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The next phase ofmanufacturing is centered onmaking the switch from traditional

automated to autonomous systems. Future factories are required to be agile,

allowing formore customized production and resistance to disturbances. Such

production lines would be able to reallocate resources as needed andminimize

downtimewhile keeping upwithmarket demands. These systemsmust be capable of

complex decision-making based on parameters, such asmachine status, sensory/IoT

data, and inspection results. Currentmanufacturing lines lack this complex capability

and instead focus on low-level decision-making on themachine level without utilizing

the generated data to its full extent. This article presents progress toward this

autonomy by introducing SemanticWeb capabilities applied tomanaging the

production line. Finally, a full autonomousmanufacturing use case is also developed

to showcase the value of SemanticWeb in amanufacturing context. This use case

utilizes diverse data sources and domain knowledge to complete amanufacturing

process despite malfunctioning equipment. It highlights the benefit of SemanticWeb

inmanufacturing by integrating the heterogeneous information required for the

process to be completed. This provides an approach to autonomousmanufacturing

not yet fully realized at the intersection of SemanticWeb andmanufacturing.

S
mart manufacturing (SM) has taken a front

seat in the advancement of manufacturing pro-

duction lines. This vision of SM will be powered

by industrial Internet of Things, big data analytics, and

artificial intelligence. These capabilities can have a

substantial effect on the profitability of the industry

as a whole since manufacturers must respond to fast-

changing requirements through productivity advance-

ments and agility while maintaining high standards.

One aspect of manufacturing that SM seeks to

tackle is the ability to minimize machine downtime.

Downtime refers to the period that production is

halted for a variety of reasons, such as to perform

maintenance on equipment. According to Forbes

(shorturl.at/gtWX6), unplanned downtime can cost up

to $50 billion a year to manufacturers. This presents a

challenge to manufacturers in finding solutions to such

problems. Correspondingly, industries are embracing

digital transformation and SM to develop next-genera-

tion manufacturing systems capable of overcoming

faults while maintaining a continuous production line

toward increased efficiency and throughput.

We describe a novel approach to fault tolerant auton-

omous manufacturing that can minimize the downtime

of a production line through local data and domain

knowledge utilization. It uses Semantic Web technolo-

gies that involve using knowledge graphs (KGs)1 to incor-

porate sensor data with domain knowledge and thus

integrating heterogeneous data. KGs also allow for fur-

ther abstraction of data and deduction of implicit knowl-

edge about the manufacturing line not traditionally

available. This can help the system react to machine fail-

ures appropriately whilemaintaining production.

Semantic Web ontologies have been explored for

manufacturing applications2,3,4 alongside applications

that use Internet of Things (IoT) data.5,6,7 In this article,
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we discuss the use of knowledge and Semantic Web in

manufacturing systems that include raw data genera-

tion, semantic annotation, knowledge deduction, and

decision-making (see Figure 1).

This in turn can lead to a broader impact on the

manufacturing industry as it is a step toward adopting

innovative technologies and standards for SM that

reduce costs. Fault tolerance is also required in a

broad range of manufacturing industries, such as

pharmaceutical, automotive, and aerospace.

METHODOLOGY AND
IMPLEMENTATION

We present the overall methodology of leveraging KGs

from the representation of data for inference within a

manufacturing use case. To support fault tolerance,

manufacturing assets must react appropriately to fail-

ures (e.g., malfunction of a certain sensor) allowing the

process to continue without any downtime for mainte-

nance or replacement. For this to happen, assets must

be aware of the different data sources available that

can be used. The use case of a simple robotic pick-and-

place operation illustrates the concepts. The setup

consists of one industrial robotic arm and two stations

for the part to be placed on. This robot interfaces with

a programmable logic controller (PLC), which provides

the logic for the process to move forward. When the

robot picks the item up, a sensor on the robot gripper

(a potentiometer) changes values indicating that the

gripper has closed, and the operation can continue.

The potentiometer value is read by the PLC and a signal

is sent to the robot to continue with the operation.

However, when the potentiometer malfunctions, the

operation can continue by relying on a timer,

essentially waiting a few seconds to ensure the gripper

is closed before continuing with the operation.

The process begins by reading the raw sensor data

from the equipment. These data are semantically anno-

tated using a user-defined mapping derived from the

semantic sensor network (SSN) ontology.3 This informa-

tion is then integrated with other information, including

the domain knowledge of the facility and manufacturer

specifications. Next, all this information is integrated into

a central KG, on which the reasoning process is run to

deducewhether the sensor is functioning properly. A cor-

responding triple based on the reasoning output may

then be added to the KG to denote the sensors' function-

ality status. This additional triple links the sensor entity

with a boolean determining its functionality. An SPARQL

query engine then parses through the KG to project the

functionality entity that was modified through reasoning.

The query would return “False” if the potentiometer is

malfunctioning or “True” if functioning properly. Corre-

spondingly, the query engine will then parse through the

KG again for the replacement sensor should the initial

return value be “False.” This decision on which sensor to

use can then be relayed to the controller.

Data Modeling
We begin by modeling the sensor data to improve

expressivity (see Figure 2). The information presented

is modeled using the resource description framework

schema where the top half of Figure 2 represents the

ontology adopted, the SSN ontology. Next, we discuss

how the information collected from three sources is

represented in support of the use case considered.

The first source of information modeled in our use

case is the data generated by the physical sensor

(e.g., potentiometer). To represent these data, three

FIGURE 1. Overall process of using KGs to represent manufacturing data and domain knowledge for a simple robot pick and

place operation use case.
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entity classes, sensor, observation, and result, are

defined within the schema.

1. sosa:Sensor: This entity represents a device that

responds to a stimulus and generates a result,

which relates to the potentiometer, a sensor

that generates different results depending on

the change in linear motion of its extrusion.

2. sosa:Observation: This entity represents the value

of a property, which in our case is themeasurement

of the potentiometer. These two entities are linked

together using the sosa:madeObservation property.

3. sosa:Result: This entity represents the actual

value of the observation made, which is the

value given by the potentiometer. This is linked

to the observation using the sosa:hasSimpleRe-

sult property. The lower half of the figure illus-

trates the instances created from the described

ontology for this use case.

The second source of information is the data obtained

from the manufacturer. This source supplies information

about the normal output range that the sensor should be

yielding. This is needed as it provides the information set

used to deduce the functionality of the potentiometer.

The information ismapped as follows.

1. sosa:Sensor: Similar to the first set, this entity rep-

resents the potentiometer again and will be uni-

fied into one entity instance in the subsequent KG.

2. ssn-system:SystemCapability: This entity repre-

sents a property of the sensor entity. In this use

case, this represents the range attribute of the

potentiometer. This entity is mapped to the sen-

sor entity through the ssn-system:hasSystem-

Capability property.

3. ssn-system:MeasurementRange: This entity is

the set of values that a sensor can return, which

is the normal output range that the manufac-

turer specified for the potentiometer. This entity

is mapped to the abovementioned entity using

the ssn-system:hasSystemProperty property.

Finally, the third data source is the domain knowl-

edge about the operation. As described previously, a

robot arm can use two sensors' data to continue with

the operation. Either the potentiometer or a timer can

provide the needed data to deduce whether the gripper

is in the required state or not. This set of information is

integral as it will be the basis of which the system will

decide which sensor to rely on for the process to move

forward. This information ismapped as follows.

1. sosa:Sensor: Once again this entity describes

the sensors used and will be instanced twice for

this source, once for the potentiometer and

once for the timer.

2. sosa:Procedure: This entity describes a workflow,

plan, or algorithm thatmakes a change to the state

of the world. In our use case, this will be instanced

FIGURE 2. Modeling of sensor data along with domain knowledge for the use case.
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as Path1, which is the path programmed on the

robot to pick up the object. Path1 moves the robot

from its home location to the location of the part

needed to be picked up. Once the part, which is

shown by the potentiometer value, is picked up,

this path finishes by moving that part to a second

predetermined location. This entity is linked to the

sensor entity using the ssn:implements property.

Semantic Annotation
The translation from raw sensor data to contextual-

ized information requires mapping the sensor data val-

ues to existing entities in the KG. To do so, we utilized

SDM-RDFizer,8 an interpreter that transforms unstruc-

tured data into RDF format. SDM-RDFizer requires the

user to define the mapping that the interpreter adopts

using RDF mapping language.

Figure 3 displays a snippet of the JSONobject that the

raw data are sent within. This object has four separate

key-value pairs. The first is the unique ID of the sensor,

which allows us to identify which sensor this value corre-

sponds to. The “qc” key refers to the quality code or qual-

ity of service that determines the status of the message

delivery. The “ts” key is the timestamp of the generated

value and finally “val” is the actual value that the sensor is

generating. The figure also shows an example of the

instantiation of four triples to be included in the KG. This

semantic annotation was achieved at the edge level by

deploying the custom-madeapplicationonto theSiemens

IPC227EEdgeDevice. The application reads data from the

controller of themanufacturing equipment andannotates

them in real time before outputting the corresponding tri-

ples to be integrated into themanufacturing KG.

Knowledge Deduction and

Decision Making
With the RDF triples being generated on the edge level,

the next step is to consolidate them into a central KG

and perform reasoning on it. This is done on a separate

machine to simulate cloud-level processing. At this

level, the Jena reasoning mechanism9 is utilized to inte-

grate all the different information into one KG.

Reasoning was then introduced in the form of rules

that allow the creation of new entities, which will be

used in the decision-making process. Should the gen-

erated KG have a potentiometer value of less than

that given in the manufacturer specifications, then

the sensor needs changing. The visualized output KGs

can be seen in Figure 4.

With the KG manipulation accomplished, the next

step is to arrive at the final decision regarding comple-

tion of the required path. To iterate through the KG,

SPARQL (shorturl.at/QWZ35), a query language for

RDF, was used. In the query response, the status of

the sensor is extracted. If the status returned was

that the sensor needs changing (i.e., the “Need-

Change” attribute yields “True”) then the different sen-

sors that can be used are discovered, as seen in

Figure 5. The final projected result of the query state-

ment can also be seen which reflects the decision

made over which sensor to use for the operation.

DISCUSSION
In this article, the incorporation of Semantic Web

technologies in a manufacturing environment was

described. The presented use case showcases fault

tolerance capabilities that were adopted that follow

the full process of semantic annotation, KG genera-

tion, deduction of knowledge, and decision-making.

On top of that, this article also provides a detailed

process for semantic integration of sensor data,

increasing interoperability and domain knowledge

utilization in manufacturing.

Standardized Data Integration Process
The steps taken within this article to integrate the

different information sources can be applied within

many different domains and use cases. Even

though this use case focuses mainly on one certain

instance of a malfunctioning sensor, this process

can be generalized to encapsulate whichever capa-

bility required. This article also showcases the

applicability of undergoing real-time semantic

annotation of the raw data and presents a path for

FIGURE 3. Semantic annotation of data.
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FIGURE 4. Final generated KG with functioning or malfunctioning potentiometer.

FIGURE 5. Query statement deployed on the KG with corresponding output messages.

January/February 2023 IEEE Intelligent Systems 73

AI IN IoT AND SMART CITIES

Authorized licensed use limited to: University of South Carolina. Downloaded on May 03,2023 at 21:12:36 UTC from IEEE Xplore.  Restrictions apply. 



incorporating heterogeneous data sources. With

this procedure outlined alongside the technologies,

further work can be undergone to integrate more

information and address other issues that may

occur in manufacturing.

Interoperability
With more data being generated on manufacturing

shop floors using diverse devices, interoperability

and integration of that data becomes a significant

challenge. Semantic Web provides a step toward

addressing this challenge. The use of ontologies,

such as the SSN ontology and KGs, provide the criti-

cal capability for this purpose.

Domain Knowledge
KGs present a great opportunity for integrating

domain knowledge for manufacturing processes. As

such, datasheets and manuals can be integrated to

include much of the information within the KG. This

use case focused only on output range but there are

endless possibilities of information that can be

extracted whether it is operating or set up instruction.

Having all this integrated into KGs can lead to differ-

ent data accessibility and autonomous manufacturing

capabilities.

CONCLUSION
SM has brought focus to the need for autonomous

manufacturing. With an ever-changing market and

added focus on customized production, factory floors

must be agile and dynamic to adapt to diverse needs

while also maintaining a consistent production sched-

ule. In that regard, the added capability of fault toler-

ance can enable SM at a greater scale. This article

describes how Semantic Web techniques can help in

this objective.

We show that reducing downtime through fault tol-

erance is made possible by adopting Semantic Web for

manufacturing primarily to deal with the heteroge-

neous data found in smart manufacturing. This article

uses the simple use case of fault tolerance to illustrate

the core ideas. The simplified example can be extended

to support the integration of further diverse data and

hence increase the knowledge acquired about the

manufacturing process. The availability of these data

in one KG can also allow knowledge-infused learning10

algorithms to be deployed. Similar to recent neurosym-

bolic advancements for scene understanding in the

autonomous driving domain,11 this can lead to more

complex event understanding in manufacturing that

utilizes massive-scale heterogeneous sensor data

through SemanticWeb technologies.
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