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ABSTRACT

Photochemical reactions often involve states that are closely coupled due to near degeneracies, for
example by proximity to conical intersections. Therefore, a multistate method is used to accurately
describe these states; for example, ordinary perturbation theory is replaced by quasidegenerate per-
turbation theory. Multiconfiguration pair-density functional theory (MC-PDFT) provides an efficient
way to approximate the full dynamical correlation energy of strongly correlated systems, and we
recently proposed compressed multistate pair-density functional theory (CMS-PDFT) to treat closely
coupled states. In the present paper, we report the implementation of analytic gradients for CMS-
PDFT in both OpenMolcas and PySCF, and we illustrate the use of these gradients by applying the

method to the excited states of formaldehyde and phenol.
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1. Introduction

Photochemical reactions can involve highly multicon-
figurational electronic states that have similar electronic
energies [1]. Realistic dynamical simulations of photo-
chemical reactions require accurate potential energy sur-
faces, and for such cases these can only be produced
by a quantum-chemical model of electronic structure
if that model is simultaneously able to represent (1)
the static correlation of intrinsically multiconfigurational
states that are not dominated by a single determinant, (2)
the quantitative effect of dynamic electron correlation,
and (3) state interaction, which requires the final approx-
imations to the electronic states of interest to be simul-
taneous eigenvectors of the same matrix Hamiltonian.
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State interaction is responsible for topological features
of adiabatic potential energy surfaces such as conical
intersections and locally avoided crossings. Some exam-
ples of quantum-chemical electronic-structure meth-
ods that can model all three of these features are
multireference configuration interaction (MRCI) [2,3],
extended multiconfiguration quasi-degenerate pertur-
bation theory (XMC-QDPT2) [4], quasi-degenerate n-
electron valence perturbation theory (QD-NEVPT2) [5],
extended multistate complete active space perturbation
theory (XMS-CASPT2) [6], extended density-weighted
CASPT2 (XDW-CASPT2) [7], and rotated multistate
CASPT2 (RMS-CASPT?2) [8]. In these methods, the step
of the calculation responsible for modelling the full
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dynamic electronic correlation (configuration interac-
tion or perturbation theory) incurs significant computa-
tional cost.

Multiconfiguration pair-density functional theory
(MC-PDFT) [9-11], in which the electronic energy is
calculated by a functional of the kinetic energy, elec-
tron density, and on-top pair density of an underlying
multiconfiguration wave function, provides an efficient
alternative to those methods. The MC-PDFT method by
itself defines an expression for the total energy of a state
but does not provide a procedure for state interaction.
We have proposed a state-interaction model and sev-
eral multistate extensions to MC-PDFT to address this
issue [12,13]. The multistate PDFT methods are more
efficient, and they evaluate state interaction by rotating
the basis of state-averaged complete-active-space self-
consistent-field (SA-CASSCF) wave functions within a
model space into an intermediate-state representation,
such that the molecular Hamiltonian furnishes nonzero
coupling elements between intermediate states, while
their energies (diagonal elements of the model-space
effective Hamiltonian) are evaluated using MC-PDFT.
The most promising method appears to be what we have
named compressed multistate PDFT (CMS-PDFT) [14].
The CMS-PDFT method defines the intermediate states
as those linear combinations that maximise the sum of
the classical Coulomb energies of the intermediate states,
and this method was found to produce qualitatively
correct and reasonably quantitatively accurate potential
energy surfaces for a wide variety of systems exhibit-
ing significant state interaction with a computational cost
nearly equivalent to that of evaluating the same number
of MC-PDFT total energies [14].

Here, we develop and implement analytic gradients
of the CMS-PDFT state energies, which is an important
step towards enabling practical ab initio nonadiabatic
molecular dynamical simulations using this electronic
structure method. The CMS-PDFT energy is not varia-
tional, and analytic gradients therefore require recasting
CMS-PDFT energies in terms of a constrained energy
minimisation for which the Lagrange multipliers must be
evaluated [15,16], similar to cases treated previosuly for
state-averaged CASSCF (SA-CASSCF) [17], MC-PDFT
with a state-specific CASSCF reference wave function
[18], MC-PDFT with a reference wave function from
an SA-CASSCF calculation [19], and MC-PDFT with
density fitting [20].

We implement the analytic gradients in two elec-
tronic structure programmes, and we numerically test
our implementations by comparing them to one another
and to numerical gradients. Furthermore, the structural
parameters obtained by using the gradients to opti-
mise the geometries of excited states and the excitation

energies of the excited states are compared to those of
other methods. In particular, properties are compared
between the CMS-PDFT method and MC-PDFT calcu-
lations based on SA-CASSCF wave functions.

The rest of the paper is organised as follows: Section 2
briefly summarises the CMS-PDFT method for elec-
tronic energies and wave functions and presents the
general algorithm and the structure of CMS-PDFT ana-
Iytic gradient calculations; the Computational Details
Section 3 presents the details of the computer simu-
lations; the Results and Discussion Section 4 assesses
the accuracy of the CMS-PDFT analytic gradients, the
molecular structures, and the adiabatic excitation ener-
gies for selected molecules. Section 5 is a Conclusion
Section. The article is supported with supplementary
material containing additional programmable equations,
optimised geometries, and gradient data.

2. Theory

Throughout this manuscript, lowercase letters other than
X, y, z index molecular orbitals (MOs), and capital let-
ters other than X, Y, Z index many-electron states within
a given complete active space (CAS). Specific types of
many-electron states are identified with specific letter
ranges: A, B for configuration state functions (CSFs),
including the special case of single determinants; I, J for
SA-CASSCE reference states, P, Q, R, S, T, U for CMS-
PDFT intermediate states, and M, N for CMS-PDFT final
states. For MOs, p, g, 1, s, t indicate general MOs, 4, j,
k, I indicate active MOs, ¢ indicates an inactive (core)
MO (which is doubly occupied in all configurations) and
a indicates a virtual MO (which is unoccupied in all
configurations).

The uppercase letters X, Y, Z indicate three different
types of unitary group generators that define the wave
function in the CMS-PDFT method: X for orbital rota-
tions and Y and Z for many-electron state rotations (i.e.
unitary transformations of the configuration interaction
[CI] vectors). Rotations between two states that are both
within a particular model space are indicated by Z, and
rotations between a state within the model space and
another state outside of it are indicated by Y. The lower-
case letters x, y, z indicate a set of Lagrange multipliers for
the corresponding uppercase-letter generators or their
associated variables.

In what follows we proceed from the fundamentals of
the CMS-PDFT energy to the details of constructing the
corresponding nuclear gradients.

2.1. CMS-PDFT

CMS-PDFT energies and wave functions are the solu-
tions to an eigenequation for an effective Hamiltonian



defined in a model space of ngs > 2 multideterminantal
wave functions:

IN) (NJHMS|M) = |N) SmnES™, (1)
where
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where Hpg = (P|H|Q) is a matrix element of the molec-
ular electronic Hamiltonian and

1
PDFT 2 PP 2 PP PP
Pq pq.r,s

+ Eotlpp, Ip], 3)

is the MC-PDFT energy expression: Vnn for the inter-
nuclear Coulomb repulsion; h and g respectively for the
one- and two-electron Hamiltonian interaction elements;
DPP| pp, and Tp respectively for the one-body reduced
density matrix (1-RDM), density, and on-top pair den-
sity for state P; and Egt[pp, [1p] for the on-top energy
functional that provides the energetic contributions due
to electron correlation and exchange.

The states | P), |Q), etc. defining HOMS iy Equation (2)
span a model space constructed by an underlying SA-
CASSCEF calculation,

P) =" (11P), (4)
1

where |I) are SA-CASSCF wave functions. The unitary
transformation coefficients ((I|P)) are determined by
maximising the sum of the classical electron-electron
Coulomb energies under rotation of the states defining
the model space,

(I|P) = argmaXQafa: (5)
1
Qu-a=3) > &ikDj Dy (6)
P ikl

The transformation from the SA-CASSCEF basis (|I),|]))
to the CMS-PDFT intermediate-state basis (|P),|Q))
is necessary because PDFT does not furnish a way to
approximate the Hamiltonian matrix elements coupling
different states. Furthermore, in the SA-CASSCEF basis,
the off-diagonal Hamiltonian matrix elements appearing
in Equation (2) are identically zero by construction and
therefore cannot be used to treat state interaction. The
motivation for the specific form of the objective function
defining the intermediate states, Q,—, in Equation (6), is
described in Ref. [14].
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2.2. Derivatives of the CMS objective function

In anticipation of the requirements of Section 2.3 below,
we here present the first and second derivatives of the
CMS-PDFT objective function, Q,—,, with respect to
rotation between intermediate states. These derivatives
can be utilised in a straightforward way to implement a
Newton-Raphson gradient-descent algorithm for solving
Equation (5) above, although this was not the algorithm
implemented originally in the previous work presenting
the CMS-PDFT method [14].
Parameterising intermediate state | P) as

|P) — exp [Z] P), %
with
2= Zoo (1Q (P - 1P) (Q), (8)
P>Q
and defining
Wes = > gimDj Dy 9)

ikl
PR _ PS sP PQ PR PR
Vs = dar (Wss + Wpp = Wsq — W — 4WQS>’
(10)

where DPQ is the one-body transition density matrix
between states P and Q, we have

1
Qa—a = 5 XP: W}}:}}:, (11)
8Qa—a QP PQ
0Zrg (Wit = i) (12)
9°Qa—a

— VR QR PS Qs
ZegoZes @~V T Vet Ve (19

The solution of Equation (5) corresponds to a stationary
point at which the Hessian is negative-definite,

9Qa—a

=0, 14
o (14)

HE ™ <0, (15)

where HS}*“ is the Hessian matrix with elements given
by Equation (13).

2.3. Analytic gradient formalism

It is straightforward to demonstrate that the final CMS-
PDFT energies, E](\:/IMS, are stationary with respect to
their expansion coefficients in terms of the intermediate
states, (P|M). Therefore, the derivatives of the expansion
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coeflicients upon perturbation of the physical Hamilto-
nian do not contribute to the molecular gradients of the
CMS-PDFT energies. As a consequence, differentiation
of CMS-PDFT effective Hamiltonian matrix elements
can be substituted for differentiation of CMS-PDFT final
state total energies without loss of generality,

dEG"S =Y " (M|P) dHy® (QIM),  (16)
PQ

which is convenient because partial derivatives of HI%/[S
have simpler programmable expressions than those of
E%/IMS due to the form of Equation (2). Therefore, in the
following, we will consider the gradient of HI%/IS rather
than that of ESM® directly, with the understanding that
the unitary transformation described by Equation (16)
is applied to any equation in which BHI%AS or dHI%/IS
appears.

The matrix elements of the effective Hamiltonian
are not stationary with respect to their orbital coeffi-
cients and CI vectors. Therefore, the Hellmann-Feynman
theorem does not apply, and we instead make use
of Lagrange’s method of undetermined multipliers to
recast the expressions for H}%AS as the solutions to a
constrained-optimisation problem. We parameterise the
intermediate-state wave functions as

|P) — exp [)A(] exp [f/] exp [2] |P), (17)

where Z is defined by Equation (8) and

X = Z prq (A;oeqa - Egaepo) > (18)

p>q o

=" Voa (Qual4) (PL = 1P) (A1 Qss) . (19)
P,A

where 2;0 (EPG) creates (annihilates) an electron of spin
o in the pth orbital, where |A) is a single determinant or
CSE, and where

Qa=1-) [P)(P|. (20)
P

The variables X;,; and Ypa, respectively, denote rotations
between orbitals and rotations between many-electron
states within the model space and those outside of it.
The latter need to be explicitly separated from the rota-
tions between two states within the model space [Zpq
from Equation (8)] using the projection operator QSA,
because Yp4 and Zpq satisfy two unrelated sets of optimi-
sation conditions in the CMS-PDFT energy calculation.
The effect of the projection operator is accounted for by
requiring that every row of the matrix Y (and its cor-
responding Lagrange-multiplier matrix y; see below) is

orthogonal to all intermediate states (or equivalently to
all reference or final states):

D Y (AlQ =0 VPQ (21)
A

The minimisation of the state-averaged energy of the
underlying SA-CASSCEF calculation (Ecas) determines X
and Y, whereas Equations (14) and (15) determines Z, so
the Lagrangian for CMS-PDFT is written as

0Ecas 0Ecas
[CMS _ geMs | -
PQ PQ ; P) Xpq Pq ;{: 9Yra YRA

+ Z 8Qa_aZRs, (22)

where, as a reminder, uppercase X, Y, Z indicate the wave
function variables and lowercase x, y, z indicate the cor-
responding Lagrange multipliers. The values of the latter
are determined by solving for

OLGYS  ALEYS LGS

=0, (23
0Xp;  0Yra  0Zgs

so that the Lagrangian is stationary in X, Y, Z,x, y, and
z. The dependence of these parameters on the molecular
geometry can therefore be neglected when evaluating the
molecular gradient,

dHCMS dﬁCMS aﬁCMS
PO TR (24)
d d oA

2.4. Determination of the Lagrange multipliers

Substituting Equation (22) into (23) yields a system of
coupled linear equations,

VXHggIS Hf&As H)E&As H}Q(azfa %
 AEE Al
VzHpg 0 o HZ:|\z
0
=10}, (25)
0
whereX,..., Vx, ..., andHé( , ... are vectors of Lagrange

multipliers, vectors of first derivatives with respect to
wave function variables, and Hessian matrix blocks of
some function f with respect to wave function variables,
respectively.

Some of the elements of the second-derivative matrix
in Equation (25) are zero by construction, because Ecag
is insensitive to rotations among intermediate states. The

sole nonzero block in the Z rows, Hg}fa, was presented in



Section 2.2, and we assume that the model space is small
enough to store it in memory and invert it noniteratively,

—1
= (Hgga) . VZHGYS. (26)

We then solve for x and y with Z fixed by rearranging
Equation (25):

VxHSYS + Hey* - 2 L (S s (?c)
v+ 2) e wli )

0
()

using the standard preconditioned conjugate gradient
iterative solver.

Most of the gradient vectors and Hessian blocks
appearing in Equations (25)-(27) are slight modifica-
tions or straightfoward generalisations of similar quan-
tities that appear in the programmable equations for
SA-CASSCEF [17] or MC-PDFT based on SA-CASSCF
wave functions [19]. For instance, the Hessian of the
SA-CASSCF average energy, HECAS, is well-established
and is unchanged in the context of CMS-PDFT inas-
much as the Y sectors are expressed in the reference-state
basis (|I),|J)). (In practice, we evaluate the Hessian-
vector product of Hy{*® in the intermediate-state basis
(IP),Q)); this modifies the form of the equation some-
what, as described in Section 1 of the supplementary
material.)

The driving vector of Equation (25) (Vx, Vy, Vz) is
either a minor generalisation of the energy response for
MC-PDFT with an SA-CASSCF wave function [19], or
an off-diagonal generalisation of the SA-CASSCF energy
response [17], depending on the indices P and Q:

aEgDFT P Q
{vxHgyst = Mo " T )
pq .~  otherwise
pq
SE}P;DFT
L p=Q
[vyHgyS) =1 e .29
RA 5 7>  otherwise
RA
BE}P;DFT
e p=Q
[V} =1 7 . (30)
RS 5 —2  otherwise
RS
In the diagonal case, we define
A =" Apa (IA) (Pl — |P) (A]), (31)
PA

li.e. Y from Equation (19) without the projection opera-
tor, Qsa ], and evaluate

P EEDFT 9 EEDFT

0Apa

(32)

>

0Xpq
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via Equations (28) and (29), respectively, of Ref. [19],
using the intermediate-state CI vectors, densities, and
density matrices of |P) rather than the SA-CASSCF
reference-state quantities. The Y and Z components of
the latter are then separated,

aEgDFT PDFT
= 8rp (AlS),
0ZRs - PA
P }P;DFT
— 8sp (A[R), (33)
PDFT PDFT PDFT
OET OEPT 0BT o
YRa 0Aps & 9Zps
<
aEPDFT
S (AIS) ) (34)
s=p <SP

It is important to remember that Zgs is only defined for
R>S.

In the off-diagonal case of Equations (28)-(30), we
have

O0Hpq _ pq  .PQ , QP QP
=Fpl —Fol +Fpy —Fo s (35)

8qu
0H,

P — o, (36)
0YRra
0H,

P — dorHps — dqsHpr

+ 8prHsq — dpsHRrq (37)
with

PQ _ p PQ
Fopl =D hoDi2 + ) orstdgris (38)
r

7,8,

where d"? is the two-body transition density matrix.

What remains are only the oft-diagonal Hessian-
vector products of the CMS-PDFT intermediate-state
objective function, H%—2, appearing in the first term
on the left-hand side of Equation (27). In order to
express these terms concisely, we introduce additional
Coulomb-potential intermediates related to Wg; defined
in Equation (9) above,

A P A A
Wo =Y gDy’ Y &l ios (39)
ikl o

so that Wg; = (R|Wg|8) = (P|W§|Q). We also intro-
duce effective density matrices and CMS generalised
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Fock matrices,

~ P P
bF = Z (D 2+ Df ) Zpo» (40)
Qa—a P PP ~PP
Fpi ngjkl Z ( l + D,] Dkl ) > (41)
Jk.l
Fmt = Fa =, (42)
where zpq is
- Zp P>Q
Zpg = { Q . (43)
—zop Q>P

Using these intermediates, the Hessian-vector products
in the first term on the left-hand side of Equation (27)
have the elements

.z} =

9*Qu—a

Qﬂ—ﬂ
{H ——2pg
XZ
0Xpq0ZpQ

2
Qa—a = 0 Qa_a A~ ~
{ 2" E L, E 3Yond ZQRZQR ( |QSAE zpQ

R
x (4G 1) +2 (WE — W3) 1)
(45)

2.5. Nuclear-coordinate derivatives of the
Lagrangian

Having determined the Lagrange multipliers by solv-
ing Equation (23), it remains to evaluate the molec-
ular gradient by differentiating the Lagrangian itself
[Equation (24)]:

CMS CMS
a,CPQ _ aHPQ N Z 82ECASx
EN ER INIXpg T1
p>q P
82ECAS 82Qa—a
. (46
+§ 8MYRA)/RA +RX>;S E)ABZRSZRS (46)

The first-term on the right-hand side of Equation (46)
is the Hellmann-Feynman term and, just like the driv-
ing vector above, it differs depending on whether one is
considering a diagonal or off-diagonal element:

8 Hgg[s { ) EEDFT

P=Q
T i . (47)

0H, .
5 =4 otherwise

In the diagonal case, the Hellmann-Feynman contribu-
tion is essentially the same as in MC-PDFT based on an

SA-CASSCF wave function [19], except that intermediate
state | P) is used instead of a SA-CASSCEF reference state:

OEpPFT 9Van 3 ahquPP
A ar P
pq
1 Z 8gpqrs DPPDPP
pqu
dEot[pp, TTp] Ispq (oT)
D L S R —F , (48
+— ; o pa > (48)

where sy, is the overlap matrix between MOs p and g,
the derivatives are partial because the MO coefficients
are treated as fixed, and dEqt[pp, [1p]/dA and F;,(;T) are
given by Equations (49) and (31) of Ref. [19], respec-
tively. In the off-diagonal case, the Hellmann-Feynman
contribution is like that of SA-CASSCEF [17], except that
transition density matrices coupling |P) and |Q) are used
instead of the reduced density matrices of SA-CASSCF
reference states and the internuclear potential term is
omitted:

dHpq _ Z dhpq 9Mpq 1pa 1 Z 98pqrs 2

EYY ar P1 "o an  par

Psqs1ss

1 Z O%pg M (Fpd + Fy ). (49)

The second and third terms on the right-hand side of
Equation (46) are also equivalent to corresponding terms
in both SA-CASSCEF [17] and MC-PDFT based on SA-
CASSCE [19], except that CMS-PDFT intermediate-state
quantities are used instead of SA-CASSCEF reference-state
quantities. The fourth term is unique to CMS-PDFT:

3’Q dg
PXé axa; 2, Z qus Z (DPPDPP>
> 1S

98pq 1Qu_a
=25, B (50)
pq

2.6. A note about undefined gradients

During numerical tests, we discovered cases in which
the gradient of CMS-PDFT potential energy surfaces
were undefined. For example, Q,_, is invariant to rota-
tions between degenerate IT states of linear molecules,
rendering the optimised intermediate-state basis arbi-
trary; but the corresponding PDFT state energies (which
depend in practice on a finite quadrature grid) are
generally noninvariant to this rotation, rendering the
CMS-PDFT final energies non-unique. (N.B.: the test
calculations of diatomic molecular gradients presented



in Sections 3 and 4 below include only X states in the
model space.) We find that the behaviour of our imple-
mentations is reliably controlled in these cases by set-
ting to zero any zgs Lagrange multiplier whose magni-
tude after evaluation of Equation (26) is unphysically
large. The wave function is periodic in the corresponding
unitary generator amplitudes (Zgs), and for a two-state
model space, the period is 27r. We therefore use a mag-
nitude of 27 as our threshold past which zgg is set to
zero. If the corresponding element of VZHI%/[S is suf-
ficiently small, such that Equation (25) can be solved
to within a satisfactory threshold despite setting zrs =
0 by fiat, then the Lagrange multiplier was redundant
and is safely omitted. Otherwise, the specified CMS-
PDFT gradient is implied to be undefined at the specified
geometry.

3. Computational procedure

The gradient calculations are performed in both Open-
Molcas version 22.06, commit SHA-1 £45278022 [21,22],
and mrh [23] (commit SHA-1 92f7542b4), an extension
of PySCF [24] version 2.0.1 (commit SHA-1 f985dde73).
In the latter implementation, the plugin for geomeTRIC
[25] version 0.9.7.2 was used to optimise geometries.
In OpenMolcas calculations, the ‘ultrafine€ numerical
quadrature grid (99 radial shells and 590 angular points
for each atom, and a crowding factor of 10 and a fade
factor of 10 for pruning angular grids) is used, and the
rotational invariance of the quadrature grid is deactivated
using the NORO’ keyword. In PySCF, the quadrature
grid was set to level 6 (80/120 radial and 770/974 angu-
lar for atoms of period 1/2 respectively). For numeri-
cal gradient calculations in OpenMolcas, a locally mod-
ified version based on the commit SHA-1 de7464102 is
used so that 11 significant figures are printed for numer-
ical gradients. We tested our gradient code on three
diatomics, namely HeH™, LiH and LiF, and two poly-
atomics, namely HCHO and phenol. The reason for test-
ing the analytic gradient code on diatomic molecules
is that the results can be easily compared with numer-
ical ones. The procedure of each calculation is listed
in Table 1.

Table 1. Number of states in the model space nsa, active space,
(ne, no), basis set, functional and the programme used in the
gradient calculations for each molecule.

Molecule nsp  Active Space Basis Set Functional Programme
HeHT 2 2,2) cc-pVDZ [26] ftLSDA OpenMolcas
PySCF
LiH 2 (2,2) aug-cc-pVTZ [26] tPBE OpenMolcas
LiF 2 (8,5) jun-cc-pVTZ [27] tPBE OpenMolcas
HCHO 2 (6,5) jun-cc-pVTZ tPBE OpenMolcas
phenol 3 (12,11) jul-cc-pVDZ [27] tPBE PySCF
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4, Results and discussion

We confirm the correctness of the analytic gradients, and
we compare them to numerically derived values for a
small set of molecules. After that, we consider the validity
and accuracy of the CMS-PDFT method for the evalua-
tion of molecular structure parameters and vertical and
adiabatic excitation energies for the formaldehyde and
phenol molecules by comparison to results obtained by
other high-quality methods.

4.1. Diatomic molecules

We probe the agreement between analytic and numer-
ical CMS-PDFT gradient calculations using the poten-
tial energy curves of the diatomic molecules HeH™
[28-32], LiH [33-37], and LiF [38-40]. The gradients
for the diatomic systems can be obtained numerically in
a straightforward way, so testing the analytic gradients
against the numerical gradients for these diatomic sys-
tems is a convenient way to verify that the gradient codes
give correct answers.

Because the calculated numerical gradient depends on
the geometry displacement (A) used in the calculation,
the most accurate way for obtaining a gradient accu-
rately is to run the numerical gradient calculations for
various geometrical displacements, and extrapolate the
results to the A = 0 limit. We use the linear regression
of the numerical gradient versus A? for a subset of data
with a coefficient of determination R? greater than 0.9
(most of them are greater than 0.999), and we take the
intercept as the numerical gradient extrapolated to the
A = 0 limit. The numerical gradients that do not have
a strong linear dependence on A? (R? < 0.9) are dis-
carded (The only data point that is discarded is the one
for the second state of LiH at 2.6 A.). This extrapolation
is undertaken because the magnitudes of these gradi-
ents, as well as the corresponding curvatures, span many
orders of magnitude, due to the strongly bound charac-
ter of the electronic ground states of these molecules. We
note that there are numerical errors in both numerical
and analytic gradients, because both are obtained from
a wave function whose energy is converged to a finite
digit after the decimal place (1078 hartree). Therefore,
the unbiased interpretation of comparing the numerical
and analytic gradients is that, if two gradients disagree by
abig number (e.g. 0.1 hartree/bohr), it means that at least
one gradient is wrong. But when two gradients agree, it is
more likely that both gradients are computed correctly to
the digit where they agree. However, for the convenience
of the discussion and following the convention we used
before [20], in the rest of the paper, we set the numerical
gradients as the reference.
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Figure 1. The distribution of the common logarithm of the
unsigned difference, log,,(UD), in analytic gradients for HeH™.

Additionally, we compare the analytic gradient for
HeH™ computed with the two separate implementations
(OpenMolcas and PySCF-based). (HeH™ with a double-¢
basis set, a (2, 2) active space, and 2 states in the model
space is essentially the smallest possible testbed in which
all four terms on the right-hand side of Equation (46)
make a non-vanishing contribution to the gradient.)

The accuracy of the analytic gradients is evaluated
by two quantities, namely the common logarithm of the
unsigned error, log, ,(UE), and the common logarithm of
the relative unsigned error, log,,(RE).

log,,(UE) = log,,(]Ana — Numl|) (51)
log,,(RE) = log;,(JAna — Num|/[Numl]) (52)

where ‘Ana’ and ‘Num’ are the analytic and the numer-
ical gradients, respectively, and the unit for the gradient
is hartree/bohr. The common logarithm of the unsigned
difference (UD) is used to determine whether the analytic
gradients obtained with the two codes agree with each
other.

loglo(UD) = 10g10(|AnaOpenMolcas - AnaPySCFl) (53)

where Anagpennolcas and Anapyscr are the analytic gradi-
ents for two programmes, respectively.

We observe that these errors and differences show lit-
tle consistent correlation to the internuclear separation
when extrapolating to the A = 0limit (cf. Section 2 of the
supplementary information). However, in all cases, their
magnitudes occur in a roughly normal distribution, and
therefore we present this data in the form of histograms
in Figures 1-4 below.

The distribution of log,,(UD) between two pro-
grammes is shown in Figure 1. In Figure 1, most of
the differences in the analytic gradients are less than
10~* hartree/bohr, and the greatest difference is 2.3 x
10~* hartree/bohr at 0.4 A for the ground state, where
the gradient at this geometry is 1.6 hartree/bohr, meaning
that the relative deviation between the two codes is about

20 20
(@ (b)

0 0
98 -7-6-5-43 26 5-43 -2 -10
log,((UE) log,((RE)

Figure 2. The distribution for the common logarithms of the
unsigned error, logqq(UE), and the relative unsigned error,
logq0 (RE), for the analytic gradients for HeH™ calculated in Open-
Molcas.
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Figure 3. The distribution for the common logarithms of the
unsigned error, log;q(UE), and the relative unsigned error,
logqo(RE), for the analytic gradients for LiH calculated in OpenMol-
cas.

1.4 x 10~*. We therefore conclude that the analytic gra-
dients from one code agree very well with those from the
other.

In Figures 2-4, we show the distribution of the
log,,(UE) and log,,(RE) for HeH™, LiH and LiF. We also
show the log,,(UE) and log,,(RE) of these systems in
Figures S1-S3 in Section S2 in the supplementary mate-
rial. We see from Figures 2 to 4 that the unsigned errors
in most cases are below 10 hartree/bohr. There are a
few exceptions for LiH and LiF. These relatively larger
errors are coming from the difficulties in getting very
accurate numerical gradients because the data used for
fitting come from relatively discrete A values. The rela-
tive unsigned errors are in most cases less than 1% for
the three systems. The outlier values are either in the dis-
sociated region for HeH™, or at the equilibrium distance
(1.6 A) for LiH. Note that the gradients are small in both
dissociation and equilibrium regions.

The statistics of the analytic gradients are shown in
Table 2. We see that the analytic gradients systemati-
cally underestimate the numerical gradients by about
107 to 107 hartree/bohr, and the root-mean-squared
error (RMSE) is about 10~ hartree/bohr. The statistics
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Figure 4. The distribution for the common logarithms of the
unsigned error, logqq(UE), and the relative unsigned error,
log1¢(RE), for the analytic gradients for LiF calculated in OpenMol-
cas.

Table 2. The mean signed error (MSE), mean unsigned error
(MUE) and root-mean-squared error (RMSE) of the analytic gra-
dients estimated as deviations from the numerical gradients
for HeH™, LiH, LiF, and all three systems combined (units:
hartree/bohr).

HeH™ LiH LiF All
MSE 7.0E—-06 —7.6E—06 —2.2E-06 —4.1E—-06
MUE 1.4E—05 49E—-05 2.1E-05 2.8E—05
RMSE 2.4E-05 13E-04 4.7E—-05 8.2E—-04

in Table 2 show that the accuracy and the uncertainty
of the CMS-PDFT numerical gradients are both about
107> hartree/bohr. This is consistent with our previous
observed for the MC-PDFT gradients [20], where it states
‘The mean unsigned deviation (MUD) for the SA-PDFT
analytic gradients compared to the numerical gradients
is 4 x 107> hartree bohrs™"".

In addition to comparing analytic and numeric gra-
dients, we have performed a geometry optimisation for
LiH. In Table 3, we tabulate the equilibrium distances for
the first two states of LiH. We found that CMS-PDFT
performs as well as MC-PDFT for predicting the ground
state equilibrium distance. Although CMS-PDFT gives a
good ground-state geometry, it does not give an accu-
rate equilibrium distance for the first excited state. We
note that predicting the equilibrium distance of the first
excited state of LiH is an especially difficult problem
because the potential curve of this state is abnormally flat
in the vicinity of its minimum [36]. Therefore, we con-
clude that CMS-PDFT gives a reasonably good geometry
for the first excited state of LiH.

4.2. Formaldehyde

Formaldehyde is planar and has Cj, symmetry in the
ground state. In the first excited state, formaldehyde is
nonplanar, and the angle between the C=0 bond and
the H-C-H plane, denoted as 7, is used to describe the
nonplanarity.
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Table 3. Equilibrium distances (R, R) for the ground state (X) and
the first excited state (A) of LiH.

Method Basis Set X State A State Ref.
expt. not applicable 1.60 2.60 [36]
CMS-PDFT? aug-cc-pVTZ 1.60 2.33 tw.p
MC-PDFT¢ aug-cc-pVTZ 1.60 291 [19]
FCI 6-311G 1.63 nad [41]
3tPBE.

bthis work.

“tPBE.

4ot available.

The active space for our calculations on HCHO was
determined using the previously developed ABC2 auto-
matic active-space selection scheme [42]. We set the
parameters A, B, and C of this scheme equal to 3,2, and 0,
respectively. This yields an active space of 6 electrons in
5 orbitals for a state-averaged calculation averaging over
two states.

We calculated the equilibrium geometry for the
ground state and the first excited singlet state (n — 7*)
of HCHO. We optimised the geometries of the ground
and first excited singlet state until the root-mean-square
(RMS) of the gradient components (i.e. the magnitude
of the gradient) is less than 0.0003 hartree/bohr for the
ground state and less than 0.001 hartree/bohr for the
excited state.

The CMS-PDFT optimised geometric data are shown
in Tables 4 and 5, where they are compared to MC-PDFT
results based on the same SA-CASSCF reference func-
tion and to some other results from previous calculations.
Some details of these calculations are given in Table 6.
The previous calculations to which we compare include
multireference methods and single-reference methods.
The multireference comparisons include results [19]
from the MC-PDFT calculations with a (12, 12) active
space that includes all the valence orbitals and two
second-shell oxygen long pair orbitals and results [43]
from CASPT?2 calculations with a (12, 10) active space
that includes all valence orbitals. The comparisons also
include results from some high-level single-reference
methods, including results [43] from the third-order cou-
pled cluster (CC3) [44,45] method, results [43] from
the second-order algebraic diagrammatic construction
(ADC(2)) [46], method, and results [43] from the the
coupled cluster response method with single and double
excitations and noniterative connected triple excitations
from CC3 (CCSDR(3)) [47]. These three methods have
been previously shown to perform well for excitation
energies [43,48-52].

Tables 4 and 5 also contains the experimental val-
ues. The experimental data for the ground state geometry
come from the reinterpreted results [53] of the millimetre
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Table 4. Bond lengths (A) and bond angles (degree) obtained
with various methods for the ground state of HCHO.

Method Ref. r(CO) r(CH) O(HCH)
CMS-PDFT(6, 5) tw.2 1.203 1.112 115.8

MC-PDFT(6, 5) tw. 1.202 1.112 115.8

MC-PDFT(12,12) [19] 1.210 1.114 116.1

CASPT2(12, 10) [43] 1.209 1.102 116.1

ADC(2) [43] 1.209 1.096 116.5

CCSDR(3) [43] 1.207 1.099 116.5

ca [43] 1.208 1.100 116.4

expt. [53] 1.203 1.100 116.2

aThis work.

Table 5. Bond lengths, H-C-H bond angles, 6, and the C=0
out-of-plane angle, n, obtained with various methods for the first
excited state of HCHO. Bond lengths are in A and angles are in
degrees.

Method Ref. r(CO) r(CH) 6(HCH) n
CMS-PDFT(6, 5) tw2 1.333 1.095 119.9 30
MC-PDFT(6, 5) tw. 1.333 1.095 119.9 30
MC-PDFT(12,12) [19] 1.323 1.102 117.6 28
CASPT2(12,10) [43] 1.326 1.090 118.1 38
ADC(2) [43] 1.380 1.081 123.8 19
CCSDR(3) [43] 1.320 1.089 118.2 37
cc3 [43] 1.326 1.089 118.3 37
expt. [55] 1.323 1.098 118.4 34
aThis work.

Table 6. Computational details of the theoretical calculations in
this work and in the literature.

Method nsa Active Space Basis Set Ref.
CMS-PDFT 2 (6,5) jun-cc-pVTZ tw.2
MC-PDFT 2 (6,5) jun-cc-pVTZ tw.
MC-PDFT 2 (12,12) aug-cc-pVTZ [19]
CASPT2 (12,10) aug-cc-pVTZ [43]
ADC(2) n/ab n/a aug-cc-pVTZ [52]
CCSDR(3) n/a n/a aug-cc-pVvVTZ [52]
cc n/a n/a aug-cc-pVTZ [43,52]
aThis work.

bNot applicable.

wave spectrum of formaldehyde [54]. The experimen-
tal excited-state geometry comes from the fitting [55]
of the HCHO absorption spectra [56,57]. We use the
experimental values as reference values.

The CMS-PDFT geometries have similar accuracy to
those by the rest of the methods listed in Tables 4 and 5.
The CMS-PDFT calculation gives the second most accu-
rate out-of-plane angle, 7, among the methods listed. The
table shows that CMS-PDFT with the (6, 5) active space
gives the same results as MC-PDFT with the (6, 5) active
space for the two excitations studied here for HCHO; the
reason for this is later discussed in Table 8.

The theoretical adiabatic and vertical excitation ener-
gies are shown in Table 7. Previous work for a large set
of molecules has shown that the CC3 method usually
agrees with extrapolated full configuration interaction
(FCI) calculations within 0.03 eV [48], so we use the CC3

Table 7. The first adiabatic and vertical excitation energies (eV)
of HCHO.

Es, — Es,

Method Ref. Adiabatic Vertical
CMS-PDFT(6, 5) tw.? 3.65 4,07
MC-PDFT(6, 5) tw. 3.65 4.07
MC-PDFT(12,12) [19] 3.58 3.92
CASPT2(12, 10) [43] 3.53 3.92
ADC(2) [43] 392
CCSDR(3) [43] 3.97
ca [43,52] 3.58 3.96
aThis work.

Table 8. Rotation matrix in Equation (4) for generating the CMS
intermediate states for the ground-state (GS) and the first excited
singlet state (ES) equilibrium geometries.

SA-CASSCF Intermediate State
States |So) 1S1)

GS equilibrium
So 1.0 —35x%x 10"
St 3.5 x 107" 1.0

ES equilibrium
So 1.0 —1.1x107°
S 1.1 x 107° 1.0

results as our reference for excitation energies. Compar-
ing the present results with the CC3 results, we see that
both the adiabatic and the vertical excitation energy are
overestimated by CMS-PDFT and MC-PDFT calcula-
tions with the (6, 5) active space, but by less than 0.1 eV.
The MC-PDFT calculation with the larger active space,
(12, 12), is more accurate than the CMS-PDFT or MC-
PDFT calculations with the smaller active space. The
CASPT?2 calculation with the (12, 10) active space is also
more accurate than the smaller-active-space calculations.

Table 8 shows the rotation matrix elements (I|P) of
Equation (4) that are used for calculating HCHO CMS
intermediate states from the SA-CASSCF states. We see
that the ground state and the first excited state are hardly
mixed in the CMS intermediate states for the two states
under consideration here at either the ground-state or the
first-excited state equilibrium geometry. This explains
why the CMS-PDFT results and the MC-PDFT results
with the (6, 5) active space are identical for geometries
and excitation energies in this case. The case consid-
ered next (phenol) involves significant mixing of the
SA-CASSCE states in the intermediate states, and in that
case the MC-PDFT and CMS-PDFT geometries and exci-
tation energies will differ.

4.3. Phenol

The 11 active orbitals of the phenol molecule are three
7 orbitals, three w* orbitals, one oxygen 2p, orbital, and
one pair each of C-O and O-H o and ¢ * orbitals.



Table 9. Vertical and adiabatic So—S; excitation energies of phe-
nol in eV, not including vibrational ZPE, computed with various
methods and compared to excitation energies reported in the
literature.

Active Es — Es,
Nsa space Basisset Ref. Vertical Adiabatic

SA-CASSCF 3 (12,11) 2 tw? 4929 4.729
MC-PDFT 3 (12,11) 2 tw.  5.025 4.829
CMS-PDFT 3 (12,11) 2 tw. 4929 4.720
CASPT2//CASSCF 1 (8,8) 2¢ [58] 4.643 4364
CASPT2//CASSCF 4 (10,10) 3¢ [59] 452 437

CC2//MP2° 1 n/a¢ 20 [60]  4.864 4673
MRCI//CASSCF (10,9) 2 611 4759 4816
MRCI PES fit 9  (12,14)° 2 [62] 4.885
Semiemp.PESfit 9 (12, 14)° 2 [63] 4.829 4661

Note: A model space size of 1 corresponds to state-specific calculations. See
text concerning experimental interpretations.

aThis work.

bGeometry optimisation of $; carried out at CC2 level.

“Not applicable.

dVertical excitation energies can appear lower than adiabatic ones when exci-
tation energies are calculated at geometries optimised with a different level
of theory.

€Restricted active space consisting only of single and double excitations from
a reference determinant.

Table 9 compares our computed vertical and adia-
batic excitation energies at the SA-CASSCE, MC-PDFT,
and CMS-PDFT levels to results of similar calculations
carried out at other levels of theory reported in the lit-
erature. Note that vibrational zero-point energy (ZPE) is
not included, meaning that direct experimental compar-
ison is not possible. However, Ref. [63] reports a poten-
tial energy surface fit which is parameterised to repli-
cate the ZPE-inclusive experimental adiabatic excitation
energy of 4.507 eV [64,65], and the ZPE contribution to
the adiabatic excitation energy predicted by this surface
agrees with that reported by Refs. [61,62] to within 0.01
eV. Therefore, taking the results of Ref. [63] (reported
in the last row of Table 9) as a reference, we evaluate
the error of our SA-CASSCE, MC-PDFT with an SA-
CASSCEF wave function, and CMS-PDFT adiabatic exci-
tation energies as being about +0.07, +0.17, and +-0.06
eV, respectively. We also note that, other than Ref. [61],
all of the calculations reported in Table 9 describe a ver-
tical excitation energy roughly 0.2 eV higher than the
adiabatic one.

Table 11 presents a selection of optimised internal
coordinates corresponding to some of the the adia-
batic excitation energies reported in Table 9. In general,
we observe that CMS-PDFT geometries resemble SA-
CASSCF geometries more than MC-PDFT geometries.
Most bond lengths in all calculations agree with exper-
imental bond lengths in both states to within 0.01 A,
and the C-O-H bond angles agree with experiment to
within 1 degree. However, uniquely, the MC-PDEFT opti-
mised geometry of phenol in the S; state is nonplanar,
with a significant nonzero C-C-O-H dihedral angle.
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Table 10. Relative MC-PDFT and CMS-PDFT energies of phenol in
eV at the CMS-PDFT S; optimised geometry (‘flat’) and the MC-
PDFT S¢ optimised geometry (‘bent’), along with unitary columns
describing the optimised CMS-PDFT intermediate states in terms
of reference states at those geometries.

Energy Intermediate state vectors
MC-PDFT CMS-PDFT [So) IS1) [S2)
Flat geometry
So 0.00° 0.14 0.713 0.701 0.000
S1 4.66 4.65 0.701 —0.713 0.000
S2 5.88 5.88 0.000 0.000 1.000
Bent geometry
So 0.09 0.22 —0.708 —0.706 —0.019
S1 4.64 4.70 0.691 —0.688 —0.223
S2 5.82 5.91 0.144 —0.171 0.975

Note: Note that every row and column of the unitary matrix carries an arbitrary
sign.
aThe MC-PDFT Sy total energy of —307.049728 Ey, at the flat geometry is taken
as the reference.

Table 11. Selected internal coordinates of phenolin the Sg and S4
states computed by various methods as well as experiment. Bond
lengths are in A and angles are in degrees.

State Method Ref.  Avg.rcc rco rod OcoH  PccoH
SA-CASSCF  tw.? 1.399 1384 0.966 109.3 0
MC-PDFT tw. 1.401 137 0964 109.2 0
So CMS-PDFT tw. 1.398 1367 0.966 109.2 0
MRCIPES fit  [62] 1.395 1382 0.964 108.6 0
Expt. [66] 1.393 1375 0.957 108.8 0
CASSCF tw. 1.434 1379 096 109.3 0
MC-PDFT tw. 1.429 1337 0975 1082 143
S CMS-PDFT tw. 1.435 1362 0.962 109.2 0
MRCIPESfit  [62] 1.427 1367 0.963 108.7 0
Expt. [67] 1.423 1356 0.992 108.8 0
This work.

This nonphysical result corresponds to the greater esti-
mated error of the adiabatic excitation energies discussed
above.

CMS-PDEFT correctly predicts a flat, planar optimised
S1 geometry of phenol, unlike MC-PDFT. The mecha-
nism for this correction, and the reason for the under-
lying failure of MC-PDFT, is probed in Table 10. Some-
what surprisingly, although all methods agree that S;
and S, are much closer in energy to each other than
to Sg, Table 10 shows that in the intermediate basis of
the model space, the interaction between the S; and Sp
states, rather than that between S; and S;, is the main
relevant state-interaction effect. At both geometries, the
lowest two optimised CMS-PDFT intermediate states in
terms of the SA-CASSCEF reference states are approxi-
mately 2712(1S0) £ 1S1)). Although the ‘bent’ optimised
MC-PDFT S; geometry has an energy that is 0.02eV
lower than that of the ‘flat” geometry, the S MC-PDFT
energy at the bent geometry is 0.09 eV higher. The nearly
50-50 mixture of the two reference states means that the
destabilisation of Sy ‘wins out’ over the stabilisation of
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S1, and the CMS-PDFT S; energy at the bent geometry
is 0.05 eV higher than at the flat geometry.

5. Conclusion

In this paper, we report the implementation of the CMS-
PDFT analytic gradient in both OpenMolcas and PySCF,
and we present the Lagrange multiplier equations that are
used for the implementation. We compare the results of
two programmes for HeH™ and the results show that two
implementations agree with each other very well. We also
compared the analytic gradient with the numerical gra-
dient for three diatomic systems, HeH*, LiH, and LiF,
to show that the analytic gradient is accurate. We also
showed that we are able to optimise excited-state geome-
tries of formaldehyde and phenol with the implemented
analytic gradients, and the results show that CMS-PDFT
produces reasonable geometries for ground and excited
states and reasonable adiabatic excitation energies using
these optimised geometries. We find that CMS-PDFT
is more accurate than MC-PDFT for the excited-state
geometry of phenol. Our results indicate that CMS-PDFT
is a promising method for studying excited states with
strong state interaction.
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