

1
2 The Inverse-Krogh principle: all organisms are worthy of study
3

4 Christopher J. Clark^{1*}, John R. Hutchinson², and Theodore Garland, Jr.¹
5

6 ¹ Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside,
7 CA 92521, USA

8 ² Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal
9 Veterinary College, University of London, Hatfield, Hertfordshire, AL9 7TA, United Kingdom.

10
11 *Corresponding Author: cclark@ucr.edu
12

13 ORCID:

14 CJC = 0000-0001-7943-9291

15 JRH = 0000-0002-6767-7038

16 TG = 0000-0002-7916-3552
17

18 Keywords: Adaptation, Animal model, Biodiversity, Krogh principle, Model organism, Scientific method
19

21 **Table of Contents**

22	Opening Quotations.....	3
23	Abstract.....	4
24	The Krogh principle	5
25	The inverse-Krogh principle: all organisms are worthy of study	7
26	Krogh and Inverse-Krogh approaches are complementary.....	8
27	<i>Improbable traits</i>	11
28	Other considerations in choosing organisms and/or questions	12
29	Extremes	12
30	Phylogenetic relationships.....	13
31	Multiple meanings of "model".....	14
32	Model organisms "evolve" and can be created	15
33	Pitfalls of the inverse-Krogh principle.....	17
34	Final thoughts	20
35	Acknowledgments.....	21
36	Author contributions	22
37	References	23
38	Table 1: Definitions	30
39	Figure 1.	32
40	Figure 2.	33
41	Figure 3.	34
42		
43		

44 **Opening Quotations**

45

46 "It is not necessary to understand things in order to argue about them." Pierre de Beaumarchais

47

48 "Comparison is the death of joy." Mark Twain

49

50

51 **Abstract**

52

53 Krogh's principle states: "for such a large number of problems there will be some animal of choice, or a few
54 such animals, on which it can be most conveniently studied." The downside of picking a question first, then
55 finding an ideal organism on which to study it is it will inevitably leave many organisms neglected. Here,
56 we promote the inverse-Krogh principle: all organisms are worthy of study. Inverse-Krogh and Krogh are
57 not opposites. Rather, the inverse-Krogh principle emphasizes a different starting point for research: start
58 with a biological unit, such as an organism, clade, or specific organism trait, then seek or create tractable
59 research questions. Even the hardest-to-study species have research questions that can be asked of them,
60 such as: Where does it fall within the tree of life? What resources does it need to survive and reproduce?
61 How does it differ from close relatives? Does it have unique adaptations? The Krogh and inverse-Krogh
62 approaches are complementary and many research programs naturally include both. Other considerations
63 for picking a study species include extreme species, species informative for phylogenetic analyses, and the
64 creation of models when a suitable species does not exist. The inverse-Krogh principle also has pitfalls. A
65 scientist that picks the organism first might choose a research question not really suited to the organism,
66 and funding agencies rarely fund organism-centered grant proposals. The inverse-Krogh principle does not
67 call for all organisms to receive the same amount of research attention. As knowledge continues to
68 accumulate, some organisms – models – will inevitably have more known about them than others. Rather,
69 it urges a broader search across organismal diversity to find sources of inspiration for research questions,
70 and the motivation needed to pursue them.

71

72 **The Krogh principle**

73 Before a biologist can apply their skills, they must pick a question and a study system. The study system
74 can range in level of biological organization from molecules to cell cultures to organisms to ecosystems. In
75 the context of comparative physiology, August Krogh stated that "*for such a large number of problems*
76 *there will be some animal of choice, or a few such animals, on which it can be most conveniently studied*"
77 (Krogh 1929 p. 247). Krebs (1975) provided the name "Krogh principle" and listed several examples,
78 including the use of (1) squid giant axons to study nerve conduction (because they are large), (2) pigeon
79 breast muscle to study the tricarboxylic acid cycle (because it has a high rate of respiration in saline
80 solution), (3) the three-spine stickleback to study behavior (because they maintain normal behavior in
81 captivity that is easily observed), and (4) the use of *Drosophila* to study genetics. He concluded by stating
82 that "A general lesson to be learned from these considerations is the importance of looking out for a good
83 experimental material when trying to tackle a specific biological problem" (Krebs 1975, p. 225).

84 Although Krogh (1929) did not use the word "model" to describe this approach, Krebs (1975) did.
85 In this context, "model" has multiple definitions, which we address more fully below (see also Table 1). As
86 an example of a "Krogh model" (or "Krogh organism" *sensu* Green et al. 2018), if one wants to know how
87 jumping works, a model is an animal good at it, such as a kangaroo or frog (Figure 1). These animals are
88 convenient because they are prone to jump, but also the legs of both are well-developed with large muscles
89 suitable for electrodes (Azizi and Roberts 2010). Moreover, you can get them to sit still on a force plate
90 prior to jumping, thus allowing accurate measurement of ground-reaction forces (Nauwelaerts and Aerts
91 2006). Measuring how kangaroos and frogs function is comparatively easy, and it is easy to convince them
92 to jump in your experimental setup because jumping is what they do naturally. This approach has obvious
93 merit. Frogs and kangaroos are good models for jumping, but a turtle is unlikely to teach us much about
94 jumping.

95 Krogh offered his advice regarding convenient animals of choice following a paragraph in which
96 he promoted the idea of conducting physiology on a wide range of organisms. This was a reaction against
97 the narrow focus on a small number of organisms that dominated the physiology of his day (Ankeny and
98 Leonelli 2011; Green et al. 2018). Specifically, he stated that "the general problem of excretion can be
99 solved only when excretory organs are studied *wherever we find them and in all their essential*
100 *modifications*. Such studies will be sure, moreover, to expand and deepen our insight into the problems of
101 the human kidney and will prove of value also from the narrowest utilitarian point of view" (Krogh 1929, p.
102 247; emphasis added). Thus, even as Krogh promoted the use of convenient animals of choice, he also
103 suggested that other species deserved study. This latter point receives far less attention when the Krogh
104 principle is invoked, and it is a starting point for the present paper.

105 In some cases, the Krogh principle has become a simplified catechism, cited without this broader

106 perspective. Gans (1978) paraphrased it as the “principles approach” and lamented that it had become
107 dominant, the “only respectable” and “always critical” approach to adhere to. The more natural-history-
108 driven approach that he favored (and that we espouse here) had fallen victim to an “overwhelming bias.”
109 The downside of picking a question first, then finding an ideal organism is that this approach will
110 inevitably leave many organisms neglected. Consider an organism that is not the best model organism for
111 any particular question. The Krogh approach, rigidly adhered to, subtly implies a pernicious question: why
112 ever study non-model organisms? If every good question in physiology or behavior (or evolution or
113 ecology) would be better answered with a superior model, then most organisms become unworthy of
114 serious inquiry (Figure 1). (In a related example, the use of a *single* animal as a model, the albino
115 laboratory rat, led to the decline of “comparative” psychology (Beach 1950).) Although Krogh was most
116 focused on physiology, here our lens is broader, including questions in ecology, evolution, and behavior.

117 But this raises a question: What makes a good question good? Research questions often arise from
118 the organisms that are at hand, readily available for study. Some questions are theoretically interesting but
119 impossible to study, because, currently at least, no organism is suitable. For instance, how does an
120 organism with left-handed helical DNA structure perform differently from one with right-handed helical
121 DNA? Life on our planet is based on right-handed DNA (de Rosa et al. 2010), so examples of left-handed
122 DNA do not exist. The courtship displays of sauropod dinosaurs are similarly out of direct reach, although
123 there might be fruitful ways to indirectly address questions about sexual selection in these animals (e.g.
124 Taylor et al. 2011). Although sauropods must have had such behaviors, these dinosaurs are extinct and
125 courtship behavior generally doesn't fossilize. Thus, these two questions are not available for study under
126 the Krogh principle, for no organism is convenient, although as we address below, for certain questions this
127 limit can be circumvented because a suitable organism can be created (Bennett 2003).

128 Many good questions arise out of consideration of organisms themselves (Bartholomew 1982),
129 which leads us to the inverse-Krogh principle (Figure 1). We use this name somewhat playfully, not to
130 condemn the Krogh principle; its value and power have been proven by the history of science (Dietrich et
131 al. 2020; Lindstedt 2014). Rather, our purpose here is to emphasize that alternatives to the Krogh principle
132 are also valuable and powerful. Introspection on the fundamental question of “What shall I study?” has
133 multiple starting points.

134 In the initial submission of this manuscript, we used the term “anti-Krogh,” which reviewers
135 suggested was counter-productive, and we agreed. A related term we encountered was “reverse-Krogh” (B.
136 Sinclair, pers. comm.). We instead use the term “inverse-Krogh principle.” Under the Krogh principle, a
137 question is selected first, then a good organism. The inverse-Krogh principle is the inverse of this: select an
138 organism first, followed by an appropriate question (Figure 1). We note that Kram and Dawson (1998) used
139 “inverse-Krogh principle” to mean “choosing to study a species that has been most appropriate for

140 stimulating new questions rather than providing definitive answers", which is not the same as the definition
141 used here.

142

143 **The inverse-Krogh principle: all organisms are worthy of study**

144 Carl Gans (1978) titled a paper: "All animals are interesting!" Consistent with this exclamation, the inverse-
145 Krogh principle states that, merely by existing, a species deserves research attention that could inspire or
146 lead to exciting questions (Figure 1). The same argument applies to any other level of biological
147 organization, from cells to ecosystems. This perspective is analogous to George Leigh Mallory's stated
148 reason for wanting to climb Mount Everest: "Because it's there!" (Gillman and Gillman 2001 pp. 221-223).
149 Or, as Barbara McClintock famously described how the importance of having "a feeling for the organism"
150 fueled her day-to-day passion and curiosity for science (Keller 1983), and led to her important insights and
151 achievements in several fields—not least of which included a Nobel prize. David Wake made huge strides
152 in evolutionary and developmental biology by taking a "focal clade" (as opposed to a focal species)
153 approach focusing on plethodontid salamanders (Hanken 2021; Zamudio 2021).

154 The hypothetico-deductive framework is sometimes presented as if the hypothesis always comes
155 first. But of course, all science has in it the inductive method: observation comes first. All questions (and
156 hypotheses) are rooted in prior observations. Thinking does not occur in an empirical vacuum. Developing
157 a good question can be the hardest step in science, and inspiration may arise from innumerable forms of
158 observation.

159 What may be studied of any organism? Certainly, some organisms are easier to study than others;
160 as a corollary, some organisms are scientifically better known than others. Extinct species are particularly
161 difficult to study, even indirectly. But at a minimum, some universal questions one may ask of any
162 organism include where does it fall within the tree of life, where does it live, what resources does it need to
163 survive, how does it reproduce, and how does it interact with its environment.

164 Making a complete list of 'universal' questions is difficult, for it is intrinsically hard to state the
165 limits to scientific inquiry regarding any given organism. It is possible that naming and placement in the
166 tree of life of a previously undescribed taxon is all that science may ever accomplish for the hardest-to-
167 study (or rarest) organisms, such as oceanic bacteria that cannot (yet) be cultured in the lab and are inferred
168 to exist only from sequencing of seawater (Joint et al. 2010), or rare fossils for which we only uncover a
169 single fragment of one individual. It may be difficult to ever learn much of deep sea creatures that live at
170 1,100 times atmospheric pressure and disintegrate upon reaching the low pressure of the ocean surface,
171 such as snailfish (*Pseudoliparis*), though we suspect Gerringer (2019) would disagree that snailfish are as
172 unknowable as we have just implied.

173 One can never be sure what the limits to knowledge of a particular species may be; something

impossible to study today may become accessible through tomorrow's technological or conceptual breakthrough. Decades ago, telemetry allowed unprecedented access to body temperatures and movements of animals under natural conditions (Cooke et al. 2004; Costa and Sinervo 2004; Hebblewhite and Haydon 2010; Mackay 1964). Even a few years ago, it might have seemed unimaginable that the entire genome of a cave bear could be sequenced out of bones estimated to be 360,000 years old (Barlow et al. 2021), but some cave bear genomics is now possible. Similarly, the colors of dinosaur integuments were long off limits to real scientific inquiry, but thanks to molecular paleontology and new imaging technologies, plus incredible fossil preservation, this question is now an intensive area of scientific discoveries and excitement (Li et al. 2010; McNamara et al. 2021). The precision with which a question may be studied can radically improve via technological and methodological advances, opening up new ways of re-addressing old questions. For example, x-ray radiography and "XROMM" biplanar fluoroscopy led to dramatic improvements in the study of normal and pathological morphology, as well as of the motions of organisms (Brainerd et al. 2010; Gatesy et al. 2010; Pasveer 2006), by allowing visualization of static and dynamic forms and functions of skeletal and other tissues. By definition, limits to knowledge and its acquisition continually shift in ways impossible to anticipate.

This variation in knowledge of any particular species, and source of research question (Krogh vs. inverse-Krogh) is plotted in Figure 2. New species descriptions (lower left) are the starting point, since a newly described species by definition has virtually nothing known about it. In the opposite corner (upper right) are 'standard model' organisms ("the mouse", "the fly", etc.) as used to study 'standard' theoretical questions, such as the biology of cancer. The upper left corner is empty, because the limiting case of an undescribed species with no described biology cannot be a "Krogh model." Whether any research can fall in the extreme lower right corner is debatable. Model species such as *Mus musculus* or *Drosophila melanogaster* have aspects of their natural history which remain poorly known, but whether an investigator could pick a research question on them based *only* on the organism itself, and entirely ignore the literature on these species as they do so, seems unlikely.

Krogh and Inverse-Krogh approaches are complementary

The inverse-Krogh principle we advocate here is not exactly the opposite of the Krogh principle. Instead, the inverse-Krogh principle emphasizes a different starting point for scientific inquiry. Rather than declaring some organisms as useful models for a particular question, as the Krogh principle does, the inverse-Krogh principle emphasizes natural history: observation of organisms as they are. This is the approach of Bartholomew (1982) or Gans (1978) and, we would argue, of Charles Darwin (e.g. Darwin 1851, 1875) (see also Arnold 2003). Darwin's (1859) *On the Origin of Species* was not the result of trying to find a convenient organism to study a biological problem or concept, and he certainly was not testing an

208 *a priori* hypothesis. Rather, this monumental work derived from observing organisms that he happened
209 upon and/or found interesting, and eventually trying to make sense of their diversity of form and habits
210 (Reznick 2009), via inductive, abductive, and hypothetico-deductive means alike (Elliott et al. 2016).
211 Galapagos finches revealed themselves to Darwin as excellent models for the study of adaptation and
212 speciation, and subsequent workers then recognized them as models for these topics and others (e.g. Grant
213 and Grant 2006; Herrel et al. 2005; Loo et al. 2019). Darwin's work on the Galapagos Islands clearly
214 demonstrates the point that consideration of the organism itself, in its natural context, will suggest
215 questions that might be asked of it. We would argue that the inverse-Krogh approach implicitly underlies
216 much descriptive research, including natural history, taxonomy, parts of conservation biology, and
217 construction of phylogenetic trees. Popper (1959) and others have pushed the supremacy of strong
218 inference and the deductive approach. Some even engage in *post-hoc* presentation of research as
219 hypothesis-driven even when that's not how the research project originated (Bartholomew 1982; Kerr
220 1998), as if exploratory work is "bad" (Rowbottom and Alexander 2012).

221 Natural history, taxonomy, and other descriptive work sometimes gets a sneer from
222 experimentalists and theoreticians alike: *this work is descriptive* (Hailman 1973). One colleague, in a casual
223 conversation, called this "the eternal war of facts vs. concepts" (or data vs. theory). Science advances on
224 both. We suggest that purely theoretical work with no clear application can be just as subjectively
225 interesting as purely descriptive work with no clear theoretical basis. In the Krogh approach, one starts with
226 a problem that needs solving and searches for an organism on which to collect facts (empirical data) to
227 support, refute or refine the questions involved. In the inverse-Krogh approach, one starts with facts rooted
228 in observations of an organism, and *then searches for questions or invents concepts that can be applied to*
229 *this organism*, given the initial observations. Both approaches can lead to major advances. Bang was
230 studying horseshoe crab blood circulation when he noticed it coagulated in the presence of bacterial
231 endotoxins (Bang 1956). This initial observation about his organism (inverse-Krogh) became the basis for
232 the *Limulus* amebocyte lysate test (Levin 2019). Important research in conservation biology arose from
233 observation that a species seems to be in decline. For instance, the discovery that DDT induced
234 reproductive failure (e.g. by thinning eggshells) in raptors arose from observation of reproductive failure in
235 raptors (Porter and Wiemeyer 1969). The gene-editing technique CRISPR is arguably the biggest advance
236 in biology in the past decade. Lander (2016) documents that the essential precursor discoveries came from
237 curiosity about salt-marsh microbes and hypothesis-free exploration of bioinformatic datasets - and even
238 that some of these early results were rejected from major journals for being 'too descriptive'.

239 One of us (CJC) has followed a path that illustrates how research programs may shift over time
240 between Krogh and inverse-Krogh (Figure 3A). Initially we adopted a Krogh approach, using
241 hummingbirds as a model for bird flight, to ask how flight is affected by tails that were greatly elongated

242 by sexual selection (Clark and Dudley 2009). This led to observation of the organism itself. While flying
243 Anna's Hummingbirds (*Calypte anna*) in a wind tunnel, and manipulating their tail-feathers, we observed
244 they have sexually dimorphic tail feathers, but the dimorphic feathers are not long or colorful in a way
245 suggestive of a visual signal. Moreover, males make a distinctive *chirp* during a high-speed dive performed
246 for females; and we found a paper suggesting these dimorphic tail-feathers produce the *chirp* (Rodgers
247 1940). Rodgers' idea was later disputed (Baptista and Matsui 1979). These observations on the organism
248 itself spurred a set of inverse-Krogh manipulative experiments that unambiguously supported Rodgers'
249 hypothesis: the tail-feathers make the sound (Clark and Feo 2008). Follow-up work expanded the
250 representational scope: related hummingbirds have differently-shaped tail feathers and make different
251 sounds (Feo and Clark 2010). Moreover, other birds have convergently evolved to make sounds with their
252 feathers (Clark and Prum 2015; Darwin 1871 pg. 61-67). One widespread physical mechanism that
253 generates these sounds is aeroelastic flutter (Clark et al. 2013a). Aeroelastic flutter, as an acoustic
254 phenomena specifically, appears to be something that bird feathers, and perhaps no other biological
255 structure, are prone to do (Clark 2021).

256 Under the Krogh principle, CJC's research approach would have been different. The research
257 question shifted from aerodynamics of elongated tails to acoustic communication in birds. If the research
258 question were framed as: "how do birds communicate acoustically?" then, as most avian acoustic
259 communication is vocal, the Krogh principle suggests studying a bird that is good at singing, such as a
260 mockingbird or zebra finch. The representational scope (sensu Ankeny and Leonelli 2011; Table 1) of this
261 research is, in certain dimensions, somewhat limited. That is, the hummingbird feather work provided a
262 physical acoustic mechanism (flutter) generalizable to birds, but apparently, not bats or insects. Other
263 uncovered patterns do generalize. For instance, mapped on a phylogeny, hummingbird tail-feather sounds
264 evolve as both a continuous character and a genuinely discrete character because how a feather flutters is an
265 emergent property of a dynamical system in which tiny changes in a state variable (e.g. feather width) can
266 have either a small or large effect on flutter, depending on whether a threshold was crossed (Clark et al.
267 2011; Clark et al. 2018). Many phenotypic characters are emergent properties with a complex physical
268 basis (e.g. locomotor gaits, colors) and so likely also evolve this way (Clark et al. 2018). Moreover there
269 are intriguing patterns of correlated evolution between vocal and nonvocal sounds, such as certain species
270 that make vocalizations with similar acoustic structure to their non-vocal sounds: they produce two sounds
271 that sound the same, despite being produced by different physical mechanisms (Clark and Feo 2010). Such
272 "self mimicry" is not predicted by any current models of complex animal signaling. Finally, this work has
273 led to work on adjacent topics, including how wing hum of hummingbirds and insects is produced (Clark
274 and Mistick 2020) and how quiet flight evolved in owls (Clark et al. 2020), with many possible future
275 directions (Figure 3A).

276 Another of us (JRH) has had a complex career path that mixes the Krogh and inverse-Krogh
277 principles (Figure 3B). He began with a question about whether a *Tyrannosaurus rex* could run quickly or
278 not, something that was debated in the dinosaur literature (a 7+-ton biped makes a great choice for a study
279 taxon for the limits giant size places on speed; Hutchinson and Garcia 2002). But this soon turned to ask if
280 elephants could run, and how quickly (Hutchinson et al. 2003). Yet these research threads led him to want
281 to place these organisms into evolutionary contexts to understand (for their own sake; and for
282 understanding on a case-by-case basis for their lineage) how their locomotor abilities evolved, and this
283 curiosity prompted questions about form and function. The elephant research thread explored the
284 remarkable foot structure of proboscideans, and serendipitously realized that (1) elephants had very
285 remarkable false "sixth toes" akin to the panda's "thumbs," which they use to support their fatty footpads,
286 and (2) fossils revealed something about the early origin and evolution of these giant sesamoid bone
287 structures and their relationship to foot posture, body size, and terrestriality in early elephants (Hutchinson
288 et al. 2011). Thus, the elephant research turned more to an inverse-Krogh perspective, by following
289 organism-derived observations that inspired the most interesting questions. This research on how animals
290 on land cope with the extreme constraints of supporting themselves against gravity searches both for
291 generalities and unique patterns in lineages that have evolved gigantism on land via an evolutionary
292 biomechanics approach, which integrates Krogh and inverse-Krogh approaches (Hutchinson 2021).

293

294 **Improbable traits**

295 A thesis of this paper is that the Krogh principle will tend to leave some species under-studied. A corollary
296 is the Krogh principle will also tend to leave certain types of traits un-studied. By finding organisms that fit
297 research questions, the Krogh principle steers research away from the study of traits that are not predicted
298 by pre-existing empirical knowledge or theory. These are improbable traits. As Dawkins (1979) put it: "If
299 spider webs did not exist, anybody who postulated them might well provoke scornful skepticism. But they
300 do exist; we have all seen them" (p. 188). Dawkins is right: we *have* all seen spider webs and, as a result,
301 they have attracted extensive study. Improbable traits have even turned into models: spider web material
302 properties inspire engineered designs (Swanson et al. 2006), and many aspects of their design have been
303 studied (Eberhard 1990). Perhaps spiders' webs are too famous to be considered 'improbable'. Consider an
304 improbable behavior: shrimp parades. In Thailand, thousands of freshwater shrimp crawl onto land at night
305 in September to parade upstream. Having observed this strange behavior, Hongjamrassilp et al. (2021)
306 tested a series of hypotheses and uncovered a likely function (it is a way to migrate upstream while
307 avoiding rapids). This is the inverse-Krogh approach.

308 Many other complex organismal traits might be improbable, such as keratin-based feathers in birds
309 (Prum 2005) or asynchronous muscle in insects (Josephson et al. 2000). If life independently evolved on

310 another planet, we might imagine that similar ecological processes would cause convergent evolution of
311 organisms that fill some of the same niches as we have here on earth, especially the broadest niches, such
312 as predators and prey (Losos 2017). But would the same improbable traits evolve, including "key
313 innovations" (Blount et al. 2008; Lynch 2009) that characterize single clades, such as spider's webs, or
314 feathers (Prum and Brush 2002), or asynchronous muscle (Josephson et al. 2000)? Who knows if re-
315 running a billion years of evolution would again produce spider webs or feathers or shrimp parades (Blount
316 et al. 2018). Under strict application of the Krogh principle, such improbable traits will tend to remain
317 undiscovered and unstudied.

318 Importantly, the existence of some "improbable" traits was predicted by theory. In comparative
319 biomechanics and functional morphology, one puzzle or paradox concerned why some animals were such
320 proficient jumpers. For example, bushbabies (*Galago*) (Aerts 1998) and frogs (Astley and Roberts 2012;
321 Peplowski and Marsh 1997) seemed to be able to produce more mechanical power for jumping than should
322 be possible for vertebrate muscle. Theoretical research by Alexander (1974) and others had predicted the
323 existence of "power amplification," as it later came to be called, or elastic energy storage, in the tendons in
324 series with limb muscles, but it took almost four decades to compile sufficient experimental confirmations
325 of these predictions (e.g. Astley and Roberts 2012; Lutz and Rome 1994). Consequently, old ideas that
326 tendons functioned like rigid cables and muscles did all of the mechanical work in motion were overturned;
327 a major paradigm shift in the field. Alexander's (1974) original work and follow-up studies did not present
328 explicit hypothesis; they were implicitly asking a curiosity-driven question "Can we use what we know
329 about anatomy and mechanics to understand how a dog jumps?" Analogously, arguably one of the greatest
330 ideas in physiology is the sliding filament hypothesis for muscle contraction, which proposed that myosin
331 filaments slide (using cross-bridge attachments) relative to actin filaments within a sarcomere to generate
332 force- and velocity-dependent properties based on overall sarcomere length, thereby generating motion.
333 This hypothesis was developed by Huxley and Niedergerke (1954) and Huxley and Hanson (1954), and
334 was theoretical in origin and not empirically demonstrated until ~1985 (Yanagida et al. 1985). Similarly,
335 the search for the structure of DNA was theory-driven, in which several (wrong) theories for the structure
336 of DNA were proposed and then eventually discarded when appropriate empirical data were collected.
337

338 **Other considerations in choosing organisms and/or questions**

339 **Extremes**

340 Many considerations can go into picking a study species. Indeed, Dietrich et al. (2020) present a framework
341 with 20 criteria for choice of a study species (their table 1). One criterion they discuss under the headings
342 'Responsiveness' and 'Comparative Potential' is the long-standing tradition in comparative, ecological, and
343 evolutionary physiology of focusing on organisms that live in extreme environments, have extreme life

344 histories, and/or possess extreme traits (Adriaens and Herrel 2009; Green et al. 2018). The phrase "outliers"
345 has also been used in this context (Singer 2011).

346 With respect to extreme environments, we are naturally curious about how anything can live in a
347 place inhospitable to our own kind, such as a hot, dry desert, or the Arctic or Antarctic. From a more coldly
348 scientific perspective, such organisms seem likely to have evolved adaptations that allow them to function,
349 survive, and reproduce in those environments (Garland and Carter 1994; Green et al. 2018). To quote
350 Bartholomew (1987), p 16: "The study of physiological adaptations to extreme environments - the polar
351 regions, the tops of high mountains, ... - has the attraction of allowing an investigator to focus on those
352 aspects of an organism's physiology that allow it to cope with overt, clearly definable challenges such as
353 extremes of temperature, ..., low partial pressures of oxygen, ..." Accordingly, some of the earliest attempts
354 to study ecologically relevant physiology focused on organisms from extreme environments (Cowles 1939;
355 Schmidt-Nielsen et al. 1956; Scholander 1955; Scholander et al. 1953). As an added benefit (or curse),
356 "Such organisms often force one to abandon standard methods and standard points of view" (Bartholomew
357 1982 p. 234).

358 Although the end result of natural selection in extreme environments may often be extreme traits,
359 such as the large kidneys of many desert rodents (Al-kahtani et al. 2004), not all organisms from extreme
360 environments will have evolved specialized aspects of morphology or physiology. In particular, some may
361 simply avoid extreme conditions via behavior (e.g. Bartholomew 1964). For instance, most rodents living
362 in hot deserts tend to spend the day underground in burrows, in a cooler microclimate that avoids heat and
363 desiccation.

364 Aside from adaptive evolution in response to natural selection, sexual selection often leads to the
365 evolution of extreme traits, including extreme morphology like elongated eye-stalks of stalk-eyed flies
366 (Baker and Wilkinson 2001), extreme muscles used in displays (Fuxjager et al. 2016), or extreme
367 behaviors, such as hummingbird courtship dives (Clark 2009). These, too, have sometimes become models,
368 as in studies of muscle trade-offs (Tobiansky et al. 2020) and CJC's studies of sound production during
369 hummingbird courtship dives (see above).

370

371 **Phylogenetic relationships**

372 Another consideration in picking a study organism is their phylogenetic position. Do they have
373 relatives that may be easily available, or not, or that may live in more or less extreme environments? This is
374 a massive topic and we do not have the space here to do it justice, but we can echo a few points that have
375 been made in the literature (Garland 2001; Garland and Adolph 1994; Garland et al. 2005; Huey et al.
376 2019; Rezende and Diniz-Filho 2012). Many comparative physiologists are interested in how a trait
377 evolved, which entails comparing multiple species within a clade with the use of statistical procedures that

378 incorporate independent information on phylogenetic relationships. Cherry-picking for study only the most
379 extreme species within a clade can lead to overestimation of the commonness of adaptation; thus, it is
380 important to include mundane (not extreme) species in phylogenetic analyses as well. Therefore, in
381 deciding which species to study, where it falls within the clade of interest is relevant. For example, it may
382 be important to include species from the end of a long branch at the base of a clade or that are sister to a
383 species of particular interest (e.g. see Garland and Ives 2000).

384 In principle, including extreme species in an interspecific comparative study should increase the
385 statistical power to detect relationships between phenotype and environment, and hence to discover
386 evolutionary adaptations (Garland and Adolph 1994), or to test for coadaptation of different traits. Once
387 discovered, some of these adaptations have been highlighted because they can provide an experimentally
388 convenient avenue to study physiological mechanisms (Green et al. 2018). For example, the guts of snakes
389 have coadapted with their feeding ecology (Secor 2005). Specifically, species that feed infrequently often
390 have the ability to down-regulate the size and functional capacities of the gut, then regrow it rapidly after
391 they eat.

392 However, choosing extreme species may also have led to a bias in our data base and hence in our
393 view regarding the commonness of evolutionary adaptation to the environment (Garland and Adolph 1991;
394 see also Green et al. 2018). In similar fashion, trade-offs may occur most commonly in organisms that have
395 extreme phenotypes or live in extreme environments (Garland et al. 2021), so a focus on such organisms
396 may bias our view of how common trade-offs really are. More generally, extreme organisms may be
397 unique, such that principles learned from them may lack generalizability; if so, then they are actually
398 unsuitable as general models (Green et al. 2018). A related issue is the peril of assuming that an organism
399 living in an extreme environment necessarily has extreme adaptations. For example, Bartholomew and
400 colleagues initially interpreted the physiology of the marine iguana to be an adaptation to its extreme (i.e.,
401 marine) lifestyle, but then had to reappraise this interpretation after studying the physiology of related
402 lizards (Dawson et al. 1977).

403

404 **Multiple meanings of "model"**

405 A possible source of confusion exists. The Krogh principle holds up convenient organisms as "models" for
406 problems, questions or phenomena. But what is a model organism? The word model has multiple
407 meanings, two of which we highlight in Table 1 (Leonelli and Ankeny 2013; Russell et al. 2017). Biology
408 uses other types of models as well, including physical models (e.g. Emerson and Koehl 1990),
409 mathematical models based on optimality assumptions (e.g. Taylor and Thomas 2014) or
410 numerical/computational simulations (e.g. Bishop et al. 2021; Garland et al. 2021), and verbal or graphical
411 models (Romero et al. 2009), but they are beyond the scope of this paper.

412 In the sense of the Krogh principle, models relate to questions: a model is any organism in which
413 "design" principles can be studied relatively easily (Table 1). Understanding gained from such models can
414 then be applied inductively to organisms in which form or function cannot be studied as easily. This
415 inductive application to other organisms is the representational scope of the model (sensu Ankeny and
416 Leonelli 2011): the wider set of phenomena that study of the model organism is intended to elucidate. If a
417 frog is a model for jumping, then the representational scope is all animals capable of jumping (Table 1).
418 Under this definition, an unusual, rare or poorly-studied species may nonetheless be a model: snailfish may
419 be a model for how life deals with extreme pressure (Gerringer 2019). Such "Krogh models" may have
420 narrow representational scope or similarity to other organisms, but are chosen for characteristic features
421 that make a given trait or mechanism experimentally accessible (Green et al. 2018).

422 The other definition of model (Table 1) applies to specific organisms about which science has
423 made substantial advances in unraveling how they work, such as species in the genera *Escherichia*,
424 *Arabidopsis* ("the plant"), *Caenorhabditis* ("the worm"), *Danio* ("the fish"), *Gallus* ("the bird"), and *Mus*
425 (Ankeny and Leonelli 2011; Bolker 2012). This type of model is already so well-known that they become
426 the default subjects of study for many questions in part because they are already well-known (Dietrich et al.
427 2020). Being well-known makes them convenient in various ways, including logically. For example,
428 laboratory strains of mice (*Mus*) have been studied so much that there is a large commercial market for
429 devices designed to facilitate data collection on them, such as devices to allow high-throughput
430 measurements of blood pressure from cuffs placed on the tail, electrocardiograms from unrestrained
431 individuals, and stride characteristics as they run on a treadmill (Claghorn et al. 2017; Kay et al. 2019; Kolb
432 et al. 2013).

433 The term "model organism" has become so commonly used that researchers often highlight their
434 use of "non-model organisms" (Galván et al. 2022; Russell et al. 2017). Non-model organism research has
435 the disadvantage that it cannot build on the vast foundations of knowledge regarding model organisms and
436 the techniques that work best on them (Dietrich et al. 2020). Studying non-models can seem inefficient,
437 requiring acquisition of new basic knowledge (and new equipment, etc.) before deeper questions may be
438 asked of them. On the other hand, acquiring that new basic knowledge is inherently valuable and also might
439 lead to surprising insights along the way. For example, new "model organisms in the making" might be
440 uncovered (Galván et al. 2022; Russell et al. 2017), such as rattlesnakes for their tail shaker muscles (e.g.
441 Moon and Tullis 2006) or naked mole rats for their thermoregulatory physiology, as noted in the next
442 section.

443

444 **Model organisms "evolve" and can be created**

445 Naked mole rats (*Heterocephalus glaber*) are, as the name indicates, nearly hairless rodents that are blind

446 and live in underground burrows in amazing eusocial colonies. Indeed, they are one of only two truly
447 eusocial mammals, whose colonies include a single breeding female and a "soldier" caste. Although this
448 breeding system was what attracted the initial research interest on these unusual animals, along the way,
449 biologists soon noticed many other unusual characteristics, including low metabolic rates, poor
450 thermoregulatory abilities, long life spans, and resistance to cancer. Thus, naked mole rats became
451 models for the study of other phenomena, including the basic cellular and molecular processes of both
452 aging and cancer (Green et al. 2018; Keane et al. 2014; Shi et al. 2010; Welsh and Traum 2016).

453 Giraffe provide a somewhat similar example. These animals, simultaneously wondrous and
454 ungainly, interested early evolutionary biologists, Charles Darwin among them. Despite a century and a
455 half of study, we still don't understand precisely why giraffes have their most salient feature: such a long
456 neck. Browsing benefits and/or sexual selection are the prevailing hypotheses (Mitchell et al. 2009; Switek
457 2017). Much later, physiologists began studying their blood pressures (which are high), wishing to
458 understand their cardiovascular function and how they could regulate pressure and blood flow to the brain
459 as the head moved (rapidly) from far below to far above the position of the heart (references in Powers et
460 al. 2012; White and Seymour 2014). In this regard, they served as models for understanding how long-
461 necked sauropod dinosaurs might have coped. The giraffe-to-sauropod inference has led to the speculation
462 that the longest cells in the history of life were the recurrent laryngeal nerves in sauropods (Wedel 2012).

463 In considering the Krogh principle, Bennett (2003, p. 1) posed the question: "what if an organism
464 with the desired properties does not exist?" He argued that an extension of the Krogh principle would be to
465 create novel organisms ideally suited for the study of particular physiological phenomena. Among various
466 ways that this might be done (e.g. transgenesis), he emphasized selection experiments and experimental
467 evolution, which allow the study of cross-generational changes in real time (Garland and Rose 2009).
468 Bennett offered three examples, the first involving artificial selection for voluntary locomotor activity in
469 laboratory house mice and the other two using laboratory natural selection (experimental evolution *sensu*
470 *stricto*) to favor desiccation tolerance in fruit flies (*Drosophila melanogaster*) and adaptation to high
471 temperature in bacteria (*Escherichia coli*). The first of these examples was conducted by one of us (TG), a
472 recovering herpetologist, so we will provide some rationale and highlights.

473 The original grant to conduct the "High Runner" mouse selection experiment, which TG describes
474 in the following paragraphs, was provided by the National Science Foundation in 1991. The stated purpose
475 was "to elucidate the genetic and physiological mechanisms underlying individual differences in voluntary
476 wheel-running behavior," which would "allow direct test of the long-standing hypothesis that behavior
477 tends to evolve more rapidly and prior to changes in underlying physiological capacities." Further, the
478 proposed research was "a logical extension of" TG's previous studies with lizards and snakes "because it
479 will allow analysis of the genetic basis of individual variation in locomotor behavior in much greater detail

480 than is possible with reptilian systems." Thus, TG turned to lab mice because they were a "convenient"
481 (Krogh 1929) and practical "model" for studies of the genetics and physiology of locomotor behavior. As
482 compared with lizards and snakes, mice have short generation times and have been studied intensively, thus
483 offering a wealth of background knowledge within which to interpret new results. Moreover, many tools
484 for the study of mice have been developed over the decades, including standardized behavioral tests and
485 genetic/genomic methods. Finally, mice are also mammals, which increased the probability that findings
486 might have applications for veterinary or human health, as well as possible funding from the U.S. National
487 Institutes of Health.

488 The High Runner selection experiment includes four replicate lines bred for high wheel running on
489 days 5 and 6 of a 6-day period of wheel access as young adults (HR lines), as well as four non-selected
490 Control (C) lines that are bred without regard to their running (Swallow et al. 1998). Many of the key
491 findings from the High Runner mouse experiment can be found in review papers (Garland 2003; Garland
492 and Rose 2009; Rhodes et al. 2005; Wallace and Garland 2016). Briefly, all four HR lines evolved rapidly
493 and reached apparent selection limits after 17-27 generations, at which point they ran, on average, about 3-
494 fold more than mice from the C lines. However, a trade-off evolved between the average speed and
495 duration of daily wheel running among the four lines, one of several examples that mean the HR mice can
496 serve as models for biological trade-offs (e.g., see also Belke and Garland 2007). When housed without
497 wheels, HR mice are more active than C in their home cages.

498 At lower levels of biological organization, the HR lines have evolved in both their brains and
499 bodies, i.e., changes in both motivation and ability for voluntary wheel running. For example, they have
500 evolved larger brains and they are more sensitive to Ritalin, the latter leading to their proposed use as a
501 model for human Attention Deficit Hyperactivity Disorder (ADHD). As another example, the HR lines
502 have evolved smaller muscles and other muscle changes that may underlie the evolved speed-duration
503 trade-off in voluntary exercise behavior. Sex differences have emerged for various traits, meaning that the
504 HR lines may serve as models for the evolution of sexual dimorphisms. In these examples, the creation of
505 new "models" was a serendipitous byproduct of the original experimental goals.

506

507 **Pitfalls of the inverse-Krogh principle**

508 The inverse-Krogh approach to research does have a couple major pitfalls. If you pick your organism first,
509 then you *must* ensure the questions you ask are both interesting and tractable. To paraphrase a reviewer,
510 picking an organism just because it is poorly studied, then vaguely wishing to discover something
511 interesting about it, is not sufficiently focused. Upon considering an organism, it is essential to frame
512 research by finding a suitable (tractable) research question. This will be easier for some organisms than for
513 others. Here are some obvious examples where question and organism are not tractable. Captive studies are

514 not feasible on organisms that cannot be housed in captivity, and for those that can, complicated or
515 expensive husbandry needs may limit what can be done. Organisms that are large or have long lifespan can
516 be a challenge to study, even though they are ecologically and evolutionarily relevant, so studying them
517 may be especially conceptually valuable. It would be very hard to get a live elephant into your physiology
518 laboratory on most university campuses, let alone a sample size of 10 or more of them. Organisms with
519 lifespans longer than a few years will be difficult subjects for a captive breeding experiment. One can waste
520 a lot of time and money searching but failing to find a species that is rare. For threatened or endangered
521 species, the pitfalls may be legal or ethical: such species have many aspects of their biology that cannot be
522 studied, no matter how easy they are to catch and handle, because research permits for invasive procedures
523 cannot be obtained. Large charismatic species also have similar limits. Species that live in geopolitically
524 inaccessible locations such as active war zones cannot be reached. Research that requires a lot of money is
525 impractical if you do not have a grant. These caveats could also apply to the Krogh principle. We mention
526 these obvious examples to set the stage for less-obvious ones.

527 Mismatches between organism and question can be subtle. In some instances, the biology of the
528 organism "feels like" it should be or at least could be well-suited for research on a particular topic, but
529 unfortunately, just isn't. For instance, male hummingbirds perform flamboyant, obvious courtship displays
530 to females, and these displays are highly tractable for certain analyses (Clark and Mistick 2018; Hogan and
531 Stoddard 2018). But measuring female preferences for displays; that is, studying the nature of the sexual
532 selection that has driven the evolution of these male phenotypes has proven hard to assess in
533 hummingbirds. Female choice has been studied in wild birds species, such as sage grouse, where
534 copulation takes place in the open on a male's territory (Patricelli et al. 2002), or in manakins, which are
535 large enough that females can be instrumented with radio telemetry to track their movements (DuVal and
536 Kapoor 2015). As such, these species are "Krogh models," permitting study of female choice in the wild.
537 Hummingbirds are too small to carry such devices, and they fly fast, which makes them harder to follow
538 than other birds. Although female preferences of hummingbirds may or may not be impossible to study, it
539 appears it will always be harder to study than in other birds.

540 When engaged in the inverse-Krogh approach, the researcher must continually assess: is this
541 research going to yield results interesting to the broader scientific community often enough to be worth the
542 effort? Of course, this question might be impossible to answer with certainty in real time. If, mid-study, you
543 are slowly coming to the realization that your chosen species is yielding rather mundane results, consider
544 placing your results in a phylogenetic perspective: does your mundane species have interesting relatives?
545 For example, CJC has collected data on courtship displays of nearly 30 species of "bee" hummingbirds.
546 Certain of these species were unique in one way or another, such that it was natural to write a paper focused
547 on that species (e.g. Clark et al. 2013b). But other species are less-unique when considered individually,

548 hence less likely to be studied and harder to find an angle when writing a paper focused on them. But these
549 "mundane" species still play a critical role in characterizing interesting phylogenetic patterns. For instance,
550 while many hummingbirds have socially learned song, like in songbirds or parrots, a few don't. Negative
551 results can be challenging to present at the level of an individual species; a paper titled "White-bellied
552 Woodstar (*Chaetocercus mulsant*) does not sing" might have trouble being published. But this same result,
553 in phylogenetic context (Clark et al. 2018), showing that it is a derived loss of this complex trait, has been
554 of interest to neuroscientists.

555 A related problem can be finding your species is hard to study, such that you have few results
556 relative to the effort you have put in. Dr. Patricia Brennan found this to be true for her Ph.D., in which she
557 decided to study Tinamous, a Paleognathae bird clade that is closely related to ostriches and other large
558 flightless birds. These birds interested her because they are easy to hear at dawn and dusk in Colombia,
559 where she grew up, but scientifically they were poorly known. Having picked her organism first, she
560 studied their mating system and tendency to lay non-camouflaged eggs in nests on the ground (Brennan
561 2010). Tinamous are notoriously secretive, shy of people, and mainly found in thick neotropical jungles,
562 characteristics that together make them an especially difficult group to study (Brennan 2004). In short,
563 under the Krogh principle, tinamous are not a likely species to pick for a research question in ecology: they
564 are incredibly inconvenient (Bishop et al. 2021 notwithstanding)! Late in her Ph.D. research, Dr. Brennan
565 was lucky enough to actually witness copulation, and noticed something bizarre: an enormous, weirdly
566 twisted "worm" dangled from the male's cloaca for the next few minutes until it slowly crawled back inside
567 him! Had copulation partially dislodged some sort of enormous internal parasite? As ornithology courses
568 used to teach that birds do not have an intromittent organ (only a few do have one), she at first did not
569 realize that this corkscrew-shaped structure was the male tinamou's penis. Although studying the
570 reproductive functional morphology of tinamous was not convenient, another early-diverging bird clade,
571 ducks (Anatidae), also have corkscrew-shaped penises similar to tinamous. As many duck species are kept
572 in captivity, they were more convenient to study. Thus, an initial observation on tinamous sparked a
573 research program on the rootward bird clades that do have a penis, such as duck and ostriches (Brennan et
574 al. 2017; Brennan and Prum 2012). This was then followed by work on vertebrate genitalia functional
575 morphology and coevolution on taxa spanning dogfish to dolphins (Brennan et al. 2021; Hedrick et al.
576 2019). Dr. Brennan's research program started as inverse-Krogh (research on tinamous) before shifting to
577 Krogh (research on duck penises).

578 Another potential problem is picking the organism first, the research question second, but then
579 presenting the research as if one arrived at the organism and question by following the Krogh approach.
580 This sort of after-the-fact justification in science (see also Rowbottom and Alexander, 2012) can even lead
581 to HARKing: Hypothesizing After the Results are Known (Kerr 1998). As a hypothetical example, if one

582 discovers a turtle that actually can jump, this does not mean that turtles are now a good "model" for
583 understanding jumping. Supposing this turtle has adaptations for jumping, it may be of interest to study
584 convergent evolution, or trade-offs (Garland et al. 2021), or multifunctionality, or another similar question.
585 In contrast, one might argue from a Krogh-principle based perspective that studying the inability of turtles
586 to jump well may give insight regarding general constraints on jumping ability. In any case, the danger of
587 HARKing can be avoided by preregistration (Nosek et al. 2018).

588 A final pitfall, noted by all three reviewers, is practical: funding for research explicitly motivated
589 by the inverse-Krogh principle is often difficult to attract. Accordingly, Dietrich et al. (2020, their table 1)
590 listed "Financial Considerations" as one of 20 criteria for organismal choice. Generally, grant proposals are
591 framed around research questions, rather than focal species. (Exceptions may occur, as when funding is
592 available for the conservation biology of a particular species.) Aside from small projects that fall at the
593 "one-and-done" end of the spectrum, beginning any research program demands due consideration of the
594 potential for funding. Many interesting organisms that might be approached from an inverse-Krogh
595 perspective live in areas that are not easy to access or are otherwise difficult to study without somewhat
596 expensive technology. Fortunately, many organism-oriented societies (e.g., for reptiles, birds or mammals)
597 offer small grants, often slanted towards graduate students. State agencies may offer conservation-oriented
598 grants appropriate for interesting organisms. Moreover, as noted above in the section on "Model systems
599 can be created," some unusual/extreme/interesting organisms have been developed into models. In any
600 case, we acknowledge that some questions or organisms probably should not be approached until *after* one
601 obtains tenure or its equivalent, as was the case with TG's mouse selection experiment.

602

603 **Final thoughts**

604 We wrote this piece to emphasize that research does not always need to be shoehorned into "organism X is
605 a model for question Y" to have merit. (Perhaps, too, we feel guilty for having participated in graduate oral
606 exams where students were pushed to make just such an argument!) Careful consideration of some of our
607 examples will reveal that the arguments we have advanced are not specific to the "inverse-Krogh"
608 approach. For instance, the pitfalls noted in the previous section can also apply to the Krogh approach.
609 Research breakthroughs are rarely simple enough to fit neatly into just one category; more often, they have
610 both "Krogh" and "inverse-Krogh" elements. The line between the Krogh and inverse-Krogh principles can
611 be a fine one; research programs often incorporate both (Figure 3). Also, Ray Huey pointed out in review
612 comments that we have largely overlooked a corollary to the Krogh approach, which runs concept-to-
613 model. In his words, "if there's a conceptual or theoretical idea that is worth exploring, pick an animal that
614 is suitable for study." TG's High Runner mouse selection experiment (see above) would fit this bill, as it
615 was designed to study the correlated evolution of behavior and physiology in a general sense and, more

616 specifically, the behavior evolves first hypothesis. It also serves as an example of Bennett's (2003) point
617 about creating convenient models if nature has not provided them.

618 Science is built on curiosity, creativity, exploration, and innovation -- combined with high
619 motivation. Most discoveries lead to new questions, in part because we just don't know what we don't
620 know. As an organized human enterprise, science is only about 200 years old (Bartholomew 1982). What
621 will science look like hundreds or even thousands of years from now? It is impossible to say. Suppose that
622 in 10,000 years, the sum total knowledge about all organisms is assessed. No doubt some organisms –
623 models – will have more known about them than others. Surely we will know less about snailfish
624 (*Pseudoliparis*) from the Mariana Trench than about *Mus* or *Drosophila* or *Arabidopsis*. The inverse-
625 Krogh principle does not predict that we will ever know as much about snailfish as we do *Drosophila*.
626 However, research guided by the inverse-Krogh principle will lead us to learn *something* about many more
627 organisms. The organisms we will learn the most about are those most accessible for study: some
628 combination of straightforward to find or observe, easy to catch, easy to hold (and maybe to breed) in
629 captivity, and research permits can be obtained. With respect to research questions, the literature,
630 particularly old or obscure work, often contains interesting observations that can be useful prompts for new
631 research questions about a poorly-known species.

632 Predicting what the future holds (for scientific research) is always difficult. Scientific discoveries
633 are by their very nature unpredictable. To quote Yogi Berra, "You've got to be very careful if you don't
634 know where you are going, because you might not get there." Indeed, "discovery" refers to learning or
635 finding something for the first time. Which organisms will provide the greatest number of insights about
636 the nature of biological life is impossible to know in advance. Thus, students in search of research topics
637 might do well to follow the Krogh Principle. But they should not forget the inverse-Krogh principle, in part
638 because a love of particular organisms may go a long way towards maintaining their motivation for doing
639 science in the face of inevitable hurdles and setbacks. If you love snakes, then study snakes (Greene 2000;
640 Lillywhite 2021)!

641

642

643 **Acknowledgments**

644 We thank Danielle Levesque for assistance, Patricia Brennan and Wendy Saltzman for helpful discussions,
645 and Delyle Polet and Natalie Holt for comments on an earlier draft. Ray Huey and two anonymous
646 reviewers provided extensive, helpful comments on the submitted manuscript. We have attempted to satisfy
647 all of their concerns, but we acknowledge they that may not agree with parts of the final version. TG is
648 supported by U.S. NSF grant IOS-2038528. JRH was supported by BBSRC grants BB/C516844/1 and
649 BB/H002782/1.

650

651 **Author contributions**

652 JH wrote a tweet about the inverse-Krogh principle in 2012. CJC cited JH's tweet in a guest lecture for
653 TG's undergraduate class in ecological and evolutionary physiology; TG suggested turning the lecture into
654 a paper. All authors contributed to writing.

655

656

657 **References**

658 Adriaens, D., and A. Herrel. 2009. Functional consequences of extreme morphologies in the craniate
659 trophic system. *Physiological and Biochemical Zoology* 82: 1-6.

660 Aerts, P. 1998. Vertical jumping in *Galago senegalensis*: the quest for an obligate mechanical power
661 amplifier. *Philosophical Transactions of the Royal Society B: Biological Sciences* 353: 1607-1620.

662 Al-kahtani, M.A., C. Zuleta, E. Caviedes-Vidal and T.J. Garland. 2004. Kidney mass and relative medullary
663 thickness of rodents in relation to habitat, body size, and phylogeny. *Physiological and Biochemical
664 Zoology* 77: 346-365.

665 Alexander, R.M. 1974. The mechanics of jumping by a dog (*Canis familiaris*). *Journal of Zoology* 173: 549-
666 573.

667 Ankeny, R.A., and S. Leonelli. 2011. What's so special about model organisms? *Studies in History and
668 Philosophy of Science Part A* 42: 313-323.

669 Ankeny, R.A., and S. Leonelli. 2021. *Model Organisms*. Cambridge University Press, Cambridge.

670 Arnold, S.J. 2003. Too much natural history, or too little? *Animal Behaviour* 65: 1065-1068.

671 Astley, H.C., and T.J. Roberts. 2012. Evidence for a vertebrate catapult: elastic energy storage in the
672 plantaris tendon during frog jumping. *Biology Letters* 8: 386-389.

673 Azizi, E., and T.J. Roberts. 2010. Muscle performance during frog jumping: influence of elasticity on muscle
674 operating lengths. *Proceedings. Biological sciences* 277: 1523-1530.

675 Baker, R.H., and G.S. Wilkinson. 2001. Phylogenetic analysis of sexual dimorphism and eye-span allometry
676 in stalk-eyed flies (Diopsidae). *Evolution* 55: 1373-1385.

677 Bang, F.B. 1956. A bacterial disease of *Limulus polyphemus*. *Bull Johns Hopkins Hosp* 98: 325-351.

678 Baptista, L.F., and M. Matsui. 1979. The source of the dive-noise of the Anna's Hummingbird. *The Condor*
679 81: 87-89.

680 Barlow, A., J.L.A. Paijmans, F. Alberti, B. Gasparyan, G. Bar-Oz, R. Pinhasi, I. Foronova, A.Y. Puzachenko, M.
681 Pacher, L. Dalén, G. Baryshnikov and M. Hofreiter. 2021. Middle Pleistocene genome calibrates a revised
682 evolutionary history of extinct cave bears. *Current Biology*.

683 Bartholomew, G.A. 1964. The roles of physiology and behaviour in the maintenance of homeostasis in the
684 desert environment. pp. 7-29. *Homeostasis and feedback mechanisms*. Academic Press, New York, NY.

685 Bartholomew, G.A. 1982. Scientific innovation and creativity: a zoologist's point of view. *American
686 Zoologist* 22: 227-235.

687 Bartholomew, G.A. 1987. Interspecific comparisons as a tool for ecological physiologists. pp. 11-37 in M.E.
688 Feder, A.F. Bennett, W.W. Burggren and R.B. Huey, eds. *New directions in ecological physiology*.
689 Cambridge University Press, Cambridge.

690 Beach, F.A. 1950. The Snark was a Boojum. *American Psychologist* 5: 115-124.

691 Belke, T.W., and T. Garland, Jr. 2007. A brief opportunity to run does not function as a reinforcer for mice
692 selected for high daily wheel-running rates. *J Exp Anal Behav* 88: 199-213.

693 Bennett, A.F. 2003. Experimental evolution and the Krogh principle: generating biological novelty for
694 functional and genetic analyses. *Physiol Biochem Zool* 76: 1-11.

695 Bishop, P.J., A. Falisse, F.D. Groote and J.R. Hutchinson. 2021. Predictive simulations of running gait reveal
696 a critical dynamic role for the tail in bipedal dinosaur locomotion. *Science Advances* 7: eabi7348.

697 Blount, Z.D., C.Z. Borland and R.E. Lenski. 2008. Historical contingency and the evolution of a key
698 innovation in an experimental population of *Escherichia coli*. *Proceedings of the National Academy of
699 Sciences* 105: 7899.

700 Blount, Z.D., R.E. Lenski and J.B. Losos. 2018. Contingency and determinism in evolution: Replaying life's
701 tape. *Science* 362: eaam5979.

702 Bolker, J. 2012. There's more to life than rats and flies. *Nature* 491: 31-33.

703 Brainerd, E.L., D.B. Baier, S.M. Gatesy, T.L. Hedrick, K.A. Metzger, S.L. Gilbert and J.J. Crisco. 2010. X-ray
704 reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative
705 biomechanics research. *J Exp Zool A Ecol Genet Physiol* 313: 262-279.

706 Brennan, P. 2004. Techniques for studying the behavioral ecology forest-dwelling tinamous (Tinamidae).
707 *Ornitologia Neotropical* 15: 329-337.

708 Brennan, P.L.R. 2010. Clutch predation in great tinamous *Tinamus major* and implications for the
709 evolution of egg color. *Journal of Avian Biology* 41: 419-426.

710 Brennan, P.L.R., I. Gereg, M. Goodman, D. Feng and R.O. Prum. 2017. Evidence of phenotypic plasticity of
711 penis morphology and delayed reproductive maturation in response to male competition in waterfowl.
712 *The Auk* 134: 882-893, 812.

713 Brennan, P.L.R., and R.O. Prum. 2012. The erection mechanism of the ratite penis. *Journal of Zoology* 286:
714 140-144.

715 Brennan, P.L.R., M. Sterett, M. DiBuono, G. Lara Granados, K. Klo, R. Marsden, P. Schleinig, L. Tanner and
716 S. Purdy. 2021. Intra-horn penile intromission in the alpaca *vicugna pacos* and consequences to genital
717 morphology. *Integrative and Comparative Biology* 61: 624-633.

718 Claghorn, G.C., Z. Thompson, J.C. Kay, G. Ordonez, T.G. Hampton and T. Garland, Jr. 2017. Selective
719 breeding and short-term access to a running wheel alter stride characteristics in house mice. *Physiol
720 Biochem Zool* 90: 533-545.

721 Clark, C.J. 2009. Courtship dives of Anna's Hummingbird offer insights into flight performance limits.
722 *Proceedings of the Royal Society of London B* 276: 3047-3052.

723 Clark, C.J. 2021. Ways that animal wings produce sound. *Integrative and Comparative Biology* 61: 696-709.

724 Clark, C.J., K. LePiane and L. Liu. 2020. Evolution and ecology of silent flight in owls and other flying
725 vertebrates. *Integrative Organismal Biology* 2: obaa001.

726 Clark, C.J., and R. Dudley. 2009. Flight costs of long, sexually selected tails in hummingbirds. *Proceedings
727 of the Royal Society of London, Series B* 276: 2109-2115.

728 Clark, C.J., D.O. Elias and R.O. Prum. 2011. Aeroelastic flutter produces hummingbird feather songs.
729 *Science* 333: 1430-1433.

730 Clark, C.J., D.O. Elias and R.O. Prum. 2013a. Hummingbird feather sounds are produced by aeroelastic
731 flutter, not vortex-induced vibration. *Journal of Experimental Biology* 216: 3395-3403.

732 Clark, C.J., and T.J. Feo. 2008. The Anna's Hummingbird chirps with its tail: a new mechanism of sonation
733 in birds. *Proceedings of the Royal Society of London B* 275: 955-962.

734 Clark, C.J., and T.J. Feo. 2010. Why do *Calypte* hummingbirds "sing" with both their tail and their syrinx?
735 An apparent example of sexual sensory bias. *American Naturalist* 175: 27-37.

736 Clark, C.J., T.J. Feo and W. van Dongen. 2013b. Sounds and courtship displays of the Peruvian Sheartail,
737 Chilean Woodstar, Oasis Hummingbird, and a hybrid male Peruvian Sheartail × Chilean Woodstar. *Condor*
738 115: 560-577.

739 Clark, C.J., J.A. McGuire, E. Bonaccorso, J.S. Berv and R.O. Prum. 2018. Complex coevolution of wing, tail,
740 and vocal sounds of courting male bee hummingbirds *Evolution* 72: 630-646.

741 Clark, C.J., and E.A. Mistick. 2018. Strategic acoustic control of a humminbird courtship dive. *Current
742 Biology* 28: 1257-1264.

743 Clark, C.J., and E.A. Mistick. 2020. Humming hummingbirds, insect flight tones and a model of animal
744 flight sound. *The Journal of Experimental Biology* 223: jeb214965.

745 Clark, C.J., and R.O. Prum. 2015. Aeroelastic flutter of feathers, flight, and the evolution of nonvocal
746 communication in birds. *Journal of Experimental Biology* 218: 3520-3527.

747 Cooke, S.J., S.G. Hinch, M. Wikelski, R.D. Andrews, L.J. Kuchel, T.G. Wolcott and P.J. Butler. 2004.
748 Biotelemetry: a mechanistic approach to ecology. *Trends in Ecology & Evolution* 19: 334-343.

749 Costa, D.P., and B. Sinervo. 2004. Field physiology: physiological insights from animals in nature. *Annual
750 Review of Physiology* 66: 209-238.

751 Cowles, R.B. 1939. Possible implications of reptilian thermal tolerance. *Science* 90: 465-466.

752 Darwin, C. 1851. A monograph on the sub-class Cirripedia, with figures of all the species: The Lepadidae;
753 or pedunculated cirripedes. Freeman, London.

754 Darwin, C. 1859. On the origin of species by means of natural selection or the preservation of favoured
755 races in the struggle for life. John Murray, London.

756 Darwin, C. 1871. The descent of man, and selection in relation to sex. Princeton University Press,
757 Princeton, NJ.

758 Darwin, C. 1875. Insectivorous Plants. John Murray, London.

759 Dawkins, R. 1979. Twelve misunderstandings of kin selection. *Zeitschrift für Tierpsychologie* 51: 184-200.

760 Dawson, W.R., G.A. Bartholomew and A.F. Bennett. 1977. A reappraisal of the aquatic specializations of
761 the galapagos marine iguana (*Amblyrhynchus cristatus*). *Evolution* 31: 891-897.

762 de Rosa, M., D. de Sanctis, A.L. Rosario, M. Archer, A. Rich, A. Athanasiadis and M.A. Carrondo. 2010.
763 Crystal structure of a junction between two Z-DNA helices. *Proceedings of the National Academy of
764 Sciences* 107: 9088.

765 Denny, M.W. 1981. A quantitative model for the adhesive locomotion of the terrestrial slug, *Ariolimax
766 columbianus*. *Journal of Experimental Biology* 91: 195-217.

767 Dietrich, M.R., R.A. Ankeny, N. Crowe, S. Green and S. Leonelli. 2020. How to choose your research
768 organism. *Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of
769 Biological and Biomedical Sciences* 80: 101227.

770 DuVal, E.H., and J.A. Kapoor. 2015. Causes and consequences of variation in female mate search
771 investment in a lekking bird. *Behavioral Ecology* 26: 1537-1547.

772 Eberhard, W.G. 1990. Function and phylogeny of spider webs. *Annual Review of Ecology and Systematics*
773 21: 341-372.

774 Elliott, K.C., K.S. Cheruvellil, G.M. Montgomery and P.A. Soranno. 2016. Conceptions of good science in our
775 data-rich world. *BioScience* 66: 880-889.

776 Emerson, S.B., and M.A.R. Koehl. 1990. The interaction of behavioral and morphological change in the
777 evolution of a novel locomotor type: "Flying" frogs. *Evolution* 44: 1931-1946.

778 Feo, T.J., and C.J. Clark. 2010. The displays and sonations of the Black-chinned Hummingbird (Trochilidae:
779 *Archilochus alexandri*). *Auk* 127: 787-796.

780 Fuxjager, M.J., F. Goller, A. Dirkse, G.D. Sanin and S. Garcia. 2016. Select forelimb muscles have evolved
781 superfast contractile speed to support acrobatic social displays. *eLife* 5:e13544: 1-13.

782 Galván, I., T.S. Schwartz and T. Garland Jr. 2022. Evolutionary physiology at 30+: Has the promise been
783 fulfilled? *BioEssays* 44: 2100167.

784 Gans, C. 1978. All animals are interesting! *American Zoologist* 18: 3-9.

785 Garland, T., Jr. 2001. Phylogenetic comparison and artificial selection. Two approaches in evolutionary
786 physiology. *Adv Exp Med Biol* 502: 107-132.

787 Garland, T., Jr. 2003. Selection experiments: an under-utilized tool in biomechanics and organismal
788 biology. in V.L. Bels, J.-P. Gasc and A. Casinos, eds. *Vertebrate Biomechanics and Evolution*. BIOS Scientific
789 Publishers Ltd., Oxford, UK.

790 Garland, T., Jr., and S.C. Adolph. 1991. Physiological differentiation of vertebrate populations. *Annual
791 Review of Ecology and Systematics* 22: 193-228.

792 Garland, T., Jr., and S.C. Adolph. 1994. Why not to do two-species comparative studies: limitations on
793 inferring adaptation. *Physiological Zoology* 67: 797-828.

794 Garland, T., Jr., A.F. Bennett and E.L. Rezende. 2005. Phylogenetic approaches in comparative physiology.
795 *Journal of Experimental Biology* 208: 3015-3035.

796 Garland, T., Jr., and P.A. Carter. 1994. Evolutionary physiology. *Annual Review of Physiology* 56: 579-621.

797 Garland, T., Jr., C.J. Downs and A.R. Ives. 2021. Trade-offs (and constraints) in organismal biology.
798 *Physiological and Biochemical Zoology* 95: 82-112.

799 Garland, T., Jr., and A.R. Ives. 2000. Using the past to predict the recent: confidence intervals for
800 regression equations in phylogenetic comparative methods. *The American Naturalist* 155: 346-364.

801 Garland, T., Jr., and M.R. Rose, eds. 2009. *Experimental evolution: concepts, methods, and applications of*
802 *selection experiments*. University of California Press, Berkeley CA.

803 Gatesy, S.M., D.B. Baier, F.A. Jenkins and K.P. Dial. 2010. Scientific rotoscoping: a morphology-based
804 method of 3-D motion analysis and visualization. *J Exp Zool A Ecol Genet Physiol* 313: 244-261.

805 Gerringer, M.E. 2019. On the success of the hadal snailfishes. *Integrative Organismal Biology* 1: obz004.

806 Gillman, P., and L. Gillman. 2001. *The wildest dream: the biography of George Mallory*. Mountaineers
807 Books, Seattle, WA.

808 Grant, P.R., and B.R. Grant. 2006. Evolution of Character Displacement in Darwin's Finches. *Science* 313:
809 224-226.

810 Green, S., M.R. Dietrich, S. Leonelli and R.A. Ankeny. 2018. 'Extreme' organisms and the problem of
811 generalization: interpreting the Krogh principle. *History and Philosophy of the Life Sciences* 40: 65.

812 Greene, H.W. 2000. *Snakes: the evolution of mystery in nature*. University of California Press, Berkeley,
813 CA.

814 Hailman, J.P. 1973. Fieldism. *BioScience* 23: 149-149.

815 Hanken, J. 2021. David Wake: Why are there so many kinds of organisms (but especially salamanders)?
816 *Proceedings of the National Academy of Sciences* 118: e2110321118.

817 Hebblewhite, M., and D.T. Haydon. 2010. Distinguishing technology from biology: a critical review of the
818 use of GPS telemetry data in ecology. *Philosophical Transactions of the Royal Society B: Biological Sciences*
819 365: 2303-2312.

820 Hedrick, B.P., P. Antalek-Schrag, A.J. Conith, L.J. Natanson and P.L.R. Brennan. 2019. Variability and
821 asymmetry in the shape of the spiny dogfish vagina revealed by 2D and 3D geometric morphometrics.
822 *Journal of Zoology* 308: 16-27.

823 Herrel, A., J. Podos, S.K. Huber and A.P. Hendry. 2005. Bite performance and morphology in a population
824 of Darwin's finches: implications for the evolution of beak shape. *Functional Ecology* 19: 43-48.

825 Hogan, B.G., and M.C. Stoddard. 2018. Synchronization of speed, sound and iridescent color in a
826 hummingbird aerial courtship dive. *Nature Communications* 9: 5260.

827 Hongjamrassilp, W., W. Maiphrom and D.T. Blumstein. 2021. Why do shrimps leave the water?
828 Mechanisms and functions of parading behaviour in freshwater shrimps. *Journal of Zoology* 313: 87-98.

829 Huey, R.B., T. Garland Jr. and M. Turelli. 2019. Revisiting a key innovation in evolutionary biology:
830 Felsenstein's "Phylogenies and the comparative method". *The American Naturalist* 193: 755-772.

831 Hutchinson, J.R. 2021. The evolutionary biomechanics of locomotor function in giant land animals. *Journal*
832 *of Experimental Biology* 224: jeb217463.

833 Hutchinson, J.R., C. Delmer, C.E. Miller, T. Hildebrandt, A.A. Pitsillides and A. Boyde. 2011. From flat foot
834 to fat foot: structure, ontogeny, function, and evolution of elephant "sixth toes". *Science* 334: 1699-1703.

835 Hutchinson, J.R., D. Famini, R. Lair and R. Kram. 2003. Are fast-moving elephants really running? *Nature*
836 422: 493-494.

837 Hutchinson, J.R., and M. Garcia. 2002. *Tyrannosaurus* was not a fast runner. *Nature* 415: 1018-1021.

838 Huxley, A.F., and R. Niedergerke. 1954. Structural changes in muscle during contraction: interference
839 microscopy of living muscle fibres. *Nature* 173: 971-973.

840 Huxley, H., and J. Hanson. 1954. Changes in the cross-striations of muscle during contraction and stretch
841 and their structural interpretation. *Nature* 173: 973-976.

842 Joint, I., M. Mühling and J. Querellou. 2010. Culturing marine bacteria - an essential prerequisite for
843 biodiscovery. *Microbial biotechnology* 3: 564-575.

844 Josephson, R.K., J.G. Malamud and D.R. Stokes. 2000. Asynchronous muscle: a primer. *Journal of*
845 *Experimental Biology* 203: 2713-2722.

846 Kay, J.C., G.C. Claghorn, Z. Thompson, T.G. Hampton and T. Garland Jr. 2019. Electrocardiograms of mice
847 selectively bred for high levels of voluntary exercise: Effects of short-term exercise training and the mini-
848 muscle phenotype. *Physiology & Behavior* 199: 322-332.

849 Keane, M., T. Craig, J. Alföldi, A.M. Berlin, J. Johnson, A. Seluanov, V. Gorbunova, F. Di Palma, K. Lindblad-
850 Toh, G.M. Church and J.P. de Magalhães. 2014. The naked mole rat genome resource: facilitating analyses
851 of cancer and longevity-related adaptations. *Bioinformatics* 30: 3558-3560.

852 Keller, E.F. 1983. A feeling for the organism: the life and work of Barbara McClintock. Freeman, New York.

853 Kerr, N.L. 1998. HARKING: hypothesizing after the results are known. *Pers Soc Psychol Rev* 2: 196-217.

854 Kolb, E.M., S.A. Kelly and T. Garland Jr. 2013. Mice from lines selectively bred for high voluntary wheel
855 running exhibit lower blood pressure during withdrawal from wheel access. *Physiol Behav* 112-113: 49-55.

856 Kram, R., and T.J. Dawson. 1998. Energetics and biomechanics of locomotion by red kangaroos (*Macropus*
857 *rufus*). *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* 120: 41-49.

858 Krebs, H.A. 1975. The August Krogh principle: "for many problems there is an animal on which it can be
859 most conveniently studied". *Journal of Experimental Zoology* 194: 221-226.

860 Krogh, A. 1929. The progress of physiology. *The American Journal of Physiology* 90: 243-251.

861 Lander, E.S. 2016. The heroes of CRISPR. *Cell* 164: 18-28.

862 Leonelli, S., and R.A. Ankeny. 2013. What makes a model organism? *Endeavour* 37: 209-212.

863 Levin, J. 2019. Discovery and early development of the *Limulus* Test. pp. 3-16 in K.L. Williams, ed.
864 *Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems*. Springer International
865 Publishing, Cham.

866 Li, Q., K.-Q. Gao, J. Vinther, M.D. Shawkey, J.A. Clarke, L. D'Alba, Q. Meng, D.E.G. Briggs and R.O. Prum.
867 2010. Plumage color patterns of an extinct dinosaur. *Science* 327: 1369-1372.

868 Lillywhite, H.B. 2021. Discovering snakes in wild places: stories of passion, adventure and science. ECO
869 Publishing, Chiricahua Desert Museum, Rodeo, NM.

870 Lindstedt, S.L. 2014. Krogh 1929 or 'The Krogh Principle'. *Journal of Experimental Biology* 217: 1640-1641.

871 Loo, W.T., R.Y. Dudaniec, S. Kleindorfer and C.M. Cavanaugh. 2019. An inter-island comparison of
872 Darwin's finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome. *PLOS
873 ONE* 14: e0226432.

874 Losos, J.B. 2017. *Improbable Destinies: How Predictable is Evolution?* Riverhead Books, New York.

875 Lutz, G., and L.C. Rome. 1994. Built for jumping: the design of the frog muscular system. *Science* 263: 370-
876 372.

877 Lynch, V.J. 2009. Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during
878 the Cenozoic. *Evolution* 63: 2457-2465.

879 Mackay, R.S. 1964. Galapagos tortoise and marine iguana deep body temperatures measured by radio
880 telemetry. *Nature* 204: 355-358.

881 McNamara, M.E., V. Rossi, T.S. Slater, C.S. Rogers, A.L. Ducrest, S. Dubey and A. Roulin. 2021. Decoding
882 the evolution of melanin in vertebrates. *Trends in Ecology & Evolution* 36: 430-443.

883 Mitchell, G., S.J. Van Sittert and J.D. Skinner. 2009. Sexual selection is not the origin of long necks in
884 giraffes. *Journal of Zoology* 278: 281-286.

885 Moon, B.R., and A. Tullis. 2006. The ontogeny of contractile performance and metabolic capacity in a high-
886 frequency muscle. *Physiol Biochem Zool* 79: 20-30.

887 Nauwelaerts, S., and P. Aerts. 2006. Take-off and landing forces in jumping frogs. *Journal of Experimental
888 Biology* 209: 66-77.

889 Nosek, B.A., C.R. Ebersole, A.C. DeHaven and D.T. Mellor. 2018. The preregistration revolution.
890 *Proceedings of the National Academy of Sciences* 115: 2600-2606.

891 Pasveer, B. 2006. A history and philosophy of x-ray images in medicine. p. 41 in L. Pauwels, ed. *Visual
892 cultures of science: Rethinking representational practices in knowledge building and science
893 communication*. University of Chicago Press.

894 Patricelli, G.L., J.A.C. Uy, G. Walsh and G. Borgia. 2002. Male displays adjusted to female's response.
895 Nature 415: 279-280.

896 Peplowski, M.M., and R.L. Marsh. 1997. Work and power output in the hindlimb muscles of Cuban tree
897 frogs *Osteopilus septentrionalis* during jumping. Journal of Experimental Biology 200: 2861-2870.

898 Popper, K. 1959. The Logic of Scientific Discovery. Hutchinson & Co, New York.

899 Porter, R.D., and S.N. Wiemeyer. 1969. Dieldrin and DDT: Effects on sparrow hawk eggshells and
900 reproduction. Science 165: 199-200.

901 Powers, D.R., P.W. Getsinger, B.W. Tobalske, S.M. Wethington, S.D. Powers and D.R. Warrick. 2012.
902 Respiratory evaporative water loss during hovering and forward flight in hummingbirds. Comparative
903 Biochemistry and Physiology A 161: 279-285.

904 Prum, R.O. 2005. The evolution of feather diversity and function: exaptation, functional redundancy, and
905 historical contingency. pp. 245-256 in D.E.G. Briggs, ed. Peabody Museum Special Publication, New Haven,
906 Ct.

907 Prum, R.O., and A.H. Brush. 2002. The evolutionary origin and diversification of feathers. The Quarterly
908 Review of Biology 77: 261-295.

909 Rezende, E.L., and J.A. Diniz-Filho. 2012. Phylogenetic analyses: comparing species to infer adaptations
910 and physiological mechanisms. Compr Physiol 2: 639-674.

911 Reznick, D.N. 2009. The *Origin* Then and Now An Interpretive Guide to the *Origin of Species*. Princeton
912 University Press, Princeton, NJ.

913 Rhodes, J.S., S.C. Gammie and T. Garland Jr. 2005. Neurobiology of mice selected for high voluntary
914 wheel-running activity. Integr Comp Biol 45: 438-455.

915 Rodgers, T.L. 1940. The dive note of the Anna Hummingbird. The Condor 42: 86.

916 Romero, L.M., M.J. Dickens and N.E. Cyr. 2009. The reactive scope model - a new model integrating
917 homeostasis, allostasis, and stress. Horm Behav 55: 375-389.

918 Rowbottom, D.P., and R.M. Alexander. 2012. The role of hypotheses in biomechanical research. Sci
919 Context 25: 247-262.

920 Russell, J.J., J.A. Theriot, P. Sood, W.F. Marshall, L.F. Landweber, L. Fritz-Laylin, J.K. Polka, S. Oliferenko, T.
921 Gerbich, A. Gladfelter, J. Umen, M. Bezanilla, M.A. Lancaster, S. He, M.C. Gibson, B. Goldstein, E.M.
922 Tanaka, C.-K. Hu and A. Brunet. 2017. Non-model model organisms. BMC Biology 15: 55.

923 Schmidt-Nielsen, B., K. Schmidt-Nielsen, T.R. Houpt and S.A. Jarnum. 1956. Water balance of the camel.
924 American Journal of Physiology-Legacy Content 185: 185-194.

925 Scholander, P.F. 1955. Evolution of climatic adaptation in homeotherms. Evolution 9: 15-26.

926 Scholander, P.F., W. Flagg, V. Walters and L. Irving. 1953. Climatic adaptation in arctic and tropical
927 poikilotherms. Physiological Zoology 26: 67-92.

928 Secor, S.M. 2005. Evolutionary and cellular mechanisms regulating intestinal performance of amphibians
929 and reptiles. Integrative and Comparative Biology 45: 282-294, 213.

930 Shi, Y., R. Buffenstein, D.A. Pulliam and H. Van Remmen. 2010. Comparative studies of oxidative stress and
931 mitochondrial function in aging. Integr Comp Biol 50: 869-879.

932 Singer, M.A. 2011. Insights into biomedicine from animal adaptations. Compr Physiol 1: 2063-2081.

933 Swallow, J.G., P.A. Carter and T. Garland Jr. 1998. Artificial selection for increased wheel-running behavior
934 in house mice. Behavior Genetics 28: 227-237.

935 Swanson, B.O., T.A. Blackledge, A.P. Summers and C.Y. Hayashi. 2006. Spider dragline silk: correlated and
936 mosaic evolution in high-performance biological materials. Evolution 60: 2539-2551.

937 Switek, B. 2017. Why do giraffes have long necks? The mystery has baffled experts since Darwin. Wired
938 UK.

939 Taylor, G., and A.L.R. Thomas. 2014. Evolutionary Biomechanics Selection, Phylogeny, and Constraint.
940 Oxford University Press, Oxford, UK.

941 Taylor, M.P., D.W.E. Hone, M.J. Wedel and D. Naish. 2011. The long necks of sauropods did not evolve
942 primarily through sexual selection. *Journal of Zoology* 285: 150-161.
943 Tobiansky, D.J., M.C. Miles, F. Goller and M.J. Fuxjager. 2020. Androgenic modulation of extraordinary
944 muscle speed creates a performance trade-off with endurance. *Journal of Experimental Biology* 223.
945 Wallace, I.J., and T. Garland Jr. 2016. Mobility as an emergent property of biological organization: Insights
946 from experimental evolution. *Evol Anthropol* 25: 98-104.
947 Wedel, M.J. 2012. A monument of inefficiency: the presumed course of the recurrent laryngeal nerve in
948 sauropod dinosaurs. *Acta Palaeontologica Polonica* 57: 251-256.
949 Welsh, J.S., and T.L. Traum. 2016. Regarding mole rats and cancer. *Veterinary Pathology* 53: 1264-1265.
950 White, C.R., and R.S. Seymour. 2014. The role of gravity in the evolution of mammalian blood pressure.
951 *Evolution* 68: 901-908.
952 Yanagida, T., T. Arata and F. Oosawa. 1985. Sliding distance of actin filament induced by a myosin
953 crossbridge during one ATP hydrolysis cycle. *Nature* 316: 366-369.
954 Zamudio, K.R. 2021. David B Wake (1936 - 2021). *Science* 372: 1399.

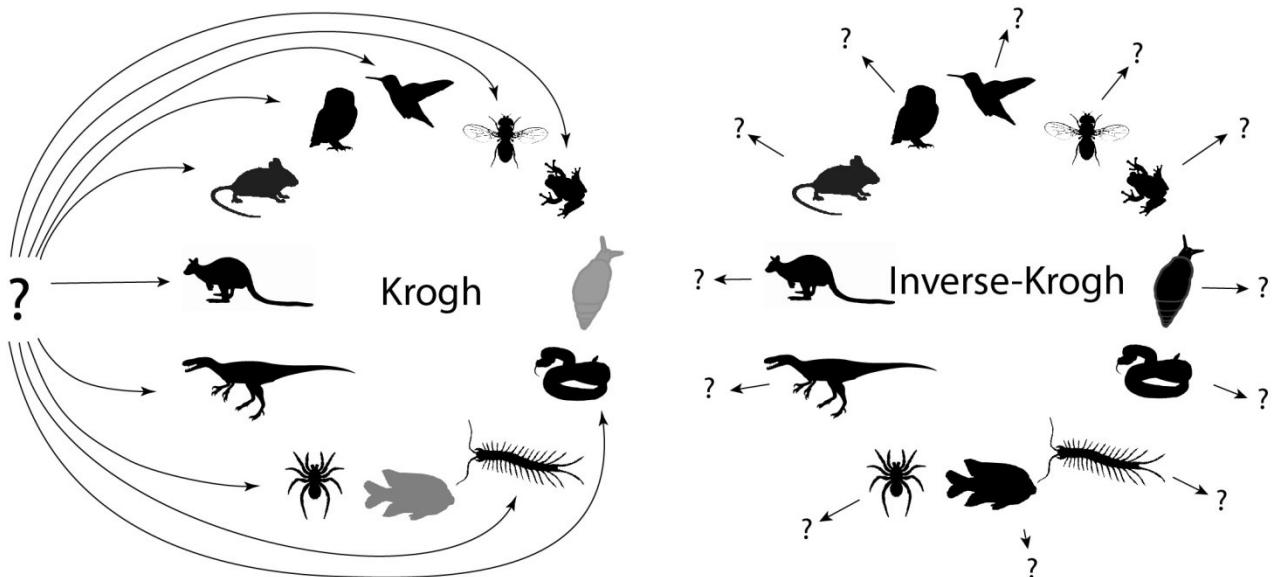
955

956

957

Table 1: Definitions

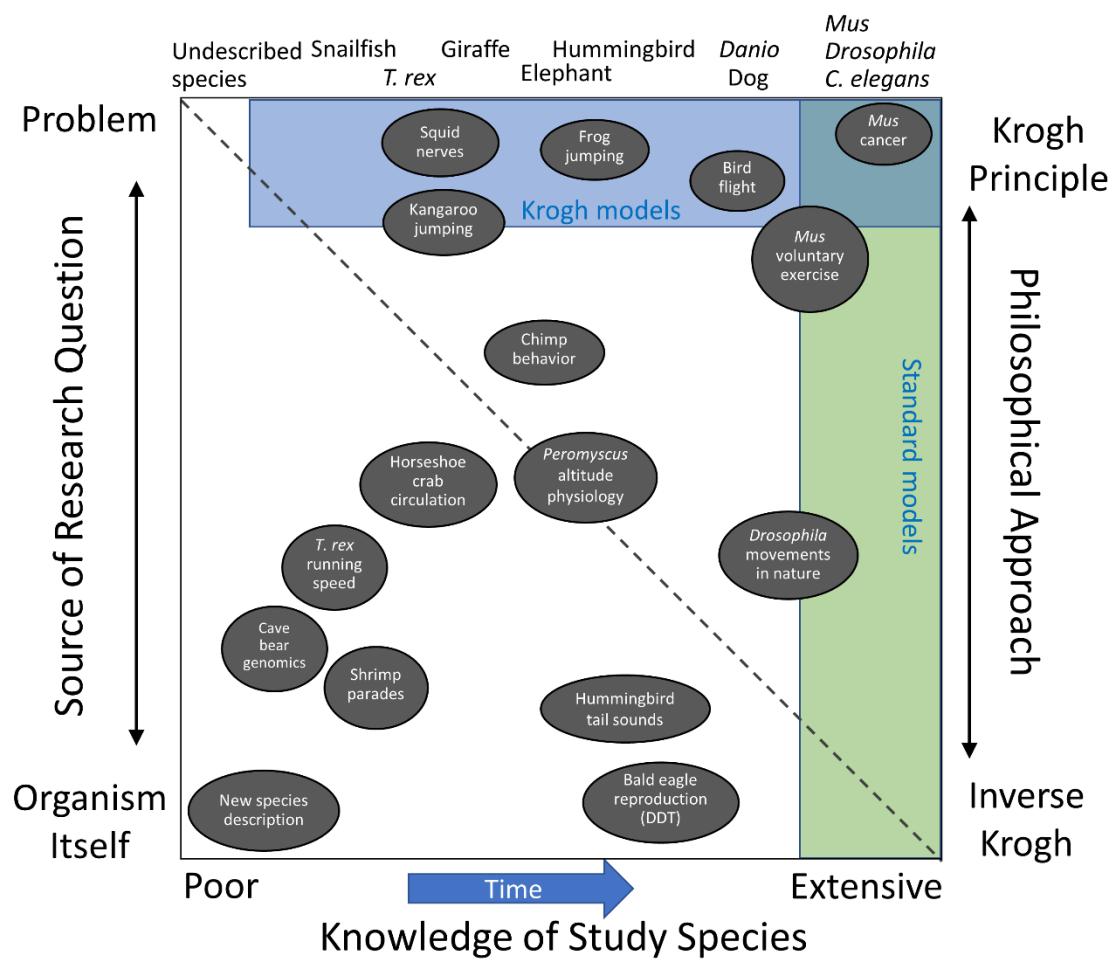
Name	Definition	Example	Reference
Model (standard)	"a non-human species that is extensively studied to understand particular biological phenomena" - Wikipedia (accessed Jan 12, 2022) "non-human species that are extensively studied in order to understand a range of biological phenomena, with the hope that data, models and theories generated will be applicable to other organisms, particularly those that are in some way more complex than the original" (Leonelli and Ankeny 2013, p 209)	" <i>E. coli</i> , "the plant" <i>Arabidopsis thaliana</i> , "the worm" <i>Caenorhabditis elegans</i> , "the fish" <i>Danio rerio</i> , "the bird" <i>Gallus gallus</i> , "the mouse" (<i>Mus musculus</i>) "the rat" (<i>Rattus rattus</i>) "the frog" (<i>Xenopus laevis</i>)	(Ankeny and Leonelli 2021; Bolker 2012; Leonelli and Ankeny 2013)
Model (Krogh)	"For a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." (Krogh 1929, p. 247) any organism in which certain "design" principles are most conveniently studied "Krogh organisms" (Green et al. 2018)	"... my teacher, Christian Bohr, was interested in the respiratory mechanism of the lung and devised the method of studying the exchange through each lung separately, he found that a certain kind of tortoise possessed a trachea dividing into the main bronchi high up in the neck, and we used to say as a laboratory joke that this animal had been created expressly for the purposes of respiration physiology."	(e.g. Bennett 2003; Green et al. 2018; Krebs 1975)
Negative model	Organism that does not exhibit a human disease or disorder	Frogs as models of jumping Mammals that hibernate and put on extreme amounts of body fat	(Green et al. 2018)


		without adverse health consequences	
Representational target	"the phenomena to be explored through the use of the experimental organism"	Jumping, in "frogs as models of jumping"	(Ankeny and Leonelli 2011, pg 315)
Representational scope	"how extensively the results of research with a particular experimental organism ... can be projected onto a wider group of organisms."	Other organisms that jump, in "frogs as models of jumping"	(Ankeny and Leonelli 2011, pg 315)

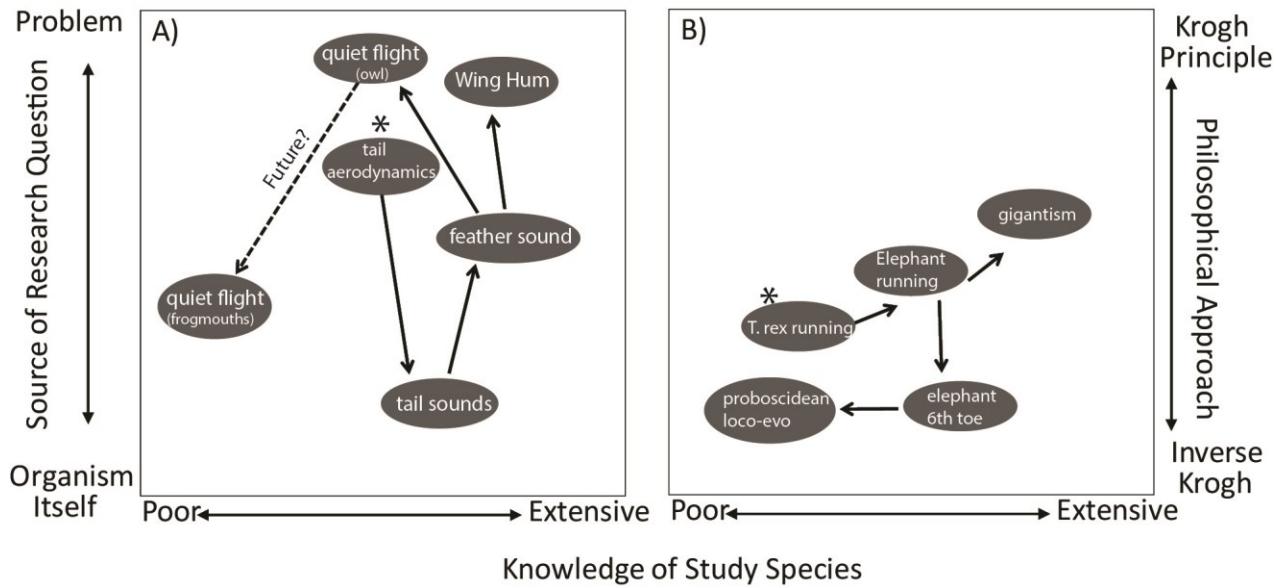
959

960

961


962

963


964 **Figure 1.** Under the Krogh principle (left), research begins with a question
 965 and finds a suitable organism, most commonly one that breeds well in captivity,
 966 has been adapted to laboratory conditions, is convenient or cost-effective to study,
 967 or has been the subject of much previous research (e.g., *Arabidopsis*,
 968 *Drosophila*, *Mus*). This approach potentially leaves some organisms, in gray, under-studied.
 969 In the "inverse-Krogh" approach espoused here (right), research begins with an organism then seeks suitable
 research question(s). Silhouettes are from phylopic.org.

970

971

975 **Figure 2.** Research questions arise out of some combination of observation of the organism itself
 976 (inverse-Krogh), or out of a pre-existing, pre-defined 'problem' to be studied (Krogh). Any given species
 977 has a certain amount of pre-existing knowledge about it; under the "standard model" definition (Table 1),
 978 models are the species for which the most extensive knowledge exists. By contrast, under the "Krogh
 979 model" definition (see text), a model species may be poorly known (generally) but useful for understanding
 980 a particular problem. Over time, knowledge about any given species tends to progress towards the right.

