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Abstract

Rotational-translational decoupling in systems near Tg, in which translational diffusion is
apparently enhanced relative to rotation, has been observed in ensemble and single
molecule experiments and has been linked to dynamic heterogeneity. Here, simulations of
single molecules experiencing homogeneous diffusion and static and dynamic
heterogeneous diffusion are performed to clarify the contributions of heterogeneity to
such enhanced translational diffusion. Results show that time-limited trajectories broaden
the distribution of diffusion coefficients in the presence of homogeneous diffusion but not
when physically reasonable degrees of static heterogeneity are present. When dynamic
heterogeneity is introduced, measured diffusion coefficients uniformly increase relative to
input diffusion coefficients, and the widths of output distributions decrease, providing
support for the idea that dynamic heterogeneity can drive apparent translational
enhancement. Among simulations with dynamic heterogeneity, when frequency of
dynamic exchange is correlated with initial diffusion coefficient, measured diffusion
coefficient behavior as a function of observation time matches that seen experimentally,
the only set of simulations explored in which this occurs. Taken together with
experimental results, this suggests enhanced translational diffusion in glassy systems
occurs through dynamic exchange consistent with wide underlying distributions of
diffusion coefficients and exchange coupled to local spatiotemporal dynamics.
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Introduction

The dynamics of glass formers near their glass transition temperatures (Tg) has been
investigated for decades both in experiment1–3 and simulation.4–12 One particularly
interesting aspect of glass formers near Tg is their apparent dynamic heterogeneity, with
many experimental observations suggesting the presence of a wide distribution of
timescales that vary as a function of space and time in such systems.1–3,12–17 Dynamic
heterogeneity is a phenomenon of considerable interest for its potential causal
relationship with other unusual properties seen in glassy systems, including the non-
Arrhenius temperature dependence of viscosity and the violation of the Stokes-Einstein
(SE) and Debye-Stokes-Einstein (DSE) behavior in glassy systems.

The SE and DSE relationships relate translational (DT) and rotational diffusion (Dr)

coefficients to system viscosity via ᵃ�ᵄ� = 
6ᵰ�ᵰ�ᵅ� 

and ᵃ�ᵅ� = 
8ᵰ�ᵰ�ᵅ�3 , where T is temperature, rs is

hydrodynamic radius of a tracer particle, and η is viscosity. Experimentally, rotational
dynamics and DSE behavior are most commonly quantified through rotational relaxation

time, c, via ᵰ�ᵅ� = 
4ᵰ�ᵰ�ᵅ�3

. While the SE and DSE relationships predict that the translational

diffusion coefficient, DT, and the inverse rotational correlation time, c-1, will both scale

with T/, deviations from this prediction have been found across many glassy systems.

with DT typically showing a weaker temperature dependence than c-1 as Tg is approached
from above.2,3,18–25 5,6,8,11,12,26–28 These systems display apparent rotational-translational
decoupling and translational enhancement.

Deviations from SE and DSE behavior have been interpreted in the context of dynamic
heterogeneity, with the hypothesis that measurements of DT more heavily weight fast
dynamics while measurements of c do so for slow dynamics.1–3 Recently, we showed
experimentally that rotational-translational decoupling persists on a single molecule level
and cannot be ascribed solely to ensemble averaging over a heterogeneous system.13 In
particular, when fluorescent probe molecules were dispersed in high molecular weight
polystyrene near Tg and these probes were simultaneously monitored for rotational and
translational dynamics, a significant degree of enhanced translational dynamics relative to
rotational dynamics was seen for most individual molecules.13 These findings suggest that
a combination of averaging over molecules with distinct, non-evolving dynamics and over
molecules with rapidly changing dynamics contributes to ensemble observations of
rotational-translational decoupling.

Here, given our recent measurements showing enhanced translational motility at the
single molecule level, we perform simulations analogous to earlier ones that facilitated
interpretation of single molecule experiments of rotational dynamics in supercooled
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liquids.29,30 In particular, we investigate how typical experimental constraints in the context
of heterogeneity with both slow (non-evolving on the experimental timescale, or static)
and fast (dynamic) exchange manifests in measured observables. In experiments,
individual probe molecule trajectories were found to yield mean square displacements
(MSDs) that grow linearly in time, consistent with diffusive behavior over the time scales
assessed.13,31,32 From these MSDs, wide breadths of translational diffusion coefficients
were found across molecules, suggestive of significant (static) heterogeneity.13,31

However, the persistence of rotational-translational decoupling in single molecule
measurements suggests a significant degree of dynamic heterogeneity is also present.
Here, we present simulations of particles experiencing homogeneous translational
diffusion and heterogeneous (static and dynamic) translational diffusion with limited
trajectory lengths as may occur experimentally due to photobleaching, out-of-plane
rotation, or errors in particle tracking along with realistic levels of noise, which can lead to
errors in particle localization, to understand the effects of these factors on analysis and
interpretation of translational trajectories. We find, as in single molecule rotational
analysis,29,30 degeneracies in observables for homogeneous systems and those with fast
dynamic exchange, complicating identification of timescales of dynamic exchange.
Interestingly, we also find that an unexpected experimental observation is reproduced in
simulations when dynamic exchange is coupled to local dynamics, suggesting this is likely
a feature of dynamic heterogeneity in glassy systems.

Methods

Simulations of Translational Diffusion

Two dimensional (2D) Monte Carlo simulations of Brownian motion were performed on
custom-modified National Instruments LabView software originally described in Ref. 33

and expanded upon in References 34 and 35. Video frames were simulated by seeding
approximately 100 point features that represent fluorescent probe molecules on a grid
across 512 x 512 pixels representing an area consistent with an experimental pixel size of
169 nm, as used for data collected in Ref. 13. Simulated molecules were set in an
ordered array to reduce the likelihood of molecules crossing paths, which could lead to
tracking errors that do not typically occur experimentally, and simulated molecules were
set to persist through the full movie (35 to 2000 frames). The range of frame number
investigated was chosen (1) to represent typical number of frames found for individual
molecules in Reference 13, which typically ranged between 30-200 frames and (2) to
assess the impact of longer trajectory lengths on assessed observables to investigate
possible limited trajectory length effects in experimental and simulated data. All features
were simulated as bright spots with a Gaussian intensity profile with FWHM of 294 nm,
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consistent with typical optical diffraction in single molecule imaging. The time between
simulated frames (TBF) was set between 1 and 40 seconds to capture the majority of
experimental TBFs (which ranged between 0.4-120s) as described in Reference 13.
Brownian diffusion was simulated by assigning step sizes frame-by-frame from a
Gaussian probability distribution generated based on each molecule’s assigned diffusion
coefficient in x and y dimensions. The probability that a molecule will take a step between x

and x+Δx is given by: ᵄ�(ᵆ�)ᵮ�ᵆ� = (1⁄ᵰ�√2ᵰ� ) ᵅ�(−ᵆ�2⁄2ᵰ�2)ᵮ�ᵆ�, where ᵰ� = √2ᵃ�ᵆ�, with D the
assigned diffusion coefficient and t the time.

Most simulations were performed without background signal or noise, with signal level
set arbitrarily to 100. Performing analysis on static features simulated in this manner
showed no localization inaccuracy, returning exclusively 0 step sizes and diffusion
coefficients. To mimic the effect of noise in the experiment described in Reference 13,
some simulations included stochastic noise, added to each pixel with a standard deviation
equal to the square root of the pixel intensity. In these simulations, average signal
intensity was adjusted in the presence of this stochastic noise to reproduce apparent
diffusion coefficients obtained from experimental tracking of molecules far below the glass
transition temperature, where all motion was attributed to localization error.13 This
resulted in, for simulations in which the features are not moving, median apparent step
sizes of 15 nm (as compared to 8.6 nm obtained from experimental measurements
described in Ref. 13) and median apparent positive diffusion coefficients of 0.45 nm2s-1

(compared to 0.47 nm2s-1 in experiment), with approximately 54% of molecules returning
apparently negative diffusion coefficients (compared to 26% in experiment). We thus
deem this approach sufficiently consistent with experimental movies far below Tg, where
molecules are likewise expected to be static.13 Simulations including both stochastic noise
as described above plus additional background intensity, which itself has stochastic
noise, were also performed. Here background intensity values were set to be “moderate” or
“high” to mimic background intensity similar to but somewhat higher than that in
experiments. Signal to background (S:B) ratios in experiments described in Ref. 13 for 2s
exposure were approximately 4.5, and the above background settings led to simulated
S:B ratios of 2.8 and 1.4, respectively. These settings resulted in, for static particle
simulations, median step sizes of 19 and 23 nm, and median positive diffusion coefficients
of 1.06 and 1.08 nm2s-1, with 55 and 31% of molecules found to have negative diffusion
coefficients, respectively. These results indicate that simulations with both moderate and
high levels of background signal exhibit somewhat lower localization accuracy than the
experiments described in Ref. 13.

Diffusion coefficients were assigned to simulated molecules to mimic homogeneous,
statically heterogeneous, dynamically heterogeneous, or correlated (D-dependent)
dynamically heterogeneous dynamics (Fig. 1). In the homogeneous case, a single
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diffusion coefficient was assigned to every molecule, and the diffusion coefficient was
retained for the entirety of the simulated movie. In the spatially heterogeneous (static)
case, molecules were randomly assigned a diffusion coefficient from a log normal
distribution centered at Dset and with ᵰ� the set standard deviation on a log scale. This
diffusion coefficient was retained for the entirety of the simulated movie. The width of this
seed distribution will subsequently be referred to in terms of the set standard deviation, ᵰ�.
In the dynamically heterogeneous case, simulated molecules were assigned initial
diffusion coefficients as in the static heterogeneity case, but after a set number of frames
molecules were randomly re-assigned diffusion coefficients from a distribution with the
same median and width as the original distribution. All molecules in this case changed
their diffusion coefficients at the same frame and experienced the same number of
dynamical exchanges per movie. For D-dependent exchange, molecules were assigned
initial diffusion coefficients as in the static and dynamic heterogeneity cases, but the
number of frames before their subsequent exchange was determined by: ᵃ�ᵅ� ᵆ� = ᵃ�ᵅ� ᵅ�ᵅ� −

[log (ᵃ�ᵅ�/ᵃ�ᵅ�ᵅ�ᵅ�) ∗ 10], where Frmed is the set median number of frames before exchange, Dc

is the current assigned diffusion coefficient, and Dmed is the set median diffusion
coefficient, both in nm2/sec. In practice, in these simulations this results in a 10 frame
difference before exchange for each order of magnitude difference in diffusion coefficient.
Median set diffusion coefficients were 1 and 10 nm2s-1, covering a portion of the range
explored in Reference 13. For systems with heterogeneity present, individual molecule
Dset varied between 0.0001-10000 nm2s-1, depending on median Dset and degree of
heterogeneity ( = 0.1, 0.2, 0.8, 1) explored in a particular simulation.

For D-dependent exchange, in order to simulate longer times between frames (TBF) for a
given number of exchanges, total movie length and median movie length between
exchanges were set in accordance with the TBF. For example, for the 4s TBF movies,
maximum movie length was 100 frames, and the median number of frames for the
diffusion coefficient to persist before exchange was set to 20; in contrast, for movies with
16s TBF, maximum movie length was set to 25 frames, and the median number of frames
for the diffusion coefficient to persist before exchange was set to 5. Thus, in both movies, a
molecule assigned the median diffusion coefficient would maintain that diffusion
coefficient for 80 seconds before dynamic exchange. This replicates the TBF conditions
for experimental movies, as movies were extended to longer TBFs by removing
intermediate frames, meaning that total trajectory length in seconds was held constant.13

Exemplary simulated movies with static heterogeneity with median Dset =10 nm2/s and a
wide distribution ( = 1) with and without noise set to match that in experiments are
provided as Supplementary Movies 1 and 2. In both cases, images were generated every 4
seconds (TBF = 4s).
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Figure 1. Schematic depiction of simulations highlighting differences between homogeneous, static
heterogeneous, and dynamic heterogeneous implementations. An exemplary distribution of input
timescales is shown for heterogeneous simulations.

Data Analysis

Simulated movies were analyzed using TrackPy software.36 Features were tracked frame
by frame37 and trajectories were used to calculate time averaged mean square
displacements via ᵄ�ᵄ�ᵃ�(ᵰ�) ≡ < [ᵅ�(ᵆ� + ᵰ�) − ᵅ�(ᵆ�)]2 > = < (ᵆ�(ᵆ� + ᵰ�) − ᵆ�(ᵆ�))2 + (ᵆ�(ᵆ� + ᵰ�) −

ᵆ�(ᵆ�))2 >, where  is lag time. MSD was then plotted against lag time and fit by linear

regression to ᵄ�ᵄ�ᵃ� = 4Dᵆ� + ᵰ�, where ᵰ� ≈ 4ᵰ�2, and σ is localization error (Fig. 2). The
first 6 lag times were used to calculate diffusion coefficients to avoid long-lag time error
associated with poor statistics at those lag times. The same approach was used in recent
analysis of the experiments on which these simulations are modeled.13
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Figure 2. (a) Representative generated trajectory for a simulated single molecule with output D = 1.8 nm2/s
and frames generated every 4 seconds for 35 frames. (b) Representative MSD vs. lag time values and
associated fits for 3 simulated molecules from a static heterogeneous simulation with a wide distribution of
diffusion coefficients (ᵰ� = 1), 4s between frames, median Dset = 1 nm2/s. Different colors indicate different
simulated features, with blue the MSD associated with the trajectory presented in (a). Best fits return the
following parameters: red, m=31.4 nm2/s, b=308 nm2, R2=0.98, yielding D=7.9 nm2/s; black, m=15.7 nm2/s,
b=310 nm2, R2=0.89, yielding D=3.9 nm2/s; blue, m=7.06 nm2/s, b=233 nm2/s, R2=0.97, yielding D=1.8
nm2/s. The simulation was performed with stochastic molecule noise and no background signal.

Results and Discussion

Homogeneous and Heterogeneous Simulations Without Noise

Simulations of single molecules exhibiting homogeneous, static heterogeneous, and
dynamic heterogeneous translational dynamics were first performed without noise. Even
without noise similar to that present in experiments explicitly included, potential errors and
biases inherent to the tracking analysis and diffusion coefficient calculations may be
present.

For simulations of homogeneous diffusion without noise or background, Fig. 3
demonstrates that increasing trajectory length (for a given TBF) has little effect on
apparent median diffusion coefficient (Fig. 3a). The effect is somewhat less obvious than in
analysis of rotational correlation times in single molecule measurements and
simulations, where trajectories shorter than ≈ 100 times the rotational correlation time
demonstrate obvious limited trajectory length effects.29,30,38,39 Consistent with results from
rotational simulations, trajectory length can affect the width of the distribution of output
diffusion coefficients relative to the input width, such that individual tracked molecules
may return diffusion coefficients ≈ 2 times faster or slower than the input diffusion
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coefficient for experimentally realistic trajectory lengths (Fig. 3a and b). Previously,
homogeneous rotational diffusion has shown broadening by up to 4 times in terms of full
width at half maximum (FWHM) when trajectory length was reduced from 1000 times the
rotational correlation time (1000c) to 10c, with FWHM of 0.08 for the longer and 0.40 for
the shorter trajectories30. Similarly, homogeneous translational diffusion exhibits
broadening by up to a factor of 5 (FWHM of 0.10 for the longer and 0.55 for the shorter
trajectories) when trajectory length is reduced from 2000 to 50 frames (10000 to 250
seconds in these simulations) (Fig. 3e). However, the majority of this broadening was
captured in the change from 400 to 50 frames, or 2000 to 250 seconds.

As in rotational analysis, once significant static heterogeneity is present, width is
essentially invariant to trajectory length over the range explored (35-2000 frames, or 175-
10000 seconds), with distributions with an input standard deviation of 1.0 on a log scale
returning distributions with standard deviations in the range of 0.90-0.98 (Fig. 3c and e).
We note that while median diffusion coefficient and the width of the distribution is
accurately returned independent of trajectory length for these simulations of static
heterogeneity, this does not imply that individual simulated molecules return their input
diffusion coefficient at short trajectory lengths (Supporting 1). Varying total time and TBF
independently for homogeneous simulations reveals that output width is affected primarily
by changing trajectory length in terms of total time (Supporting 2). In contrast, Fig. 3d and
Fig. S2 demonstrate that varying time between frames does not affect the output
distribution for cases of significant static heterogeneity, and this effect holds whether total
time or number of frames is held constant (Supporting 2).

The fact that systems lacking heterogeneity experience narrowing distributions with
increasing trajectory length in terms of total time while those with static heterogeneity do
not suggests that monitoring distribution width over multiple trajectory lengths may be a
viable way to distinguish between the presence of statistical error and static heterogeneity
in wide field single particle tracking experiments. Indeed, in recent experimental studies, a
decrease in width of measured D values was seen with increasing trajectory length
(which in experiments is coupled to increased time between frames so that
photobleaching does not occur before the end of the trajectory) exclusively in molecules
far below the glass transition temperature, while molecules above Tg exhibited invariably
wide distributions of diffusion coefficients across multiple trajectory lengths and TBF.13
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Figure 3. Noise and background-free simulations exhibiting homogeneous and static heterogeneous
dynamics, all with median Dset = 10 nm2s-1. 1014 molecules were simulated in each case. (a) Distribution of
diffusion coefficients for homogeneous simulations at varying trajectory lengths (in frames, reported in
legend, as well as real time), with time between frames (TBF) for all set to 5s. (b) Diffusion coefficients for a
randomly selected subset of individual molecules from the homogeneous simulation in (a) tracked for (left
axis) 50 and (right axis) 2000 frames. (c) Distribution of diffusion coefficients for heterogeneous (standard
deviation of log (D) = 1; designated as ᵰ� =1) simulations at varying trajectory lengths (in frames, reported in
legend, as well as real time), with time between frames (TBF) for all set to 5s. (d) Distribution of diffusion
coefficients for heterogeneous (ᵰ� =1) simulations for trajectory length equal to 50 frames at different time
between frames (s), reported in the legend. (e) Median output diffusion coefficient and standard deviation
(STDEV, ) as a function of trajectory length for homogeneous (solid symbols) and static heterogeneous (ᵰ�
= 1, open symbols) simulations. Lines are guides to the eye.

When dynamic exchange is introduced into simulations, more complex behavior is
expected to be observed both in ensemble and single molecule results. For similar
simulations carried out monitoring manifestations of dynamic exchange in rotational
measurements of single molecules, increasing exchange led to narrowing of native input
distributions and a trend towards exponential decay of rotational correlation functions,
properties also found in homogeneous simulations. As such, dynamic exchange can
create challenges in distinguishing between molecules with no exchange and those
experiencing exchange on timescales overlapping with relaxation timescales.29 Figure 4a
demonstrates the effect of dynamic exchange on the median translational diffusion
coefficients with narrow and wide seed distributions. Though all distributions had median
Dset of 10 nm2s-1, only the narrow seed distributions retained this median value in the
presence of exchange; in contrast, wide seed distributions saw a 5-fold increase in
median diffusion coefficient at the fastest exchange rate (every frame, or every 5 seconds in
this case). If a molecule is assigned the median diffusion coefficient, this corresponds
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to exchange after exploration of ≈ 50 nm2, a region consistent with that associated with
length scale of distinct dynamical regimes in a variety of studies.40–45 In contrast, a
molecule on the fast or slow ends of the distribution would explore regions of ≈ 500 nm2 or
5 nm2, respectively. In addition to increasing median diffusion coefficients, Figure 4b-c
demonstrate that the widths of the output trajectories decrease dramatically with
increasing exchange, tending toward a delta function.

Figure 4. Simulations with molecules experiencing dynamic exchange, with median diffusion coefficients
set to 10 nm2s-1 and time between frames set to 5 s. 1014 molecules were simulated in each case. (a)
Effect of exchange frequency on median diffusion coefficients of narrow (blue,  = 0.2) and wide (black,  =
0.8) seed distributions of diffusion coefficients. Inset: Initial portion of the curves, with 0 – 20 exchanges. (b)
Median diffusion coefficient (left axis, black) and distribution width (right axis, red) for the wide seed
distribution as a function of exchange frequency. (c) Diffusion coefficients of a randomly selected subset of
individual molecules with exchange every 20 frames tracked over 2000 frames. Red circles indicate
distribution medians.

The simulation’s design ensures molecules are equally likely to be assigned diffusion
coefficients above and below the median of the log-normal seed distribution. Hence, the
increase of median diffusion coefficient with increasing exchange must have origins in the
nature of the distribution and/or methods of generating trajectories. Indeed, molecules
assigned large diffusion coefficients heavily influence diffusion coefficients obtained from
mean square displacement calculations averaged over all molecules (quasi-ensemble
MSDs), as do fast portions of an individual molecule’s trajectory (Supporting 3). This
phenomenon is consistent with previous suggestions and demonstrations that molecules
experiencing unusually large displacements or with particularly high diffusion coefficients
would lead to ensemble measurements of translational diffusion that were enhanced
relative to measurements of rotational dynamics.5,11,12 Such an argument is also relevant
for individual molecules with dynamic exchange between fast and slow environments, an
argument we invoked to explain the persistence of rotational-translational decoupling at
the single molecule level.13 In addition to increasing median diffusion coefficients, output
distribution widths for simulations with wide seed input diffusion coefficient distributions
and frequent exchange are significantly reduced, with output distributions approaching
delta functions as the number of exchanges increases (Fig. 4b and c, Supporting 4). The
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convergence to a single diffusion coefficient with rapid exchange introduces a degeneracy
with the homogeneous case, as was found previously in rotational simulations.30

However, the increase in median diffusion coefficients with more exchanges (in practice,
experimentally, with longer trajectories in absolute time) may be used to distinguish a
homogeneous case from a dynamically heterogeneous one.

Consistent with previous understanding, we find that dynamic exchange both narrows the
distribution of measured diffusion coefficients and increases median and, to a greater
extent, ensemble diffusion coefficient relative to the ground truth median diffusion
coefficient value. However, experiments tracking single fluorescent tracer molecules in
polystyrene near Tg did not reveal narrowing distributions or faster diffusion coefficients
when molecules were followed for longer times.13 As such, we considered how an
experimentally realistic degree of noise and a potentially more accurate picture of
dynamic exchange (in which likelihood of exchange depends on the value of the diffusion
coefficient) may affect simulation findings described above.

Homogeneous and Heterogeneous Simulations With Noise

Here we explore the effects of noise on simulations of homogeneous and heterogeneous
translational diffusion. As detailed in Methods, simulations can be made more similar to
experiments via addition of stochastic noise as well as varying background intensity,
which also has stochastic noise. For static particles, the presence of stochastic noise in
the absence of background signal returned diffusion coefficients close to that of
experimental results far below Tg. The addition of background signal further increased
localization error above that of experiment.

When noise matching that present in wide-field experiments is added, trends in median
diffusion coefficients and widths of the measured distributions remain similar to the
simulations without noise, including for cases with dynamic heterogeneity (Fig. 5).
Specifically, median diffusion coefficients increase with increased exchange for the
heterogeneous case with a wide seed distribution but not for a narrow seed distribution, as
shown in Fig. 5a. Additionally, distribution widths for wide seed distributions decrease with
increasing exchange, as shown in Fig. 5b.
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Figure 5. Simulations with noise tuned to match experimental results in Ref. 13 (see Methods) compared to
simulations with no noise. 486 molecules were simulated in all cases. (a) Effect of exchange frequency on
median diffusion coefficients for narrow (blue, ᵰ� = 0.1) and wide (black, ᵰ� = 1.0) seed distributions.
Simulations with no noise run with the same parameters are shown in dashed lines. (b) Comparison of
diffusion coefficient (left axis, black) and distribution width (right axis, red) vs. exchange frequency for
simulations with a wide seed distribution (1.0 ᵰ�). Simulations with no noise run with the same parameters are
shown via dashed lines. Black data points are the same in (a) and (b).

A notable feature of the experimental results presented in Ref. 13 was a decrease in
median diffusion coefficient with increasing time between frames. This was an initially
surprising finding given that longer time trajectories experimentally were expected to
support greater likelihood for molecules to experience multiple dynamic environments, a
situation typically associated with increasing diffusion coefficients. Simulations reveal that
this behavior observed in experiments appears to be at least partially related to
localization error that is suppressed at longer TBF, as is reflected by the trend in
measured diffusion coefficient for simulated molecules with no motion but varying levels of
background and noise (Fig. 6a). This behavior remains apparent, though is suppressed to
a degree, in the presence of measurable diffusion coefficients in both homogeneous and
static heterogeneous simulations, increasing in degree with higher background signal and
with the presence of static heterogeneity (Fig. 6b, Fig. S5b,c). Notably, however, in cases
of dynamic heterogeneity, this behavior is not seen, and as long as the same number
of exchanges occur, median diffusion coefficients remain constant (and high relative to
input diffusion coefficients) with increasing TBF regardless of background signal and
noise (Fig. S5d). In these simulations, increasing TBF increases time in seconds
between exchanges, and this does not affect output diffusion coefficients as long as total
number of exchanges is kept constant.
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Figure 6. (a) Simulation of static molecules where all apparent motion is due to localization uncertainty and
data collected from an equivalent experiment far below Tg vs. TBF. 300 K data reproduced from Ref. (13).
Simulation with background and noise is shown at the highest background setting explored. (b)
Homogeneous, static heterogeneous, and dynamic heterogeneous (9 exchanges) simulations at the
highest background setting explored vs. experimental data collected at 375.8 K, both as a function of TBF.
375.8 K data is reproduced from Ref. 13, and shifted by a factor of 4 for ease of comparison to simulation
data. Dynamic heterogeneity data obtained from simulations have particles that experience the same
number of exchanges regardless of TBF. Median D vs. TBF for other noise levels is shown in Fig. S5. All
simulations have 486 molecules.

The inability to fully recapitulate TBF effects seen in Ref. 13 via adding noise and
background, and the loss of decrease in median D with increasing TBF for simulations
including dynamic exchange suggested that the previously discussed methods of
simulating heterogeneous translational diffusion do not capture the full picture of
heterogeneous diffusion as it occurs in the experiments performed. To this end, the next
section explores a potentially more accurate picture of dynamic exchange.

Dynamically Heterogeneous Simulations with Correlated Exchange

The previously described methods of incorporating dynamic exchange for molecules in
simulated movies do so such that exchanges occur at the same frequency and at the
same time for all particles. While the second of these features is clearly unrealistic, the
first may also be inconsistent with dynamic exchange as it occurs in real glassy systems.
In particular, we suggest that molecules traversing fast regions, consistent with high
diffusion coefficients, may exchange more frequently in real time than molecules residing in
regions of slow diffusion. With this in mind, simulations incorporating dynamic
exchange frequency correlated with molecules’ currently assigned diffusion coefficients
were also performed for wide (1.0 σ) seed distributions. In this model, a molecule
assigned a particularly slow diffusion coefficient from the seed distribution will take longer
than average to exchange than a molecule with a higher diffusion coefficient (see
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Methods for a fuller description). Results from these simulations are presented and
compared to experimental data reproduced from Reference 13 in Figure 7.

Figure 7. Simulations with dynamic exchange frequency dependent on individual molecules’ current
assigned diffusion coefficients (D-dependent exchange). (a) Time between frame dependence of input
(black) vs. output median diffusion coefficients for D-dependent exchange (red) and D-independent
exchange (purple). While medians were simulated at 1 nm2s-1, all simulation results are shifted by a factor of
4 for easier comparison to experimental data taken in polystyrene at 375.8K (green), reproduced from
Reference 13. (b) Time between frames dependence of output distribution width for D-dependent (red) and D-
independent (purple) exchange, with legend the same as in (a). (c) Output D distributions (colors)
compared to input D distribution (black) for D-independent dynamic exchange at multiple TBF. (d) Output D
distributions (colors) compared to input D distribution (black) for D-dependent dynamic exchange at
multiple TBF. For all exchange conditions, the median molecule experiences the same number of total
exchanges regardless of TBF. In all cases, 100 molecules were simulated.

Interestingly, when dynamic exchange frequency depends on the current assigned
diffusion coefficient, the decrease in median diffusion coefficient with increasing TBF is
recapitulated even in the absence of noise, and this trend persists regardless of assigned
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diffusion coefficient median (Fig. 7a and Supporting 6). Additionally, diffusion coefficient
distribution widths increase for increasing TBF, a feature seen to a certain extent in
experiment as well (Fig. 7b). Summarizing, simulations with (uncorrelated) dynamic
exchange and a fixed number of exchanges are insensitive to TBF in both median D and D
distribution width (Fig. 6, Fig. 7a and b; purple, and Fig. 7c). Simulations with
(uncorrelated) dynamic exchange – where number of exchanges increases with TBF –
leads to increased median D and decreased distribution width compared to the input
values regardless of TBF (Fig. 4, 5). None of these behaviors is consistent with
experimental findings. In contrast, correlated (D-dependent) exchange results in lower
median D and wider distributions with longer TBF, even as number of exchanges is kept
constant per molecule (Fig. 7a,b red and Fig. 7d). It is notable that this increase in width
with increasing TBF leads to output distributions that more closely match the input
distributions than in other types of heterogeneous simulations.

In D-dependent exchange, we propose that the apparent decrease in median D with
increasing TBF emerges because portions of trajectories associated with greater mobility,
which last for short times in this type of simulation, are missed. While this can result in a
decrease in median D with increasing TBF, individual molecules may not experience the
same level of (or any) decrease depending on their particular trajectory (Supporting 7).
To investigate this potential explanation further, molecules from the 4s TBF data set and
the 16s TBF data set that were assigned the same input diffusion coefficient yet returned
different output diffusion coefficients are investigated in detail in Supporting 8. It is
apparent that many of the larger steps observed in the 4s TBF step size distribution are
absent in the longer TBF simulation. This is a different result than for uncorrelated
dynamic exchange, as for correlated exchange these large steps are associated with
shorter times, and thus fewer frames, rather than persisting for equal lengths of time as
those associated with low D periods. This results in large steps more likely to be missed
when time between frames is increased, leading to depressed apparent diffusion
coefficients. The loss of observed large steps acts counter to the tendency for dynamic
exchange, as it exists in the D-independent exchange simulations, to increase diffusion
coefficient values and narrow their distribution.

Conclusion

Results from simulations of single molecule translational diffusion suggest explanations
for key experimental observations on translational diffusion coefficients in supercooled
systems. In particular, with respect to recent single molecule measurements tracking
translations of probe molecules in polystyrene near Tg, longer trajectory lengths reduce
measured diffusion coefficient distribution width only for measurements far below Tg. This
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finding supports the idea that the wide distributions of diffusion coefficients found in
experiments performed at higher temperatures, near Tg, reflect a true wide underlying
distribution. Simulations with static heterogeneity and simulations incorporating dynamic
exchange in which times between exchange are uncorrelated with diffusion coefficient do
not match behavior seen in experiment. Such simulations with dynamic exchange do,
however, provide support for the idea that fast portions of trajectories increase diffusion
coefficients obtained via time-averaged mean square displacement analysis, thus
contributing to apparent rotational-translational decoupling seen in both ensemble and
single molecule experiments in glassy systems. This work also shows that recent
experimental results are most consistent with dynamic exchange in which there is a wide
underlying heterogeneous distribution and time between exchange is correlated with
diffusion coefficient. In this scenario, longer trajectories lead to an apparent decrease in
diffusion coefficient, blunting the degree of translational enhancement that otherwise
emerges from dynamic exchange. Taken together with experimental results presented in
Ref. 13, it appears that the majority of rotational-translational decoupling in glassy
systems occurs through dynamic exchange, with averaging over fast regions increasing
apparent translational diffusion coefficients but not to the extent that would be expected if
exchange times were uncoupled from dynamics of the spatiotemporally heterogeneous
environment. The presence of a decrease in apparent diffusion coefficient with increasing
time between frames only in the presence of correlated dynamic exchange suggests this
physics is present in the high molecular weight polystyrene system recently investigated
and may be a feature of glassy systems more generally.
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