Asterisks denote significant differences based on the Wilcoxon test.  $*p < .05$ ,  $**p < .01$ , and  $***p < .001$ .

& Powers, 2013; Wei et al., 2019). This explanation is supported by the “microbial activation” hypothesis, which proposes that large amounts of C, N and other nutrients can be released in soils in a short span of time because of microbial activities caused by fresh C inputs (Kuzyakov et al., 2000).

It should be noted that the density of legumes in the community may have an important influence on the effects of legumes on N cycling (Rodriguez et al., 2020; Wei et al., 2019). However, because most of the articles only reported that their soil samples were collected or that N cycling was measured in legume plots but did not report the legume density in the legume plots, it is impossible for us to disentangle the influence of legume density from the effect of legume presence in our dataset. This may have led to uncertainties in our results. We hence recommend that the effect of legume density should be carefully quantified by manipulation experiments across multiple sites or by model prediction at the global scale.

#### 4.2 | Variations in the effects of legumes with ecosystem types but not climatic regions

We found that the responses of  $R_{\min}$  and  $R_{\text{nit}}$  to legumes varied with ecosystem types (Figure 2). The greater effects of legumes on soil N cycling in forests and grasslands were ascribed to the

fact that the overall background N level (available N in soils from nonlegume plots) in forests and grasslands was significantly lower than that in croplands (Figure S4). Croplands receive not only atmospheric N deposition, but also chemical N fertilizers, while forests and grasslands receive only N deposition, and most of this deposited N is intercepted by the plant canopy, and only a small fraction enters the soil (Gaige et al., 2007; Guerrieri et al., 2015). Meanwhile, the effects of legumes on N fixation and soil N cycling were greater in soils with low N than in soils with high N (Mueller et al., 2013; Wei et al., 2019). In addition, this low background soil N level leads to a greater relative effect of legumes on soil  $\text{NH}_4^+$  in forests and grasslands than in croplands (Figure S5a), which thus leads to higher  $R_{\min}$  and  $R_{\text{nit}}$  given the significant contribution of  $R_{\text{nit}}$  to  $R_{\min}$  (Raghurama & Sankaran, 2022; Yao et al., 2019). The significantly smaller effects of legumes in croplands were primarily because of the harvest of aboveground biomass and due to severe anthropogenic perturbations, such as tillage and fertilization. The removal of aboveground biomass significantly decreases C input to soils, which accelerates microbial C limitation and thus restricts N mineralization (O’Connell et al., 2015). In addition, ammonia oxidizers (i.e., oxidizing ammonium to nitrite) and the amoA gene that encodes ammonia monooxygenase (i.e., oxidizing ammonia to hydroxylamine) play critical roles in nitrification (Seeley et al., 2020), while legumes decrease the abundances of ammonia

oxidizers and the *amoA* gene in agricultural systems (Paungfoo-Lonhienne et al., 2017; Yu et al., 2019) but not in forests (Rachid et al., 2013) and grasslands (Le Roux et al., 2013), which could also lead to a minimal effect on nitrification. Therefore, the positive effects of legumes on soil N cycling were greater in ecosystems with greater limitation by and competition for N.

We found that the effects of legumes on most soil N cycling metrics were not influenced by climatic regions (Figure 2), probably because of the contrasting impacts of MAP and MAT on legume effects (Figure 4). Generally, symbiotic N fixation by legumes is highly sensitive to water availability (Dovrat & Sheffer, 2019). A number of tropical and temperate legumes exhibit a reduction in N fixation when subjected to soil moisture deficiencies (Elli et al., 2022; Markham & Anderson, 2021; Rousk et al., 2017), mainly because nitrogenase activities rely on the quantity of carbohydrates supplied to nodules, and the supply decreases under water-limited conditions (Arfin-Khan et al., 2014). In addition, the limitations in legume growth induced by drought result in lower nodule biomass and N fixation rates (McCulloch et al., 2021). However, high temperature can inhibit the function of legume root nodules (Wang & Houlton, 2009), thus decreasing the N fixation capabilities of legumes and the effects on soil N cycling. Therefore, the positive effect of high MAP on legume effects offsets the negative influence of high MAT, leading to the result that legume effects on soil N cycling were not affected by climatic regions.

### 4.3 | Variations in the effects of legumes with experimental factors

We demonstrated that the increase in  $R_{\min}$  caused by legumes was significantly greater in short-term experiments than in long-term experiments (Figure 2a), indicating that the effects of legumes on soil N cycling may decline over time. Such a variation between the duration of experiments was probably due to the effects of increased P limitation on legume growth during the later stage of the experiments. Legumes require large amounts of P to supply energy for N fixation (Mitran et al., 2018), and with increasing legume growth duration, soil P becomes depleted. For example, Zhang et al. (2021) found that soil P linearly decreased with increasing plantation age on the Loess Plateau. In our meta-analysis, legumes resulted in decreased available P in the short-term ( $d_+ = -0.10$ ;  $n = 15$ ) and long-term experiments ( $d_+ = -0.60$ ;  $n = 25$ ; Figure S5b), supporting this explanation. Some other N fixation-related nutrients (e.g., molybdenum, iron and manganese) might also decrease over the course of legume growth. Although this hypothesis was not confirmed herein because none of these elements was measured in any independent experiment collected in our global dataset, an early study in a woodland in central coastal Florida showed that a reduced availability of molybdenum explained the elevated  $\text{CO}_2$ -induced long-term decline in N fixation (Hungate et al., 2004), indirectly supporting this hypothesis. Therefore, the time dependence of legume effects on N cycling might be influenced by the progressive limitation of N

fixation-related nutrients in soils. However, our dataset did not contain the information necessary to verify this mechanism, highlighting the necessity of exploring interactions among such factors in future research.

The significantly greater effects of legumes on  $R_{\min}$  occurred during in situ incubation relative to laboratory incubation under standard temperature and moisture conditions (Figure 2). This might be because soil disturbance during soil transport to the laboratory (often with homogenization of the soil samples) and sample preparation methods (mixing, sieving, root removal) during laboratory incubation studies sufficiently change  $R_{\min}$  (Risch et al., 2019, 2020), which decreases the relative importance of legume effects. In addition, the greater effects in in situ conditions might be ascribed to the diurnal variation in temperature and moisture under field conditions, which has been reported to accelerate soil N mineralization (Eviner et al., 2006; Wang et al., 2016). For example, Wang et al. (2016) showed that high temporal variations in temperature and moisture enhance soil N mineralization in montane grasslands of Central Europe.

### 4.4 | Legumes altered the dependence of soil net nitrogen mineralization on influencing factors

Our results demonstrated that legumes significantly altered the dependence of soil N cycling on N fertilization and environmental factors (Figure 5). N fertilization increased  $R_{\min}$  in both legume and nonlegume soils, probably due to the increased soil N pools and reduced soil C/N ratios (Gruber & Galloway, 2008; Mueller et al., 2013). This result is consistent with previous results reported from global analyses (Hao et al., 2018; Risch et al., 2019, 2020) and experimental studies (Lu et al., 2011; Wei et al., 2019). However, in this study, we showed that the effect of N fertilization on  $R_{\min}$  was lower in legume soils than in nonlegume soils (Figure 5), primarily because legumes can satisfy much of their own N needs by biological N fixation (Pirhofer-Walzl et al., 2012; Vitousek et al., 2013). Therefore, plants and microbes have a lower need for fertilizer N in legume treatments than in nonlegume treatments (Mueller et al., 2013; Wei et al., 2019), leading to the smaller effect of N fertilization on  $R_{\min}$  in legume soils.

Our global analysis further showed that MAT was an important driver of  $R_{\min}$  in treatments with and without legumes (Figure 5), mainly because higher temperatures may increase microbial metabolism and enzymatic activity, resulting in greater organic matter decomposition and N mineralization (Bai et al., 2013; Dai et al., 2020). For example, a previous global assessment showed that experimental warming resulted in a 52.2% increase in  $R_{\min}$  (Bai et al., 2013). Increasing temperatures also indirectly affect N cycling processes by increasing net ecosystem production (Dai et al., 2020), which, in turn, increases inputs of root exudates and litter to soils (Dusenge et al., 2018). In our analysis, the effect of MAT on MBC was greater in nonlegume treatments than in legume treatments (Figure 5), mainly due to the higher C/N ratios of the litter in nonlegumes. Generally, high temperatures can promote plant growth and N cycling (Dai

et al., 2020; Dusenge et al., 2018), but whether N is incorporated into microbial biomass or released as ammonium to the soil environment depends strongly on the C/N ratios of plant litter/exudate inputs (Mooshammer et al., 2014). The higher C/N ratios of the litter in nonlegumes would require microbes to acquire inorganic N from the soil (i.e., microbial immobilization) to meet their N assimilation needs when processing plant C inputs (Cleveland & Liptzin, 2007), thus resulting in a greater effect of MAT on MBC in nonlegume treatments than in legume treatments.

## 4.5 | Implications for nitrogen cycling and management

Our examination advances the current knowledge of the effects of legumes on terrestrial biogeochemical cycles by providing robust evidence that legumes have strong global impacts on soil N cycling. Across our dataset, soils with legumes had 67% higher  $R_{\min}$  than those without legumes, and this value was significantly higher than the effect of N deposition. For instance, we observed 151% and 74% higher  $R_{\min}$  in global grasslands and forests that contained legumes than in those without legumes, respectively, whereas N deposition ( $10\text{ g N m}^{-2} \text{ year}^{-1}$ ) resulted in 34% (with grazers) and 66% (without grazers) increases in  $R_{\min}$  in global grasslands (Risch et al., 2020) and had no impact on the mineral soils of northern temperate forests (Nave et al., 2009).

Since soil mineral N is the dominant form of N taken up by terrestrial plants and its concentration in soils is primarily regulated by N mineralization processes (Chen et al., 2021; Risch et al., 2020), the legume effect on  $R_{\min}$  shown in this study, which varied with ecosystem types, could provide important implications for managed ecosystems (i.e., agricultural ecosystems) and for N limitation predictions in unmanaged ecosystems under the context of global change. For managed ecosystems with leguminous crops (i.e., solely leguminous crops, intercropped or rotated leguminous crops), the rate of chemical N fertilizers could be adequately reduced not only for upregulating the N fixation of legumes and satisfying the N need for plant growth (Liu et al., 2011; Menge et al., 2009), but also for preventing the loss of fertilizer N and related environmental problems (Drinkwater et al., 1998; Foyer et al., 2016), which is important because the global legume planting area has continually increased over the past half century (Figure S6). For unmanaged ecosystems, legumes are significantly affected by global change drivers, with increased abundance under warming (Cowles et al., 2016; Liao et al., 2017) and drought (Gei et al., 2018; Pellegrini et al., 2016) but decreased abundance under N enrichment conditions (Isbell et al., 2013; Tognetti et al., 2021). For this reason, legumes are increasingly and complexly intertwined with global change drivers in influencing N cycling (and N limitation) and even with the succession of unmanaged ecosystems, all of which call for an urgent understanding of such knowledge for better elucidation and prediction of ecosystem processes for a changing planet.

Natural processes (e.g., fire and grazing) impact N cycling in land ecosystems, and these processes are independent of legume effects but are dependent on ecosystem types and/or climatic regions. Frequent fire and disturbances (e.g., grazing) significantly change the cycling and availability of N (Dannenmann et al., 2018; Jiang et al., 2022) and can also remove large quantities of N from unmanaged ecosystems, which stimulates rapid regeneration of N-fixing species and individuals to replenish N deficits (Batterman et al., 2013; Vitousek et al., 2013). For example, Batterman et al. (2013) found that N-fixers dynamically act to replenish N deficits caused by disturbance events in tropical forests and soils. In addition, the initial stage of community succession (i.e., after fire and grazing) may not favor the growth of nonlegumes due to a limitation in N (Pellegrini et al., 2015), which may amplify the effects of legumes. Therefore, how these natural processes influence the effects of legumes should be further explicitly tested at the global scale.

## AUTHOR CONTRIBUTIONS

Liping Qiu, Xiaorong Wei and Peter B. Reich designed the research; Xiaomei Gou collected the data; Xiaomei Gou and Xiaorong Wei analyzed the data. All authors contributed significantly to the writing of the manuscript.

## ACKNOWLEDGMENTS

We gratefully acknowledge financial support by the National Key Research and Development Program (2022YFF1302804), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23070202 and XDB40020000), National Natural Science Foundation of China (42277349, 41977068 and 41977105), the Programs from Chinese Academy of Sciences (QYZDB-SSW-DQC039), the US National Science Foundation Long-Term Ecological Research (LTER) grant (DEB-1831944 and LTREB DEB-1753859) and Biological Integration Institutes grant (NSF-DBI-2021898).

## CONFLICT OF INTEREST STATEMENT

The authors declare no competing interests.

## DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in Supporting Information and Figshare at <https://doi.org/10.6084/m9.figshare.22655107>

## ORCID

Xiaomei Gou  <https://orcid.org/0000-0001-5581-5053>

Peter B. Reich  <https://orcid.org/0000-0003-4424-662X>

Xiaorong Wei  <https://orcid.org/0000-0002-0359-0339>

## REFERENCES

Adams, M. A., Turnbull, T. L., Sprent, J. I., & Buchmann, N. (2016). Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. *Proceedings of the National Academy of Sciences of the United States of America*, 113, 4098–4103. <https://doi.org/10.1073/pnas.1523936113>

Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J., & Vallejo, A. (2013). The potential of organic fertilizers and water management to reduce N<sub>2</sub>O emissions in Mediterranean climate cropping systems. A review. *Agriculture, Ecosystems & Environment*, 164, 32–52. <https://doi.org/10.1016/j.agee.2012.09.006>

Arfin-Khan, M. A. S., Grant, K., Beierkuhnlein, C., Kreyling, J., & Jentsch, A. (2014). Climatic extremes lead to species-specific legume facilitation in an experimental temperate grassland. *Plant & Soil*, 379, 161–175. <https://doi.org/10.1007/s11004-014-2050-8>

Bai, E., Li, S., Xu, W., Li, W., Dai, W., & Jiang, P. (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. *New Phytologist*, 199, 441–451. <https://doi.org/10.1111/nph.12252>

Batterman, S. A., Hedin, L. O., van Breugel, M., Ransijn, J., Craven, D. J., & Hall, J. S. (2013). Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. *Nature*, 502, 224–227. <https://doi.org/10.1038/nature12525>

Chen, X., Chen, H. Y. H., Searle, E. B., Chen, C., & Reich, P. B. (2021). Negative to positive shifts in diversity effects on soil nitrogen over time. *Nature Sustainability*, 4, 225–234. <https://doi.org/10.1038/s41893-020-00641-y>

Cleveland, C. C., & Liptzin, D. (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? *Biogeochemistry*, 85, 235–252. <https://doi.org/10.1007/s10533-007-9132-0>

Cowles, J. M., Wragg, P. D., Wright, A. J., Powers, J. S., & Tilman, D. (2016). Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. *Global Change Biology*, 22, 741–749. <https://doi.org/10.1111/gcb.13111>

Dai, Z., Yu, M., Chen, H., Zhao, H., Huang, Y., Su, W., Xia, F., Chang, S. X., Brookes, P. C., Dahlgren, R. A., & Xu, J. (2020). Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. *Global Change Biology*, 26, 5267–5276. <https://doi.org/10.1111/gcb.15211>

Dannenmann, M., Díaz-Pinés, E., Kitzler, B., Karhu, K., Tejedor, J., Ambus, P., Parra, A., Sánchez-Martin, L., Resco, V., Ramírez, D. A., Povoas-Guimaraes, L., Willibald, G., Gasche, R., Zechmeister-Boltenstern, S., Kraus, D., Castaldi, S., Vallejo, A., Rubio, A., Moreno, J. M., & Butterbach-Bahl, K. (2018). Postfire nitrogen balance of Mediterranean shrublands: Direct combustion losses versus gaseous and leaching losses from the postfire soil mineral nitrogen flush. *Global Change Biology*, 24, 4505–4520. <https://doi.org/10.1111/gcb.14388>

Dovrat, G., Masci, T., Bakhshian, H., Mayzlish-Gati, E., Golan, S., & Sheffer, E. (2018). Drought-adapted plants dramatically down-regulate dinitrogen fixation: Evidences from Mediterranean legume shrubs. *Journal of Ecology*, 106, 1534–1544. <https://doi.org/10.1111/1365-2745.12940>

Dovrat, G., & Sheffer, E. (2019). Symbiotic dinitrogen fixation is seasonal and strongly regulated in water-limited environments. *New Phytologist*, 221, 1866–1877. <https://doi.org/10.1111/nph.15526>

Drinkwater, L. E., Wagoner, P., & Sarrantonio, M. (1998). Legume-based cropping systems have reduced carbon and nitrogen losses. *Nature*, 395, 262–265. <https://doi.org/10.1038/24376>

Du, E., Terner, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J., Zhao, X., Xia, N., Wu, X., & Jackson, R. B. (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. *Nature Geoscience*, 13, 221–226. <https://doi.org/10.1038/s41561-019-0530-4>

Dusenge, M. E., Duarte, A. G., & Way, D. A. (2018). Plant carbon metabolism and climate change: Elevated CO<sub>2</sub> and temperature impacts on photosynthesis, photorespiration and respiration. *New Phytologist*, 221, 32–49. <https://doi.org/10.1111/nph.15283>

Eisenhauer, N., Milcu, A., Sabais, A. C. W., Bessler, H., Brenner, J., Engels, C., Klerner, B., Maraun, M., Partsch, S., Roscher, C., Schonert, F., Temperton, V. M., Thomisch, K., Weigelt, A., Weisser, W. W., & Scheu, S. (2011). Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. *PLoS One*, 6, e16055. <https://doi.org/10.1371/journal.pone.0016055>

Elli, E. F., Ciampitti, I. A., Castellano, M. J., Purcell, L. C., Næve, S., Grassini, P., la Menza, N. C., Moro Rosso, L., de Borja Reis, A. F., Kovács, P., & Archontoulis, S. V. (2022). Climate change and management impacts on soybean N fixation, soil N mineralization, N<sub>2</sub>O emissions, and seed yield. *Frontiers in Plant Science*, 13, 849896. <https://doi.org/10.3389/fpls.2022.849896>

Elrys, A. S., Ali, A., Zhang, H., Cheng, Y., Zhang, J., Cai, Z., Müller, C., & Chang, S. X. (2021). Patterns and drivers of global gross nitrogen mineralization in soils. *Global Change Biology*, 27, 5950–5962. <https://doi.org/10.1111/gcb.15851>

Eviner, V. T., Chapin, F. S., III, & Vaughn, C. E. (2006). Seasonal variations in plant species effects on soil N and P dynamics. *Ecology*, 87, 974–986. [https://doi.org/10.1890/0012-9658\(2006\)87\[974%3ASVI PSE\]2.0.CO%3B2](https://doi.org/10.1890/0012-9658(2006)87[974%3ASVI PSE]2.0.CO%3B2)

Feng, X., Qin, S., Zhang, D., Chen, P., Hu, J., Wang, G., Liu, Y., Wei, B., Li, Q., Yang, Y., & Chen, L. (2022). Nitrogen input enhances microbial carbon use efficiency by altering plant-microbe-mineral interactions. *Global Change Biology*, 28, 4845–4860. <https://doi.org/10.1111/gcb.16229>

Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M., Chapin, F. S., III, Ciais, P., Malhi, Y., Obersteiner, M., Papale, D., Piao, S. L., Reichstein, M., Rodà, F., & Penuelas, J. (2014). Nutrient availability as the key regulator of global forest carbon balance. *Nature Climate Change*, 4, 471–476. <https://doi.org/10.1038/nclimate2177>

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology*, 37, 4302–4315. <https://doi.org/10.1002/joc.5086>

Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., & Voss, M. (2013). The global nitrogen cycle in the twenty-first century. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 368, 20130164. <https://doi.org/10.1098/rstb.2013.0164>

Foyer, C. H., Lam, H., Nguyen, H. T., Siddique, K. H. M., Varshney, R. K., Colmer, T. D., Cowling, W., Bramley, H., Mori, T. A., Hodgson, J. M., Cooper, J. W., Miller, A. J., Kunert, K., Vorster, J., Cullis, C., Ozga, J. A., Wahlqvist, M. L., Liang, Y., Shou, H., ... Considine, M. J. (2016). Neglecting legumes has compromised human health and sustainable food production. *Nature Plants*, 2, 16112. <https://doi.org/10.1038/nplants.2016.112>

Gaige, E., Dail, D. B., Hollinger, D. Y., Davidson, E. A., Fernandez, I. J., Sievering, H., & Haltzman, W. (2007). Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. *Ecosystems*, 10, 1133–1147. <https://doi.org/10.1007/s10021-007-9081-4>

Gei, M., Rozendaal, D. M. A., Poorter, L. B., Bongers, F., Sprent, J. I., Garner, M. D., Aide, T. M., Andrade, J. L., Balvanera, P., Becknell, J. M., Brancalion, P. H. S., Cabral, G. A. L., César, R. G., Chazdon, R. L., Cole, R. J., Colletta, G. D., de Jong, B., Denslow, J. S., Dent, D. H., ... Powers, J. S. (2018). Legume abundance along successional and rainfall gradients in Neotropical forests. *Nature Ecology & Evolution*, 2, 1104–1111. <https://doi.org/10.1038/s41559-018-0559-6>

Gei, M. G., & Powers, J. S. (2013). Do legumes and non-legumes tree species affect soil properties in unmanaged forests and plantations in Costa Rican dry forests? *Soil Biology & Biochemistry*, 57, 264–272. <https://doi.org/10.1016/j.soilbio.2012.09.013>

Grace, J. B. (2006). *Structural equation modeling and natural systems*. Cambridge University Press.

Gruber, N., & Galloway, J. N. (2008). An earth-system perspective of the global nitrogen cycle. *Nature*, 451, 293–296. <https://doi.org/10.1038/nature06592>

Guerrieri, R., Vanguelova, E. I., Michalski, G., Heaton, T. H. E., & Mencuccini, M. (2015). Isotopic evidence for the occurrence of biological nitrification and nitrogen deposition processing in forest canopies. *Global Change Biology*, 21, 4613–4626. <https://doi.org/10.1111/gcb.13018>

Hao, C., Li, D., Zhao, J., Xiao, K., & Wang, K. (2018). Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis. *Agriculture, Ecosystems & Environment*, 252, 126–131. <https://doi.org/10.1016/j.agee.2017.09.032>

Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. *Ecology*, 80, 1150–1156. [https://doi.org/10.1890/0012-9658\(1999\)080\[1150%3ATMA ORR\]2.0.CO%3B2](https://doi.org/10.1890/0012-9658(1999)080[1150%3ATMA ORR]2.0.CO%3B2)

Hedges, L. V., & Olkin, I. (1985). *Statistical methods for meta-analysis* (p. 369). Academic Press.

Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. *Psychological Methods*, 3, 486–504. <https://doi.org/10.1037/1082-989X.3.4.486>

Houseman, B., Ruess, R., Hollingsworth, T., & Verbyla, D. (2020). Can Siberian alder N-fixation offset N-loss after severe fire? Quantifying post-fire Siberian alder distribution, growth, and N-fixation in boreal Alaska. *PLoS One*, 15, e0238004. <https://doi.org/10.1371/journal.pone.0238004>

Hungate, B. A., Stiling, P. D., Dijkstra, P., Johnson, D. W., Ketterer, M. E., Hymus, G. J., Hinkle, C. R., & Drake, B. G. (2004). CO<sub>2</sub> elicits long-term decline in nitrogen fixation. *Science*, 304, 1291. <https://doi.org/10.1126/science.1095549>

Hungate, B. A., van Groenigen, K. J., Six, J., Jastrow, J. D., Lue, Y. Q., de Graaff, M. A., Van Kessel, C., & Osenber, C. W. (2009). Assessing the effect of elevated carbon dioxide on soil carbon: A comparison of four meta-analyses. *Global Change Biology*, 15, 2020–2034. <https://doi.org/10.1111/j.1365-2486.2009.01866.x>

Isbell, F., Reich, P. B., Tilman, D., Hobbie, S. E., Polasky, S., & Binder, S. (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. *Proceedings of the National Academy of Sciences of the United States of America*, 110, 11911–11916. <https://doi.org/10.1073/pnas.1310880110>

Jeffery, S., Verheijen, F., Kammann, C., & Abalos, D. (2016). Biochar effects on methane emissions from soils: A meta-analysis. *Soil Biology & Biochemistry*, 101, 251–258. <https://doi.org/10.1016/j.soilbio.2016.09.002>

Jiang, D., Xu, C., Xu, X., Luo, Y., Chen, C., Ju, C., Chen, H. Y. H., Shi, Z., & Ruan, H. (2022). Carbon and nitrogen dynamics in tropical ecosystems following fire. *Global Ecology and Biogeography*, 31, 378–391. <https://doi.org/10.1111/geb.13422>

Kuebbing, S. E., Reimer, A. P., Rosenthal, S. A., Feinberg, G., Leiserowitz, A., Lau, J. A., & Bradford, M. A. (2018). Long-term research in ecology and evolution: A survey of challenges and opportunities. *Ecology Monographs*, 88, 245–258. <https://doi.org/10.1002/ecm.1289>

Kuzyakov, Y., Friedel, J. K., & Stahr, K. (2000). Review of mechanisms and quantification of priming effects. *Soil Biology & Biochemistry*, 32, 1485–1498. [https://doi.org/10.1016/S0038-0717\(00\)00084-5](https://doi.org/10.1016/S0038-0717(00)00084-5)

Le Roux, X., Schmid, B., Poly, F., Barnard, R. L., Niklaus, P. A., Guillaumaud, N., Habekost, M., Oelmann, Y., Philippot, L., Salles, J. F., Schloter, M., Steinbeiss, S., & Weigelt, A. (2013). Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands. *PLoS One*, 8(4), e61069. <https://doi.org/10.1371/journal.pone.0061069>

Li, Z., Zeng, Z., Song, Z., Wang, F., Tian, D., Mi, W., Huang, X., Wang, J., Song, L., Yang, Z., Wang, J., Feng, H., Jiang, L., Chen, Y., Luo, Y., & Niu, S. (2021). Vital roles of soil microbes in driving terrestrial nitrogen immobilization. *Global Change Biology*, 27, 1848–1858. <https://doi.org/10.1111/gcb.15552>

Liao, W. Y., Menge, D. N. L., Lichstein, J. W., & Ángeles-Pérez, G. (2017). Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America. *Global Change Biology*, 23, 4777–4787. <https://doi.org/10.1111/gcb.13716>

Liu, Y., Wu, L., Baddeley, J. A., & Watson, C. A. (2011). Models of biological nitrogen fixation of legumes. A Review. *Agronomy for Sustainable Development*, 31, 155–172. <https://doi.org/10.1051/agro/2010008>

Lu, J., Jia, P., Feng, S., Wang, Y., Zheng, J., Ou, S., Wu, Z. H., Liao, B., Shu, W. S., Liang, J. L., & Li, J. T. (2022). Remarkable effects of microbial factors on soil phosphorus bioavailability: A country-scale study. *Global Change Biology*, 28, 4459–4471. <https://doi.org/10.1111/gcb.16213>

Lu, M., Yang, Y., Luo, Y., Fang, C., Zhou, X., Chen, J., Yang, X., & Li, B. (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. *New Phytologist*, 189, 1040–1050. <https://doi.org/10.1111/j.1469-8137.2010.03563.x>

Ma, Y., & Chen, R. (2021). Nitrogen and phosphorus signaling and transport during legume-rhizobium symbiosis. *Frontiers in Plant Science*, 12, 683601. <https://doi.org/10.3389/fpls.2021.683601>

Makkonen, M., Berg, M. P., Handa, I. T., Hättenschwiler, S., van Ruijven, J., van Bodegom, P. M., & Aerts, R. (2012). Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. *Ecology Letters*, 15, 1033–1041. <https://doi.org/10.1111/j.1461-0248.2012.01826.x>

Marino, D., Frendo, P., Ladrera, R., Zabalza, A., Puppo, A., Arrese-Igor, C., & González, E. M. (2007). Nitrogen fixation control under drought stress. Localized or systemic? *Plant Physiology*, 143, 1968–1974. <https://doi.org/10.1104/pp.107.097139>

Markham, J., & Anderson, P. (2021). Soil moisture, N, P, and forest cover effects on N fixation in alders in the southern boreal forest. *Ecosphere*, 12, e03708. <https://doi.org/10.1002/ecs2.3708>

McCulloch, L. A., Piotto, D., & Porder, S. (2021). Drought and soil nutrients effects on symbiotic nitrogen fixation in seedlings from eight Neotropical legume species. *Biotropica*, 53, 703–713. <https://doi.org/10.1111/btp.12911>

Menge, D. N. L., Levin, S. A., & Hedin, L. O. (2009). Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. *The American Naturalist*, 174, 465–477. <https://doi.org/10.1086/605377>

Menge, D. N. L., Lichstein, J. W., & Ángeles-Pérez, G. (2014). Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. *Ecology*, 95, 2236–2245. <https://doi.org/10.1890/13-2124.1>

Mitran, T., Meena, R. S., Lal, R., Layek, J., Kumar, S., & Datta, R. (2018). Role of soil phosphorus on legume production. In R. Meena, A. Das, G. Yadav, & R. Lal (Eds.), *Legumes for soil health and sustainable management* (pp. 487–510). Springer.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Medicine*, 6, e1000097. <https://doi.org/10.1371/journal.pmed.1000097>

Mooshammer, M., Wanek, W., Hämmерle, I., Fuchsleger, L., Hofhansl, F., Knoltsch, A., Schnecker, J., Takriti, M., Watzka, M., Wild, B., Keibliger, K. M., Zechmeister-Boltenstern, S., & Richter, A. (2014). Adjustment of microbial nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil nitrogen cycling. *Nature Communications*, 5, 3694. <https://doi.org/10.1038/ncomms4694>

Mueller, K. E., Hobbie, S. E., Tilman, D., & Reich, P. B. (2013). Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. *Global Change Biology*, 19, 1249–1261. <https://doi.org/10.1111/gcb.12096>

Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2009). Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. *Geoderma*, 153, 231–240. <https://doi.org/10.1016/j.geoderma.2009.08.012>

O'Connell, S., Shi, W., Grossman, J. M., Hoyt, G. D., Fager, K. L., & Creamer, N. G. (2015). Short-term nitrogen mineralization from warm-season cover crops in organic farming systems. *Plant & Soil*, 396, 353–367. <https://doi.org/10.1007/s1104-015-2594-2>

Orwin, R. G. (1983). A fail-safe N for effect size in meta-analysis. *Journal of Educational Statistics*, 8, 157–159. <https://doi.org/10.2307/1164923>

Paungfoo-Lonhienne, C., Wang, W., Yeoh, Y. K., & Halpin, N. (2017). Legume crop rotation suppressed nitrifying microbial community in a sugarcane cropping soil. *Scientific Reports*, 7, 16707. <https://doi.org/10.1038/s41598-017-17080-z>

Pellegrini, A. F. A. (2016). Nutrient limitation in tropical savannas across multiple scales and mechanisms. *Ecology*, 97, 313–324. <https://doi.org/10.1890/15-0869.1>

Pellegrini, A. F. A., Hedin, L. O., Staver, A. C., & Govender, N. (2015). Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. *Ecology*, 96, 1275–1285. <https://doi.org/10.1890/14-1158.1>

Pellegrini, A. F. A., Staver, A. C., Hedin, L. O., Charles-Dominique, T., & Tourgee, A. (2016). Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes. *Ecology*, 97, 2177–2183. <https://doi.org/10.1002/ecy.1504>

Pirhofer-Walzl, K., Rasmussen, J., Høgh-Jensen, H., Eriksen, J., Søegaard, K., & Rasmussen, J. (2012). Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. *Plant & Soil*, 350, 71–84. <https://doi.org/10.1007/s11004-011-0882-z>

Rachid, C. T. C. C., Balieiro, F. C., Peixoto, R. S., Pinheiro, Y. A. S., Piccolo, M. C., Chaer, G. M., & Rosado, A. S. (2013). Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. *Soil Biology & Biochemistry*, 66, 146–153. <https://doi.org/10.1016/j.soilbio.2013.07.005>

Raghurama, M., & Sankaran, M. (2022). Invasive nitrogen-fixing plants increase nitrogen availability and cycling rates in a montane tropical grassland. *Plant Ecology*, 223, 13–26. <https://doi.org/10.1007/s11258-021-01188-4>

Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., Knops, J. M., Naeem, S., & Trost, J. (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO<sub>2</sub>. *Nature*, 440, 922–925. <https://doi.org/10.1038/nature04486>

Risch, A. C., Zimmermann, S., Moser, B., Schütz, M., Hagedorn, F., Firn, J., Fay, P. A., Adler, P. B., Biederman, L. A., Blair, J. M., Borer, E. T., Broadbent, A. A. D., Brown, C. S., Cadotte, M. W., Caldeira, M. C., Davies, K. F., di Virgilio, A., Eisenhauer, N., Eskelinen, A., ... Ochoa-Hueso, R. (2020). Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. *Global Change Biology*, 26, 7173–7185. <https://doi.org/10.1111/gcb.15308>

Risch, A. C., Zimmermann, S., Ochoa-Hueso, R., Schütz, M., Frey, B., Firn, J. L., Fay, P. A., Hagedorn, F., Borer, E. T., Seabloom, E. W., Harpole, W. S., Knops, J. M. H., McCulley, R., Broadbent, A. A. D., Stevens, C. J., Silveira, M. L., Adler, P. B., Báez, S., Biederman, L. A., ... Moser, B. (2019). Soil net nitrogen mineralisation across global grasslands. *Nature Communications*, 10, 4981. <https://doi.org/10.1038/s41467-019-12948-2>

Robertson, G. P., Wedin, D. A., Groffman, P. M., Blair, J. M., Holland, E. A., Nadelhoffer, K. J., & Harris, D. (1999). Soil carbon and nitrogen availability nitrogen mineralization, nitrification, and soil respiration potentials in soil carbon and nitrogen availability. In G. P. Robertson, C. S. Bledsoe, D. C. Coleman, & P. Sollins (Eds.), *Nitrogen mineralization, nitrification and soil respiration potentials* (New York) (pp. 258–271). Oxford University Press.

Rodriguez, C., Carlsson, G., Englund, J., Flöhr, A., Pelzer, E., Jeuffroy, M., Makowski, D., & Jensen, E. S. (2020). Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems: A meta-analysis. *European Journal of Agronomy*, 118, 126077. <https://doi.org/10.1016/j.eja.2020.126077>

Rosenberg, M. S., Adams, D. C., & Gurevitch, J. (2000). *MetaWin: Statistical software for meta-analysis (version 2.0)*. Sinauer Associates Inc.

Rousk, K., Pedersen, P. A., Dyrnum, K., & Michelsen, A. (2017). The interactive effects of temperature and moisture on nitrogen fixation in two temperate-arctic mosses. *Theoretical and Experimental Plant Physiology*, 29, 25–36. <https://doi.org/10.1007/s40626-016-0079-1>

Seeley, M. E., Song, B., Passie, R., & Hale, R. C. (2020). Microplastics affect sedimentary microbial communities and nitrogen cycling. *Nature Communications*, 11, 2372. <https://doi.org/10.1038/s41467-020-16235-3>

Serraj, R. (2003). Atmospheric CO<sub>2</sub> increase benefits symbiotic N<sub>2</sub> fixation by legumes under drought. *Current Science*, 85, 1341–1343. <https://www.jstor.org/stable/24108138>

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. *Ecology*, 90, 363–368. <https://doi.org/10.1890/08-1034.1>

Shipley, B. (2013). The AIC model selection method applied to path analytic models compared using a d-separation test. *Ecology*, 94, 560–564. <https://doi.org/10.1890/12-0976.1>

Tamagno, S., Sadras, V. O., Haeghe, J. W., Armstrong, P. R., & Ciampitti, I. A. (2018). Interplay between nitrogen fertilizer and biological nitrogen fixation in soybean: Implications on seed yield and biomass allocation. *Scientific Reports*, 8, 17502. <https://doi.org/10.1038/s41598-018-35672-1>

Tierney, J. A., Hedin, L. O., & Wurzburger, N. (2019). Nitrogen fixation does not balance fire-induced nitrogen losses in longleaf pine savannas. *Ecology*, 100, e02735. <https://doi.org/10.1002/ecy.2735>

Tognetti, P. M., Prober, S. M., Báez, S., Chaneton, E. J., Firn, J., Risch, A. C., Schuetz, M., Simonsen, A. K., Yahdjian, L., Borer, E. T., Seabloom, E. W., Arnillas, C. A., Bakker, J. D., Brown, C. S., Cadotte, M. W., Caldeira, M. C., Daleo, P., Dwyer, J. M., Fay, P. A., ... Sankaran, M. (2021). Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. *Proceedings of the National Academy of Sciences of the United States of America*, 118, e2023718118. <https://doi.org/10.1073/pnas.2023718118>

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software*, 36, 1–48. <https://doi.org/10.1863/jss.v036.i03>

Vieira, S., Sikorski, J., Dietz, S., Herz, K., Schrumpf, M., Bruehlheide, H., Scheel, D., Friedrich, M. W., & Overmann, J. (2020). Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. *The ISME Journal*, 14, 463–475. <https://doi.org/10.1038/s41396-019-0543-4>

Vitousek, P. M., Menge, D. N. L., Reed, S. C., & Cleveland, C. C. (2013). Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. *Proceedings of the Royal Society B-Biological Sciences*, 368, 20130119. <https://doi.org/10.1098/rstb.2013.0119>

Wang, C., Chen, Z., Unteregelsbacher, S., Lu, H., Gschwendtner, S., Gasche, R., Kolar, A., Schloter, M., Kiese, R., Butterbach-Bahl, K., & Dannenmann, M. (2016). Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. *Global Change Biology*, 22, 2963–2978. <https://doi.org/10.1111/gcb.13353>

Wang, F., Li, Z., Xia, H., Zou, B., Li, N., Liu, J., & Zhu, W. (2010). Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. *Soil Science and Plant Nutrition*, 56, 297–306. <https://doi.org/10.1111/j.1747-0765.2010.00454.x>

Wang, Y., & Houlton, B. Z. (2009). Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. *Geophysical Research Letters*, 36, L24403. <https://doi.org/10.1029/2009GL041009>

Wei, X., Reich, P. B., & Hobbie, S. E. (2019). Legumes regulate grassland soil N cycling and its response to variation in species diversity

and N supply but not CO<sub>2</sub>. *Global Change Biology*, 25, 2396–2409. <https://doi.org/10.1111/gcb.14636>

Wendlandt, C. E., Gano-Cohen, K. A., Stokes, P. J. N., Jonnala, B. N. R., Zomorrodi, A. J., Al-Moussawi, K., & Sachs, J. L. (2022). Wild legumes maintain beneficial soil rhizobia populations despite decades of nitrogen deposition. *Oecologia*, 198, 419–430. <https://doi.org/10.1007/s00442-022-05116-9>

Wurzburger, N., & Miniat, C. F. (2014). Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. *Oecologia*, 174, 1117–1126. <https://doi.org/10.1007/s00442-013-2851-0>

Xu, H., Dettlo, M., Fang, S., Chazdon, R. L., Li, Y., Hau, B. C. H., Fischer, G. A., Weible, G. D., Hogan, J. A., Zimmerman, J. K., Uriarte, M., Thompson, J., Lian, J., Cao, K., Kenfack, D., Alonso, A., Bissiengou, P., Memiaghe, H. R., Valencia, R., ... Yao, T. L. (2020). Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. *Communications Biology*, 3, 317. <https://doi.org/10.1038/s42003-020-1041-y>

Yang, Y., Tilman, D., Furey, G., & Lehman, C. (2019). Soil carbon sequestration accelerated by restoration of grassland biodiversity. *Nature Communications*, 10, 718. <https://doi.org/10.1038/s41467-019-10863-w>

Yao, Y., Zhao, Z., Wei, X., & Shao, M. (2019). Effects of shrub species on soil nitrogen mineralization in the desert-loess transition zone. *Catena*, 173, 330–338. <https://doi.org/10.1016/j.catena.2018.10.016>

Yu, L., Tang, Y., Wang, Z., Gou, Y., & Wang, J. (2019). Nitrogen-cycling genes and rhizosphere microbial community with reduced nitrogen application in maize/soybean strip intercropping. *Nutrient Cycling Agroecosystems*, 113, 35–49. <https://doi.org/10.1007/s10705-018-9960-4>

Zhang, Q., Jia, X., Li, T., Shao, M., Yu, Q., & Wei, X. (2021). Decreased soil total phosphorus following artificial plantation in the loess plateau of China. *Geoderma*, 385, 114882. <https://doi.org/10.1016/j.geodrma.2020.114882>

Zhao, J., Chen, J., Beillouin, D., Lambers, H., Yang, Y., Smith, P., Zeng, Z., Olesen, J. E., & Zang, H. (2022). Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. *Nature Communications*, 13, 4926. <https://doi.org/10.1038/s41467-022-32464-0>

**DATA SOURCES**

Agbenin, J. O., & Adeniyi, T. (2005). The microbial biomass properties of a savanna soil under improved grass and legume pastures in northern Nigeria. *Agriculture, Ecosystems & Environment*, 109, 245–254.

Alvarez, G., Chaussod, R., Loiseau, P., & Delpy, R. (1998). Soil indicators of C and N transformations under pure and mixed grass-clover swards. *European Journal of Agronomy*, 9, 157–172.

Aschi, A., Aubert, M., Riah-Anglet, W., Nélieu, S., Dubois, C., Akpa-Vinceslas, M., & Trinssoutrot-Gattin, I. (2017). Introduction of Faba bean in crop rotation: Impacts on soil chemical and biological characteristics. *Applied Soil Ecology*, 120, 219–228.

Balota, E. L., & Chaves, J. C. D. (2010). Enzymatic activity and mineralization of carbon and nitrogen in soil cultivated with coffee and green manures. *Revista Brasileira de Ciencia Do Solo*, 34, 1573–1583.

Balota, E. L., Filho, A. C., Andrade, D. S., & Dick, R. P. (2004). Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. *Soil & Tillage Research*, 77, 137–145.

Barrios, E., Buresh, R. J., & Sprent, J. I. (1996). Nitrogen mineralization in density fractions of soil organic matter from maize and legume cropping systems. *Soil Biology & Biochemistry*, 28, 1459–1465.

Benintende, S. M., Benintende, M. C., Sterren, M. A., & de Battista, J. J. (2008). Soil microbiological indicators of soil quality in four rice rotations systems. *Ecological Indicators*, 8, 704–708.

Bernhard-Reversat, F. (1988). Soil nitrogen mineralization under a eucalyptus plantation and a natural acacia forest in Senegal. *Forest Ecology and Management*, 23, 233–244.

Birk, E. M. (1992). Nitrogen availability in radiata pine plantations on former pasture sites in southern New South Wales. *Plant & Soil*, 143, 115–125.

Borase, D. N., Murugeas, S., Nath, C. P., Hazra, K. K., Singh, S. S., Kumar, N., Singh, U., & Praharaj, C. S. (2020). Long-term impact of grain legumes and nutrient management practices on soil microbial activity and biochemical properties. *Archives of Agronomy and Soil Science*, 67, 2015–2032.

Broersma, K., Juma, N. G., & Robertson, J. A. (1996). Net nitrogen mineralization from a gray Luvisol under diverse cropping systems in the Peace River region of Alberta. *Canadian Journal of Soil Science*, 76, 117–123.

Cao, B., Roelcke, M., Dauck, H. P., Küsters, A., Cai, G. X., & Nieder, R. (2004). Nitrogen mineralization in soils under organic farming and conservation tillage as compared to conventional management. *Proceedings of the EUROSOL Conference*, Freiburg/Germany.

Carpenter-Boggs, L., Pikul, J. L., Jr., Vigil, M. F., & Riedell, W. E. (2000). Soil nitrogen mineralization influenced by crop rotation and nitrogen fertilization. *Soil Science Society of America Journal*, 64, 2038–2045.

Chen, J., Shen, W., Xu, H., Li, Y., & Luo, T. (2019). The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: A comparison between legume and non-legume plantations. *Frontiers in Microbiology*, 10, 508.

Chen, X., Liu, Q., & Zhang, G. (2021). Effects of different crop rotation modes on soil fertility and rice yield in Taihu region. *Jiangsu J Agricultural Science*, 37, 874–883.

Collins, H. P., Rasmussen, P. E., & Douglas, C. L., Jr. (1992). Crop rotation and residue management effects on soil carbon and microbial dynamics. *Soil Science Society of America Journal*, 56, 783–788.

Cong, W. F., & Eriksen, J. (2018). Forbs differentially affect soil microbial community composition and functions in unfertilized ryegrass-red clover leys. *Soil Biology & Biochemistry*, 121, 87–94.

Dalias, P. (2015). Grain legume effects on soil nitrogen mineralization potential and wheat productivity in a Mediterranean environment. *Archives of Agronomy and Soil Science*, 61, 461–473.

de Notaris, C., Olesen, J. E., Sørensen, P., & Rasmussen, J. (2020). Input and mineralization of carbon and nitrogen in soil from legume-based cover crops. *Nutrient Cycling Agroecosystems*, 116, 1–18.

Deng, S. P., & Tabatabai, M. A. (2000). Effect of cropping systems on nitrogen mineralization in soils. *Biology & Fertility of Soils*, 31, 211–218.

Dhakal, D., & Islam, M. A. (2018). Grass-legume mixtures for improved soil health in cultivated agroecosystem. *Sustainability*, 10, 2718.

Dijkstra, F. A., Hobbie, S. E., & Reich, P. B. (2006). Soil processes affected by sixteen grassland species grown under different environmental conditions. *Soil Science Society of America Journal*, 70, 770–777.

ElHaris, M. K., Cochran, V. L., Elliott, L. F., & Bezdecik, D. F. (1983). Effect of tillage, cropping, and fertilizer management on soil nitrogen mineralization potential. *Soil Science Society of America Journal*, 47, 1157–1161.

Erickson, H., Davidson, E. A., & Keller, M. (2002). Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest. *Oecologia*, 130, 297–308.

Erickson, H. E., Soto, P., Johnson, D. W., Roath, B., & Hunsaker, C. (2005). Effects of vegetation patches on soil nutrient pools and fluxes within a mixed-conifer forest. *Forest Science*, 51, 211–220.

Esponza, S., Ovalle, C., Zagal, E., Matus, I., & del Pozo, A. (2015). Contribution of legumes to the availability of soil nitrogen and its uptake by wheat in Mediterranean environments of Central Chile. *Chilean Journal of Agricultural Research*, 75, 111–121.

Eviner, V. T., Chapin, F. S., III, & Vaughn, C. E. (2006). Seasonal variations in plant species effects on soil N and P dynamics. *Ecology*, 87, 974–986.

Fernández, F. G., Fabrizzi, K. P., & Naeve, S. L. (2016). Corn and soybean's season-long in-situ nitrogen mineralization in drained and undrained soils. *Nutrient Cycling Agroecosystems*, 107, 33–47.

Fortuna, A., Blevins, R. L., Frye, W. W., Grove, J., & Cornelius, P. (2008). Sustaining soil quality with legumes in no-tillage systems. *Communications in Soil Science and Plant Analysis*, 39, 1680–1699.

Frankow-Lindberg, E., & Dahlin, A. S. (2013). N<sub>2</sub> fixation, N transfer, and yield in grassland communities including a deep-rooted legume or non-legume species. *Plant & Soil*, 370, 567–581.

Frazão, L. A., de Cássia Piccolo, M., Feigl, B. J., Cerri, C. C., & Cerri, C. E. P. (2010). Inorganic nitrogen, microbial biomass and microbial activity of a sandy Brazilian Cerrado soil under different land uses. *Agriculture, Ecosystem Environment*, 135, 161–167.

Garcia-Montiel, D. C., & Binkley, D. (1998). Effect of *Eucalyptus saligna* and *Albizia falcataria* on soil processes and nitrogen supply in Hawaii. *Oecologia*, 113, 547–556.

Gei, M. G., & Powers, J. S. (2013). Do legumes and non-legumes tree species affect soil properties in unmanaged forests and plantations in Costa Rican dry forests? *Soil Biology & Biochemistry*, 57, 264–272.

Gentry, L. E., Below, F. E., David, M. B., & Bergerou, J. A. (2001). Source of the soybean N credit in maize production. *Plant & Soil*, 236, 175–184.

Ghimire, R., Bista, P., & Machado, S. (2019). Long-term management effects and temperature sensitivity of soil organic carbon in grassland and agricultural soils. *Scientific Reports*, 9(12), 151.

Gijssman, J., Oberson, A., Friesen, D. K., Sanz, J. I., & Thomas, R. J. (1997). Nutrient cycling through microbial biomass under rice-pasture rotations replacing native savanna. *Soil Biology & Biochemistry*, 29, 1433–1441.

Gil, J. L., & Fick, W. H. (2001). Soil nitrogen mineralization in mixtures of eastern gamagrass with alfalfa and red clover. *Agronomy Journal*, 93, 902–910.

Gómez-Rey, M. X., Garcés, A., & Madeira, M. (2012). Soil organic-C accumulation and N availability under improved pastures established in Mediterranean oak woodlands. *Soil Use and Management*, 28, 497–507.

Graef, R., Cambardella, C. A., & Liebman, M. Z. (2004). Legume identity and timing of incorporation effects on soil responses to green manure. *Iowa State Research Farm Progress Reports*, 1383, 2380.

Gürlevik, N., & Karatepe, Y. (2016). Long-term effects of afforestation on soil characteristics and net nitrogen mineralization in sandy soils. *Austrian Journal of Forest Science*, 3, 187–202.

He, H., Miao, Y., Zhang, L., Chen, Y., Gan, Y., Liu, N., Dong, L., Dai, J., & Chen, W. (2020). The structure and diversity of nitrogen functional groups from different cropping systems in Yellow River Delta. *Microorganisms*, 8, 424.

Hickman, J. E., Wu, S. L., Mickley, L. J., & Lerdau, M. T. (2010). Kudzu (*Pueraria montana*) invasion doubles emissions of nitric oxide and increases ozone pollution. *Proceedings of the National Academy Sciences of the United States of America*, 107, 10,115–10,119.

Kong, W., Yao, Y., Hou, L., Bao, K., Zhang, L., & Wei, X. (2022). Effects of vegetation presence on soil net N mineralization are independent of landscape position and vegetation type in an eroding watershed. *Agriculture, Ecosystem Environment*, 325(107), 743.

Kumar, M., Kundu, D. K., Ghorai, A. K., Mitra, S., & Singh, S. R. (2018). Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in Inceptisols of eastern Indo-Gangetic plain. *Soil & Tillage Research*, 178, 108–117.

Laungani, R., & Knops, J. M. H. (2012). Microbial immobilization drives nitrogen cycling differences among plant species. *Oikos*, 121, 1840–1848.

Li, Z., Peng, S., Rae, D. J., & Zhou, G. (2001). Litter decomposition and nitrogen mineralization of soils in subtropical plantation forests of southern China, with special attention to comparisons between legumes and non-legumes. *Plant & Soil*, 229, 105–116.

Li, Z., Weng, H., & Yu, Z. (1995). The impact of human activities on the soil nitrogen mineralization in artificial forests. *Chinese Bulletin of Botany*, 12, 142–148.

López-Bellido, L., López-Garrido, F. J., Fuentes, M., Clastillo, J. E., & Fernández, E. J. (1997). Influence of tillage, crop rotation and nitrogen fertilization on soil organic matter and nitrogen under rain-fed Mediterranean conditions. *Soil & Tillage Research*, 43, 277–293.

Lu, T., Wang, Y., Zhu, H., Wei, X., & Shao, M. (2020). Drying-wetting cycles consistently increase net nitrogen mineralization in 25 agricultural soils across intensity and number of drying-wetting cycles. *Science of the Total Environment*, 710(135), 574.

Matusso, J. M. M., Mugwe, J. N., & Mucheru-Muna, M. (2014). Effects of different maize (*Zea mays* L.)–Soybean (*Glycine max* (L.) Merrill) intercropping patterns on soil mineral-N, N-uptake and soil properties. *African Journal of Agricultural Research*, 9, 42–55.

McDaniel, M. D., & Grandy, A. S. (2016). Soil microbial biomass and function are altered by 12 years of crop rotation. *Soil*, 2, 583–599.

Meng, Y. L., Chua-Ona, T., & Thompson, M. L. (2016). Short-term nitrogen mineralization potential in soils of biofuel cropping systems. *Soil Science*, 181, 503–512.

Mo, Q., Li, Z., Zhu, W., Zou, B., Li, Y., Yu, S., Ding, Y., Chen, Y., Li, X., & Wang, F. (2016). Reforestation in southern China: Revisiting soil N mineralization and nitrification after 8 years restoration. *Scientific Reports*, 6(19), 770.

Montagnini, F., & Sancho, F. (1994). Net nitrogen mineralization in soils under six indigenous tree species, an abandoned pasture and a secondary forest in the Atlantic lowlands of Costa Rica. *Plant & Soil*, 162, 117–124.

Mueller, K. E., Hobbie, S. E., Tilman, D., & Reich, P. B. (2013). Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. *Global Change Biology*, 19, 1249–1261.

Murphy, D. V., Fillery, I. R. P., & Sparling, G. P. (1998). Seasonal fluctuations in gross N mineralisation, ammonium consumption, and microbial biomass in a Western Australian soil under different land uses. *Australian Journal of Agricultural Research*, 49, 523–535.

Myrold, D. D., & Huss-Danell, K. (2003). Alder and lupine enhance nitrogen cycling in a degraded forest soil in northern Sweden. *Plant & Soil*, 254, 47–56.

Nikiema, P., Nzokou, P., & Rothstein, D. (2012). Effects of groundcover management on soil properties, tree physiology, foliar chemistry and growth in a newly established Fraser fir (*Abies fraseri* [Pursh] Poir) plantation in Michigan, United States of America. *New Forest*, 43, 213–230.

Omay, A. B., Rice, C. W., Maddux, L. D., & Gordon, W. B. (1997). Changes in soil microbial and chemical properties under long-term crop rotation and fertilization. *Soil Science Society of America Journal*, 61, 1672–1678.

Paungfoo-Lonhienne, C., Wang, W., Yeoh, Y. K., & Halpin, N. (2017). Legume crop rotation suppressed nitrifying microbial community in a sugarcane cropping soil. *Scientific Reports*, 7(16), 707.

Pereira, E. L., Santos, S. A. P., Arrobas, M., & Patrício, M. S. (2011). Microbial biomass and N mineralization in mixed plantations of broadleaves and nitrogen-fixing species. *Forest System*, 20, 516–524.

Perroni-Ventura, Y., Montaña, C., & García-Oliva, F. (2010). Carbon-nitrogen interactions in fertility Island soil from a tropical semi-arid ecosystem. *Functional Ecology*, 24, 233–242.

Pinto, A., Bustamante, M. M. C., da Silva, M. R. S. S., Kisselle, K. W., Brossard, M., Kruger, R., Zepp, R. G., & Burke, R. A. (2006). Effects of different treatments of pasture restoration on soil trace gas emissions in the Cerrados of Central Brazil. *Earth Interactions*, 10, 1–26.

Raghurama, M., & Sankaran, M. (2022). Invasive nitrogen-fixing plants increase nitrogen availability and cycling rates in a montane tropical grassland. *Plant Ecology*, 223, 13–26.

Rao, I. M., Ayarza, M. A., & Thomas, R. J. (1994). The use of carbon isotope ratios to evaluate legume contribution to soil enhancement in tropical pastures. *Plant & Soil*, 162, 177–182.

Rego, T. J., & Seeling, B. (1996). Long-term effects of legume-based cropping systems on soil nitrogen status and mineralization in Vertisols. In *Proceedings of the International Workshop: Dynamics of Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropics*, Patancheru, Andhra Pradesh, India, pp. 21–25.

Rigon, J. P. G., Franzluebbers, A. J., & Calonego, J. C. (2020). Soil aggregation and potential carbon and nitrogen mineralization with cover crops under tropical no-till. *Journal of Soil and Water Conservation*, 75, 601–609.

Robles, M. D., & Burke, I. C. (1997). Legume, grass, and conservation reserve program effects on soil organic matter recovery. *Ecological Applications*, 7, 345–357.

Sainju, U. M., Lenssen, A., Caesar-Thonhat, T., & Waddell, J. (2007). Dryland plant biomass and soil carbon and nitrogen fractions on transient land as influenced by tillage and crop rotation. *Soil & Tillage Research*, 93, 452–461.

Sainju, U. M., Terrill, T. H., Gelaye, S., & Singh, B. P. (2006). Soil carbon and nitrogen pools under long-term productivity of rhizoma peanut and perennial weeds management systems. *Archives of Agronomy and Soil Science*, 52, 45–59.

Sánchez-Moreno, S., Smukler, S., Ferris, H., O'Geen, A. T., & Jackson, L. E. (2008). Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm. *Biology & Fertility of Soils*, 44, 727–744.

Schroth, G., Salazar, E., & da Silva Jr, J. P. (2001). Soil nitrogen mineralization under tree crops and a legume cover crop in multi-strata agroforestry in Central Amazonia: Spatial and temporal patterns. *Experimental Agriculture*, 37, 253–267.

Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2004). Impact of native tree plantations on mine spoil in a dry tropical environment. *Forest Ecology and Management*, 187, 49–60.

Soon, Y. K., Clayton, G. W., & Rice, W. A. (2001). Tillage and previous crop effects on dynamics of nitrogen in a wheat-soil system. *Agronomy Journal*, 93, 842–849.

Sun, F., Pan, K., Olatunji, O. A., Li, Z., Chen, W., Zhang, A., Song, D., Sun, X., Huang, D., & Tan, X. (2019). Specific legumes allay drought effects on soil microbial food web activities of the focal species in agroecosystem. *Plant & Soil*, 437, 455–471.

Thakare, R., & Gupta, V. R. (2007). C and N mineralization as influenced by irrigated and rainfed cropping systems. *Indian Journal of Agricultural Research*, 41, 262–266.

Tian, Y., Liu, J., Zhang, X., & Gao, L. (2010). Effects of summer catch crop, residue management, soil temperature and water on the succeeding cucumber rhizosphere nitrogen mineralization in intensive production systems. *Nutrient Cycling Agroecosystems*, 88, 429–446.

van Eekeren, N., van Liere, D., de Vries, F., Rutgers, M., de Goede, R., & Brussaard, L. (2009). A mixture of grass and clover combines the positive effects of both plant species on selected soil biota. *Applied Soil Ecology*, 42, 254–263.

Wang, F., Li, Z., Xia, H., Zou, B., Li, N., Liu, J., & Zhu, W. (2010). Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen

transformation during forest restoration in southern China. *Soil Science and Plant Nutrition*, 56, 297–306.

Wang, F., Zhu, W., Xia, H., Fu, S., & Li, Z. (2010). Nitrogen mineralization and leaching in the early stages of a subtropical reforestation in southern China. *Ecological Restoration*, 18, 313–322.

Wang, W., Li, Y., Zhao, Q., Liu, X., Long, F., & Mo, Q. (2018). Effects of labile carbon and phosphorus addition on N transformations with N- vs. non-N-fixing tree plantations. *Ecosphere*, 9, e02165.

Wang, Y., Ji, H., Wang, R., Guo, S., & Gao, C. (2017). Impact of root diversity upon coupling between soil C and N accumulation and bacterial community dynamics and activity: Result of a 30 year rotation experiment. *Geoderma*, 292, 87–95.

Wani, S. P., Rego, T. J., Rajeswari, S., & Lee, K. K. (1995). Effect of legume-based cropping systems on nitrogen mineralization potential of vertisol. *Plant & Soil*, 175, 265–274.

Wei, X., Reich, P. B., & Hobbie, S. E. (2019). Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO<sub>2</sub>. *Global Change Biology*, 25, 2396–2409.

Wei, X., Shao, M., Fu, X., Ågren, G. I., & Yin, X. (2011). The effects of land use on soil N mineralization during the growing season on the northern loess plateau of China. *Geoderma*, 160, 590–598.

Wells, M. L. (2011). Nitrogen availability in pecan orchard soil: Implications for pecan fertilizer management. *Hortscience*, 46, 1294–1297.

Wichern, F., Mayer, J., Joergensen, R. G., & Müller, T. (2007). Release of C and N from roots of peas and oats and their availability to soil microorganisms. *Soil Biology & Biochemistry*, 39, 2829–2839.

Xu, L., Xu, X., Tang, X., Xin, X., Ye, L., Yang, G., Tang, H., Lv, S., Xu, D., & Zhang, Z. (2018). Managed grassland alters soil N dynamics and N<sub>2</sub>O emissions in temperate steppe. *Journal of Environmental Science*, 66, 20–30.

Yao, Y., Shao, M., Fu, X., Wang, X., & Wei, X. (2019). Effect of grassland afforestation on soil N mineralization and its response to soil texture and slope position. *Agriculture, Ecosystem Environment*, 276, 64–72.

Yao, Y., Zhao, Z., Wei, X., & Shao, M. (2019). Effects of shrub species on soil nitrogen mineralization in the desert-loess transition zone. *Catena*, 173, 330–338.

Yusuf, A., Abaidoo, R. C., Iwuafor, E. N. O., Olufajo, O. O., & Sanginga, N. (2009). Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna. *Agriculture, Ecosystem Environment*, 129, 325–331.

Zaman, M., & Chang, S. (2004). Substrate type, temperature, and moisture content affect gross and net N mineralization and nitrification rates in agroforestry systems. *Biology & Fertility of Soils*, 39, 269–279.

Zavyalovaa, N. E., Vasbievaa, M. T., & Fomina, D. S. (2020). Microbial biomass, respiratory activity and nitrogen fixation in soddy-podzolic soils of the pre-urals area under various agricultural uses. *Eurasian Soil Science*, 53, 383–388.

Zhao, S., Shi, S., Chen, J., Chen, X., & He, J. (2019). Effects of different rotation patterns on soil carbon and nitrogen contents and enzyme activities in the arid region of Central Gansu. *Acta Agricola Sinica*, 27, 817–824.

Zhou, X., Liu, X., Rui, Y., Chen, C., Wu, H., Wu, H., & Xu, Z. (2011). Symbiotic nitrogen fixation and soil N availability under legume crops in an arid environment. *Journal of Soils and Sediments*, 11, 762–770.

Zhou, X., Wu, H., Koetz, E., Xu, Z., & Chen, C. (2012). Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment. *Applied Soil Ecology*, 53, 49–55.

Zhu, X., Chen, H., Zhang, W., Huang, J., Fu, S., Liu, Z., & Mo, J. (2016). Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N<sub>2</sub>-fixing vs. non-N<sub>2</sub>-fixing tree species. *Plant & Soil*, 399, 61–74.

## SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

**How to cite this article:** Gou, X., Reich, P. B., Qiu, L., Shao, M., Wei, G., Wang, J., & Wei, X. (2023). Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types. *Global Change Biology*, 00, 1–16. <https://doi.org/10.1111/gcb.16742>