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Gauge coupling unification misleads infrared observers if new gauge bosons do not simultaneously
come into the spectrum. Though easy to engineer in gauge theory, the situation in string theory is nuanced
due to moduli dependence. We study the possibility of faking gauge coupling unification in the context of
4D F-theory compactifications. Specifically, we formulate a sufficient condition that we call a strong
calibration, under which seven-brane gauge couplings on homologically distinct divisors become equal at
codimension one in Kähler moduli space. We prove that a strong calibration is preserved under appropriate
topological transitions and that a pair of nonintersecting divisors each admitting a contraction can always
be strongly calibrated. Within the tree ensemble [J. Halverson et al., Phys. Rev. D 96, 126006 (2017)], we
find that ≈77.12% of pairs of intersecting toric divisors can be strongly calibrated and ≈3.22% can never be
calibrated. Physically, this means that gauge coupling unification can be faked in most cases that we study,
but in others it can not, which is surprising from a gauge theoretic perspective.

DOI: 10.1103/PhysRevD.105.126012

I. INTRODUCTION

Grand unification is an enticing possibility for physics
beyond the Standard Model [1,2]. There are numerous lines
of suggestive evidence for the hypothesis, such as gauge
coupling unification (GCU) and the representation theo-
retic structure of Standard Model (SM) fermions, which,
together with an appeal to unity and beauty in particle
physics, has driven an enormous amount of research [3].
However, the simplest models introduce phenomenological
problems such as rapid proton decay and grand unification
theory monopoles, neither of which have been observed,
though they may be addressed with model building and
inflation.
Alternatively, other hypotheses might account for the

phenomena that are regularly cited as evidence for grand
unification. For instance, if instead chiral gauge interactions
are the governing principle, then the representation theo-
retic structure of the SM might instead be an accident of
anomaly cancellation [4–6], which often correlates with
embedding into simple representations of larger groups.
This is a group theoretic explanation that does not require
unification into a non-Abelian gauge theory associated to
the larger group. Similarly, the weak hypercharge is often
cited as evidence for grand unification, but it is also the only

anomaly-free chiral Uð1Þ that can charge the SUð3Þ ×
SUð2Þ fermion content of the SM.
This brings us to the subject of this article; gauge coupling

unification. Should we find it compelling? On one hand, the
Standard Model nearly exhibits equality of gauge couplings
at high scale, a necessary condition for grand unification, and
it is an impressive fact that weak-scale supersymmetry, a
theory that is compelling for independent reasons, signifi-
cantly improves the situation [7–10]. On the other hand, a
skeptic might see the log-scale plot of α−1i and point out that,
since two lines in R2 generically intersect at a point, having
three requires tuning only one real parameter; i.e., high-scale
equality of SM gauge couplings is a real codimension-one
tuning. The grand unification proponent might counter that,
two lines generically intersect in a point, but not necessarily
below the Planck scale; towhich the skeptic gladly points out
that this is an inequality, and is not even a codimension-one
effect.
If the near gauge coupling unification observed in the

Standard Model is an accident—i.e., they do have similar
values at high-scale, but there is no unification into a larger
non-Abelian theory—one might say that gauge coupling
unification is a fake that has misled the infrared observer
toward grand unification. Achieving such a situation in
gauge theory clearly requires a tuning, but perhaps it is mild
enough to be acceptable, especially given the existence of
other apparent tunings that are of much greater concern,
such as the Higgs mass and the cosmological constant; see
e.g., [11,12], respectively.
However, the situation is much more nuanced in string

theory since gauge couplings arise from scalar field
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expectation values. Generally, this moduli dependence can
give rise to correlations between couplings and numbers of
degrees of freedom that can affect low-energy physics. For
instance, in a different physical application, the Oð1015Þ
compactifications with the exact chiral spectrum of the SM
[13] exhibit moduli dependence that yields a delicate
interplay between controlling the theory, obtaining the
correct value of the gauge couplings, dark gauge sectors,
and ultralight axions [14]. Notably, this ensemble auto-
matically realizes gauge coupling unification without
needing to tune moduli, due to homological properties
satisfied by the SM sector.
In this paper we study the possibility of faking gauge

coupling unification in string theory. Specifically, we study
whether the moduli may be tuned such that two gauge
couplings may be made equal. Relative to the above
discussion, one should think of this as the string theoretic
analog of picking a scale and then tuning two lines on the
α−1i plot until they intersect. In gauge theory this tuning is
clearly codimension one, and a central question for us is
whether it is also codimension one in string theory. Our
main result is that gauge couplings very often (≈77.12% in
the tree ensemble) become equal on a codimension one
locus in moduli space, though there are also a small
percentage (≈3.22% in the tree ensemble) of cases in
which it is not possible anywhere in moduli space. The
latter is surprising on its own, and is worthy of further
study. See [15] for other aspects of faking grand unification
in string theory, and [16,17] for early statistical studies of
gauge coupling unification.
Our calculations will be carried out in the context of F-

theory compactifications on an elliptic fibration X → B
over a Kähler threefold B, the extra dimensions of space. In
this context, gauge sectors arise from seven-branes wrap-
ping divisors (four-cycles). Two seven-brane gauge sectors
generally arise from two divisors, Di and Dj, and their
gauge couplings are equal when volðDiÞ ¼ volðDjÞ. These
volumes are a function of Kähler moduli, and for homo-
logically distinct divisors it is generally the case that the
volumes are equal only on a sublocus in moduli space. We
will quantify this according to a few conditions, especially
a so-called strong calibration that we define, which
guarantees the existence of an equal volume locus at
codimension one in Kähler moduli space. Furthermore,
strong calibration is preserved under appropriate topologi-
cal transitions; it is a property that may propagate through
large networks of string geometries, akin to the ED3-
instanton analysis of [18].
This paper is organized as follows. In Sec. II we

introduce aspects of four-dimensional F-theory compacti-
fications. In Sec. III we define the study of the equal
volume locus as a quadratic program, define strong
calibration, and arrive at a number of general results related
to the existence of equal volume loci. In Sec. IV we apply
the general results to arrive at more specific conditions in

the case that B is a toric threefold. We also review the tree
ensemble, a collection of 10755 topologically distinct toric
threefolds B that are related in a connected moduli space;
this motivates the restriction to the toric case. Finally, in
Sec. VI we apply those specific conditions to the tree
ensemble, demonstrating that, more often than not, there
is an equal volume locus at codimension one that fakes
gauge coupling unification, though sometimes the locus
does not exist. We also give a concrete example exhibiting
these ideas.

II. 4D F-THEORY

We will study the possibility of faking gauge coupling
unification in the context of 4d F-theory compactifications.
The geometric nature of F-theory has led to the largest
class of 4D N ¼ 1 compactifications to date. In four-
dimensional theories arising from compactification on an
elliptically fibered Calabi-Yau fourfold X → B, codimen-
sion 1,2, and 3 intersections of irreducible components of
the discriminant Δ ⊂ B lead to gauge algebras, matter, and
Yukawa couplings respectively.
We first specify consistent 4D F-theory backgrounds. We

recall the following:
Definition II.1. An F-theory compactification geometry

is specified by a smooth threefold base B satisfying the
Hayakawa-Wang criterion [19,20]. For any divisor D ⊂ B,
there exist sections f ∈ H0ðB;ω⊗−4

B Þ, g ∈ H0ðB;ω⊗−6
B Þ

such that multDðf; gÞ < ð4; 6Þ.This ensures that the asso-
ciated Weierstrass elliptic Calabi-Yau fourfold has at worst
canonical singularities [21], and hence is at finite distance
from the bulk of the moduli space. The elliptic fourfold
may be written in Weierstrass form

y2 ¼ x3 þ fxþ g; Δ ¼ 4f3 þ 27g2 ¼ 0;

f ∈ Γð−4KBÞ, g ∈ Γð−6KBÞ. Each reduced, irreducible
component of Δ corresponds to a seven-brane and the
corresponding gauge algebra is specified by the order of
vanishing of Δ along the corresponding component. In
particular, such a seven-brane is geometrically non-
Higgsable if such a gauge algebra exists for generic
sections f and g; this is a gauge sector that cannot be
removed by complex structure deformation.
In order to study F-theory geometries as broadly as

possible, we must:
(a) develop an efficient method to check the Hayakawa-

Wang criterion for an arbitrary base,
(b) systematically understand the possible gauge algebras

arising in the compactification.
The history of this problem is rich and particularly well
understood in the case of base surfaces [22–25], which
yield compactifications to six dimensions. In this case, the
problems (a) and (b) can be addressed precisely due to
(a) finiteness results for elliptic threefolds [21,26],
(b) Zariski decomposition for surfaces.
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In particular (b) allows one to determine the existence of
gauge algebras associated with non-Higgsable clusters for
general 6D F-theory compactifications.
For 4D compactifications, there are fewer systematic

results, but certain aspects of (a) and (b) may be addressed.
(a) Finiteness of elliptic fourfolds (up to birational trans-

formation) was established in recent work [27], us-
ing [28].

(b) Though the gauge algebra may be checked in many
concrete examples, the lack of a higher-dimensional
analog of the Zariski decomposition prevents a sys-
tematic gauge algebra analysis for four-dimensional
compactifications.

However, since we will be working with toric bases, the
Hayakawa-Wang criterion and the gauge algebra may be
studied directly.

III. CONDITIONS FOR FAKING GAUGE
COUPLING UNIFICATION

We turn to general conditions that are sufficient for
faking GCU. By this we mean that there exists a sublocus in
Kähler moduli space on which two divisors have equal
volume, in which case we say they are calibrated to
the same volume.1 Lemma III. 1. provides a simple con-
dition that is sufficient for the existence of such a sublocus,
at codimension one; we call this a strong calibration.
Lemmas III. 3 and III. 4 utilize strong calibration in
particular cases; the former ensures that disjoint exceptional
divisors may be calibrated, while the latter ensures the
persistence of the calibratibility of two divisors under
smooth blowups. We will demonstrate that both are useful
for studying calibration in large ensembles of string
geometries related by topological transitions. Finally,
Lemma III. 5 simplifies strong calibration in a case of
interest to the ensemble.
We begin by stating the equal volume condition, choos-

ing to consider NefðXÞ in place of the Kähler cone so that
results may be stated as intersections. Let J1;…; Jn denote
the generators of NefðXÞ and fix D1 and D2, two effective
divisors on X. We are interested in solutions to the system

ða1J1 þ � � � þ anJnÞ2 · ðD1 −D2Þ ¼ 0; ai > 0 ∀ i

ð1Þ

which are loci in moduli space whereD1 andD2 have equal
volume. Equivalently, we define the n × n matrix QD1−D2

with components QD1−D2

ij ¼ Ji · Jj · ðD1 −D2Þ and Eq. (1)
is equivalent to considering the existence of positive
solutions to quadratic forms,

aTQD1−D2a ¼ 0; a ∈ Rn; ai > 0; ∀ i ð2Þ

and more generally for a collection of divisors fD1;…; Dkg
the existence of positive solutions to the system

aTQD1−D2a ¼ 0;…; aTQDk−1−Dka ¼ 0;

a ∈ Rn; ai > 0 ∀ i: ð3Þ

This type of problem is known as a quadratic program,
which in general may be computationally complex. They
arise in many places in string and field theory [30].
In the absence of an exact characterization of divisors

admitting such a solution, we will reduce the question of
existence of a solution to Eq. (2) to a simpler constraint that
is sufficient for the existence of a solution. We will then
study particular cases related to blowups that are computa-
tionally feasible to check.
Given two effective divisors D1, D2, on X, consider the

corresponding quadratic form QD1−D2ðaÞ ¼ aTQD1−D2a.
We define the positive orthants as

Rnþ ¼ fða1;…; anÞjai ≥ 0 ∀ ig:

In particular, the interior of the positive orthant is given
by IntðRnþÞ ¼ fða1;…; anÞjai > 0 ∀ ig
Lemma III.1. Let Q∶ Rn → R be a quadratic form.

Assume that there exists a; b ∈ Rnþ such thatQðaÞ > 0 and
QðbÞ < 0. Then there exists an open neighborhood U ⊂
IntðRnþÞ such that U ∩ Q−1ð0Þ is a submanifold of codi-
mension 1.
Definition III.2. (Strong calibration). Given two divi-

sors D1; D2 ⊂ X, we say that the pair ðD1; D2Þ can be
strongly calibrated if it satisfies the assumptions of
Lemma III. 1, since the assumptions are sufficient but
not necessary for calibration.In principle, two divisors
D1, D2, can potentially be calibrated even if they do not
admit a strong calibration; i.e., there may exist J ample on
X such that J2 ·D1 ¼ J2 ·D2, but not under the assump-
tions of Lemma III. 1.
A natural concern is whether the neighborhood U of

Lemma III. 1 is in a regime of control of the theory. Let p
be the center ofU, and suppose that it is in the Kähler cone,
but not the stretched Kähler cone [31]. Then the gauge
coupling may not simply be a divisor volume, due to α0
corrections, potentially spoiling volume-related analyses of
gauge coupling unification. However, p may be scaled out
by a multiplicative factor, yielding a new point p0 satisfying
the same conditions that is arbitrarily deep inside the
stretched Kähler cone. The existence of gauge coupling
unification via calibration may therefore be studied reliably,
though obtaining a specific value of the unified coupling
may not be possible in a regime of control. Such interplays
between the stretched Kähler cone and correlations
between gauge couplings and other physical observables
were studied in [14].

1Though this English word is natural to describe the phe-
nomenon, its use in this case is distinct from the related notion of
calibrating the volume of a single calibrated submanifold [29].
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A. Existence and persistence under blowups

In this section we explore circumstances under which two
divisors can be calibrated. We will primarily be interested in
the following setting. Assume π∶ X̂ → X a blowup of
smooth complex projective varieties with smooth center.
We denote by E the exceptional divisor. Given two divisors
D1; D2 ⊂ X, we denote by D̃1, D̃2 their proper transforms.
We first demonstrate that a calibration always exists

assuming that D1 and D2 are disjoint and each admit
contractions.
Lemma III.3. Assume in addition that D1 and D2

are disjoint and there exists birational contractions
πi∶ X → Xi; i ∈ f1; 2g, such that Di is the exceptional
divisor of πi. Then D1 and D2 can be calibrated.
Proof.—Without loss of generality, we consider the mor-

phism π1∶ X → X1. As π1 is an isomorphism away from
D1, π1ðD2Þ⊂X1 is an effective divisor and π�1π1ðD2Þ¼D2.
As X1 is projective, there exists an ample class J on X1. In
particular, we have that ðπ�1JÞ2 ·D2¼ðπ�1JÞ2 ·π�1π1ðD2Þ¼
J2 ·π1ðD2Þ>0 and ðπ�1JÞ2 ·D1¼π�1J

2 ·D1¼J2 ·π1ðD1Þ¼0

by proposition A.3. Thus, we have that ðπ�1JÞ2 ·
ðD2 −D1Þ > 0. The opposite inequality follows from the
same argument applied to π2. ▪
Moreover, the existence of a calibration is always

preserved under smooth blowups.
Lemma III.4. Assume that D1, D2 are divisors on X

that can be strongly calibrated. Then their proper trans-
forms D̃1, D̃2 can be calibrated on X̂.
Proof.—The classes of the proper transforms satisfy

D̃i ¼ π�Di − aiE for some ai. By assumption, there
exists J1; J2 ∈ NefðXÞ such that J21 · ðD1 −D2Þ > 0 and
J22 · ðD1 −D2Þ < 0. In particular, we have that ðπ�JiÞ2 ·
ðD̃1 − D̃2Þ ¼ ðπ�JiÞ2 · ðπ�D1− π�D2Þ ¼ J2i · ðD1 −D2Þ by
proposition A.3. Moreover, as the pullbacks of Nef classes
are Nef by corollary A. 4, the divisors D̃1, D̃2 can be
calibrated. ▪

B. Calibration of exceptional divisors

Our primary interest will be in the calibration of excep-
tional divisors arising from blowups of smooth points and
curves. In this section we remark on a Lemma which
simplifies the condition of Lemma III 1 in our settings of
interest. In addition, we record some facts about intersec-
tions with exceptional divisors in Appendix A which will
be used extensively later.
Assume π∶ Y → X a blowup of a smooth complex

projective variety with smooth center. Let E be the excep-
tional divisor. Then in a common case we have a sim-
plification of Lemma III.1:
Lemma III.5. Let D̃ the proper transform of any

divisor D ⊂ X. Then the pair ðD̃; EÞ admits a calibration
if and only if there exists a Nef class J ∈ NefðYÞ such
that J2 · ðE − D̃Þ > 0.

Proof.—Let A be an ample class in X and π�A its
pullback. Then ðπ�ðAÞÞ2 · ðE − D̃Þ ¼ −A2 ·D < 0 since
ðπ�ðAÞÞ2 · E ¼ 0. ▪
In other words, the opposite inequality in Lemma III. 1 is

automatic under the assumptions.

IV. EXISTENCE OF CALIBRATION

In this section, we review the construction of a large class
of 4D F-theory bases introduced in [32]. Within the
framework of this construction, we give conditions under
which many exceptional divisors can indeed be strongly
calibrated. Although we work in the framework of toric
geometry for ease of illustration, all our arguments general-
ize to arbitrary smooth complex projective varieties exhib-
iting a similar pattern of blowups.

A. Review of the tree ensemble

By restricting to blowups of weak Fano toric threefolds,
we may systematically check the Hayakawa-Wang criterion
and compute a lower bound on the geometric gauge algebra
appearing in such a compactification. We thus have the
following claims:
Claim 1 ([1]). There exists an algorithmic construction

yielding a lower bound of 4
3
× 2.96 × 10755 F-theory geom-

etries with toric threefold bases, connected by topological
transitions in a connected moduli space.
Corollary IV.1. Drawing from a uniform distribution

on the finite site of geometries, geometrically non-
Higgsable clusters occur with probability ⪆1–10−755; they
are a universal feature of the construction.
These so-called geometrically non-Higgsable clusters

are F-theory compactifications over Kähler bases that
exhibit non-Abelian gauge symmetry on seven-branes
for generic complex structure moduli, i.e., there are no
complex structure deformations that can break the sym-
metry. They were first realized in 6D compactifications in
[33,34], but were not studied extensively for a number
of years, until [35–39] uncovered many of their properties.
They are generic features of 4D F-theory compactifications
when drawing from a uniform distribution on large
ensembles of F-theory geometries [32,40,41] of flux vacua
[42]; see [43–47] for cosmological implications of non-
Higgsable clusters. The claim and corollary are sharp lower
bounds that arise in the ensemble we study.
We briefly review the construction of [32]. Let B be a

smooth algebraic threefold, and B̂ → B a blowup with
smooth center. Then given a generic Weierstrass–Calabi-
Yau fourfold π∶ X → B, there is an induced Weierstrass–
Calabi-Yau fourfold X̂ → B̂ obtained by a base change of π
together with a change of coordinates.
In order to compute the relevant physical quantities and

to verify the Hayakawa-Wang criterion explicitly, we
restrict to the case where B is toric. We then probe the
space of all elliptic Calabi-Yau fourfolds by studying
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smooth toric blowups of weak Fano toric threefolds and
their induced Weierstrass models. By leveraging the power
of toric geometry, wewill rephrase all the relevant sufficient
geometric conditions in terms of simple combinatorics.
We review the construction of [32], which introduced the

notions of trees and leaves below. Let B be a smooth weak
Fano toric threefold. This is equivalent to specifying a fine,
regular star triangulation (FRST) of one of 4319 3D
reflexive polytopes [48]. A toric point or curve corresponds
to a 3D or 2D simplex, respectively, specified by a
sequence of vertices ðv1; v2; v3Þ or ðvx; vyÞ of the triangu-
lation. A blowup of B at a toric point is specified by
replacing the simplex ðv1; v2; v3Þ with the set of simplices
ðv1; v2; vfÞ, ðv2; v3; vfÞ, ðv1; v3; vfÞ, where vf ¼ v1 þ
v2 þ v3. An edge ðvx; vyÞ has two unique neighboring ver-
tices ða; bÞ such that ða; b; vxÞ, ða; b; vyÞ, form 3-simplices
of the triangulation. Similarly, a blowup of B at a toric
curve is specified by replacing the simplices ða; vx; vyÞ,
ðb; vx; vyÞ with the four simplices ða; vx; veÞ, ða; vy; veÞ,
ðb; vx; veÞ, ðb; vy; veÞ, ve ¼ vx þ vy.
Given a 3-simplex f ¼ ðv1; v2; v3Þ, a face tree on f is

specified by first blowing up by adding the vertex vf ¼
v1 þ v2 þ v3 and subdividing, and then performing arbitrary
compositions of face and edge blowups not including edge
blowups of the bounding three edges. Similarly, given a 2-
simplex e ¼ ðvx; vyÞ, an edge tree is specified by arbitrary
compositions of edge blowups. A leaf of a face (resp. edge)
tree is an added vertex v which can be uniquely written as
v ¼ a1v1 þ a2v2 þ a3v3 (resp. v ¼ axvx þ ayvy) with
coefficients ai ≥ 1. The height of a leaf v of a face (resp.
edge) tree is the sum a1 þ a2 þ a3 (resp. ax þ ay).
An arbitrary F-theory base in our ensemble will be

specified by an FRST triangulation of a 3D reflexive
polytope, a face tree for every 3-simplex, and then an
edge tree for every 2-simplex. The following picture
illustrates the latter part of this procedure by pro-
jecting the toric blowup data into a facet of the original
triangulated polytope; on the left, only the face trees
corresponding to the green edges are added, and on the
right, an edge tree has been added to the common
2-simplex. Moreover the corresponding divisor classes
are given by the following:
(1) Before adding trees,Dx,Dy denote divisor classes at

intersection of two simplices.
(2) After adding green leaves,

fDx ¼ π�Dx − π�F2 − π�F3 − π�F1fDy ¼ π�Dy − π�F1 − π�F2

(3) After adding red leaves,

ffDx ¼ π�fDx − π�E1 − E2ffDy ¼ π�fDy − π�E1:

In this figure we denote exceptional divisors in face trees
and edge trees with F’s and E’s, respectively, which gain
subscripts when there are multiple such leaves. In the
following they may also gain tildes when they are pulled
back under subsequent blowup. We utilize this notation for
the remainder of the sections that use toric geometry.
In subsequent sections we will consider the existence of

a calibration for any pair of intersecting toric divisors. In
Sec. IV B, we prove that the toric divisors of the above
form intersecting along the red lines and along segments on
the common 2-simplex can always be strongly calibrated.
In Sec. V we reduce the question of the existence of
a calibration for exceptional toric divisors of the above
form intersecting along green lines to blowups of P3 and
formulate a statement for the nonexistence of a calibration
of such divisors.

B. Blowups of toric curves

We characterize pairs of toric divisors that we claim
can always be strongly calibrated. Given a weak Fano
toric variety X, we will use the following notation. Fix
πf∶ Xf →Xf−1 →…→X1 →X, the sequence of blowups
establishing a single face tree and πe∶ Xe →Xe−1 →…
→Xfþ1 →Xf →X, the sequence of blowups establishing a
single edge tree on an adjacent toric curve C ⊂ X; i.e., a
toric curve in X that intersects the point that is blown up to
establish the face tree. For each morphism in the compo-
sition πf, we denote by Fi the face leaf or exceptional
divisor of the morphism Xi → Xi−1 and for each morphism
in the composition πe, we denote by Ej the edge leaf or
exceptional divisor of the morphism Xj → Xj−1.
For simplicity, given a map πm∶ Xm → Xn → Xp with

p < n < m, a composition of blowup maps, and algebraic
cycles Bn ∈ A�ðXnÞ, Bp ∈ A�ðXpÞ, we denote the pull-
backs to A�ðXmÞ under the truncation Xm → Xn and
πm∶ Xm → Xn → Xp with the common notation π�mBn,
π�mBp, respectively. In such a situation, we will specify
which variety in the chain each cycle is pulled back from.
Similarly, we will use the common notation fBn, fBp and
specify that we are considering the proper transforms on
Xm under the given map and its truncation.
Lemma IV.2. The proper transforms F̃j and Ẽk, i.e.,

any pair of divisors associated to a pair of leaves in a face
tree and an edge tree, respectively, can always be strongly
calibrated on Xn.
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Lemma IV.3. Assume that a pair of proper transformseEj, fEk in the same edge tree intersect. Then the pair admits
a strong calibration.

V. BLOWUPS OF POINTS

Assume X is a smooth complex projective variety.
Assume X0 → X a blowup at a point p with exceptional

divisor E0. Let π∶ Xf⟶
πf

Xf−1⟶
πf−1

…⟶
π1 X0⟶

π0
X be a

sequence of smooth blowups such that the center of each
blowup πi is contained in the exceptional
locus Excðπi−1∘…∘π1∘π0Þ.
Locally in the analytic topology, we may identify an

open Up ⊂ X containing p with an open neighborhood in
Cn. The above sequence of blowups induces a sequence of
smooth blowups πU∶ Uf → Uf−1 → … → U0 → Up. Via
the canonical embeddings Up ⊂ Cn ⊂ Pn, πU is obtained
by a base change of a sequence of smooth blowups
πP∶ Pf → Pf−1 → … → P0 → Pn. Moreover, for any
exceptional divisor E ⊂ ExcðπÞ on Xf, we can identify
E with its image EP ⊂ Pf and vice versa.
Lemma V.1. The following holds for the divisor

J ¼ π�Dþ E, D a divisor on X.
(1) E is π-Nef if and only if π�Dþ E is Nef for some

divisor D ∈ N1ðXÞ.
(2) Assume E0 ⊂ ExcðπÞ is a divisor on Xf.

Then ðπ�Dþ EÞ2 · E0 ¼ E2 · E0.
Proof.—The if direction in Part 1 follows by definition

and the projection formula A.3(3). The only if direction
follows from lemmas A.1 and A.2. Part 2 follows from
A.3(3). ▪
Corollary V.2. Assume E1, E2 are divisors on Xf in the

exceptional locus ExcðπÞ. Then E1 and E2 can be strongly
calibrated if and only if E1 and E2 can be strongly
calibrated on Pf. In particular E1 and E2 can be calibrated
if and only if E1 and E2 can be calibrated on Pf.
Proof.—It suffices to prove that the assertion is local on

X. By definition, E1 and E2 can be strongly calibrated if
and only if there exist Nef divisors J1; J2 ∈ NefðXnÞ such
that J21 · E1 > J21 · E2 and J22 · E1 < J22 · E2. We may
assume J1 ¼ π�D1 þ F1 for some D1 ∈ N1ðXÞ, F1 ⊂
ExcðπÞ and E1; E2 ∈ ExcðπÞ. Then J1 is Nef if and only
if F1 is π-Nef by Lemma V.1(1), and the first condition
holds if and only if F2

1 · E1 > F2
1 · E2 by Lemma V.1(2).

Arguing similarly for the second condition, in summary,
E1 and E2 can be strongly calibrated if and only if there
exists π-Nef divisors Fi such that F2

1 · E1 > F2
1 · E2 and

F2
2 · E1 < F2

2 · E2; note also that Fi ⊂ ExcðπÞ. But these
divisors are all contained in Uf and we conclude. ▪
For simplicity, we restrict to the case of toric varieties

and the blowup construction in the tree ensemble. Under
certain assumptions, the property of nonexistence of an
ample divisor J such that J2 · ðD1 −D2Þ ¼ 0 can also be
preserved.

Lemma V.3. Assume Xn → … → Xm a sequence of
blowups establishing a collection of edge trees. Assume
that J2 · ðD1 −D2Þ > 0 for any ample class J ∈ NefðXmÞ
withD1,D2 toric divisors on the same face tree. Assume in
addition that D1 does not intersect with any base curve of
an edge tree. Then any ample class J0 ∈ NefðXnÞ satisfies
J02 · ðfD1 − fD2Þ > 0 on Xn.

VI. STATISTICS IN THE ENSEMBLE

In this section we apply the above results to compute the
statistics of existence of calibrations within the tree
ensemble. We also present an explicit example that dem-
onstrates our Lemmas regarding the existence and non-
existence of calibration.

A. Faking gauge coupling unification
in the tree ensemble

We will apply corollary V.2 for each face tree in the
ensemble

πP∶ Pf → Pf−1 → … → P0 → P3;

where we take P3 as the initial variety, without loss of
generality by V.2. For each face tree, we compute the
relative Nef cone NefðPf=PnÞ consisting of Nef divisors on
Pf relative to toric curves contracted by πP. For each pair of
intersecting toric exceptional divisors E1; E2 ∈ ExcðπPÞ, if
there exists generators J1; J2 ∈ NefðPf=PnÞ such that J21 ·
ðE1 − E2Þ > 0 and J22 · ðE2 − E1Þ > 0, then E1 and E2 can
be strongly calibrated on any identical face tree on an
arbitrary smooth complex projective variety X.
On the other hand, if Ji · Jj · ðE1 − E2Þ > 0 for all i, j,

then E1, E2 can never be calibrated. Indeed, by the same
argument as in Corollary V.2, it suffices to check that every
element J ∈ AmpðPf=P3Þ satisfies J2 · ðE1 − E2Þ > 0 up
to switching E1 and E2. But with our assumptions, we may
assume J ¼ a1J1 þ � � � þ anJn for Ji all the generators of
the cone NefðPf=P3Þ and ai > 0 for all i. Then clearly, the
assumption of the first sentence implies the claim.
For each tree, we compute the number of intersecting

divisors admitting and not admitting a calibration. This
yields a probability of calibration and not calibration for the
intersecting pairs of divisors in each tree, and we average
this over all trees in the ensemble, displaying the results in
Table I. Since our conditions are only sufficient for the
existence or nonexistence of calibration, the probabilities
need not add to one.
To compute the statistics of a calibration for face trees,

we operate with the following ansatz. Consider the set T f

of all ordered pairs ðTf; fDi;DjgÞ where Tf is a face tree,
andDi,Dj are two distinct intersecting toric divisors on Tf.
We compute the following sums
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EfðCalibÞ ¼
1

jT fj
X
t∈T f

PcðtÞ;

EfðNo CalibÞ ¼ 1

jT fj
X
t∈T f

PncðtÞ; ð4Þ

where PcðtÞ ¼ 1 if Di and Dj admit a strong calibration
and 0 otherwise. PncðtÞ ¼ 1 if Di and Dj satisfy the
assumptions of Lemma V.3 and 0 otherwise. Summing
over the third, fourth, and fifth columns of Table I, we
obtain the results,X

t∈T f

PcðtÞ ¼ Calib Total ¼ 1394835269;

X
t∈T f

PncðtÞ ¼ No Calib Total ¼ 111815001;

jT fj ¼ Total Curves ¼ 2042412375; ð5Þ

obtaining the results

EfðCalibÞ ¼ 0.6829;

EfðNo CalibÞ ¼ 0.0547;

for face trees.
Similarly, we define the set T e of all ordered pairs

ðTe; fDi;DjgÞ where Te is an edge tree and Di, Dj are two
intersecting divisors. Defining everything analogously and
summing over the relevant data in Table II, we find

X
t∈T e

PcðtÞ ¼ 1458;

jT ej ¼ 1621; ð6Þ

for edge trees.
To estimate the statistics across the whole ensemble, we

will study a fixed facet F of a 3D reflexive polytope with 36
faces and 63 edges; there are two such facets, which

TABLE I. The second column is the number of all face trees with specified number of simplices. The third and fourth columns are the
total number of curves (intersecting pairs of toric divisors) admitting and not admitting a calibration over all face trees of the specified
number of simplices respectively. The fifth and sixth columns are obtained by dividing the second and third columns by the fourth
column, respectively.

# Simplices # Face trees Calib total No calib total Total curves P(Calib) P(No Calib)

3 1 0 0 3 0 0
5 6 6 0 36 0.1666 0
7 33 66 0 297 0.2222 0
9 145 525 24 1740 0.3017 0.0138
11 564 3126 162 8460 0.3695 0.0191
13 2004 15342 870 36072 0.4253 0.0241
15 6586 65166 3966 138306 0.4712 0.0287
17 20175 246120 16452 484200 0.5083 0.0340
19 57729 841062 61461 1558683 0.5396 0.0394
21 154069 2618010 206655 4622070 0.5664 0.0447
23 382206 7438689 621837 12612798 0.5898 0.0493
25 876186 19250893 1669752 31542696 0.6103 0.0529
27 1839392 45096804 3984672 71736288 0.6286 0.0555
29 3485172 94452598 8357028 146377224 0.6453 0.0571
31 5820060 173009204 15185328 261902700 0.6606 0.0580
33 8272334 268091974 23100966 397072032 0.6752 0.0582
35 9449160 332325497 27686928 481907160 0.6896 0.0574
37 7844748 299082419 22680936 423616392 0.7060 0.0535
39 3663074 152297768 8237964 208795218 0.7294 0.0395

TABLE II. Table of all possible edge trees. We use the
convention that a curve of an edge tree is any curve on top of
the base edge, or any curve whose corresponding 1-simplex has
endpoint interior to the base edge. The total curves is computed
with the formula ð3ðn − 1Þ þ 1Þ × NeðnÞ where n is the number
of simplices and NeðnÞ is the number of corresponding edge
trees.

# Simplices # Edge trees Calib Total curves P (Calib)

1 1 0 1 0
2 1 2 4 0.5000
3 2 10 14 0.7142
4 5 40 50 0.8000
5 8 88 104 0.8462
6 12 168 192 0.8750
7 14 238 266 0.8947
8 14 280 308 0.9090
9 12 276 300 0.9200
10 8 208 224 0.9286
11 4 116 124 0.9355
12 1 32 34 0.9412
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dominate the statistics, and each arises in a Kähler threefold
with h1;1 ¼ 35.
Let T be the set of all ordered pairs ðT; fDi;DjgÞ where

T is a pair consisting of a sequence of 36 face trees and a
sequence of 63 edge trees, and Di, Dj are two intersecting
toric divisors contained in T. We compute the sums

EðCalibÞ ¼ 1

jT j
X
t∈T

PcðtÞ;

EðNo CalibÞ ¼ 1

jT j
X
t∈T

PncðtÞ:

To compute the quantity jT j, we first define F ⊂ T to be
the subset of pairs whose intersecting divisors belong to the
same face tree. Similarly, we define E ⊂ T to be the subset
of pairs with intersecting divisors belong to the same edge
tree. We define F f, Ee to be the subsets of F , E consisting
of pairs whose intersecting divisors belong to a face or edge
tree lying over a fixed face f or edge e in F respectively. We
define F f;Tf

, Ee;Te
the subset of F f, Ee with a fixed face

tree Tf or edge tree Te lying over f or e respectively.
Clearly, we have the equalities,

jT j ¼ jF j þ jEj
¼

X
f

jF fj þ
X
e

jEej

¼
X
f;Tf

jF f;Tf
j þ

X
e;Te

jEe;Te
j:

We recall the total number of face and edge trees,

Nf ¼ 41873644; Ne ¼ 82:

To compute jF f;Tf
j, we observe that for a fixed face f on

F, there are N35
f × N63

e configurations in T with a face tree
Tf on f. In particular, if Tf contains n simplices, then we
have

jF f;Tf
j ¼ 3ðn − 1Þ

2
× N35

f × N63
e

where 3ðn − 1Þ=2 is the number of toric curves added in
establishing the face tree. Thus, we find

jF j ¼ 36 × jF fj ¼ 36 ×
X
Tf

3ðn − 1Þ
2

× N35
f × N63

e ;

where the quantity

X
Tf

3ðn − 1Þ
2

¼ jT fj;

is the total number of curves as in Eqs. (5).
To compute jEe;Te

j, we observe that this decomposes into
sums over edges lying on an edge of the facet F and edges
interior to F. Assume that Te is interior to F. Then arguing
similarly as above, we find

jEe;Te
j ¼ ð3ðn − 1Þ þ 1Þ × N36

f × N62
e ;

where 3ðn − 1Þ þ 1 is the number of toric curves added in
establishing the edge tree, and n is the number of curve
blowups performed. Similarly, if Te was on the edge of F,
then we have

jEe;Te
j ¼ 2ðn − 1Þ þ 1 × N36

f × N62
e :

Taking everything together, we find

jEj ¼ 16 ×
X
Te

ð2ðn − 1Þ þ 1Þ × N36
f × N62

e

þ 47 ×
X
Te

ð3ðn − 1Þ þ 1Þ × N36
f × N62

e ;

since there are 47(16) choices for Te that are in the interior
(on the edge) of F.
A completely analogous argument demonstrates that the

sum
P

t∈T PcðtÞ decomposes asX
t∈T

PcðtÞ ¼
X
t∈F

PcðtÞ þ
X
t∈E

PcðtÞ

¼
X
f

X
t∈F f

PcðtÞ þ
X
e

X
t∈Ee

PcðtÞ

¼
X
f;Tf

X
t∈F f;Tf

PcðtÞ þ
X
e;Te

X
t∈Ee;Te

PcðtÞ

For each fixed f, Tf and e, Te, the sums are simplyX
t∈F f;Tf

PcðtÞ ¼ CalibðTfÞ × N35
f × N63

e ;

X
t∈Ee;Te

PcðtÞ ¼ CalibðTeÞ × N36
f × N62

e ;

where CalibðTÞ is the total number of curves admitting a
calibration on a face or edge tree T. Summing over all face
and edge trees, we findX

Tf

X
t∈F f;Tf

PcðtÞ ¼
X
t∈T f

PcðtÞ × N35
f × N63

e ;

X
Te

X
t∈Ee;Te

PcðtÞ ¼
X
t∈T e

PcðtÞ × N36
f × N62

e ;
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where the notation for the first term in the right-hand side of
both expressions are given as in (5) and (6), i.e., is simply
the total number of curves admitting a calibration over all
face or edge trees. Performing the sum over all f, e, we findX

t∈F
PcðtÞ ¼ 36 ×

X
t∈Tf

PcðtÞ × N35
f × N63

e ;

and

X
t∈E

PcðtÞ ¼ 16 ×

�X
t∈Te

PcðtÞ − Ne

�
× N36

f × N62
e

þ 47 ×
X
t∈Te

PcðtÞ × N36
f × N62

e :

Carrying out the same exercise for curves not admit-
ting a calibration implies a completely analogous expres-
sion. Finally, after taking everything together, we find the
following:

EðCalibÞ ¼ 0.7712;

EðNo CalibÞ ¼ 0.0322:

B. Example

We explore a simple example for the purposes of
explicitly demonstrating the existence and nonexistence
of calibrations, and also highlighting the technique used to
arrive at the statistics in the above sections. Consider the
following sequence of blowups on a facet of the polytope of
P3 and denote the last variety with X.

The relative Mori cone NEðX=P3Þ is generated by the toric
curves labeled with green dashes in the above diagram. The
intersection matrix between these curves and the divisors in
the above diagram are given by the following:

C0 C1 C2 C3 C4 C5 C6 C7 C8fD0fD1fD2fF0fF1

F2

0
BBBBBBBBB@

0 1 1 2 0 0 0 0 0

0 −1 0 1 0 1 1 3 0

1 0 0 1 1 0 0 1 1

−3 0 1 0 −3 1 1 0 −3
1 −1 −1 −1 1 0 0 1 1

1 1 0 0 1 −1 −1 −2 1

1
CCCCCCCCCA

;

where the toric curves are given by the following

fC0; C1; C2; C3; C4; C5; C6; C7; C8g
¼ ffD2 · fF0;fD1 · fF1;fD2 · fF1;fD0 · fF1;fF0 · fF1;fD2 · F2; F2 · fF1; fD1 · F2;fF0 · F2g:

The generators of the relative Nef cone NefðX=P3Þ are then
given by dualizing the cone generated by the above rays,
and we obtain the following set of generators.

fJ0; J1; J2g
¼f−fF0 − 2fF1 − F2;−fF0 − fF1 − F2;−2fF0 − 3fF1 − 3F2g:

For each face leaf fFa, we compute the matrix

Qa
ij ¼ Ji · Jj · fFa;

which yields the following matrices.

Q0¼

0
B@
0 0 0

0 1 0

0 0 0

1
CA; Q1¼

0
B@
2 1 3

1 0 1

3 1 3

1
CA; Q2¼

0
B@
0 0 0

0 0 1

0 1 3

1
CA:

Thus, we see that the divisors fF1, F2 can never be
calibrated as the matrix Q1 −Q2 has all non-negative
entries. On the other hand, the pairs fF0, fF1 and fF0, F2

admit calibrations as the matrices Q1 −Q0 and Q2 −Q0

admit both positive and negative entries along their
diagonal. For Q2 −Q0, the equal volume locus is

J2 ¼ −
J1
3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3J20 þ 4J21

p
3

; ð7Þ

with J1 > 0 and J2 > 0. For Q1 −Q0 it is

J2 ¼ −
3J0 þ J1

3
þ

ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3J20 þ 2J21

q
; ð8Þ

if J0 > 0 and J1 > ð1þ ffiffiffi
2

p ÞJ0.
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APPENDIX A: SOME INTERSECTION THEORY

Let N1ðXÞ and N1ðXÞ be the group of R-divisors and
1-cycles modulo numerical equivalence, respectively.
Recall that there exists a perfect, bilinear pairing induced
by the intersection productN1ðXÞ × N1ðXÞ → R and hence
these vector spaces are canonically dual. Let NefðXÞ ⊂
N1ðXÞ and NEðXÞ ⊂ N1ðXÞ be the Nef and Mori cones
respectively. For simplicity, we will assume that NefðXÞ is
finitely generated.
Let π∶ Y → X be a morphism of projective varieties. A

divisorD ∈ N1ðY=XÞ is π-Nef (resp. π-ample) ifD · C ≥ 0
(resp. D · C > 0) for all curves C contracted by π. We will
denote by NEðY=XÞ ⊂ NEðYÞ the subcone of curves
contracted by π and by NefðY=XÞ ⊂ N1ðY=XÞ the cone
of π-Nef divisors.
The utility of these definitions is the following basic

statement.
Lemma A.1 ([49,50]). Assume that D ∈ NefðY=XÞ.

Assume in addition either that −D is effective on Y or
D is π-ample. Then there exists an ample class A ∈ NefðXÞ
such that π�AþD ∈ NefðYÞ.
Lemma A.2. Assume that π∶ Y → X is a composition

of smooth blowups. Then any divisor D ∈ NefðY=XÞ
satisfies the condition that −D is effective.
Proof.—By [[51], Corollary III. 15], we may assume that

D ¼ a1Ẽ1 þ � � � þ anẼn with Ẽi strict transforms of excep-
tional divisors contained in ExcðπÞ.
It suffices to prove that ai ≤ 0 for all i. Assume that there

exists an i such that ai > 0. By [[51], Proposition IV. 3],
there exists a sequence of rational curves C1;…; Cn ∈
N1ðY=XÞ and nonpositive integer coefficients dij such that
for all 1 ≤ i; j ≤ n, we have

eEi · ðd1jC1 þ � � � þ dnjCnÞ ¼ δij:

But then we have

D · −ðd1iC1 þ � � � þ dniCnÞ ¼ −ai;

which violates the assumption that D is π-Nef since the
class −ðd1iC1 þ � � � þ dniCnÞ ∈ NEðY=XÞ as all coeffi-
cients are non-negative. ▪
Proposition A.3 ([52], Theorem 1.23). In the following

A�ðXÞ will denote the Chow ring of X.
(1) There exists a uniquely defined intersection product

: A�ðXÞ × A�ðXÞ → Z which is trivial on noncom-
plementary dimensions.

(2) The pullback π�∶ AcðXÞ → AcðYÞ extends to a ring
homomorphism on the respective Chow rings.

(3) The pushforward π�∶ A�ðYÞ → A�ðXÞ satisfies the
following relation,

π�ðπ�α · βÞ ¼ α · π�β ∈ Al−kðXÞ;

for α ∈ AkðXÞ and β ∈ AlðYÞ.
Corollary A.4. Under the above assumptions, the pull-

back of Nef classes is Nef.
In the specific construction of interest, we record the

following facts of the relevant intersection theory.
Lemma A.5. Assume in particular that X, Y are three-

folds and that π is a blowup of a smooth curve C ⊂ X. Then
we have the following relations:
(1) π�D1 · π�D2 · E ¼ 0 for any divisors D1; D2 ⊂ X.
(2) π�D · E2 ¼ −D · C for any divisor D ⊂ X.
Proof.—The first relation follows from proposition A.3.

The second follows from the fact [53] that the self-
intersection class

E2 ¼ −π�Cþ degN C=X · f

where f is the fiber class. The result then follows similarly
from propostion A.3. ▪
Lemma A.6. Assume that X, Y are threefolds and that π

is a blowup of a smooth point p ∈ X. Then we have the
relations:
(1) π�D1 · π�D2 · E ¼ 0 for any divisors D1; D2 ⊂ X.
(2) π�D · E2 ¼ 0 for any divisor D ⊂ X.
Proof.—Both relations follow from proposition A.3. ▪

APPENDIX B: GENERAL CONDITIONS FOR
CALIBRATION

Lemma III.1. Let Q∶ Rn → R be a quadratic form.
Assume that there exists a; b ∈ Rnþ such thatQðaÞ > 0 and
QðbÞ < 0. Then there exists an open neighborhood U ⊂
IntðRnþÞ such that U ∩ Q−1ð0Þ is a submanifold of codi-
mension 1.
Proof.—Indeed, as Rnþ is path connected and Q is

smooth, there must be a point p ∈ IntðRnþÞ such that
QðpÞ ¼ 0 by the intermediate value theorem. It suffices
to prove that there exists an open subset U ⊂ IntðRnþÞ such
that Qj−1U ð0Þ is nonempty and Q is regular on all such
points, since then the smooth submersion theorem guar-
antees that Qj−1U ð0Þ is a smooth submanifold of codimen-
sion one.
By assumption,Q must be indefinite, and up to a change

of basis, we may assume that

QðxÞ ¼ a1x21 þ � � � þ akx2k − akþ1x2kþ1 − � � � − anx2n;

with ai ≥ 0. If p is a regular point then the Jacobian
∂Q=∂xj evaluated at p does not vanish for all j, and in
particular it must be the case that xiðpÞ ≠ 0 for some
ai > 0. Furthermore, we may take Up ⊂ IntðRnþÞ an open
ball centered at p sufficiently small such that xiðqÞ > 0 for
all q ∈ Up; i.e., Q is regular on Up.
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If p is not regular, then the Jacobian vanishes at p and
there exists ai > 0, aj < 0, such that xiðpÞ ¼ xjðpÞ ¼ 0.
Take Up ⊂ IntðRnþÞ an open ball centered at p. Take δi, δj
sufficiently small such that the points

p1 ¼ ðx1ðpÞ;…; xi−1ðpÞ; δi; xiþ1ðpÞ;…; xnðpÞÞ;
p2 ¼ ðx1ðpÞ;…; xj−1ðpÞ; δj; xjþ1ðpÞ;…; xnðpÞÞ;

are contained in Up.
In particular, Qðp1Þ ¼ aiδ2i > 0 and Qðp2Þ ¼ ajδ2j < 0

and any point q on a straight line between p1, p2 satisfies
xiðqÞ; xjðqÞ ≠ 0. The first assertion together with the
intermediate value theorem implies there exists a distinct
point p0 ∈ Up such that Qðp0Þ ¼ 0 and the second asser-
tion implies that this point is regular. Then by the argument
of the second paragraph Q is regular on a sufficiently small
neighborhood Up0 . ▪

APPENDIX C: BLOWUPS OF TORIC CURVES

Our notation in this section will follow the convention
introduced in Sec. IV B regarding proper transforms of
exceptional divisors in face trees and edge trees.
We first record a computation which will be used

repeatedly in the below. We denote the proper transforms
of face leaves to Xf by F̃i, their total transforms to Xe by
π�F̃i and all pullbacks of edge leaves to Xe by π�Ei.
Corollary C.1. We have the following intersection

relations:
(1) π�Ei · π�fFj · π�fFk ¼ 0.
(2) π�Ei · π�Ej · π�fFk ¼ 0 for i ≠ j.
(3) ðπ�EiÞ2 · π�fFj ¼ −C ·fFj on Xf.
Proof.—The first two relations follow from Lemma A.5

(1). To see the third relation, fix Ei and consider the
truncation of the sequence of blowups πi∶ Xi → … → Xf

establishing an edge tree. Moreover, we may assume that
each step Xjþ1 → Xj is the blowup along one of two toric
curves contained in the exceptional divisor Ej of the
map Xj → Xj−1.
By Lemma A.5(2), we have

ðπ�EiÞ2 · π�fFj ¼ π�E2
i · π

�F̃j

¼ −π�ðfEa · fEbÞ · π�F̃j þ degN Ea∩Eb=Xi−1
f · π�F̃j;

where fEa, fEb are the toric divisors such that Xi → Xi−1 is
the blowup along Ea ∩ Eb and f is the fiber of the
projective bundle Ei → Ea ∩ Eb. By proposition A.3(3),
we have f · π�F̃j ¼ π�f ·fFj ¼ 0. By the assumption of the
last sentence in the above paragraph, we may assume thatfEa ¼ Ei−1 is the exceptional divisor of the blowup Xi−1 →
Xi−2 and fEb ¼ π�Eb − � � � − Ea as classes on Xi−1.

Thus, we have the equalities

− π�ðfEa · fEbÞ · π�F̃j

¼ −π�Ei−1 · ðπ�Eb − � � � − π�Ei−1Þ · π�F̃j

¼ π�E2
i−1 · π

�fFj

..

.

¼ π�E2
fþ1 · π

�F̃j

¼ −C ·fFj;

where the second equality follows again by Lemma A.5(1),
the second to last equality follows by induction on the edge
tree and C is the base curve of the edge tree. ▪
Corollary C.2. LetDx;Dy ∈ N1ðXfÞ denote the unique

toric divisors adjacent to the base curve of the edge tree, fDx,fDy their proper transforms on Xe. Let

Jrel ¼ −afþ1π
�Efþ1 − � � � − aeEe ∈ N1ðXe=XfÞ

with al arbitrary coefficients. Let eEi denote the correspond-
ing proper transforms on Xe. Then,
(1) eEi ¼ π�Ei − π�Ei1 − � � � − π�Eik for all i for some k.
(2) fDx · eEi · Jrel ¼ ai − ai1 − � � � − aik .
Proof.—Part 1 follows from the standard identification of

the strict transform with the total transform.
From the fact that fDx ¼ π�Dx and part 1, we have the

following:

fDx · eEi · Jrel ¼ π�Dx · ðπ�Ei − π�Ei1 − � � � − π�EikÞ
· ð−afþ1π

�Efþ1 − � � � − aeEeÞ:
By corollary C.1(2), all terms in the above expression are
trivial except for the terms π�Dx · π�E2

j . We then have the
equalities

π�Dx · π�E2
j ¼ −C ·Dx ¼ −1;

where the first equality follows from corollary C.1(3), C is
the base curve of the edge tree, and the second equality
follows from the assumption that Dx is adjacent to the base
curve of the edge tree. The conclusion then follows. ▪
Lemma IV.2. The proper transforms F̃j and Ẽk can

always be strongly calibrated on Xe.
Proof.—Consider the truncation to the chain of blow-

ups π∶ Xk → … → Xf → … → Xj−1.
It suffices to prove by Lemma III.5 that there exists J ∈

NefðXkÞ such that J2 · ðEk −fFjÞ > 0 where the intersec-
tions are defined on the variety Xk. Indeed, any relative
ample class must be of the form

Jrel ¼ −ajπ�Fj − � � � − afπ�Ff − � � � − akEk;
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for arbitrary coefficients al. Moreover, we may assume
al > 0 for l ≥ f þ 1 by applying corollary C.2(2). Then by
Lemma A.1, there exists J ∈ NefðXkÞ of the form

J ¼ ðπ�H − ajπ�Fj − � � � − afπ�Ff − � � � − akEkÞ;

where ak > 0 and H is ample on Xj−1.
Let C denote the toric curve on X corresponding to the

base of the edge tree. We claim that there exists J0 ∈
NefðXfÞ such that:
(a) J0 · C̃ > 0 where C̃ is the proper transform of C under

the morphism f∶ Xf → X.
(b) J0 · V ¼ 0 for any curve V contained in the excep-

tional locus ExcðfÞ
Indeed, let G be any ample class on X. Then clearly, f�G ·
V ¼ G · f�V ¼ 0 for V ⊂ ExcðfÞ by proposition A.3(3).
By assumption C ¼ D1 ∩ D2 is the intersection of toric
divisors on X and in particular, the proper transform is
given by the class C̃ ¼ fD1 · fD2, where

fD1 ¼ f�D1 − f�Fa1 − � � � − f�Fam;fD2 ¼ f�D2 − f�Fb1 − � � � − f�Fbn:

By assumption that f is a morphism establishing a face tree,
we may assume that any exceptional divisor associated to a
curve blowup at an intermediate stage of f (i.e., a curve
blowup inside the face) appears in at most one of fD1 andfD2. Thus, we have

f�G · fD1 · fD2 ¼ f�G · ðf�D1 − � � � − f�FamÞ
· ðf�D2 − � � � − f�FbnÞ

¼ f�G · f�D1 · f�D2

¼ G ·D1 ·D2 > 0;

where the second equality follows from the fact that f�G ·
f�Fak · f

�Fal ¼ 0 as f�Fak · f
�Fal ⊂ ExcðfÞ, and so the

triple intersection is trivial in the Chow ring by A.3(3),
since f contracts Fak and Fal to a point. This establishes the
claim for any ample class G.
Consider the case where f�G ¼ J0. As J0 is Nef and the

Nef cone is closed under sums, we have that

Jn ≔ nπ�J0 þ π�H − ajπ�Fj − � � � − akEk;

is Nef for any n > 1. By Lemma A.5(1), we have
that π�J0 · π�J0 · Ek, π�J0 · π�H · Ek, π�J0 · π�Fa · Ek,
π�J0 · π�Eb · Ek, are all 0 unless k ¼ b in the last case,
where we have

π�J0 · E2
k ¼ π�J0 · ð−π�CÞ ¼ −J0 · C

by Corollary C.1 and hence

J2n · Ek

¼ ðnπ�J0Þðnπ�J0 − 2ðπ�H − ajπ�Fj þ � � � þ akEkÞÞ · Ek

þ ðπ�H − ajπ�Fj − � � � − akEkÞ2 · Ek

¼ 2nakJ0 · Cþ ðπ�H − ajπ�Fj − � � � − akEkÞ2 · Ek:

Now, we may assume fFj ¼ π�Fj − π�Fa − � � � − π�Fb

for some j < a < b < i. Then again by Lemma A.5(1) and
claim (b) in the above, we have that

J2n ·fFj ¼ ðπ�H − ajπ�F0 − � � � − akEkÞ2 ·fFj:

Taking everything together, we have

J2n · ðEk−fFjÞ ¼ 2nakJ0 ·Cþðπ�H−ajπ�Fj − � � �−aiEiÞ2
· ðEk−fFjÞ:

Indeed, as the second term is independent of n, we find that
J2n · ðEk −fFjÞ is positive for sufficiently large n since J0 is
ample and ak > 0. ▪
Lemma IV.3. Assume that a pair of proper transformseEj, fEk intersect. Then the pair admits a calibration.
Proof.—We follow the proof of Lemma IV.2. We

consider the truncation of the chain of blowups π∶ Xk →
…Xj → Xj−1 which we may assume is a sequence of only
edge blowups on a single curve.
As in the above, it suffices to prove that there exists

J ∈ NefðXkÞ such that J2 · ðEk − eEjÞ > 0. In this setting,
we may assume that the proper transform of Ej takes the
form

eEj ¼ π�Ej − π�Ea − � � � − π�Eb;

for some j < a ≤ b ≤ k. Arguing similarly as in the proof
of Lemma IV.2, we consider the Nef class

Jn ≔ nπ�H − ajπ�Ej − � � � − akEk;

where H is an ample divisor on Xj−1. This yields

J2n · ðEk − eEjÞ ¼ 2nðak − ðaj − aa − � � � − abÞÞH · C

þ ð−ajπ�Ej − � � � − akEkÞ2 · ðEk − eEjÞ:

It suffices to prove that there exists coefficients ai satisfying
ak − ðaj − aa − � � � − abÞ > 0 such that the sum D ¼
−ajπ�Ej − � � � − akEk ∈ NefðXk=Xj−1Þ is relatively Nef.
We then conclude by Lemma A.1.
By the toric Mori theorem, the cone NEðXk=Xj−1Þ is

generated by the toric curves π�Dx · eEi and π�Dy · eEi for
j ≤ i ≤ k where Dx, Dy are the unique toric divisors on Xf

adjacent to the base curve of the edge tree. In particular, the
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divisor D ∈ NefðXk=Xj−1Þ if and only if D · π�Dx · eEi, D ·

π�Dy · eEi ≥ 0 for all j ≤ i ≤ k on Xk.

By corollary C.2(1), each proper transform eEi takes the
form

eEi ¼ π�Ei − π�Ea − � � � − π�Eb;

for i < a ≤ b ≤ k. Applying corollary C.2(2), the above
inequalities reduces to the following system,

ak ≥ 0

..

.

aj − aa − � � � − ab ≥ 0:

Choosing ak > 0 and setting all other inequalities to
equalities, this yields an upper triangular matrix with
nonzero entries on the diagonal. Thus, it is clear that the
desired condition can be satisfied. ▪
Lemma V.3. Assume Xn → … → Xf a sequence of

blowups establishing a collection of edge trees. Assume
that J2 · ðD1 −D2Þ > 0 for any ample class J ∈ NefðXfÞ
with D1, D2 toric divisors on the same face tree; that is, D1

and D2 cannot be calibrated. Assume in addition that D1

does not intersect with any base curve (in the original
variety X) of an edge tree. Then any ample class J0 ∈
NefðXnÞ satisfies J02 · ðfD1 − fD2Þ > 0 on Xn; that is, the
proper transforms fD1 and fD2 cannot be calibrated. In other
words, the nonexistence of a calibration persists under such
blowups.
Proof.—We may reduce to the case with the sequence

π∶ Xn → … → Xf → … → X;

where Xn → … → Xf is a collection of blowups establish-
ing edge trees on the three adjacent toric curves of the face
tree on Xf.
Let J0 ∈ NefðXnÞ be any ample class. Then J0 ¼ π�Dþ

π�F þ π�E where D ∈ N1ðXÞ, F a sum of exceptional
divisors contained in the face tree, and E a sum of excep-
tional divisors contained in the edge trees. Let C ⊂ Xm be

any toric curve contained in the face tree. Then π�C is
effective and we must have

J0 · π�C ¼ ðπ�Dþ π�F þ π�EÞ · π�C > 0:

By proposition A.3(3), we have π�D · π�C ¼ D · p ¼ 0 as
π�C ∈ ExcðπÞ and p is a point. By Lemma A.5(1),
π�E · π�C ¼ 0. So, it must be the case that F satis-
fies F · C ¼ π�F · π�C > 0.
In particular, we have F ∈ AmpðXf=XÞ and by

Lemma A.1, π�Aþ F is Nef on Xf for some A ∈ X ample.
By assumption

ðπ�Aþ FÞ2 · ðD1 −D2Þ ¼ F2 · ðD1 −D2Þ > 0;

where π�A · π�A ·Di ¼ π�A · F ·Di ¼ 0 by Proposi-
tion A.3(3) and the fact that Di; F ·Di ⊂ ExcðfÞ.
But for any divisorsD1,D2 contained in the face tree, we

have

J02 · ðD̃1 − D̃2Þ ¼ ðπ�Dþ π�F þ π�EÞ2 · ðπ�D1 − π�D2Þ
¼ F2 · ðD1 −D2Þ þ E2 · ðπ�D1 − π�D2Þ;

where all the other terms vanish by applying proposition
A.3(c). By corollary C.1(2), the second term takes the form

E2 · ðπ�D1 − π�D2Þ
¼ ðafπ�Ef þ � � � þ anπ�EnÞ2 · ðπ�D1 − π�D2Þ
¼ ða2fπ�E2

f þ � � � þ a2nπ�E2
nÞ · ðπ�D1 − π�D2Þ:

By assumption D1 does not intersect the base curve of any
edge tree, so by corollary C.1(3), we have

ða2fπ�E2
f þ � � � þ a2nπ�E2

nÞ · π�D1 ¼ 0:

On the other hand, again by corollary C.1(3),

−a2jπ�E2
f · π

�D2 ¼ a2jC ·D2 ≥ 0

onXf which is nonzero if and only ifD2 is adjacent to a base
curve of one of the edge trees. ▪
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