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ABSTRACT: In this paper we study the 6d localized charged matter spectrum of F-theory
directly on a singular elliptic Calabi-Yau 3-fold, i.e. without smoothing via resolution or
deformation of the entire fibration. Given only the base surface, discriminant locus, and
the SL(2,Z) local system, we propose a general prescription for determining the charged
matter spectrum localized at intersections of seven-branes, using the technology of string
junctions. More precisely, at each codimension-2 collision of seven-branes, we determine
the local seven-brane content and compute the number of massless string junctions modulo
the action of the SL(2,7Z) monodromy. We find agreement with the predicted results from
6d anomaly cancellation in all cases considered. Examples include a generic Weierstrass
model with arbitrary Kodaira fiber intersecting an I, as well as cases with jointly charged
matter localized at intersections of non-abelian seven-branes.
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1 Introduction

F-theory [1, 2] is a non-perturbative formulation of type IIB superstring theory that ge-
ometrizes seven-brane physics. Specifically, the axio-dilaton profile sourced by the seven-
branes is encoded in an elliptically fibered Calabi-Yau variety X — B. The singularities
of X encode the structure of seven-branes, providing the geometric and topological data
that is crucial for determining the degrees of freedom of the F-theory compactification and
their low-energy physics. Though unbroken non-abelian gauge symmetry on seven-branes
requires singularities in the F-theory description, many analyses nevertheless smooth the
variety. For instance, a series of blowups and small resolutions [3-11] may yield a smooth
Calabi-Yau fourfold X*, where M-theory on X* corresponds to the Coulomb branch of an
associated 3d A/ = 2 theory, obtained by compactification of the 4d theory on a circle.
Another approach is to obtain a smooth Calabi-Yau fourfold X” by a complex structure
deformation [12-21], which corresponds to a Higgsing of the 4d N' = 1 gauge group asso-
ciated to the 7-branes. Both techniques are indirect, however, as the smoothing moves the
theory to a different phase. There is no guarantee that the physics of F-theory on X is
completely captured by the geometry and topology of X* or X”.



Instead, to understand compactifications with unbroken seven-brane gauge symmetry
it is preferable to study that phase directly, i.e. via the singular geometry and topology of
X itself. Doing so requires the development of new mathematics, such as in the study of
F-theory on singular spaces via matrix factorizations [22] or via string junctions [23]; the
latter built on a mathematical theory of topological string junctions [20] developed in the
case of a smooth variety.

In this work we continue to develop a theory of F-theory on singular spaces that
utilizes string junctions. Indeed, our approach emphasizes the definition of F-theory as
SL(2, Z)-equivariant type IIB supergravity coupled with background (p,q) 7-branes. From
this perspective, the background spacetime is smooth and it is natural to establish an
algorithm that generalizes the original counting of localized charged and uncharged matter
at the intersections of D7-branes in terms of open string states. String junctions thus serve
as a natural tool, and our proposal reduces precisely to the original counting in the case
that all (p,q) 7-branes are mutually local, i.e. in the weakly coupled type IIB limit.

Specifically, we give a description of computing the localized charged matter spectrum
at the intersection of two irreducible components of the discriminant locus. The main
results of the paper are as follows, organized according to the section in which they appear.
In section 3:

o Given a discriminant of the form A = z"A, we obtain sets S¢, Sg of vanishing cycles
corresponding to the seven-brane content obtained from the local monodromy around
z" = 0, and also from the local monodromy around A = 0 restricted to the plane
z = €. We count the number of root junctions associated to the sets Sg and Sg,
using methods from [23].

e The threefold geometry induces a monodromy on the junctions that is crucial to
compute the charged matter spectrum and match what is known from anomaly can-
cellation. Specifically, we compute the monodromy matrices MgMg, MgMp I and
their inverses, and identify asymptotic charges (and therefore junctions with those
charges) that are related by monodromies generated from this set.

e We argue that these monodromies coincide with a representation of the fundamental
group of the complement of C? by the union of two lines through the origin, and
argue that this coincides with the physics via a Higgsing.

o In the cases with matter charged under a product gauge group G x G’, we use the
same prescription by choosing S¢, Mg from the set of seven-branes forming one gauge
group factor G, and the residual data Sr, Mg from G’ together with the other residual
seven-branes.

We study many examples in section 4. Specifically:

o We verify the above prescription in all cases with a generic tuning of a single Kodaira
fiber intersecting with a residual I7, assuming normal crossing.

o We verify the above prescription for cases with jointly charged matter for 111 X
IIT,IVy x IV, and IV x I11, again assuming normal crossing.



A subtlety regarding localized neutral hypermultiplets is studied in section 5. Specifically,

e We exhibit an example of tunings of 11— 1I; which yields the same number of localized
charged hypermultiplets but different localized neutrals depending on the tuning. In
particular, our entire prescription is completely independent of details of the tuning.
A specific example is given at the end of the section.

2 Vanishing cycles and minimal normal factorizations

Consider an elliptic fibration 7 : X — B over a complex algebraic surface B described by
a Weierstrass model
y' =2+ frtg, (2.1)

where f € O(—4Kp),g € O(—6Kp). The fiber degenerates along the discriminant locus
DcB
D :={A=4f3+274°> =0}, (2.2)

which is the location of the seven-branes.

Smooth case

For the sake of simplifying the discusion, we first assume that the total space X is
non-singular and that all vanishing cycles are simple (p, ¢)-cycles, i.e., the vanishing cycle
is pa + gb where a and b are the meridian and longitudinal cycles of the elliptic curve F,
respectively. We will refer to this as a simple type degeneration, where all codimension-
one singularities are of type I;. The SL(2,Z) monodromy matrix associated with looping
around a component of D takes the form

2
Mp,q) = (1_ ng ) ipq) : (2.3)
In this work the correspondence between the geometry of the elliptic curve E and its
SL(2, Z) representation, or the correspondence between geometric data and algebraic data,
will play a crucial role. The geometric data can be read off by studying the motion of the

three roots of the equation
B+ fr4+9g=0, (2.4)

as one completes a closed path encircling a component D; C D. At a generic point p
away from D the three roots are distinct, and we can choose a labeling of these roots
x1,x2,r3, which provides a canonical definition of the cycles 7 := (1,0), mo := (=1, —1)
and 73 := (0, 1) given such a labeling. In figure 1 we plot the roots in the z-plane, as well
as the cycles. Such a choice is made up to a global SL(2, Z) transformation. These labels
denote the vanishing cycles as two roots collide along components of D.

The cycles 71, mo and 73 are a (over-complete) set of generators of Hy(F,Z), where FE
is the fiber at p. Fixing a reference point p away from D, as we approach D a (p, q)-cycle
vanishes, as we are only considering degenerations of a simple type, i.e., we are considering
smooth X with only I; fibers. For instance, if a (1,0)-cycle vanishes, z; and z3 approach
each other and become degenerate on D. To properly analyze the monodromy, one should
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Figure 1. The three solutions z1, x2, 3 to 2® + fz + g = 0 are plotted at a generic smooth point.
We define the cycles m; such that the red line segment denotes 7y, the green line segment denotes
7o and the blue line segment denotes 3.

then perform a loop around D; for instance, taking a loop around D, for which the vanishing
cycle is (1,0), will induce a geometric swap of the roots z; and x3.

Singular case. However, the case that the total space X is singular is both more physi-
cally interesting, and more generic, and we can no longer restrict ourselves to simple type
degenerations. When approaching D, x1, x2 and x3 will usually all degenerate into one
point. In such cases one needs further tools to analyze the vanishing cycles and monodromy.
As discussed in the Introduction, this may be done either via resolution or deformation,
but both methods are indirect (likely losing information of the unbroken phase), and we
prefer to work directly with the singular space. Furthermore, in nearly all known cases
(e.g. [24, 25]) a smoothing complex structure deformation does not exist. Similarly, some
singularities that give rise to localized neutral hypermultiplets cannot be resolved [26].
When X is singular, D is in general a non-reduced scheme, where each component’s
multiplicity corresponds to the number of (p,q) 7-branes along that component. In this
case one cannot read off the vanishing cycles by approaching the components D; of D (from
an appropriately chosen fixed point), but instead must infer a set of vanishing cycles via
the motion of the roots induced by traversing a loop around each D;. While the motion of
the roots is in general not a simple exchange (except in the simple I; case), any motion can
be decomposed into an ordered set of exchanges. Such an ordered set can be used to define
a set of vanishing cycles. This choice corresponds to a decomposition of the monodromy
matrix A into a minimal normal factorization (MNF), defined in [27]. An MNF of a
monodromy matrix is a decomposition of an SL(2, Z) monodromy matrix associated with
a Kodaira fiber type into n factors with each factor given by one of the following matrices
corresponding to the monodromy sourced by a (1,0) and a (0, 1) seven-brane respectively.

11 10
M) = (0 1) ; M1 = (_1 1)

Such a factorization exists for each SL(2,7Z)-matrix corresponding to a Kodaira fiber and
is unique up to Hurwitz moves and we refer to ([23], section 3.2) for an in-depth summary
of the results of [27] and its implications for singular string junctions. A Hurwitz move is
given by one of the following transformations for g; € G (for our purpose, G = SL(2,7))

9192 9igi+1 -Gk — g192 - - 'gi+1(g[+119igi+1) gk



or

9192 GiGi+1 - Gk — G192 - (GiGi+19; )Gi -+ Gk,

i.e., git1 is “pulled past” g;, conjugating it in the process, or vice versa.

Given a disc C' C B intersecting components of the discriminant locus, we may consider
the restriction to an elliptic surface X; — C'. In the following, we will use the technology
of string junctions assuming that they exist as a basis of Hg(Xl,Ep) where X is the
total space of a deformation of X; — C to an elliptic surface with only I; singularities.
We will use a canonical ordering of the vanishing cycles (MNF) given in table 1 and the
associated intersection pairing, but the results will be independent of the choice of basis.
Despite such assumptions, we emphasize that all these properties of string junctions can
be obtained completely algebraically independent of the deformation and in [28], we will
demonstrate that all the relevant data such as the intersection pairing are indeed invariant
under Hurwitz moves.

3 DMatter in 6D F-theory compactifications on singular spaces

Given a Weierstrass or Tate model of an elliptically fibered Calabi-Yau threefold with a
gauge group supported on a divisor D, := {z = 0} with z a local coordinate on B, the
discriminant locus takes the form

A= 2"A, (3.1)

where A is the residual discriminant locus. Generally there are matter hypermultiplets
localized at intersection points z = A = 0, and the goal of this work is to count such
hypermultiplets. At the intersection the fiber degenerates further, and the gauge algebra is
enhanced to a larger one. To study the spectrum at the enhancement point we will probe
the point with a D3-brane probe.

As discussed in the previous section we can associate to D, and (each component of) A
an ordered set of vanishing cycles via an MNF. At the collision point the vanishing cycles
intersect, and massless matter can be realized by closed string junctions with one boundary
supported on D,, and one boundary supported on A. A direct counting of these string
junction states supported at the codimension-two locus generally gives a matter spectrum
that is too large to satisfy anomaly cancellation. However, we will propose that these states,
labeled by their asymptotic charges with respect to D, are not all independent, and are
related by a set of monodromy actions that identifies some states with one another. To see
this, we will focus on a local intersection point of D, and A, which we label u, and probe
the enhancement point with a mobile D3 brane. The D3 brane can traverse loops in B\ D,
which will induce an action on the string junctions extending from D,, to be attached
to A. The relevant monodromies will be those associated to the point of enhancement,
in the following way: fix a point p in a local neighborhood of u. Let us for now assume
that D, and A are locally normal crossing schemes, not necessarily reduced, and let the
monodromy matrices Mg and Mpg correspond to the monodromy action around D, and



Figure 2. The gauge 7-branes are on top of each other and denoted by the blue line. The residual
discriminant locus is denoted by the red line, which for the moment we assume to be normal
crossing. The black line segment denotes a disk that intersects the 7-branes. In the left figure the
disc misses the codimension-two point u, but intersects the codimension-one loci each at a point.
In the right figure the disc has been deformed to intersect u at a point.

A respectively (G is for gauge and R is for residual) . We can then associate with u the
monodromy matrices Mg - Mg, Mg - Mg, Mg - Mal, Mgl - M¢, and their inverses. Let us
call this set of matrices {M:i},i=1...8.

These matrices have a clear geometric interpretation, realized by a D3 probe approach-
ing u. In order to probe u, we want to study the monodromy associated with u, and since
u is associated to the collision of two co-dimension one loci, we can naturally associate the
above matrices as u-point monodromies. Let us consider a point p near u on a disk that
intersects both z = 0 and A = 0, such that the distance on the disc between z = 0 and
A =0 is a small parameter e.! For such a disc one can take the limit € — 0, such that the
only singularity on the disc is the codimension-two point w. This is shown in figure 2. On
the disk the geometry is sketched in figure 3. Clearly there are two generators of m1(B\A)
on the disc, and the corresponding loops are Lg and Lg, with corresponding monodromy
matrices Mg and Mpg. Taking the parameter ¢ — 0, we place the disc so that it only
contains the point u as a component of the discriminant A. By taking the associated loops
in the disc around u we can probe the matter locus via monodromy. On such a disc it is
clear there are two loops that can be deformed to encircle u without coming into contact
with the discriminant locus. These are L = Lro L and L™ = Lal o L;%l, with associated
monodromy matrices M = Mp o Mg and M~! = Mél o Mlgl, respectively.

We require that the matter states supported at u are given by the junctions that are
invariant under both M and M~!. These monodromies can be read off by studying the
motion of the three roots x1, x2, z3 of y?> = 2° + fx + g = 0 upon traversing the loops L
or L1 as in [21, 23]. The geometric motion of the roots can then be associated with an
SL(2,7Z) monodromy matrix that acts explicitly on the asymptotic charge a(J) of a string
junction. More precisely, the connecting homomorphisms

0 : HQ(Xl,Ep) — Hl(Ep) (32)

!Distinguishing between a parameter distance and a proper distance will not be important here as all
our studies occur at finite distances in moduli space.



Figure 3. On the disk D near z = A = 0 the D3 probe can either traverse the loop L = L o Lg
or the loop L™ = Lal o Lgl. Lg and L are as directed by the arrows. This disc can be deformed

to only contain the codimension-two point u, by taking ¢ — 0.

carries a monodromy on the junctions to the monodromy on the asymptotic charges, where
X is the restriction to D of a deformation of 7 : X — B to a fibration that has only ;-
singularities when restricted to the intersection of B with all but a finite set of parallel
hyperplanes. We assume that, on D, at z = 0 there is a stack of gauge 7-branes Sg =
{m1,...,m} and A = 0 consists of 7-branes Sp = {7i+1,...,m}. Naively the matters
corresponding to the string junctions Jgpr stretch between Sg and Sk and can be obtained
using the technique developed in [17]. When the brane content Sg + Sg is associated with
a gauge algebra these junctions are simply given by the branching rule Gs,+s, — Gs,
where Gg is the gauge algebra corresponding to the set S of 7-branes. The junctions Jggr
typically give rise to more matters than are required by 6D anomaly cancellation. The
monodromies M and M ~! map different junctions with different a(.J)’s to each other and
this reduction leads to the correct 6D matter spectrum.

The physical interpretation is as follows: a massless state in a representation R under
the gauge group G corresponds to a string junction J supported at u, with non-trivial
asymptotic charge a(J) on D,. Such a junction pinches off on D,, and also on A, with
the same asymptotic charge flowing into A. We place a D3 probe on this junction, so that
the matter state supported at w can be broken into two junctions: a junction Jg with
one boundary on the D3 brane and the other on D,, with asymptotic charge a(J), and
a junction Jgr with one boundary on the D3 brane and the other on A, with asymptotic
charge —a(J), such that the junctions can join together to reproduce the full 7-7 junction,
see figure 4. To probe these states we arrange for a disc D containing the point u as the only
point of AN D, and then allow the D3 brane to loop around u. This will induce an action
on the asymptotic charge of both Js and Jg, in a manner such that they can again be
joined to create a junction corresponding to charged matter in R of G. The identification
of such states will be necessary to produce the correct amount of charged matter to satisfy
6d anomaly cancellation.

As is clear from both the geometry and the pictures, the disc D is not unique. We
require the disc, at € # 0, to intersect both D, and Aata point, and that these points collide
as € — 0. In fact, there are four such discs that locally achieve this, which correspond to
the four quadrants in figure 2. Therefore, for each quadrant we can define the monodromy



Figure 4. The D3 brane at v denoted by the green dot is placed on the 7-7 junction AB stretched
between two stacks of 7-branes intersecting at u. The 7-7 junction is represented by the dashed line
and the two stacks of 7-branes are represented by the red and blue lines. The two 3-7 junctions are
Av and vB with asymptotic charges a(J) and —a(J) respectively and clearly they combine into the
full 7-7 junction AB.
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Figure 5. Left two paths denote the possible paths of a D3 probe confined to a disk encircling the
intersection of the two 7-brane stacks. The homotopy relation between the right two paths allows
one to conclude the monodromy acting on the homology of the elliptic fiber.

matrices M and M ~1. Via the fact
ML:MLQOML17 ifL:LQOLl, (33)

we have the total set of monodromy matrices associated to u: Mg Mg, Mg Mg, Mp-M1,
Mgl - Mg, and their inverses which we above labeled {M_!}, i = 1...8. By requiring the
matter spectrum be invariant under all {M!}, we will find the correct amount of matter
to satisfy 6d anomaly cancellation. We note that often many of these matrices will induce
redundant identifications, and so in the examples we will only note the minimal set of
non-trivial ones.

In the above discussion, we have associated natural monodromy matrices to distin-
guished paths encircling the codimension 2 point given by the two paths on the left of
figure 5. We now verify that the above assignments are in fact the correct monodromies
realized by the desired paths. In particular, it will suffice to demonstrate that the second
path L’G_ Lo L in figure 5 is homotopy equivalent to the third path Lél oL g, or equivalently
that L'G_1 ~ Lél. Under this assumption, the corresponding SL(2,Z) monodromy repre-
sentations are equivalent, and hence, all possible codimension 2 monodromies are generated
by Mg - Mg and Mg" - Mg.



To see the above homotopy, we will follow the discussion in ([29], section 6.3). Denoting
the axes by G and R, the path Lg is given by the circle in the plane G = Gy, L by the
circle in the plane R = Ry, and p by the coordinates (1,1). Consider the point z(t) on
the circle R = Ry given by (e’,1). The homotopy is given at each time ¢ by the path
which begins at p, traverses to x(t) along R = Ry, goes along the circle (e?,e®) for fixed
t, and then goes back to p. This induces the relation L&l ~ L'GTl ~ Lpo L&l o L;%l and
we conclude. In general, we note that the fundamental group of the complement of two
normal crossing divisors in an open affine patch is the free abelian group of rank two, i.e.
m1(C?\ {zy = 0},p) = 22,

So far we have assumed that the loci A and D, are normal crossing, in which case
near u it is clear that a disc D intersecting D, and A will capture all vanishing cycles
at u. For general intersections between gauge group divisors and I;-loci, this assumption
will not be valid; for instance, in the type I11-I; collision, the discriminant takes the form
A = 23(27z + 4t%), where at u = {z = 0Nt = 0}, there is a multiplicity-three intersection
in ¢, but away from {z = 0} the I; locus splits into three components. In this case and
similar ones, we must ensure that the € # 0 disc is large enough to intersect all components
of the I; locus near u. Note that while A is in general one large connected subvariety, near
u it looks like three separate components, which intersect with multiplicity three at u, and
we make D large enough to capture the three components, and thus the multiplicity three
intersection as € — 0.

We also note that, while the construction of the appropriate discs D is still achievable,
one can instead (locally) start with a simpler model that is locally a normal crossing
intersection, and then deform to the model of interest. Such a process corresponds to a
Higgsing of a product gauge group G’ x G — G, where G is the gauge group that we want
to study. For example, in the I1] — I; case, we have

f=2zF, g=22G, A =23(4F3 +27G?z) (3.4)

for a local coordinate z. Taking another local coordinate F' ~ ¢, we have matter localized
at t = z = 0. This is clearly not a normal crossing locus, but we can make it so, by taking
G = G't, yielding

f=z2tF", g=2"2G", A =234F) +27(0")?), (3.5)

which is locally normal crossing, and corresponds to a Il — III intersection. From this
normal crossing model we can arrange the appropriate disc near u, and then deform the
geometry an infinitesimal amount to the geometry of interest.

The Higgsing described in the above paragraph then motivates the question: how does
this prescription address the counting of localized massless matter for Weierstrass models
with states charged under product representations R’ @ R? Indeed, the obvious ambigui-
ties in the naive extension of the aforementioned prescription to the case of intersections
of multiple non-abelian 7-brane loci are what should we take Jg to be and what is the
corresponding codimension-2 monodromy. From the perspective of the above, there are

also natural deformations to multiple distinct normal crossing loci.



In general, to count massless matter charged under the representation (m,n) of the
gauge group G’ x G, our prescription will be as follows. Without loss of generality, assume
that the representation n of GG is not the trivial representation. We then choose a minimal
deformation to a local normal crossing model H x G where H corresponds to the 7-brane
content of G’ and any residual 7-brane loci transverse to that of G. Such a deformation
corresponds to a natural set of seven-branes S = Sg U Sy and the gauge seven-branes
within Sy induces an additional partition Sy = SgrUSg. Given such partitions, a massless
state in the representation (m, n) then corresponds to a junction J supported on S and the
prescription proceeds exactly as in the above with Jg the sub-junction supported on S and
codimension-2 monodromy determined by the normal crossing model. In particular, if both
factors in the product representation are non-trivial, this determines distinct deformations
which yield the same counting of massless matter.

We will illustrate the natural extension of our prescription for the I'Vy — II] case,
which exhibits an unusual feature: a forced codimension-2 collision of three 7-branes, a
phenomenon classified in [30]. In this example, we have the assignments

f=zt?, g=222, A=23t442 4 272) (3.6)

for z and t local coordinates. In particular, there is an additional I; loci given by the
residual discriminant intersecting the SU(3) x SU(2) point which is characteristic of this
model. For each product representation of SU(3) x SU(2), we will deform to a local normal
crossing model in the spirit of the above example. For massless matter charged under
the representation (m,n) of SU(3) x SU(2) with m non-trivial, we will look at the t-slice
and for n non-trivial, we will look at the z-slice. For each slice, there is a corresponding
7-brane stack, a partition into two sets of gauge seven-branes and residual seven-branes,
and a monodromy action.

Concretely, to compute the spectrum of massless matter charged under (3,1), we
consider the set of all junctions with support on the set of seven-branes obtained by set-
ting t = e. Given the partition of seven-branes S; = {Srv, | Srrr| 11}, we determine the
junctions J charged under the 3 of SU(3) given by the gauge branes Sy, and uncharged
under the gauge branes Srrr. We then compute the monodromy orbit of the asymptotic
charge a(JSIVS) under the codimension-2 monodromy determined by S; and identify the
corresponding junctions. Likewise, we carry out a similar procedure for (1,2) by setting
z = e and looking at the brane system S, = {Srv, | Srrr| 11| 1} and for the bi-fundamental
representation (3,2), both models yield identical results. This computation is detailed in
section 4.9.

For most examples the monodromy action described thus far will be enough to re-
duce the spectrum to that required by anomaly cancellation. In fact, this works precisely
when the to-be-identified charged matter states have different asymptotic charges, as the
identification is done on the level of asymptotic charge. However, in the case where the
over-counting is due to states with the same asymptotic charge there will be a further re-
duction. Consider a closed string J that encircles u, such that a(J) is an eigenvector of the
{M}, with eigenvalue one. The lift of this closed string to X is a cylinder with asymptotic
charge a(J) = 0, and hence is an element in H(X;,Z). Since the monodromy matrices of

~10 -



u act trivially on the junction, via a Hanany-Witten move one can pass the closed string
directly through wu, without the junction gaining prongs localized at u. In a local neigh-
borhood of u, such a junction may appear non-trivial, as it can attach simultaneously to
A and D,, but upon taking the junction to w, where the candidate state would become
massless, it becomes trivial, and therefore does not contribute to the matter spectrum. In
terms of the monodromy matrices, the condition for such a state to be trivial is

(M —1)-a(J)=0, (3.7)

for all i. We will refer to such states as HW-trivial. We will find that the combination of
the two monodromy actions, from the u-monodromy and the HW-triviality reduction, will
reproduce the correct matter spectrum to satisfy anomaly cancellation.

Finally, we remark that our identification of junctions proceeds purely at the level of
the asymptotic charges. Such an identification may or may not descend to an identification
of the junctions themselves, and we will explore this in future work.

We will use the following notation throughout:

m = (1,0), my:= (—1,-1), m3:=(0,1), m := (1,-1), g :=(2,1). (3.8)

We will see the last two appear in the type I, fiber enhancement.

4 Examples: matter on singular spaces and anomaly cancellation

Having introduced a formalism for counting charged hypermultiplets in 6d F-theory com-
pactifications on singular spaces, including a monodromy quotient necessary for obtaining
the correct spectrum, we now apply it in many examples. We find that the matter spectra
that we directly compute matches expectations from anomaly cancellation [5, 31, 32].
The data of all of the examples we will discuss in this section are summarized in table 1.

4.1 Type I,, n>2

For type I,, fiber, using a Tate model we have:
A = 2"(a}yP + O(2)) (4.1)

where aj9 € O(—Kp), which is already of normal crossing type. From the multiplicity of
vanishing of (f,g,A) at z = P = 0 there is an A,,_; — A,, enhancement, and we expect a
single hypermultiplet in n of SU(n). At z = a3 = 0 there is an A,,_; — D,, enhancement,
and we expect a single hypermultiplet in A% of SU(n). These are well-known facts from
perturbative string theory and can be deduced by either smoothing the singular geometry
via small resolutions or deforming the 7-brane configuration [17, 33]. We will show how to
obtain the correct spectrum without resolution or deformation. We note that our method
for the computation of the matter works whether there exists a smooth or terminal Calabi-
Yau minimal resolution, that is, our method is insensitive to the presence of terminal and
not smooth singularities, as we can see from comparing with [32]. Therefore we will exclude
the case I; as the singularity at the matter point is terminal and generically admits no
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Fibration | Matter Branes M;, M+ N
1 1 1n—-1
I, fund {m,...,m,m} <0n—1~_ ) (Onl ) 1
1n—-38 1n+8
A2 1
{ﬂ-la 77T1,7|'3,7Tﬁ77Ta,Tl'2} <0 1 ) (O 1 >
—1n-2 —1n4+2
I* 1
n vect {7T1,7T3,771,7T3,7T1,7T3,7T17 771-1)77137(1} (O 1 ) (0 1 )
-1 0
I 2 {m1, 3, g, m1, 3, M2} 0 —1 Idaxo 2
0 -1
IV 3 {m1, s, m1, w3, 71, 73, 71, T3} 11 Idaxo 3
—11
I‘/S* 27 {7T1,7I'3,7T1,’/T3,7T1,7T3,7T1,7T3,7T1,7T3,7T1,7T3} Idgxg 1 0 1
III* 56 {71'1,77'3,7'['1,71'3,7T1,77377T1,773,771,7'(3771'1,71'3} Id2><2 O 1 2
-1 0
IIT x 111 (2,2) {7T1,773,7T2,7T1,7T3,772} (O 1) Idgxg 1
0 -1
IV, x 1V, | (3,3) {my, 73, M1, T3, 71, T3, M1, T3} 1 —1 Id2x2 1
0 -1
to{m, ms, my, w3, T, M3, M1, T3} 11 Idax2
z {771’7'('377'['1,71'1,773,771771'3,71'1,773} (1 0 > (_1 0)

Table 1. Summary of results. In each case we list the branes intersecting at the codimension 2
locus where the charged matters are localized and the monodromies corresponding to the branes.
N is the multiplicity of the matter in the representation as listed in the second column of the
table. The branes that carry the gauge algebra are underlined in the third column of the table.
In the IV, x IIT case R = (3,2) + (3,1) + (1, 2) and we will consider the brane contents and the
monodromies on the ¢ and z slices respectively and show that the results are consistent and match
the anomaly cancellation condition in section 4.9.

crepant resolution though in this case one can obtain the correct (uncharged) localized
matter spectrum at the matter point as expected from the perturbative limit. We will
elaborate this point further in section 5. By constructing a type I, fiber using the Tate
model, and then putting it into Weierstrass form, one can read off the roots of eq. (2.4)
near z = 0, which take the form

1 2 1 2 1 2
= Ealo, T2 = ——= 01, T3 = ﬁam.

- (4.2)

I

We see that z; and x3 coincide therefore x1-x3 can be fixed as the vanishing m; cycle

ee’

along z = 0. Along Lg we have z 9 and it is easy to show that on Lg we have

n . .
x1 — x3 ~ 22. This means that upon traversing z = 0 once, the roots x; and x3 have
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Junction SU(n) charge | a(J)
(1,0,0,0,0,—1) (0,0,0,1) (1,0)
(0,1,0,0,0,—1) | (0,0,1,—1) | (1,0)
(0,0,1,0,0,~1) | (0,1,-1,0) | (1,0)
(0,0,0,1,0,~1) | (1,-1,0,0) | (1,0))
(0,0,0,0,1,~1) | (—1,0,0,0) | (1,0)

Table 2. The 5 junctions corresponding to 5 of SU(5) near the point of enhancement z = P = 0.
The middle column is the charge of the state under the Cartan U(1)’s of SU(5). a(J) is computed
with respect to Sg. The 5 junctions corresponding to 5 are the orientation reversed junctions of
the ones listed here.

01
therefore have S¢ = {m1,...,m1} where there are n m;’s. It now remains to determine Sg

1
swapped n times and that corresponds exactly to the monodromy My, = ( n) We

and the monodromy of Lg for the two types of enhancement.

4.1.1 Matter in n

In this case Lp is centered at P = 0 and is parameterized by de’®. It is easy to show
that along Lgr, 1 — x3 ~ §3e%. Therefore upon traversing Lg, 1 and x3 swapped once

11
hence the monodromy is My, = 01} Therefore in this case Sp = {m1}. We have
S¢ + Sgp = {m1,...,m,m} where there are n + 1 m’s at z = P = 0 hence there is a

branching rule at the point of enhancement:

SU(n + 1) — SU(n) :
adjSU(nH) — adjSU(n) +n+n+1 (43)

There are n junctions with a(J) = (1,0) that give rise to n and n junctions with a(J) =
(—1,0) that give rise to m. To illustrate our method we compute the junctions explicitly
using an SU(5) model and the result is listed in table 2.

The relevant matter-point monodromy matrices are:

1n+1 1n-1
M, = My = . 4.4
! (0 1 ) ’ 2 (O 1 ) (4:4)

We see that the a(J) = (1,0) junctions and the a(J) = (—1,0) junctions are preserved
by My and My therefore no reduction is induced by the monodromy. Hence we obtain a
hypermultiplet in n of SU(n) at z = P = 0 as required by 6D anomaly cancellation.

4.1.2 Matter in A2

This case can be worked out easily using perturbative string techniques but is subtle using
our method. But we will see that the string junction description nicely reproduces the
spectrum required by 6D anomaly cancellation.
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In this case Lg is centered at ajg = 0. Note that there are six solutions to z = A =0
with respect to ajp but only four of them vanish when z = 0 hence these are the four
points inside Lr. We assume that Lp = Lg, o Lg, o Lr, o L, where Lp, is the loop
enclosing a1o,; inside Lg. It is easy to see that the geometric monodromy around Lp is
an overall 47 rotation of x1,x9,x3 with x1-x3 rotated by —4m, i.e., swapped four times
in an opposite direction with respect to the overall 47 rotation of the three roots. At
first sight it might seem hard to derive what monodromy matrix it corresponds to but
we can either geometrically show what the vanishing cycles are of the four relevant aig’s
hence derive the monodromy, or algebraically compare it with the well known result from
perturbative string theory. We will see in this example that these two approaches nicely
match each other.

We can choose an arbitrary type I,s Tate model, for example, I5; with SU(5) gauge
algebra. The discriminant locus is of the form:

A =2A =2 (afyP + a2 K1z + Ky22 + O(2%)) (4.5)
and f and g are of the form:

f=a10Qs(z) + O(z%),
9 = a10Qy(2) + O(2%)

where @ is linear in z and @4 is quadratic in 2.

Solving A = 0 with respect to z there are 5 + k solutions where k is the order of A
in z. Besides the five roots at z = 0 that correspond to the five gauge branes, two of the
remaining roots z = z4 and z = zp approach z = 0 in the limit a;g = 0. It is easy to see
from the forms of f, g and A that the ajp = 0 limit is the limit where the fiber becomes
type I, and the gauge algebra becomes SO(10). In this sense the SU(5) gauge theory
along z = 0 is a Higgsing of the SO(10) gauge theory by a deformation parameterized by
a19. To match the result in perturbative string theory we must have that the branes at
z = 0 have vanishing cycles (1,0) and the two branes along z = z4 and z = zp together
form an O7 plane in the ajg = 0 limit. In the spirit of section 2 the SL(2,7) monodromy
associated with the O7 plane stays the same under deformation. When ajg is small, the
SO(10) theory is Higgsed and the branes z4 and zp are separated from z = 0 therefore
we are able to choose a loop L44p around both z = 24 and z = zp and the monodromy
corresponding to this loop is the monodromy that corresponds to that of an O7 plane.
It is now easy to see that upon going along L4, p, the geometric motion of xy,x9, x5 is
an overall 27 rotation together with a —27 rotation of zi-x3. We see that the geometric
monodromy corresponding to Lg is twice the geometric monodromy corresponding to an

O7 plane. We know that
-1 4
Mo7 = . 4.6
ot < 0 _1> (4.6)

Therefore, according to eq. (3.3) we have:

My, = ((1) _18> . (4.7)
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We also need to deduce the vanishing cycles corresponding to each of the four ajg’s
inside Ly to read off the brane content on the disk D. This can be determined easily by
observing that the geometric motion of x1, x2, 3 around the loops L, o Lr, and Lr, o LR,
are both that of the loop around an O7 plane. Therefore we have

-1 4
MLRQOLRI = MLR4°LR3 = < 0 _1) : (48)
Geometrically it is a bit tricky to read off the vanishing cycles corresponding to a192 and
a10,3 but it is pretty clear that the vanishing cycles associated with a191 and a194 are mo
and 73 by approaching these two points respectively. Therefore, according to eq. (3.3) we
must have

-1 4
MLR2M7T2 = M7r3MLR3 = ( 0 _1> : (4'9)

Therefore it can be determined that

21 —114
MLR2 = <_1 0) ) MLR3 = (_1 3> : (4'10)

Hence we can read off the vanishing cycles, va,o, = (1, —1), Vay 5 = (2,1), and we have
Sa + Sg = {m,m,..., T, 73,73, Ta, T2} (4.11)

We can also read off the vanishing cycles directly from the geometry instead of using
eq. (3.3). This requires looking at the elliptic fiber E which is a double cover of the z-plane
branched at z1,x9, x5 and the point at infinity instead of only looking at the z-plane.

In order to read off the vanishing cycles corresponding to M L, and M Lgys We note
that these correspond to the collapse of vo as pictured in figure 6 instead of vy. Letting my
denote the vanishing cycle encircling the branch cut, we observe that the cycle vo simply
corresponds to the image of a picard lefschetz monodromy acting on vy under a clockwise
rotation of m; by 27. Thus, letting 7T}, denote the matrix corresponding to the picard
lefschetz monodromy, we conclude that vy = T7T_12v1. Performing the calculation in the
(1) _12 . Acting on the cycle v; = (—1,—1), we find that
this maps to va = (1,—1). A completely analogous calculation maps the cycle (0,1) to

canonical basis, we have T7:12 =

(2,1) via a counter-clockwise rotation, and we conclude.

Using the branes Sg 4+ Sg we can search for junctions that give rise to matters in this
system. We will use SU(5) as a concrete example and we list the junctions corresponding
to the highest weight state of A% in table 3.

1k
The monodromy matrices My and Mj; are both of the form (0 1) therefore the

junctions with a(J) = (£2,0) are invariant under their action. Hence it seems that there
are 4 A%®’s and 4 A2’s to which the junctions correspond are the orientation reversed
junctions of the ones that give rise to AZ2.
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V2

T2

U1
€3

Figure 6. Ramification points away from infinity of the generic fiber. The black line denotes the
choice of a branch cut, v; and vy correspond to two vanishing cycles with endpoints x1 and x5.

Junction SU(n) charge | a(J)
(1,1,0,0,0,—1,1,-2,2) | (0,0,1,0)
(1,1,0,0,0,0,0,-1,1) (0,0,1,0)
(1,1,0,0,0,1,-1,0,0) (0,0,1,0)
(1,1,0,0,0,2,-2,1,~1) |  (0,0,1,0)

Table 3. The 4 junctions corresponding to the highest weight state of A? of SU(5) near the point
of enhancement z = a1p = 0. The middle column is the charge of the state under the Cartan U(1)’s

of SU(5). a(J) is computed with respect to Sg.

Figure 7. On disk D there are four I;’s and the SU(5) gauge branes. The dashed curve denotes a
closed (n,0) string that encloses the system S + Sg.

But in this case there is a subtlety that will also appear later when we discuss the
type IV* and type I11* models. We see that due to the form of the monodromy, there
are closed eigen-strings that encloses the brane system S + Sg. Closed strings that carry
charge (n,0) can enclose Sg + Sk since (n,0) is invariant under the total monodromy M.
This configuration is sketched in figure 7.

Here we see that the codimension 2 monodromy is:

1k
- (34). e

The only charge vector a(J) with eigenvalue 1 under M is a(J) = (1,0) and indeed this is
the only eigenvector of M. Since the eigenvalue is 1, a string emitting charge a(J) = (1,0)
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can close back onto itself therefore becoming a closed string. We may call this an “closed
eigen-string”.

In particular we can choose a closed eigen-string that carries charge a(J) = (1,0).
Via Hanany-Witten moves we can show that this closed eigen-string is equivalent to the
junction

Qc = +(0,0,0,0,0,1,—1,1,-1) (4.13)

where the sign is determined by the direction of the charge running in the closed string.
We choose J = (1,1,0,0,0,1,—1,0,0) then we can see that all the other three junctions
in table 3 are of the form J 4+ nQ¢ where n € Z. Moreover, the intersection matrix
corresponding to Sg + Sg is:

-10 0 0 0 3 3 —3—1
0o -10 0 0 3 3 -3-1
o 0o-10 0 3 3 -12-1
o0 o0-10 3 2 -1-1
I=fo o 0 0 -135 & —3-1 (4.14)

101 1 1 1 4 11
2 2 2 2 2 2 2
r 1 1 1 1 4 _71_3_1
2 2 2 2 2 2 2
1111113 g
2 2 2 2 2 2 2

~1 1. 1.1 .11 1 _ 3 4
2 2 2 2 2 2 2

To obtain a(J) = (2,0) junctions with respect to Sg, the following condition has to be
satisfied:

11(0,1) +12(2,1) + n3(1, —1) + na(—1, —1) = (=2, 0) (4.15)
where n; € N. We then have:
1 1
ng = 5(711 —712)—1, ng = §(n1+3n2)+1. (4.16)

We then need to find J = (Jg, n1,n2,n3,ng) such that (J,J) = —2 where Jg is a junction
with a(Jg) = (2,0) and (Jg, Jog) = —2 with respect to Sg. Solving (J,JJ) = —2 we have
ng = —nq or no = 1 —nj. We see immediately that when ny = 1 — ny, ng and ng4 are not
integers therefore we must have ny = —n. Hence the junctions that give rise to A? are all
of the form:

J - (JG;TL17 _n17n1 - 17 1 - nl) = (JG7 1? _17070) + (nl - 1)QC (417)

We have shown that Q¢ is indeed a closed string so that all the junctions except those
of the form J = (Jg, 1,—1,0,0) are superpositions of a junction that stretches between S¢
and Sk and a junction that is in fact a closed string. Therefore such states are not the
matters that are localized at the point of enhancement and we are led to the conclusion that
only one hypermultiplet in A? is the true localized matter at the point of enhancement.
This matches the result that is required by 6D anomaly cancellation.
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Junction SO(8) charge | a(J)
(1,0,0,0,0,0,-1,0) (
(1,0,0,0,0,0,0,—-1) ( ) ,

(1,1,-1,0,—1,-1,0,1) | (0,0,0,1) | (—1,0)
(1,1,-1,0,—1,-1,1,0) | ( ) 1,0

Table 4. The four junctions with highest weight of 8, under SO(8).

4.2 Type I}

In this case Sg = {m1, w3, m, 3, ™, 73, 71,...,m} where there are in total n + 6 branes.
When n is even we have:

A =2"a3, (af o 5 + P) + O(2)), (4.18)
while when n is odd we have:
A= z"*ﬁ(aglag s + O(2)). (4.19)
)

We consider first the locus where there is matter in vect as required by anomaly
cancellation where ago4n =2 =0 (or ag ngs =2 = 0). The situation is exactly the same
for the cases that n = even or the cases that n = odd therefore for simplicity we consider
the case n = 0. Here we require the gauge group to be SO(8) where we have:

A = 2%(a3, (a3, + P1) (a3 + P2) + O(2)). (4.20)

The matters are localized at z = a3, =0, z=a3, + P, =0 and 2z = a3, + P» = 0.
At z = a2, = 0 the brane content is

Sa + Sr = {m1, w3, ™1, w3, M1, W3, T, M1} (4.21)

M = (‘()1 :i) ., M;= <_01 _21> . (4.22)

There are four sets of junctions in the representation 8, out of which the junctions with

and we have:

highest weights are given in table 4.

Upon the reductions given by eq. (4.22) we see that the matter content is 8, + 8, which
is the hypermultiplet in 8, of SO(8) as required by 6D anomaly cancellation.

The above lines of computations also apply to the other cases in the I} series. For an
I fiber at the locus z = ago4n = 0 the brane content is

Sa + Sr = {m, 73, ™1, T3, M1, W3, WU, ..., W1, T, TS (4.23)

where in Sg + Sg there are in total n + 5 7-branes with 7 vanishing cycle and the mon-

—1n-2 —1n+2
My, = M; = . 4.24
L (0 —1)’ L (0 —1) (424)

odromies are:
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Junction SO(8) charge a(J)
(0,1,-1,-1,0,—-1,-1,0) (0,0,1,0) (—=1,-1)
(0,1,-1,-1,0,-1,0,—-1) ( ) (—1,-1)

(1,1,0,0,0,0,0,1) (0,0,1,0) (1,1)
(1,1,0,0,0,0,1,0) ( ) (1,1)

Table 5. The four junctions with highest weight of 8; under SO(R).

There are four sets of junctions in vect of SO(2n + 8) out of which there are two
with a(J) = (1,0) and the other two with a(J) = (—1,0). Upon the reductions given by
eq. (4.24) the matter content is a hypermultiplet in vect of SO(2n + 8) that meets the
requirement of 6D anomaly cancellation.

The other locus z = as; = 0 does not always exist for the type of elliptic fibration with
I} fibers considered here. Recall in fact that for I} the Weierstrass model is:

f=—3a3,2% + Fag 2> + O(z%),
g =2a3,2% + Gal 2 + O(2%),
A =25(a3,Q + O(2)).
When n > 4 the order of vanishing of (f,g,A) at z = as; = 0 exceeds (4,6,12) and this
situation is beyond the scope of this paper.
When the locus z = ag; = 0 exists in [} fibration, there will be matters in spin of

SO(2n + 8). We again use SO(8) as an example. In this example the matters are localized
at z =a3, + Pl =0and z = a3, + P, = 0. At z = a3; + P = 0 the brane content is:

SG + SR — {7T1,7T3,7T1,7T3, 1, 773371-27772} (425)

M, = (; :z) . M= (:2 i) . (4.26)

There are four sets of junctions in the representation 85 out of which the junctions with

and we have:

highest weights are given in table 5.
At z = a3; + P3 = 0 the brane content is:

S + Sgp = {m, m3, M, ™3, M1, M3, T3, T3 } (4.27)

My, = (‘21 _01) . M= (:; _01> . (4.28)

There are four sets of junctions in the representation 8. out of which the junctions with

and we have:

highest weights are given in table 6.

In both of the above two cases, it is easy to see that upon the reduction of the mon-
odromies given by eq. (4.26) or eq. (4.28), the matter content is a hypermultiplet in either
a hypermultiplet in 8 or a hypermultiplet in 8. which satisfies the requirement of 6D
anomaly cancellation.
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Junction SO(8) charge | a(J)
(0,0,0,0,0,-1,0,1) (1,0,0,0) (0,-1)
(0,0,0,0,0,-1,1,0) (1,0,0,0)

(1,1,0,1,—1,-1,-1,0) (1,0,0,0) (0,1)
(11,1,0,1,—1,-1,0,-1) (1,0,0,0)

Table 6. The four junctions with highest weight of 8. under SO(8).

4.3 Type II]

The Weierstrass model we are using for type I11 is:

[ =tz
Iy (4.29)
g=2z
of which the discriminant locus is:
A = 23(272 4 4t3). (4.30)

The 7-branes near the point of enhancement z = ¢t = 0 are Sg = {m, 73,72} and Sg =
{m1, w3, m2}. Therefore there is a branching rule at the point of enhancement:

SO(8) — SU(2) :
28 >3+4x(2+2)+9x1 (4.31)

The junctions at the point of enhancement are listed in table 7.

1
01> while it is clear that

The monodromy matrix My, is that of type I, My = <_0
M is trivial. The orbits of the asymptotic charges under My, are:
Orbit 1: (1,0) — (—1,0) (4.32)
Orbit 2: (1,1) = (—1,-1) (4.33)
Both Orbit 1 and Orbit 2 give 2. Out of the 8 2’s obtained from the branching rule,
there are two of them with a(J) = (1,0), two of them with a(J) = (—1,0), two of them
with a(J) = (1,1) and two of them with a(J) = (=1, —1). The first two sets of junction
are both on Orbit 1, and the latter two sets of junctions are both on Orbit 2. So after
identifying the states via monodromy, there are 4 2’s left which become two 2 full hypers
as required by 6D anomaly cancellation.
4.4 Type IV,
The Weierstrass model we are using for type IV is:
f=2,

4.34
e (4.34)
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Junction SU(2) charge a(J)
(—1,-1,0,0,0, 1) 1 (—1,-1)
(-1,-1,0,1,1,0) -1 (—1,-1)
(~1,0,0,0,—1, —1) 1 (—1,0)

(~1,0,0,1,0,0) 1 (—1,0)
(0,-1,—1,-1,0,0) 1 (1,0)
(0,—-1,-1,0,1,1) 1 (1,0)
(0,0,—1,~1,-1,0) -1 (1,1)

(0,0,-1,0,0,1) 1 (1,1)

(0,0,1,0,0,—-1) 1 (—1,-1

(0,0,1,1,1,0) 1 (—1,-1)
(0,1,1,0,—1, 1) 1 (~1,0)

(0,1,1,1,0,0) 1 (—1,0)

(1,0,0,-1,0,0) 1 (1,0)

(1,0,0,0,1,1) 1 (1,0)
(1,1,0,—1,—1,0) 1 (1,1)

(1,1,0,0,0,1) 1 (1,1)

Table 7. The 16 junctions near the point of enhancement I71 — I§. The middle column is the
charge of the state under the Cartan U(1) of SU(2). a(J) is computed with respect to the first
three 7-branes which are the gauge 7-branes.

of which the discriminant locus is:
A = 24422 +27th). (4.35)

The 7-branes near the point of enhancement z = t = 0 are Sg = {m, 73, 71,73} and
Sr = {m1,m3,m1,m3}. Therefore there is a branching rule at the point of enhancement:

Eg — SU(3) : (4.36)
78 - 8+9x(3+3)+16x1
0-1

1 —
M7 is trivial. The orbits of the asymptotic charges under My, are:

The monodromy matrix My, is that of type IV*, My = ) while it is clear that

Orbit 1: (1,0) — (0,1) — (—1,—1) — (1,0) (4.38)

Orbit 2: (—1,0) — (0,—1) — (1,1) — (—1,0) (4.39)

The junctions at the point of enhancement are listed in table 8.
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Junction SU(3) charge a(J)
(—1,-1,0,0,0,0,1,1) (—1,0) | (-L -1
(-1,-1,0,0,1,0,0,1) (1,00 | (~1,-1)
(-1,-1,0,0,1,1,0,0) (-1,0) | (=1,-1)
(—-1,-1,1,0,0,0,0,1) (0,-1) (0, 1)
(—-1,-1,1,0,0,1,0,0) (0,-1) (0, 1)
(-1,-1,1,0,1,1,~1,0) (0,-1) (0, 1)
(~1,0,0,-1,0,0,1,1) (1,-1) (—1,-1)
(~1,0,0,-1,1,0,0,1) 1,-1) | (-1,-1)
(~1,0,0,-1,1,1,0,0) 1,-1) | (-1,-1)
(-1,0,0,0,0,-1,1,1) (0,-1) (—1,0)

(-1,0,0,0,0,0,1,0) (0,-1) (—1,0)
(~1,0,0,0,1,0,0,0) (0,-1) (~1,0)
(0,-1,0,0,0,0,0,1) (—1,1) (0, 1)
(0,~1,0,0 0,1,0 0) (—1,1) (0, 1)
(0,-1,0,0,1,1,—1,0) (—1,1) (0, 1)
(0,-1,1,1,-1,0, 0 ,0) (—1,0) (1,0)
(0,-1,1,1,0,0,—1,0) (—1,0) (1,0)
0, — 1,1,1,0,1, ~1) (—1,0) (1,0)
(0,0,-1,-1,0,0, 1,1) (0,1) (—1,-1)
(0,0,-1,-1,1,0,0,1) (0,1) (—1,-1)
(0,0,—-1,-1,1,1,0,0) (0,1) (—1,-1)
(0 1,0,0 ~1,1,1) (—1,1) (—1,0)
(0,0,-1,0,0,0,1,0) (~1,1) (~1,0)
(0,0,-1,0,1,0,0,0) (~1,1) (~1,0)
(0, 0 0,-1,0,0,0,1) (1,0) (0, 1)
(0,0,0, -1 0,1,0 0) (1,0) (0, 1)
(0,0,0,—1,1,1, -1,0) (1,0) (0, 1)
(0,0,0,1,~1,~1,1,0) (~1,0) (0,1)
(0,0,0,1,0,—1,0,0) (—1,0) (0,1)
(0,0,0,1,0,0,0,—-1) (—1,0) (0,1)
(0,0,1,0,—1,0,0,0) (1,-1) (1,0)
(0,0,1,0,0,0, —1,0) (1,-1) (1,0)
(0,0,1,0, 0,1,— 1) (1,-1) (1,0)
(0,0,1,1,-1,-1,0,0) (0,-1) (1,1)
(0,0,1,1,—1,0,0, 1) (0,-1) (1,1)
(0,0,1,1,0,0, —1 —1) (0, 1) (1,1)
(0, 1,— ~1,0,-1,1,1) (1,0) (—1,0)
(0,1,-1,-1,0 0,1,0) (1,0) (~1,0)
(0,1, — 1,1,0 0,0) (1,0) (—1,0)
(0,1,0 ~1,1,0) (1,-1) (0,1)
( ,1,0 0 0 —-1,0,0) (1,-1) (0,1)
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(0,1,0,0,0,0,0,—1) (1,-1) (0,1)

(1,0,0,0,—1,0,0,0) (0,1) (1,0)

(1,0,0,0,0,0,—1,0) (0,1) (1,0)
(1,0,0,0, 0,1,—1, ) (0,1) (1,0)
(1,0,0,1,—1,-1,0,0) (—-1,1) (1,1)
(1,0,0,1,-1,0,0,—1) (—1,1) (1,1)
(1,0,0, 1,0, 0 ~1,-1) (—-1,1) (1,1)
(1,1,-1,0, — 1,1,0) (0,1) (0,1)
(1,1,-1,0, o ,0,0) (0,1) (0,1)
(1,1,-1,0, 0 0, 0 ~1) (0,1) (0,1)
(1,1,0,0,—1,—1,0,0) (1,0) (1,1)
(1,1,0,0, 100 ~1) (1,0) (1,1)
(1,1,0,0,0,0, -1, —1) (1,0) (1,1)

Table 8: The 54 junctions near the point of enhancement IV, — IV*. The middle column is the
charge of the state under the Cartan U(1)? of SU(3). a(J) is computed with respect to the first
four 7-branes which are the gauge 7-branes.

Orbit 1 gives 3 and Orbit 2 gives 3. We first consider the 9 3’s. There are three
of them with a(J) = (1,0), three of them with a(J) = (0,1) and three of them with
a(J) = (—1,—1). We see that these three sets are all on Orbit 1 so after identifying
states via monodromy, there are 3 3’s left. Next we consider the 9 3’s. There are three
of them with a(J) = (1,1), three of them with a(J) = (0,—1) and three of them with
a(J) = (—1,0). We see that these three sets are all on Orbit 2 so after identifying states
via monodromy, there are 3 3’s left. In total there are 3 (3 + 3)’s left which are the three
full hypers required by 6D anomaly cancellation.

4.5 Type IV}

The Weierstrass model we are using for type IV} is:

f=2
= 2. (4.40)
of which the discriminant locus is:
A = 28(4z +27t1). (4.41)

The 7-branes near the point of enhancement z =t = 0 are

Sa = {mi,m3, ™, 73, M1, M3, 71, W3}, Sp = {m1, M3, 71, T3}

We see that there are 12 7-branes at codimension 2. The first eight 7-branes are the Fjg
gauge branes and the last four 7-branes are the I;’s associated with the solutions of A =0
with respect to g4. Near the enhancement point z = g4 = 0 the geometry is sketched in
figure 8.
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Figure 8. The gauge 7-branes of Eg algebra are on top of each other and denoted by the red line.
The four red lines denote the four I;’s which are obtained from solving the equation A = 0 with
respect to g4. The black line segment denotes a disk D that intersects the 12 7-branes.

Figure 9. On disk D there are four I;’s and the Eg gauge branes. The 10 branes enclosed by the
dashed circle are {m, 73, 71, 73, M1, T3, M1, T3, 71, T3+ which are the brane content of an Eg algebra.

We choose a disk D that intersects the 12 7-branes near the enhancement point. On
D the branes can be organized into a set of 10 7-branes that realizes an Eg algebra and
two extra branes 7 and 73 as shown in figure 9.

The branes in figure 8 can then be grouped to form the configuration shown in figure 10.
We can see that because of their asymptotic charges, {1 and I3 can actually be deformed to
junctions that loop around all the 12 7-branes via trivial Hanany-Witten moves since /1 can
be pulled across the branch cut of w1 without creating a new prong and l3 can be pulled
across the branch cut of w3 without creating a new prong. Via Hanany-Witten move we
can show that [; is equivalent to the junction @; = (1,1,0,1,—-1,0,—-1,—1,0,—1,1,0), I3 is
equivalent to the junction @3 = (1,0,1,1,0,1,—1,0,—1,—1,0,—1) and I3 is equivalent to
the junction Q2 = (2,1,1,2,—1,1,-2,—1,—1,-2,1,—1). We can see that Q2 = Q1 + Q3.
Actually, all the junctions Iy that loop around all the 12 7-branes of this system is a

superposition of /1 and l3 and its charge (), is a linear combination of ()1 and Q3.
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Figure 10. The Eg branes obtained from the grouping together the Eg gauge branes and the extra
w1 and 73 branes are denoted by the big black point. [; is a junction that loops around the Fg
branes and a 73 brane with charge a(l1) = (1,0). I3 is a junction that loops around the Eg branes
and a m; brane with charge a(ls) = (0,1). Iz is a junction that loops around all the 12 7-branes
with charge a(l2) = (1,1).

The intersection matrix of this system with 12 7-branes is:

_11%01%[)1%01%[)1%01%
i-1-20-30-30-30-%0
0 -2-1%1 041 0 % 0o 1 o1
104 1-20-20-1o-10
?_%?_%_11%01%01%01%
St R i R (1.42)
o-20-20-3-13% 0 3% o}
%01%050%—1—%0—%0
0o-20-20-30-3-13% 0 %
10 4 0 3 0 2 0 & -1-10
0303030 303134
10412 0210 1 o0 i 0o 1

It is easy to show that with respect to I the self-intersection numbers (I1,01) = (l2,l2) =
(I3,13) = 0. The junctions correspond to the simple roots of Eg are:

0,0,0,1,—-1,-1,0,—1,1,1,0,0),
0,0,0,0,0,0,0,1,0,—1,0,0),
0,0,0,0,0,0,1,0,—1,0,0,0),
0,0,0,0,1,0,—1,0,0,0,0,0),
0,1,0,—1,0,0,0,0,0,0,0),
2,-1,0,—1,1,0,1,1,0,0),
1, ~1,1,1,0,1, 1,0,—1,—1,0,0),
as = (0,0,0,0,0,1,—1,—1,1,0,0,0).

a3 =

gy =

= (
= (
(
(
= (0,
= (0,
= (
(
It is easy to show that (a;,l1) = (ai,l2) = (ai,l3) = 0. Since any root v of Eg can be

written as v = Y_; a;a; with (v,7) = —2 and any junction {7, that loop around all the 12
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7-branes can be written as I, = Aly + Bls, we see that (I1,1z) = 0, (v,1z) = 0 therefore
(y+nlp,y+nly) = =2, where a;, A, B and n are all integers. We denote by J,, the states
v+ nlg. It is obvious that a(J,) = (0,0).

Moreover, Sy = {1, a2, a3, a4, as, ag, ar, ag, li, I3} is a set that generates all the junc-
tions with a(J) = (0,0). So that all the junctions with a(J) = (0,0) and (J, J) = —2 are of
the form v +nly, since a(lr,) = 0 and (I, %) = 0, Vi) € Sy and the only linear combinations
of a;’s such that (3, ¢y, >, i) = —2 and a(>°; a;;) = (0,0) are the roots of Eg, 7.

Now we see that there is an infinite number of states J,, = v + nly such that a(J,) =
(0,0) and (Jy,J,) = —2 that are graded by n. For n # 0, J, is a junction that is a
superposition of a junction v that stretches between Eg gauge branes and the I locus
and a junction [; that is a closed string around the 12 7-branes of the system. These
states are not the matters that are localized at the enhancement point at codimension 2
on the base. To extract only the matter content at codimension 2, we need to focus on the
junctions Jy, i.e., 7’s that stretch between the Fg gauge branes and the I; locus without
being superposed with a closed string [y,

Therefore in this system what we actually have is an enhancement from Fg to Ejg, the
string junctions can be derived via the branching rule:

Eg — E6 : (443)
248 —» 78 +3 x (27 +27)+8x 1 (4.44)

The relevant monodromies are:

-11 0 -1
My - (_1 O) My, - (1 _1) . (4.45)

10 —11
- (1) - (1) wat

We see that M, is trivial and the orbit of M is:

Therefore we have:

(L) _ (-L=1) _ (0,1)

Orbit : (_170)—> (1,1) (0, 1)

(4.47)

Out of the three full hypers in 27, one of them is with a(J) = (£1,0), one the them
with a(J) = £(1,1) and one of them with a(J) = (0,£1). We see that all of them are on
the orbit of either M} so they will be identified via the monodromy and there is only one
full hyper in 27 left in the spectrum which is the matter content required by 6D anomaly
cancellation.

4.6 Type III*
The Weierstrass model we are using for type I1T* is:

f=1t2,

g=2"

(4.48)
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of which the discriminant locus is:
A = 27272 + 4t%). (4.49)
The 7-branes near the point of enhancement z = ¢t = 0 are:
S = {m1, s, ™1, 73, M1, T3, M1, W3, W1}, Sp = {m3, M1, M3}

By comparing with the result in section 4.5 we see that near the z = ¢ = 0 the brane
content Sg + Spr is exactly the same as that of type IV*. It is clear that the argument
in section 4.5 also holds in this case since it only uses the data of the brane content on
the disk D but not the details of the Weierstrass model. Therefore in this case the gauge
algebra is also effectively enhanced to Eg. Hence we have the branching rule:

Eg — E7
248 — 133 + 2 x 56 + 3. (4.50)

The relevant monodromies are:

Mg, = (_01 é) , My, = (_01 é) : (4.51)
My, = (é (1)> , M; = <_01 _01> (4.52)

We see that My, is trivial and the orbit of M7y is:

Therefore we have:

Orbit : (0,1) — (0,—1) — (0,1). (4.53)

The two 56’s obtained from string junction computation are one with a(J) = (0,1)
and one with a(J) = (—1,0). We see that they are on the orbit of M; so they are identified.
We are left with one 56 that forms half hypermultiplet in 56 of E. This is the matter
content that is required by 6D anomaly cancellation.

4.7 III x1I1

The Weierstrass model we are using for type I11 x I11 is:

=2zt
4.54
g = 222 ( )
of which the discriminant locus is:
A = 213 (4 4 272t). (4.55)

The 7-branes near the intersection point z =t = 0 are:

Sg = {m, 3, m2, m, 73, T2}
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It is easy to see the branching rule is:

SO(8) — SU(2) x SU(2) :
28 — (3,1) + (1,3) + 4 x (2,2) + 6 x (1,1).

Note that there are two sets of gauge 7-branes S4 and Sp, therefore we label the asymptotic
charge of the junctions by a(J) = (Q4,@p) where @ 4 is the asymptotic charge associated
with Sy and @p the asymptotic charge associated with Sp.

The 4 (2,2) are respectively with asymptotic charge:

a(J1) = ((1,0), (=1,0)),
a(J2) = ((=1,0), (1,0)),
a(Jz) = ((1,1), (=1, -1)),
a(Jy) = ((=1,-1),(1,1)).

We have:
-1 0 10
M; = Mz = . 4.
L ( 0 _1> 3 L (0 1) ( 56)

Therefore we have J; — Jo and J3 — J4 under the monodromies M, and Mj;. This gives
rise to one hypermultiplet in the bifundamental representation of SU(2) x SU(2) which
matches the result of 6D anomaly cancellation.

4.8 IVyx IV

The Weierstrass model we are using for type IV x I'V; is:

f=20 (4.57)
g= 5242 :
of which the discriminant locus is:
A = 24127 + 42%47). (4.58)

The 7-branes near the intersection point z =t = 0 are:
Sq = {m, T3, ™, T3, 71, T3, T1, T3}
It is easy to see the branching rule is:

Es — SU(3) x SU(3) :
78 — (8,1) + (1,8) +3 x ((3,3) + (3,3)) + 8 x (1,1).

Again there are two sets of gauge 7-branes S4 and Sp, therefore we label the asymptotic
charge of the junctions by a(J) = (Q4,@p) where @ 4 is the asymptotic charge associated
with Sy and @)p the asymptotic charge associated with Sp.
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The 3 (3,3) are respectively with asymptotic charge:

a(J1) = ((1,0),(=1,0)),
a(J2) = ( 0,1 7(0’*1)%
a(JS) - (_ ,—1)7(1,1))

We have:

My = <(1) :i) , M= ((1) ?) . (4.59)

Therefore we have J; — Jo — J3 and Jy — J5 — Jg under the monodromies My, and Mj7.
This gives rise to one hypermultiplet in the bifundamental representation of SU(3) x SU(3)
which matches the result of 6D anomaly cancellation.

4.9 IVyxIII

The Weierstrass model we are using for type IV x I11 is:

f=at?
4.60
)= 2 (4.60)
of which the discriminant locus is:
A = 23t (4% 4 272) (4.61)

We will consider two natural 7-brane systems corresponding to the triple intersection dic-
tated by the discriminant locus. Consider the brane system corresponding to the t-slice:

SGt = {ﬂ-l? m3,71, 73,711,703, 71, 7T3}-
The corresponding branching rule at the point of enhancement is:

E6 — SU(?)) X SU(?) :
78 — (8,1) +(1,3) +3 x ((3,2) +(3,2)) +3 x ((3,1) + (3,1))
+((1,2) +(1,2)) + 9 x (1,1)

The monodromy matrix of this system is identical to that of type IV, x I'V,

My, = (2 :i) , M = ((1) ?) . (4.62)

As in the above, there are two sets of gauge 7-branes S4 and Sp, but a novelty of
the IVs x III model is that there is an extra I; brane (or two extra I; branes as we
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will see momentarily) therefore we will label the corresponding asymptotic charges of the
junctions by a(J) = (Qa,@p, Qr,) with Q4 the asymptotic charge with respect to S4, @p
the asymptotic charge with respect to Sp and (), with respect to the extra I;.

This induces a partition of the set Sg, = {Sa,SB, [1}, where S4 is the first 4 branes
in Sg, corresponding to the locus t* = 0 and the set {Sp, 1} denote the intersection of
the SU(2) and I; seven-brane intersections with the ¢-slice.

We will consider only the subset of junctions charged under S4 and the action of
the monodromy M with respect to the asymptotic charge Q4. The 3 (3,1) carry the
asymptotic charges:

a(']l) = ((07 1)A7 (07 0)B7 (07 _1)11)7
a(JQ) = ((_L _1)147 (17 1)Ba (03 0)11)3
a(J3) = ((17 0)A7 (_17 1)37 (07 _1)11)'

a(J4) = ((07 1)147 (O> _1)37 (O’ 0)11)7
a(J5) = ((_17 _1)A7 (17 O)B? (07 1)11)7
a(Jﬁ) = ((17 O)Av (_17 O)Bv (070)11)'

Therefore we have J; — Jo — J3 and Jy — J5 — Jg under the monodromies My,
and Mj. This gives rise to one hypermultiplet in the (3,1) and one hypermultiplet in the
bifundamental representation of SU(3) x SU(2) which matches the result of 6D anomaly
cancellation.

Instead, taking the brane system corresponding to the z-slice, we have the following:
SGz = {71'1,7'('3, m,T1, T3, 71,73, 71, 7T3}-

The corresponding branching rule at the point of enhancement is:

E7 — SU(3) X SU(Q) :
133 — (8,1) + (1,3) +4 x ((3,2) +(3,2)) + 7 x ((3,1) + (3,1))
+4x((1,2)+(1,2)) + 16 x (1,1)

The monodromy matrix of this system is given by

My, = (? _01> , M = <_01 [1)> . (4.63)

With notation as in the above, this set of 7-branes is naturally partitioned as Sqg, =
{SB,Sa, 11} where we now have the set {S4, I1} denoting the intersection of the SU(3) and
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2 I; seven-brane intersections with the z-slice. The 8 (1,2) carry the asymptotic charges:

,0)B,(0,=1)4,(0,1)1,),

a(J1) = ((0,0 (0,
a(Jf2) = ((1,2)p, (0, =1)a, (=1, -1)1,)
a(J3) = ((0,0)B, (=1,0)4,(1,0)1,),
a(Js) = ((1,-1)B, (=1,0)4, (0,1)1,),
a(Js) = ((0,0)5,(0,1)4,(0,-1)1,),
a(Js) = ((—=1,-2)5,(0,1)4,(1,1)1,),
a(J7) = ((0,0)p, (1,0)4, (=1,0)1,),
a(Js) = ((=1,1)5,(1,0)4, (0, ~1)1,)

while the 4 (3,2) carry the asymptotic charges:

a(Jg) = ((0, 1), (0, 1) 4,(0,0)1,),
a(Ji0) = ((1,0)p, (—1,0) 4, (0,0)1,),
a(Ji1) = ((0,1)p, (1,0)4, (-1, -1) 1),
a(Ji2) = ((-1,—1)B, (0, 1) 4, (1,0)1,),

Therefore we have {Jl, Jz} — {Jg, J4} — {J5, Jﬁ} — {J7, Jg} and Jg — J10 — Ji1 =
Ji2 under the monodromies My, and Mj. This gives rise to one hypermultiplet in the (1, 2)
and one hypermultiplet in the bifundamental representation of SU(3) x SU(2).

Combining the results from the different slices, we find in total a charged hypermulti-
plet spectrum of (3,2) + (3,1) + (1, 2), matching the anomaly cancelling spectrum of [19].
Note that the bifundamental massless spectrum computed from the z-slice is the same state
computed from the t-slice and hence is consistent with expectations.

5 Remarks on localized neutral hypermultiplets

In section 4.1 we noted that our method for the computation of the matter works whether
there exists a smooth or terminal Calabi-Yau minimal resolution, that is, our method is
insensitive to the presence of terminal and not smooth singularities, as we can see from
comparing with [26, 32]. However, we remark that our method, in general, does not
necessarily yield the correct uncharged matter spectrum away from the perturbative limit.

Our theory computes the localized charged matter spectrum at the intersection of
seven-branes. However, localized neutral hypermultiplets may also exist [26]. We would like
to comment on localized neutral hypermultiplets in light of our prescription. In particular,
we will argue that more information must be added to our prescription to account for the
appearance of localized neutral hypermultiplets.

In [26], the physical significance of non-crepant resolvable singularities on an elliptically
fibered Calabi-Yau threefold X was investigated from the perspective of a 6d F-theory
compactification. The central result asserts that after passing to a Q-factorial terminal
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model X — X , the total number of localized, massless neutral hypermultiplets on the
resulting M-theory Coulomb branch is given by the sum

nYy = mp
P

over singular points of X where mp is the Milnor number. Moreover, this proposal was
demonstrated to be consistent with 6d gravitational anomaly cancellation and naturally
appears as a summand of the total space of complex structure deformations of X.

To demonstrate that our prescription is insensitive to the presence of localized neutral
hypermultiplets, we will focus on the examples explored in ([26], section 5.1). Consider a
type I11-model with the following tunings:

2q5—3
f=z1/o0, g:zfgggfor,ugzl A:z%(4f3+27z1“" 9(2))

As demonstrated in loc cit., for py = 2,3, the model admits a crepant resolution, while for
ftg > 4, the partial resolution exhibits a terminal hypersurface singularity. In particular, for
fg = 4,5,7, the isolated singularity results in the milnor numbers p = 1, 2, 4 respectively.

On the other hand, our prescription applied to the type I1I model in section 4.3, is
insensitive to higher order terms in z; in the residual discriminant. In particular, our pro-
posed brane content, monodromies, and calculation of junction states would yield precisely
the same matter content in any of the above tuned models as in the generic case with
g = 2.

Therefore, we conclude that our prescription is incomplete in accounting for localized
neutral matter, and we leave this avenue of investigation for future work.
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