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The next phase of manufacturing is centered on making the switch from traditional
automated to autonomous systems. Future factories are required to be agile,
allowing for more customized production and resistance to disturbances. Such
production lines would be able to reallocate resources as needed and minimize
downtime while keeping up with market demands. These systems must be capable of
complex decision-making based on parameters, such as machine status, sensory/loT
data, and inspection results. Current manufacturing lines lack this complex capability
and instead focus on low-level decision-making on the machine level without utilizing

the generated data to its full extent. This article presents progress toward this
autonomy by introducing Semantic Web capabilities applied to managing the
production line. Finally, a full autonomous manufacturing use case is also developed
to showcase the value of Semantic Web in a manufacturing context. This use case
utilizes diverse data sources and domain knowledge to complete a manufacturing
process despite malfunctioning equipment. It highlights the benefit of Semantic Web
in manufacturing by integrating the heterogeneous information required for the
process to be completed. This provides an approach to autonomous manufacturing
not yet fully realized at the intersection of Semantic Web and manufacturing.

mart manufacturing (SM) has taken a front
S seat in the advancement of manufacturing pro-
duction lines. This vision of SM will be powered
by industrial Internet of Things, big data analytics, and
artificial intelligence. These capabilities can have a
substantial effect on the profitability of the industry
as a whole since manufacturers must respond to fast-
changing requirements through productivity advance-
ments and agility while maintaining high standards.
One aspect of manufacturing that SM seeks to
tackle is the ability to minimize machine downtime.
Downtime refers to the period that production is
halted for a variety of reasons, such as to perform
maintenance on equipment. According to Forbes
(shorturl.at/gtWX®6), unplanned downtime can cost up
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to $50 billion a year to manufacturers. This presents a
challenge to manufacturers in finding solutions to such
problems. Correspondingly, industries are embracing
digital transformation and SM to develop next-genera-
tion manufacturing systems capable of overcoming
faults while maintaining a continuous production line
toward increased efficiency and throughput.

We describe a novel approach to fault tolerant auton-
omous manufacturing that can minimize the downtime
of a production line through local data and domain
knowledge utilization. It uses Semantic Web technolo-
gies that involve using knowledge graphs (KGs)' to incor-
porate sensor data with domain knowledge and thus
integrating heterogeneous data. KGs also allow for fur-
ther abstraction of data and deduction of implicit knowl-
edge about the manufacturing line not traditionally
available. This can help the system react to machine fail-
ures appropriately while maintaining production.

Semantic Web ontologies have been explored for
manufacturing applications>>* alongside applications
that use Internet of Things (loT) data.>®’ In this article,
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FIGURE 1. Overall process of using KGs to represent manufacturing data and domain knowledge for a simple robot pick and

place operation use case.

we discuss the use of knowledge and Semantic Web in
manufacturing systems that include raw data genera-
tion, semantic annotation, knowledge deduction, and
decision-making (see Figure 1).

This in turn can lead to a broader impact on the
manufacturing industry as it is a step toward adopting
innovative technologies and standards for SM that
reduce costs. Fault tolerance is also required in a
broad range of manufacturing industries, such as
pharmaceutical, automotive, and aerospace.

We present the overall methodology of leveraging KGs
from the representation of data for inference within a
manufacturing use case. To support fault tolerance,
manufacturing assets must react appropriately to fail-
ures (e.g., malfunction of a certain sensor) allowing the
process to continue without any downtime for mainte-
nance or replacement. For this to happen, assets must
be aware of the different data sources available that
can be used. The use case of a simple robotic pick-and-
place operation illustrates the concepts. The setup
consists of one industrial robotic arm and two stations
for the part to be placed on. This robot interfaces with
a programmable logic controller (PLC), which provides
the logic for the process to move forward. When the
robot picks the item up, a sensor on the robot gripper
(a potentiometer) changes values indicating that the
gripper has closed, and the operation can continue.
The potentiometer value is read by the PLC and a signal
is sent to the robot to continue with the operation.
However, when the potentiometer malfunctions, the
operation can continue by relying on a timer,
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essentially waiting a few seconds to ensure the gripper
is closed before continuing with the operation.

The process begins by reading the raw sensor data
from the equipment. These data are semantically anno-
tated using a user-defined mapping derived from the
semantic sensor network (SSN) ontology.3 This informa-
tion is then integrated with other information, including
the domain knowledge of the facility and manufacturer
specifications. Next, all this information is integrated into
a central KG, on which the reasoning process is run to
deduce whether the sensor is functioning properly. A cor-
responding triple based on the reasoning output may
then be added to the KG to denote the sensors' function-
ality status. This additional triple links the sensor entity
with a boolean determining its functionality. An SPARQL
query engine then parses through the KG to project the
functionality entity that was modified through reasoning.
The query would return “False” if the potentiometer is
malfunctioning or “True” if functioning properly. Corre-
spondingly, the query engine will then parse through the
KG again for the replacement sensor should the initial
return value be “False.” This decision on which sensor to
use can then be relayed to the controller.

Data Modeling
We begin by modeling the sensor data to improve
expressivity (see Figure 2). The information presented
is modeled using the resource description framework
schema where the top half of Figure 2 represents the
ontology adopted, the SSN ontology. Next, we discuss
how the information collected from three sources is
represented in support of the use case considered.
The first source of information modeled in our use
case is the data generated by the physical sensor
(e.g., potentiometer). To represent these data, three
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FIGURE 2. Modeling of sensor data along with domain knowledge for the use case.

entity classes, sensor, observation, and result, are
defined within the schema.

1. sosa:Sensor: This entity represents a device that
responds to a stimulus and generates a result,
which relates to the potentiometer, a sensor
that generates different results depending on
the change in linear motion of its extrusion.

2. sosa:Observation: This entity represents the value
of a property, which in our case is the measurement
of the potentiometer. These two entities are linked
together using the sosa:zmadeObservation property.

3. sosa:Result: This entity represents the actual
value of the observation made, which is the
value given by the potentiometer. This is linked
to the observation using the sosa:hasSimpleRe-
sult property. The lower half of the figure illus-
trates the instances created from the described
ontology for this use case.

The second source of information is the data obtained
from the manufacturer. This source supplies information
about the normal output range that the sensor should be
yielding. This is needed as it provides the information set
used to deduce the functionality of the potentiometer.
The information is mapped as follows.

1. sosa:Sensor: Similar to the first set, this entity rep-

resents the potentiometer again and will be uni-
fied into one entity instance in the subsequent KG.
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2. ssn-system:SystemCapability: This entity repre-
sents a property of the sensor entity. In this use
case, this represents the range attribute of the
potentiometer. This entity is mapped to the sen-
sor entity through the ssn-system:hasSystem-
Capability property.

. ssn-system:MeasurementRange: This entity is
the set of values that a sensor can return, which
is the normal output range that the manufac-
turer specified for the potentiometer. This entity
is mapped to the abovementioned entity using
the ssn-system:hasSystemProperty property.

w

Finally, the third data source is the domain knowl-
edge about the operation. As described previously, a
robot arm can use two sensors' data to continue with
the operation. Either the potentiometer or a timer can
provide the needed data to deduce whether the gripper
is in the required state or not. This set of information is
integral as it will be the basis of which the system will
decide which sensor to rely on for the process to move
forward. This information is mapped as follows.

1. sosa:Sensor: Once again this entity describes
the sensors used and will be instanced twice for
this source, once for the potentiometer and
once for the timer.

2. sosa:Procedure: This entity describes a workflow,
plan, or algorithm that makes a change to the state
of the world. In our use case, this will be instanced
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FIGURE 3. Semantic annotation of data.

as Path1, which is the path programmed on the
robot to pick up the object. Path1 moves the robot
from its home location to the location of the part
needed to be picked up. Once the part, which is
shown by the potentiometer value, is picked up,
this path finishes by moving that part to a second
predetermined location. This entity is linked to the
sensor entity using the ssn:implements property.

Semantic Annotation

The translation from raw sensor data to contextual-
ized information requires mapping the sensor data val-
ues to existing entities in the KG. To do so, we utilized
SDM-RDFizer.? an interpreter that transforms unstruc-
tured data into RDF format. SDM-RDFizer requires the
user to define the mapping that the interpreter adopts
using RDF mapping language.

Figure 3 displays a snippet of the JSON object that the
raw data are sent within. This object has four separate
key-value pairs. The first is the unique ID of the sensor,
which allows us to identify which sensor this value corre-
sponds to. The “qc” key refers to the quality code or qual-
ity of service that determines the status of the message
delivery. The “ts” key is the timestamp of the generated
value and finally “val" is the actual value that the sensor is
generating. The figure also shows an example of the
instantiation of four triples to be included in the KG. This
semantic annotation was achieved at the edge level by
deploying the custom-made application onto the Siemens
IPC227E Edge Device. The application reads data from the
controller of the manufacturing equipment and annotates
them in real time before outputting the corresponding tri-
ples to be integrated into the manufacturing KG.

Knowledge Deduction and

Decision Making

With the RDF triples being generated on the edge level,
the next step is to consolidate them into a central KG
and perform reasoning on it. This is done on a separate
machine to simulate cloud-level processing. At this
level, the Jena reasoning mechanism® is utilized to inte-
grate all the different information into one KG.
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Reasoning was then introduced in the form of rules
that allow the creation of new entities, which will be
used in the decision-making process. Should the gen-
erated KG have a potentiometer value of less than
that given in the manufacturer specifications, then
the sensor needs changing. The visualized output KGs
can be seen in Figure 4.

With the KG manipulation accomplished, the next
step is to arrive at the final decision regarding comple-
tion of the required path. To iterate through the KG,
SPARQL (shorturl.at/QWZ35), a query language for
RDF, was used. In the query response, the status of
the sensor is extracted. If the status returned was
that the sensor needs changing (i.e, the “Need-
Change" attribute yields “True”) then the different sen-
sors that can be used are discovered, as seen in
Figure 5. The final projected result of the query state-
ment can also be seen which reflects the decision
made over which sensor to use for the operation.

In this article, the incorporation of Semantic Web
technologies in a manufacturing environment was
described. The presented use case showcases fault
tolerance capabilities that were adopted that follow
the full process of semantic annotation, KG genera-
tion, deduction of knowledge, and decision-making.
On top of that, this article also provides a detailed
process for semantic integration of sensor data,
increasing interoperability and domain knowledge
utilization in manufacturing.

Standardized Data Integration Process

The steps taken within this article to integrate the
different information sources can be applied within
many different domains and use cases. Even
though this use case focuses mainly on one certain
instance of a malfunctioning sensor, this process
can be generalized to encapsulate whichever capa-
bility required. This article also showcases the
applicability of undergoing real-time semantic
annotation of the raw data and presents a path for
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incorporating heterogeneous data sources. With
this procedure outlined alongside the technologies,
further work can be undergone to integrate more
information and address other issues that may
occur in manufacturing.

Interoperability

With more data being generated on manufacturing
shop floors using diverse devices, interoperability
and integration of that data becomes a significant
challenge. Semantic Web provides a step toward
addressing this challenge. The use of ontologies,
such as the SSN ontology and KGs, provide the criti-
cal capability for this purpose.

Domain Knowledge

KGs present a great opportunity for integrating
domain knowledge for manufacturing processes. As
such, datasheets and manuals can be integrated to
include much of the information within the KG. This
use case focused only on output range but there are
endless possibilities of information that can be
extracted whether it is operating or set up instruction.
Having all this integrated into KGs can lead to differ-
ent data accessibility and autonomous manufacturing
capabilities.

SM has brought focus to the need for autonomous
manufacturing. With an ever-changing market and
added focus on customized production, factory floors
must be agile and dynamic to adapt to diverse needs
while also maintaining a consistent production sched-
ule. In that regard, the added capability of fault toler-
ance can enable SM at a greater scale. This article
describes how Semantic Web techniques can help in
this objective.

We show that reducing downtime through fault tol-
erance is made possible by adopting Semantic Web for
manufacturing primarily to deal with the heteroge-
neous data found in smart manufacturing. This article
uses the simple use case of fault tolerance to illustrate
the core ideas. The simplified example can be extended
to support the integration of further diverse data and
hence increase the knowledge acquired about the
manufacturing process. The availability of these data
in one KG can also allow knowledge-infused learning'™
algorithms to be deployed. Similar to recent neurosym-
bolic advancements for scene understanding in the
autonomous driving domain,” this can lead to more
complex event understanding in manufacturing that
utilizes massive-scale heterogeneous sensor data
through Semantic Web technologies.
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