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1 Introduction

F-theory [1, 2] is a non-perturbative formulation of type IIB superstring theory that ge-

ometrizes seven-brane physics. Specifically, the axio-dilaton profile sourced by the seven-

branes is encoded in an elliptically fibered Calabi-Yau variety X → B. The singularities

of X encode the structure of seven-branes, providing the geometric and topological data

that is crucial for determining the degrees of freedom of the F-theory compactification and

their low-energy physics. Though unbroken non-abelian gauge symmetry on seven-branes

requires singularities in the F-theory description, many analyses nevertheless smooth the

variety. For instance, a series of blowups and small resolutions [3–11] may yield a smooth

Calabi-Yau fourfold X], where M-theory on X] corresponds to the Coulomb branch of an

associated 3d N = 2 theory, obtained by compactification of the 4d theory on a circle.

Another approach is to obtain a smooth Calabi-Yau fourfold X[ by a complex structure

deformation [12–21], which corresponds to a Higgsing of the 4d N = 1 gauge group asso-

ciated to the 7-branes. Both techniques are indirect, however, as the smoothing moves the

theory to a different phase. There is no guarantee that the physics of F-theory on X is

completely captured by the geometry and topology of X] or X[.
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Instead, to understand compactifications with unbroken seven-brane gauge symmetry

it is preferable to study that phase directly, i.e. via the singular geometry and topology of

X itself. Doing so requires the development of new mathematics, such as in the study of

F-theory on singular spaces via matrix factorizations [22] or via string junctions [23]; the

latter built on a mathematical theory of topological string junctions [20] developed in the

case of a smooth variety.

In this work we continue to develop a theory of F-theory on singular spaces that

utilizes string junctions. Indeed, our approach emphasizes the definition of F-theory as

SL(2,Z)-equivariant type IIB supergravity coupled with background (p, q) 7-branes. From

this perspective, the background spacetime is smooth and it is natural to establish an

algorithm that generalizes the original counting of localized charged and uncharged matter

at the intersections of D7-branes in terms of open string states. String junctions thus serve

as a natural tool, and our proposal reduces precisely to the original counting in the case

that all (p, q) 7-branes are mutually local, i.e. in the weakly coupled type IIB limit.

Specifically, we give a description of computing the localized charged matter spectrum

at the intersection of two irreducible components of the discriminant locus. The main

results of the paper are as follows, organized according to the section in which they appear.

In section 3:

• Given a discriminant of the form ∆ = zn∆̃, we obtain sets SG, SR of vanishing cycles

corresponding to the seven-brane content obtained from the local monodromy around

zn = 0, and also from the local monodromy around ∆̃ = 0 restricted to the plane

z = ε. We count the number of root junctions associated to the sets SG and SR,

using methods from [23].

• The threefold geometry induces a monodromy on the junctions that is crucial to

compute the charged matter spectrum and match what is known from anomaly can-

cellation. Specifically, we compute the monodromy matrices MGMR,MGM
−1
R and

their inverses, and identify asymptotic charges (and therefore junctions with those

charges) that are related by monodromies generated from this set.

• We argue that these monodromies coincide with a representation of the fundamental

group of the complement of C2 by the union of two lines through the origin, and

argue that this coincides with the physics via a Higgsing.

• In the cases with matter charged under a product gauge group G × G′, we use the

same prescription by choosing SG,MG from the set of seven-branes forming one gauge

group factor G, and the residual data SR,MR from G′ together with the other residual

seven-branes.

We study many examples in section 4. Specifically:

• We verify the above prescription in all cases with a generic tuning of a single Kodaira

fiber intersecting with a residual I1, assuming normal crossing.

• We verify the above prescription for cases with jointly charged matter for III ×

III, IVs × IVs, and IVs × III, again assuming normal crossing.
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A subtlety regarding localized neutral hypermultiplets is studied in section 5. Specifically,

• We exhibit an example of tunings of III−I1 which yields the same number of localized

charged hypermultiplets but different localized neutrals depending on the tuning. In

particular, our entire prescription is completely independent of details of the tuning.

A specific example is given at the end of the section.

2 Vanishing cycles and minimal normal factorizations

Consider an elliptic fibration π : X → B over a complex algebraic surface B described by

a Weierstrass model

y2 = x3 + fx+ g , (2.1)

where f ∈ O(−4KB), g ∈ O(−6KB). The fiber degenerates along the discriminant locus

D ⊂ B

D := {∆ = 4f3 + 27g2 = 0} , (2.2)

which is the location of the seven-branes.

Smooth case

For the sake of simplifying the discusion, we first assume that the total space X is

non-singular and that all vanishing cycles are simple (p, q)-cycles, i.e., the vanishing cycle

is pa + qb where a and b are the meridian and longitudinal cycles of the elliptic curve E,

respectively. We will refer to this as a simple type degeneration, where all codimension-

one singularities are of type I1. The SL(2,Z) monodromy matrix associated with looping

around a component of D takes the form

M(p,q) =

(

1 − pq p2

−q2 1 + pq

)

. (2.3)

In this work the correspondence between the geometry of the elliptic curve E and its

SL(2,Z) representation, or the correspondence between geometric data and algebraic data,

will play a crucial role. The geometric data can be read off by studying the motion of the

three roots of the equation

x3 + fx+ g = 0 , (2.4)

as one completes a closed path encircling a component Di ⊂ D. At a generic point p

away from D the three roots are distinct, and we can choose a labeling of these roots

x1, x2, x3, which provides a canonical definition of the cycles π1 := (1, 0), π2 := (−1,−1)

and π3 := (0, 1) given such a labeling. In figure 1 we plot the roots in the x-plane, as well

as the cycles. Such a choice is made up to a global SL(2, Z) transformation. These labels

denote the vanishing cycles as two roots collide along components of D.

The cycles π1, π2 and π3 are a (over-complete) set of generators of H1(E,Z), where E

is the fiber at p. Fixing a reference point p away from D, as we approach D a (p, q)-cycle

vanishes, as we are only considering degenerations of a simple type, i.e., we are considering

smooth X with only I1 fibers. For instance, if a (1, 0)-cycle vanishes, x1 and x3 approach

each other and become degenerate on D. To properly analyze the monodromy, one should

– 3 –
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x2

x1

x3

Figure 1. The three solutions x1, x2, x3 to x3 + fx+ g = 0 are plotted at a generic smooth point.

We define the cycles πi such that the red line segment denotes π1, the green line segment denotes

π2 and the blue line segment denotes π3.

then perform a loop around D; for instance, taking a loop around D, for which the vanishing

cycle is (1, 0), will induce a geometric swap of the roots x1 and x3.

Singular case. However, the case that the total space X is singular is both more physi-

cally interesting, and more generic, and we can no longer restrict ourselves to simple type

degenerations. When approaching D, x1, x2 and x3 will usually all degenerate into one

point. In such cases one needs further tools to analyze the vanishing cycles and monodromy.

As discussed in the Introduction, this may be done either via resolution or deformation,

but both methods are indirect (likely losing information of the unbroken phase), and we

prefer to work directly with the singular space. Furthermore, in nearly all known cases

(e.g. [24, 25]) a smoothing complex structure deformation does not exist. Similarly, some

singularities that give rise to localized neutral hypermultiplets cannot be resolved [26].

When X is singular, D is in general a non-reduced scheme, where each component’s

multiplicity corresponds to the number of (p, q) 7-branes along that component. In this

case one cannot read off the vanishing cycles by approaching the components Di of D (from

an appropriately chosen fixed point), but instead must infer a set of vanishing cycles via

the motion of the roots induced by traversing a loop around each Di. While the motion of

the roots is in general not a simple exchange (except in the simple I1 case), any motion can

be decomposed into an ordered set of exchanges. Such an ordered set can be used to define

a set of vanishing cycles. This choice corresponds to a decomposition of the monodromy

matrix M into a minimal normal factorization (MNF), defined in [27]. An MNF of a

monodromy matrix is a decomposition of an SL(2,Z) monodromy matrix associated with

a Kodaira fiber type into n factors with each factor given by one of the following matrices

corresponding to the monodromy sourced by a (1, 0) and a (0, 1) seven-brane respectively.

M(1,0) =

(

1 1

0 1

)

, M(0,1) =

(

1 0

−1 1

)

Such a factorization exists for each SL(2,Z)-matrix corresponding to a Kodaira fiber and

is unique up to Hurwitz moves and we refer to ([23], section 3.2) for an in-depth summary

of the results of [27] and its implications for singular string junctions. A Hurwitz move is

given by one of the following transformations for gi ∈ G (for our purpose, G = SL(2,Z))

g1g2 · · · gigi+1 · · · gk → g1g2 · · · gi+1(g−1
i+1gigi+1) · · · gk

– 4 –
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or

g1g2 · · · gigi+1 · · · gk → g1g2 · · · (gigi+1g
−1
i )gi · · · gk,

i.e., gi+1 is “pulled past” gi, conjugating it in the process, or vice versa.

Given a disc C ⊂ B intersecting components of the discriminant locus, we may consider

the restriction to an elliptic surface X1 → C. In the following, we will use the technology

of string junctions assuming that they exist as a basis of H2(X̃1, Ep) where X̃1 is the

total space of a deformation of X1 → C to an elliptic surface with only I1 singularities.

We will use a canonical ordering of the vanishing cycles (MNF) given in table 1 and the

associated intersection pairing, but the results will be independent of the choice of basis.

Despite such assumptions, we emphasize that all these properties of string junctions can

be obtained completely algebraically independent of the deformation and in [28], we will

demonstrate that all the relevant data such as the intersection pairing are indeed invariant

under Hurwitz moves.

3 Matter in 6D F-theory compactifications on singular spaces

Given a Weierstrass or Tate model of an elliptically fibered Calabi-Yau threefold with a

gauge group supported on a divisor Dz := {z = 0} with z a local coordinate on B, the

discriminant locus takes the form

∆ = zn∆̃ , (3.1)

where ∆̃ is the residual discriminant locus. Generally there are matter hypermultiplets

localized at intersection points z = ∆̃ = 0, and the goal of this work is to count such

hypermultiplets. At the intersection the fiber degenerates further, and the gauge algebra is

enhanced to a larger one. To study the spectrum at the enhancement point we will probe

the point with a D3-brane probe.

As discussed in the previous section we can associate to Dz and (each component of) ∆̃

an ordered set of vanishing cycles via an MNF. At the collision point the vanishing cycles

intersect, and massless matter can be realized by closed string junctions with one boundary

supported on Dz, and one boundary supported on ∆̃. A direct counting of these string

junction states supported at the codimension-two locus generally gives a matter spectrum

that is too large to satisfy anomaly cancellation. However, we will propose that these states,

labeled by their asymptotic charges with respect to Dz, are not all independent, and are

related by a set of monodromy actions that identifies some states with one another. To see

this, we will focus on a local intersection point of Dz and ∆̃, which we label u, and probe

the enhancement point with a mobile D3 brane. The D3 brane can traverse loops in B \D,

which will induce an action on the string junctions extending from Dz, to be attached

to ∆̃. The relevant monodromies will be those associated to the point of enhancement,

in the following way: fix a point p in a local neighborhood of u. Let us for now assume

that Dz and ∆̃ are locally normal crossing schemes, not necessarily reduced, and let the

monodromy matrices MG and MR correspond to the monodromy action around Dz and

– 5 –
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ε 6= 0

u

ε = 0

u

Figure 2. The gauge 7-branes are on top of each other and denoted by the blue line. The residual

discriminant locus is denoted by the red line, which for the moment we assume to be normal

crossing. The black line segment denotes a disk that intersects the 7-branes. In the left figure the

disc misses the codimension-two point u, but intersects the codimension-one loci each at a point.

In the right figure the disc has been deformed to intersect u at a point.

∆̃ respectively (G is for gauge and R is for residual) . We can then associate with u the

monodromy matrices MR ·MG, MG ·MR, MR ·M−1
G , M−1

R ·MG, and their inverses. Let us

call this set of matrices {M i
u}, i = 1 . . . 8.

These matrices have a clear geometric interpretation, realized by a D3 probe approach-

ing u. In order to probe u, we want to study the monodromy associated with u, and since

u is associated to the collision of two co-dimension one loci, we can naturally associate the

above matrices as u-point monodromies. Let us consider a point p near u on a disk that

intersects both z = 0 and ∆̃ = 0, such that the distance on the disc between z = 0 and

∆̃ = 0 is a small parameter ε.1 For such a disc one can take the limit ε → 0, such that the

only singularity on the disc is the codimension-two point u. This is shown in figure 2. On

the disk the geometry is sketched in figure 3. Clearly there are two generators of π1(B\∆)

on the disc, and the corresponding loops are LG and LR, with corresponding monodromy

matrices MG and MR. Taking the parameter ε → 0, we place the disc so that it only

contains the point u as a component of the discriminant ∆. By taking the associated loops

in the disc around u we can probe the matter locus via monodromy. On such a disc it is

clear there are two loops that can be deformed to encircle u without coming into contact

with the discriminant locus. These are L = LR ◦LG and L−1 = L−1
G ◦L−1

R , with associated

monodromy matrices M = MR ◦MG and M−1 = M−1
G ◦M−1

R , respectively.

We require that the matter states supported at u are given by the junctions that are

invariant under both M and M−1. These monodromies can be read off by studying the

motion of the three roots x1, x2, x3 of y2 = x3 + fx + g = 0 upon traversing the loops L

or L−1 as in [21, 23]. The geometric motion of the roots can then be associated with an

SL(2,Z) monodromy matrix that acts explicitly on the asymptotic charge a(J) of a string

junction. More precisely, the connecting homomorphisms

∂ : H2(X1, Ep) → H1(Ep) (3.2)

1Distinguishing between a parameter distance and a proper distance will not be important here as all

our studies occur at finite distances in moduli space.
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∆̃ = 0 z = 0

LR LG

ε 6= 0

u

L = LR · LG

ε = 0

Figure 3. On the disk D near z = ∆̃ = 0 the D3 probe can either traverse the loop L = LR ◦ LG

or the loop L−1 = L−1

G ◦L−1

R . LG and LR are as directed by the arrows. This disc can be deformed

to only contain the codimension-two point u, by taking ε → 0.

carries a monodromy on the junctions to the monodromy on the asymptotic charges, where

X1 is the restriction to D of a deformation of π : X → B to a fibration that has only I1-

singularities when restricted to the intersection of B with all but a finite set of parallel

hyperplanes. We assume that, on D, at z = 0 there is a stack of gauge 7-branes SG =

{π1, . . . , πi} and ∆̃ = 0 consists of 7-branes SR = {πi+1, . . . , πn}. Naively the matters

corresponding to the string junctions JGR stretch between SG and SR and can be obtained

using the technique developed in [17]. When the brane content SG +SR is associated with

a gauge algebra these junctions are simply given by the branching rule GSG+SR
→ GSG

where GS is the gauge algebra corresponding to the set S of 7-branes. The junctions JGR

typically give rise to more matters than are required by 6D anomaly cancellation. The

monodromies M and M−1 map different junctions with different a(J)’s to each other and

this reduction leads to the correct 6D matter spectrum.

The physical interpretation is as follows: a massless state in a representation R under

the gauge group G corresponds to a string junction J supported at u, with non-trivial

asymptotic charge a(J) on Dz. Such a junction pinches off on Dz, and also on ∆̃, with

the same asymptotic charge flowing into ∆̃. We place a D3 probe on this junction, so that

the matter state supported at u can be broken into two junctions: a junction JG with

one boundary on the D3 brane and the other on Dz, with asymptotic charge a(J), and

a junction JR with one boundary on the D3 brane and the other on ∆̃, with asymptotic

charge −a(J), such that the junctions can join together to reproduce the full 7-7 junction,

see figure 4. To probe these states we arrange for a disc D containing the point u as the only

point of ∆ ∩D, and then allow the D3 brane to loop around u. This will induce an action

on the asymptotic charge of both JG and JR, in a manner such that they can again be

joined to create a junction corresponding to charged matter in R of G. The identification

of such states will be necessary to produce the correct amount of charged matter to satisfy

6d anomaly cancellation.

As is clear from both the geometry and the pictures, the disc D is not unique. We

require the disc, at ε 6= 0, to intersect both Dz and ∆̃ at a point, and that these points collide

as ε → 0. In fact, there are four such discs that locally achieve this, which correspond to

the four quadrants in figure 2. Therefore, for each quadrant we can define the monodromy
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u

v

A

B

Figure 4. The D3 brane at v denoted by the green dot is placed on the 7-7 junction AB stretched

between two stacks of 7-branes intersecting at u. The 7-7 junction is represented by the dashed line

and the two stacks of 7-branes are represented by the red and blue lines. The two 3-7 junctions are

Av and vB with asymptotic charges a(J) and −a(J) respectively and clearly they combine into the

full 7-7 junction AB.

p p

∼

R

G

L
′−1

G

p

LR

L
−1

G

Figure 5. Left two paths denote the possible paths of a D3 probe confined to a disk encircling the

intersection of the two 7-brane stacks. The homotopy relation between the right two paths allows

one to conclude the monodromy acting on the homology of the elliptic fiber.

matrices M and M−1. Via the fact

ML = ML2
◦ML1

, if L = L2 ◦ L1 , (3.3)

we have the total set of monodromy matrices associated to u: MR ·MG, MG ·MR, MR ·M−1
G ,

M−1
R · MG, and their inverses which we above labeled {M i

u}, i = 1 . . . 8. By requiring the

matter spectrum be invariant under all {M i
u}, we will find the correct amount of matter

to satisfy 6d anomaly cancellation. We note that often many of these matrices will induce

redundant identifications, and so in the examples we will only note the minimal set of

non-trivial ones.

In the above discussion, we have associated natural monodromy matrices to distin-

guished paths encircling the codimension 2 point given by the two paths on the left of

figure 5. We now verify that the above assignments are in fact the correct monodromies

realized by the desired paths. In particular, it will suffice to demonstrate that the second

path L′−1
G ◦LR in figure 5 is homotopy equivalent to the third path L−1

G ◦LR, or equivalently

that L′−1
G ∼ L−1

G . Under this assumption, the corresponding SL(2,Z) monodromy repre-

sentations are equivalent, and hence, all possible codimension 2 monodromies are generated

by MG ·MR and M−1
G ·MR.

– 8 –
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To see the above homotopy, we will follow the discussion in ([29], section 6.3). Denoting

the axes by G and R, the path LG is given by the circle in the plane G = G0, LR by the

circle in the plane R = R0, and p by the coordinates (1, 1). Consider the point x(t) on

the circle R = R0 given by (eit, 1). The homotopy is given at each time t by the path

which begins at p, traverses to x(t) along R = R0, goes along the circle (eit, eis) for fixed

t, and then goes back to p. This induces the relation L−1
G ∼ L′−1

G ∼ LR ◦ L−1
G ◦ L−1

R and

we conclude. In general, we note that the fundamental group of the complement of two

normal crossing divisors in an open affine patch is the free abelian group of rank two, i.e.

π1(C2 \ {xy = 0}, p) ∼= Z2.

So far we have assumed that the loci ∆̃ and Dz are normal crossing, in which case

near u it is clear that a disc D intersecting Dz and ∆̃ will capture all vanishing cycles

at u. For general intersections between gauge group divisors and I1-loci, this assumption

will not be valid; for instance, in the type III-I1 collision, the discriminant takes the form

∆ = z3(27z + 4t3), where at u = {z = 0 ∩ t = 0}, there is a multiplicity-three intersection

in t, but away from {z = 0} the I1 locus splits into three components. In this case and

similar ones, we must ensure that the ε 6= 0 disc is large enough to intersect all components

of the I1 locus near u. Note that while ∆̃ is in general one large connected subvariety, near

u it looks like three separate components, which intersect with multiplicity three at u, and

we make D large enough to capture the three components, and thus the multiplicity three

intersection as ε → 0.

We also note that, while the construction of the appropriate discs D is still achievable,

one can instead (locally) start with a simpler model that is locally a normal crossing

intersection, and then deform to the model of interest. Such a process corresponds to a

Higgsing of a product gauge group G′ ×G → G, where G is the gauge group that we want

to study. For example, in the III − I1 case, we have

f = zF , g = z2G , ∆ = z3(4F 3 + 27G2z) (3.4)

for a local coordinate z. Taking another local coordinate F ∼ t, we have matter localized

at t = z = 0. This is clearly not a normal crossing locus, but we can make it so, by taking

G = G′t, yielding

f = ztF ′ , g = z2t2G′ , ∆ = z3t3(4(F ′)3 + 27(G′)2) , (3.5)

which is locally normal crossing, and corresponds to a III − III intersection. From this

normal crossing model we can arrange the appropriate disc near u, and then deform the

geometry an infinitesimal amount to the geometry of interest.

The Higgsing described in the above paragraph then motivates the question: how does

this prescription address the counting of localized massless matter for Weierstrass models

with states charged under product representations R′ ⊕ R? Indeed, the obvious ambigui-

ties in the naive extension of the aforementioned prescription to the case of intersections

of multiple non-abelian 7-brane loci are what should we take JG to be and what is the

corresponding codimension-2 monodromy. From the perspective of the above, there are

also natural deformations to multiple distinct normal crossing loci.

– 9 –
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In general, to count massless matter charged under the representation (m,n) of the

gauge group G′ ×G, our prescription will be as follows. Without loss of generality, assume

that the representation n of G is not the trivial representation. We then choose a minimal

deformation to a local normal crossing model H ×G where H corresponds to the 7-brane

content of G′ and any residual 7-brane loci transverse to that of G. Such a deformation

corresponds to a natural set of seven-branes S = SG ∪ SH and the gauge seven-branes

within SH induces an additional partition SH = SG′ ∪SR. Given such partitions, a massless

state in the representation (m,n) then corresponds to a junction J supported on S and the

prescription proceeds exactly as in the above with JG the sub-junction supported on SG and

codimension-2 monodromy determined by the normal crossing model. In particular, if both

factors in the product representation are non-trivial, this determines distinct deformations

which yield the same counting of massless matter.

We will illustrate the natural extension of our prescription for the IVs − III case,

which exhibits an unusual feature: a forced codimension-2 collision of three 7-branes, a

phenomenon classified in [30]. In this example, we have the assignments

f = zt2 , g = z2t2 , ∆ = z3t4(4t2 + 27z) (3.6)

for z and t local coordinates. In particular, there is an additional I1 loci given by the

residual discriminant intersecting the SU(3) × SU(2) point which is characteristic of this

model. For each product representation of SU(3)×SU(2), we will deform to a local normal

crossing model in the spirit of the above example. For massless matter charged under

the representation (m,n) of SU(3) × SU(2) with m non-trivial, we will look at the t-slice

and for n non-trivial, we will look at the z-slice. For each slice, there is a corresponding

7-brane stack, a partition into two sets of gauge seven-branes and residual seven-branes,

and a monodromy action.

Concretely, to compute the spectrum of massless matter charged under (3,1), we

consider the set of all junctions with support on the set of seven-branes obtained by set-

ting t = ε. Given the partition of seven-branes St = {SIVs |SIII | I1}, we determine the

junctions J charged under the 3 of SU(3) given by the gauge branes SIVs and uncharged

under the gauge branes SIII . We then compute the monodromy orbit of the asymptotic

charge a(JSIVs
) under the codimension-2 monodromy determined by St and identify the

corresponding junctions. Likewise, we carry out a similar procedure for (1,2) by setting

z = ε and looking at the brane system Sz = {SIVs |SIII | I1 | I1} and for the bi-fundamental

representation (3,2), both models yield identical results. This computation is detailed in

section 4.9.

For most examples the monodromy action described thus far will be enough to re-

duce the spectrum to that required by anomaly cancellation. In fact, this works precisely

when the to-be-identified charged matter states have different asymptotic charges, as the

identification is done on the level of asymptotic charge. However, in the case where the

over-counting is due to states with the same asymptotic charge there will be a further re-

duction. Consider a closed string J that encircles u, such that a(J) is an eigenvector of the

{M i
u}, with eigenvalue one. The lift of this closed string to X1 is a cylinder with asymptotic

charge a(J) = 0, and hence is an element in H2(X1,Z). Since the monodromy matrices of
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u act trivially on the junction, via a Hanany-Witten move one can pass the closed string

directly through u, without the junction gaining prongs localized at u. In a local neigh-

borhood of u, such a junction may appear non-trivial, as it can attach simultaneously to

∆̃ and Dz, but upon taking the junction to u, where the candidate state would become

massless, it becomes trivial, and therefore does not contribute to the matter spectrum. In

terms of the monodromy matrices, the condition for such a state to be trivial is

(M i
u − 1) · a(J) = 0 , (3.7)

for all i. We will refer to such states as HW-trivial. We will find that the combination of

the two monodromy actions, from the u-monodromy and the HW-triviality reduction, will

reproduce the correct matter spectrum to satisfy anomaly cancellation.

Finally, we remark that our identification of junctions proceeds purely at the level of

the asymptotic charges. Such an identification may or may not descend to an identification

of the junctions themselves, and we will explore this in future work.

We will use the following notation throughout:

π1 := (1, 0), π2 := (−1,−1), π3 := (0, 1), πα := (1,−1), πβ := (2, 1). (3.8)

We will see the last two appear in the type In fiber enhancement.

4 Examples: matter on singular spaces and anomaly cancellation

Having introduced a formalism for counting charged hypermultiplets in 6d F-theory com-

pactifications on singular spaces, including a monodromy quotient necessary for obtaining

the correct spectrum, we now apply it in many examples. We find that the matter spectra

that we directly compute matches expectations from anomaly cancellation [5, 31, 32].

The data of all of the examples we will discuss in this section are summarized in table 1.

4.1 Type In, n ≥ 2

For type In fiber, using a Tate model we have:

∆ = zn(a4
10P + O(z)) (4.1)

where a10 ∈ O(−KB), which is already of normal crossing type. From the multiplicity of

vanishing of (f, g,∆) at z = P = 0 there is an An−1 → An enhancement, and we expect a

single hypermultiplet in n of SU(n). At z = a1 = 0 there is an An−1 → Dn enhancement,

and we expect a single hypermultiplet in Λ
2 of SU(n). These are well-known facts from

perturbative string theory and can be deduced by either smoothing the singular geometry

via small resolutions or deforming the 7-brane configuration [17, 33]. We will show how to

obtain the correct spectrum without resolution or deformation. We note that our method

for the computation of the matter works whether there exists a smooth or terminal Calabi-

Yau minimal resolution, that is, our method is insensitive to the presence of terminal and

not smooth singularities, as we can see from comparing with [32]. Therefore we will exclude

the case I1 as the singularity at the matter point is terminal and generically admits no
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Fibration Matter Branes ML M
L

N

In

fund {π1, . . . , π1, π1}

(

1 n+ 1

0 1

) (

1 n− 1

0 1

)

1

Λ
2 {π1, . . . , π1, π3, πβ , πα, π2}

(

1 n− 8

0 1

) (

1 n+ 8

0 1

)

1

I∗

n vect {π1, π3, π1, π3, π1, π3, π1, · · · , π1, π1, π1}

(

−1 n− 2

0 −1

) (

−1 n+ 2

0 −1

)

1

III 2 {π1, π3, π2, π1, π3, π2}

(

−1 0

0 −1

)

Id2×2 2

IVs 3 {π1, π3, π1, π3, π1, π3, π1, π3}

(

0 −1

1 −1

)

Id2×2 3

IV ∗

s 27 {π1, π3, π1, π3, π1, π3, π1, π3, π1, π3, π1, π3} Id2×2

(

−1 1

−1 0

)

1

III∗
56 {π1, π3, π1, π3, π1, π3, π1, π3, π1, π3, π1, π3} Id2×2

(

−1 0

0 −1

)

1

2

III × III (2,2) {π1, π3, π2, π1, π3, π2}

(

−1 0

0 −1

)

Id2×2 1

IVs × IVs (3,3) {π1, π3, π1, π3, π1, π3, π1, π3}

(

0 −1

1 −1

)

Id2×2 1

IVs × III R

t : {π1, π3, π1, π3, π1, π3, π1, π3}

(

0 −1

1 −1

)

Id2×2

1
z : {π1, π3, π1, π1, π3, π1, π3, π1, π3}

(

0 −1

1 0

) (

0 1

−1 0

)

Table 1. Summary of results. In each case we list the branes intersecting at the codimension 2

locus where the charged matters are localized and the monodromies corresponding to the branes.

N is the multiplicity of the matter in the representation as listed in the second column of the

table. The branes that carry the gauge algebra are underlined in the third column of the table.

In the IVs × III case R = (3,2) + (3,1) + (1,2) and we will consider the brane contents and the

monodromies on the t and z slices respectively and show that the results are consistent and match

the anomaly cancellation condition in section 4.9.

crepant resolution though in this case one can obtain the correct (uncharged) localized

matter spectrum at the matter point as expected from the perturbative limit. We will

elaborate this point further in section 5. By constructing a type Ins fiber using the Tate

model, and then putting it into Weierstrass form, one can read off the roots of eq. (2.4)

near z = 0, which take the form

x1 =
1

12
a2

10, x2 = −
1

6
a2

10, x3 =
1

12
a2

10. (4.2)

We see that x1 and x3 coincide therefore x1-x3 can be fixed as the vanishing π1 cycle

along z = 0. Along LG we have z = εeiθ and it is easy to show that on LG we have

x1 − x3 ∼ z
n
2 . This means that upon traversing z = 0 once, the roots x1 and x3 have
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Junction SU(n) charge a(J)

(1, 0, 0, 0, 0,−1) (0, 0, 0, 1) (1, 0)

(0, 1, 0, 0, 0,−1) (0, 0, 1,−1) (1, 0)

(0, 0, 1, 0, 0,−1) (0, 1,−1, 0) (1, 0)

(0, 0, 0, 1, 0,−1) (1,−1, 0, 0) (1, 0))

(0, 0, 0, 0, 1,−1) (−1, 0, 0, 0) (1, 0)

Table 2. The 5 junctions corresponding to 5 of SU(5) near the point of enhancement z = P = 0.

The middle column is the charge of the state under the Cartan U(1)’s of SU(5). a(J) is computed

with respect to SG. The 5 junctions corresponding to 5 are the orientation reversed junctions of

the ones listed here.

swapped n times and that corresponds exactly to the monodromy MLG
=

(

1 n

0 1

)

. We

therefore have SG = {π1, . . . , π1} where there are n π1’s. It now remains to determine SR

and the monodromy of LR for the two types of enhancement.

4.1.1 Matter in n

In this case LR is centered at P = 0 and is parameterized by δeiφ. It is easy to show

that along LR, x1 − x3 ∼ δ
1

2 e
iφ

2 . Therefore upon traversing LR, x1 and x3 swapped once

hence the monodromy is MLR
=

(

1 1

0 1

)

. Therefore in this case SR = {π1}. We have

SG + SR = {π1, . . . , π1, π1} where there are n + 1 π1’s at z = P = 0 hence there is a

branching rule at the point of enhancement:

SU(n+ 1) → SU(n) :

adjSU(n+1) → adjSU(n) + n + n + 1 (4.3)

There are n junctions with a(J) = (1, 0) that give rise to n and n junctions with a(J) =

(−1, 0) that give rise to n. To illustrate our method we compute the junctions explicitly

using an SU(5) model and the result is listed in table 2.

The relevant matter-point monodromy matrices are:

M1 =

(

1 n+ 1

0 1

)

, M2 =

(

1 n− 1

0 1

)

. (4.4)

We see that the a(J) = (1, 0) junctions and the a(J) = (−1, 0) junctions are preserved

by M1 and M2 therefore no reduction is induced by the monodromy. Hence we obtain a

hypermultiplet in n of SU(n) at z = P = 0 as required by 6D anomaly cancellation.

4.1.2 Matter in Λ
2

This case can be worked out easily using perturbative string techniques but is subtle using

our method. But we will see that the string junction description nicely reproduces the

spectrum required by 6D anomaly cancellation.
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In this case LR is centered at a10 = 0. Note that there are six solutions to z = ∆̃ = 0

with respect to a10 but only four of them vanish when z = 0 hence these are the four

points inside LR. We assume that LR = LR4
◦ LR3

◦ LR2
◦ LR1

where LRi
is the loop

enclosing a10,i inside LR. It is easy to see that the geometric monodromy around LR is

an overall 4π rotation of x1, x2, x3 with x1-x3 rotated by −4π, i.e., swapped four times

in an opposite direction with respect to the overall 4π rotation of the three roots. At

first sight it might seem hard to derive what monodromy matrix it corresponds to but

we can either geometrically show what the vanishing cycles are of the four relevant a10’s

hence derive the monodromy, or algebraically compare it with the well known result from

perturbative string theory. We will see in this example that these two approaches nicely

match each other.

We can choose an arbitrary type Ins Tate model, for example, I5s with SU(5) gauge

algebra. The discriminant locus is of the form:

∆ = z5∆̃ = z5(a4
10P + a2

10K1z +K2z
2 + O(z3)) (4.5)

and f and g are of the form:

f = a10Qf (z) + O(z2),

g = a10Qg(z) + O(z3)

where Qf is linear in z and Qg is quadratic in z.

Solving ∆ = 0 with respect to z there are 5 + k solutions where k is the order of ∆̃

in z. Besides the five roots at z = 0 that correspond to the five gauge branes, two of the

remaining roots z = zA and z = zB approach z = 0 in the limit a10 = 0. It is easy to see

from the forms of f , g and ∆ that the a10 = 0 limit is the limit where the fiber becomes

type I∗

1s and the gauge algebra becomes SO(10). In this sense the SU(5) gauge theory

along z = 0 is a Higgsing of the SO(10) gauge theory by a deformation parameterized by

a10. To match the result in perturbative string theory we must have that the branes at

z = 0 have vanishing cycles (1, 0) and the two branes along z = zA and z = zB together

form an O7 plane in the a10 = 0 limit. In the spirit of section 2 the SL(2,Z) monodromy

associated with the O7 plane stays the same under deformation. When a10 is small, the

SO(10) theory is Higgsed and the branes zA and zB are separated from z = 0 therefore

we are able to choose a loop LA+B around both z = zA and z = zB and the monodromy

corresponding to this loop is the monodromy that corresponds to that of an O7 plane.

It is now easy to see that upon going along LA+B, the geometric motion of x1, x2, x3 is

an overall 2π rotation together with a −2π rotation of x1-x3. We see that the geometric

monodromy corresponding to LR is twice the geometric monodromy corresponding to an

O7 plane. We know that

MO7 =

(

−1 4

0 −1

)

. (4.6)

Therefore, according to eq. (3.3) we have:

MLR
=

(

1 −8

0 1

)

. (4.7)
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We also need to deduce the vanishing cycles corresponding to each of the four a10’s

inside LR to read off the brane content on the disk D. This can be determined easily by

observing that the geometric motion of x1, x2, x3 around the loops LR2
◦LR1

and LR4
◦LR3

are both that of the loop around an O7 plane. Therefore we have

MLR2
◦LR1

= MLR4
◦LR3

=

(

−1 4

0 −1

)

. (4.8)

Geometrically it is a bit tricky to read off the vanishing cycles corresponding to a10,2 and

a10,3 but it is pretty clear that the vanishing cycles associated with a10,1 and a10,4 are π2

and π3 by approaching these two points respectively. Therefore, according to eq. (3.3) we

must have

MLR2
Mπ2

= Mπ3
MLR3

=

(

−1 4

0 −1

)

. (4.9)

Therefore it can be determined that

MLR2
=

(

2 1

−1 0

)

, MLR3
=

(

−1 4

−1 3

)

. (4.10)

Hence we can read off the vanishing cycles, va10,2
= (1,−1), va10,3

= (2, 1), and we have

SG + SR = {π1, π1, . . . , π1, π3, πβ, πα, π2} (4.11)

We can also read off the vanishing cycles directly from the geometry instead of using

eq. (3.3). This requires looking at the elliptic fiber E which is a double cover of the x-plane

branched at x1, x2, x3 and the point at infinity instead of only looking at the x-plane.

In order to read off the vanishing cycles corresponding to MLR2
and MLR3

, we note

that these correspond to the collapse of v2 as pictured in figure 6 instead of v1. Letting π1

denote the vanishing cycle encircling the branch cut, we observe that the cycle v2 simply

corresponds to the image of a picard lefschetz monodromy acting on v1 under a clockwise

rotation of π1 by 2π. Thus, letting Tπ1
denote the matrix corresponding to the picard

lefschetz monodromy, we conclude that v2 = T−2
π1
v1. Performing the calculation in the

canonical basis, we have T−2
π1

=

(

1 −2

0 1

)

. Acting on the cycle v1 = (−1,−1), we find that

this maps to v2 = (1,−1). A completely analogous calculation maps the cycle (0, 1) to

(2, 1) via a counter-clockwise rotation, and we conclude.

Using the branes SG + SR we can search for junctions that give rise to matters in this

system. We will use SU(5) as a concrete example and we list the junctions corresponding

to the highest weight state of Λ2 in table 3.

The monodromy matrices ML and ML̄ are both of the form

(

1 k

0 1

)

therefore the

junctions with a(J) = (±2, 0) are invariant under their action. Hence it seems that there

are 4 Λ
2’s and 4 Λ2’s to which the junctions correspond are the orientation reversed

junctions of the ones that give rise to Λ
2.
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x2

x1

x3
v1

v2

π1

Figure 6. Ramification points away from infinity of the generic fiber. The black line denotes the

choice of a branch cut, v1 and v2 correspond to two vanishing cycles with endpoints x1 and x2.

Junction SU(n) charge a(J)

(1, 1, 0, 0, 0,−1, 1,−2, 2) (0, 0, 1, 0) (2, 0)

(1, 1, 0, 0, 0, 0, 0,−1, 1) (0, 0, 1, 0) (2, 0)

(1, 1, 0, 0, 0, 1,−1, 0, 0) (0, 0, 1, 0) (2, 0)

(1, 1, 0, 0, 0, 2,−2, 1,−1) (0, 0, 1, 0) (2, 0)

Table 3. The 4 junctions corresponding to the highest weight state of Λ
2 of SU(5) near the point

of enhancement z = a10 = 0. The middle column is the charge of the state under the Cartan U(1)’s

of SU(5). a(J) is computed with respect to SG.

πα

πβ

π2

π3

SU(5)

Figure 7. On disk D there are four I1’s and the SU(5) gauge branes. The dashed curve denotes a

closed (n, 0) string that encloses the system SG + SR.

But in this case there is a subtlety that will also appear later when we discuss the

type IV ∗ and type III∗ models. We see that due to the form of the monodromy, there

are closed eigen-strings that encloses the brane system SG + SR. Closed strings that carry

charge (n, 0) can enclose SG +SR since (n, 0) is invariant under the total monodromy ML.

This configuration is sketched in figure 7.

Here we see that the codimension 2 monodromy is:

M =

(

1 k

0 1

)

. (4.12)

The only charge vector a(J) with eigenvalue 1 under M is a(J) = (1, 0) and indeed this is

the only eigenvector of M . Since the eigenvalue is 1, a string emitting charge a(J) = (1, 0)
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can close back onto itself therefore becoming a closed string. We may call this an “closed

eigen-string”.

In particular we can choose a closed eigen-string that carries charge a(J) = (1, 0).

Via Hanany-Witten moves we can show that this closed eigen-string is equivalent to the

junction

QC = ±(0, 0, 0, 0, 0, 1,−1, 1,−1) (4.13)

where the sign is determined by the direction of the charge running in the closed string.

We choose J = (1, 1, 0, 0, 0, 1,−1, 0, 0) then we can see that all the other three junctions

in table 3 are of the form J + nQC where n ∈ Z. Moreover, the intersection matrix

corresponding to SG + SR is:

I =





































−1 0 0 0 0 1
2

1
2 −1

2 −1
2

0 −1 0 0 0 1
2

1
2 −1

2 −1
2

0 0 −1 0 0 1
2

1
2 −1

2 −1
2

0 0 0 −1 0 1
2

1
2 −1

2 −1
2

0 0 0 0 −1 1
2

1
2 −1

2 −1
2

1
2

1
2

1
2

1
2

1
2 −1 −1 −1

2
1
2

1
2

1
2

1
2

1
2

1
2 −1 −1 −3

2 −1
2

−1
2 −1

2 −1
2 −1

2 −1
2 −1

2 −3
2 −1 −1

−1
2 −1

2 −1
2 −1

2 −1
2

1
2 −1

2 −1 −1





































. (4.14)

To obtain a(J) = (2, 0) junctions with respect to SG, the following condition has to be

satisfied:

n1(0, 1) + n2(2, 1) + n3(1,−1) + n4(−1,−1) = (−2, 0) (4.15)

where ni ∈ N. We then have:

n3 =
1

2
(n1 − n2) − 1, n4 =

1

2
(n1 + 3n2) + 1. (4.16)

We then need to find J = (JG, n1, n2, n3, n4) such that (J, J) = −2 where JG is a junction

with a(JG) = (2, 0) and (JG, JG) = −2 with respect to SG. Solving (J, J) = −2 we have

n2 = −n1 or n2 = 1 − n1. We see immediately that when n2 = 1 − n1, n3 and n4 are not

integers therefore we must have n2 = −n1. Hence the junctions that give rise to Λ
2 are all

of the form:

J = (JG, n1,−n1, n1 − 1, 1 − n1) = (JG, 1,−1, 0, 0) + (n1 − 1)QC . (4.17)

We have shown that QC is indeed a closed string so that all the junctions except those

of the form J = (JG, 1,−1, 0, 0) are superpositions of a junction that stretches between SG

and SR and a junction that is in fact a closed string. Therefore such states are not the

matters that are localized at the point of enhancement and we are led to the conclusion that

only one hypermultiplet in Λ
2 is the true localized matter at the point of enhancement.

This matches the result that is required by 6D anomaly cancellation.
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Junction SO(8) charge a(J)

(1, 0, 0, 0, 0, 0,−1, 0) (0, 0, 0, 1) (1, 0)

(1, 0, 0, 0, 0, 0, 0,−1) (0, 0, 0, 1) (1, 0)

(1, 1,−1, 0,−1,−1, 0, 1) (0, 0, 0, 1) (−1, 0)

(1, 1,−1, 0,−1,−1, 1, 0) (0, 0, 0, 1) (−1, 0)

Table 4. The four junctions with highest weight of 8v under SO(8).

4.2 Type I∗

n

In this case SG = {π1, π3, π1, π3, π1, π3, π1, . . . , π1} where there are in total n + 6 branes.

When n is even we have:

∆ = zn+6(a2
21(a2

4,2+ n
2

+ P ) +O(z)), (4.18)

while when n is odd we have:

∆ = zn+6(a3
21a

2
3, n+3

2

+O(z)). (4.19)

We consider first the locus where there is matter in vect as required by anomaly

cancellation where a4,2+ n
2

= z = 0 (or a3, n+3

2

= z = 0). The situation is exactly the same

for the cases that n = even or the cases that n = odd therefore for simplicity we consider

the case n = 0. Here we require the gauge group to be SO(8) where we have:

∆ = z6(a2
21(a2

21 + P1)(a2
21 + P2) +O(z)). (4.20)

The matters are localized at z = a2
21 = 0, z = a2

21 + P1 = 0 and z = a2
21 + P2 = 0.

At z = a2
21 = 0 the brane content is

SG + SR = {π1, π3, π1, π3, π1, π3, π1, π1} (4.21)

and we have:

ML =

(

−1 −2

0 −1

)

, ML̄ =

(

−1 2

0 −1

)

. (4.22)

There are four sets of junctions in the representation 8v out of which the junctions with

highest weights are given in table 4.

Upon the reductions given by eq. (4.22) we see that the matter content is 8v +8v which

is the hypermultiplet in 8v of SO(8) as required by 6D anomaly cancellation.

The above lines of computations also apply to the other cases in the I∗

n series. For an

I∗

n fiber at the locus z = a4,2+ n
2

= 0 the brane content is

SG + SR = {π1, π3, π1, π3, π1, π3, π1, . . . , π1, π1, π1} (4.23)

where in SG + SR there are in total n + 5 7-branes with π1 vanishing cycle and the mon-

odromies are:

ML =

(

−1 n− 2

0 −1

)

, ML̄ =

(

−1 n+ 2

0 −1

)

. (4.24)
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Junction SO(8) charge a(J)

(0, 1,−1,−1, 0,−1,−1, 0) (0, 0, 1, 0) (−1,−1)

(0, 1,−1,−1, 0,−1, 0,−1) (0, 0, 1, 0) (−1,−1)

(1, 1, 0, 0, 0, 0, 0, 1) (0, 0, 1, 0) (1, 1)

(1, 1, 0, 0, 0, 0, 1, 0) (0, 0, 1, 0) (1, 1)

Table 5. The four junctions with highest weight of 8s under SO(8).

There are four sets of junctions in vect of SO(2n + 8) out of which there are two

with a(J) = (1, 0) and the other two with a(J) = (−1, 0). Upon the reductions given by

eq. (4.24) the matter content is a hypermultiplet in vect of SO(2n + 8) that meets the

requirement of 6D anomaly cancellation.

The other locus z = a21 = 0 does not always exist for the type of elliptic fibration with

I∗

n fibers considered here. Recall in fact that for I∗

n the Weierstrass model is:

f = −3a2
21z

2 + Fa21z
3 +O(z4),

g = 2a3
21z

3 +Ga2
21z

4 +O(z5),

∆ = z6+n(a2
21Q+O(z)).

When n ≥ 4 the order of vanishing of (f, g,∆) at z = a21 = 0 exceeds (4, 6, 12) and this

situation is beyond the scope of this paper.

When the locus z = a21 = 0 exists in I∗

n fibration, there will be matters in spin of

SO(2n+ 8). We again use SO(8) as an example. In this example the matters are localized

at z = a2
21 + P1 = 0 and z = a2

21 + P2 = 0. At z = a2
21 + P1 = 0 the brane content is:

SG + SR = {π1, π3, π1, π3, π1, π3, π2, π2} (4.25)

and we have:

ML =

(

1 −2

2 −3

)

, ML̄ =

(

−3 2

−2 1

)

. (4.26)

There are four sets of junctions in the representation 8s out of which the junctions with

highest weights are given in table 5.

At z = a2
21 + P3 = 0 the brane content is:

SG + SR = {π1, π3, π1, π3, π1, π3, π3, π3} (4.27)

and we have:

ML =

(

−1 0

2 −1

)

, ML̄ =

(

−1 0

−2 −1

)

. (4.28)

There are four sets of junctions in the representation 8c out of which the junctions with

highest weights are given in table 6.

In both of the above two cases, it is easy to see that upon the reduction of the mon-

odromies given by eq. (4.26) or eq. (4.28), the matter content is a hypermultiplet in either

a hypermultiplet in 8s or a hypermultiplet in 8c which satisfies the requirement of 6D

anomaly cancellation.
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Junction SO(8) charge a(J)

(0, 0, 0, 0, 0,−1, 0, 1) (1, 0, 0, 0) (0,−1)

(0, 0, 0, 0, 0,−1, 1, 0) (1, 0, 0, 0) (0,−1)

(1, 1, 0, 1,−1,−1,−1, 0) (1, 0, 0, 0) (0, 1)

(11, 1, 0, 1,−1,−1, 0,−1) (1, 0, 0, 0) (0, 1)

Table 6. The four junctions with highest weight of 8c under SO(8).

4.3 Type III

The Weierstrass model we are using for type III is:

f = tz,

g = z2
(4.29)

of which the discriminant locus is:

∆ = z3(27z + 4t3). (4.30)

The 7-branes near the point of enhancement z = t = 0 are SG = {π1, π3, π2} and SR =

{π1, π3, π2}. Therefore there is a branching rule at the point of enhancement:

SO(8) → SU(2) :

28 → 3 + 4 × (2 + 2) + 9 × 1 (4.31)

The junctions at the point of enhancement are listed in table 7.

The monodromy matrix ML is that of type I∗

0 , ML =

(

−1 0

0 −1

)

while it is clear that

ML̄ is trivial. The orbits of the asymptotic charges under ML are:

Orbit 1 : (1, 0) → (−1, 0) (4.32)

Orbit 2 : (1, 1) → (−1,−1) (4.33)

Both Orbit 1 and Orbit 2 give 2. Out of the 8 2’s obtained from the branching rule,

there are two of them with a(J) = (1, 0), two of them with a(J) = (−1, 0), two of them

with a(J) = (1, 1) and two of them with a(J) = (−1,−1). The first two sets of junction

are both on Orbit 1, and the latter two sets of junctions are both on Orbit 2. So after

identifying the states via monodromy, there are 4 2’s left which become two 2 full hypers

as required by 6D anomaly cancellation.

4.4 Type IVs

The Weierstrass model we are using for type IVs is:

f = z2,

g = t2z2
(4.34)
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Junction SU(2) charge a(J)

(−1,−1, 0, 0, 0,−1) -1 (−1,−1)

(−1,−1, 0, 1, 1, 0) -1 (−1,−1)

(−1, 0, 0, 0,−1,−1) -1 (−1, 0)

(−1, 0, 0, 1, 0, 0) -1 (−1, 0)

(0,−1,−1,−1, 0, 0) -1 (1, 0)

(0,−1,−1, 0, 1, 1) -1 (1, 0)

(0, 0,−1,−1,−1, 0) -1 (1, 1)

(0, 0,−1, 0, 0, 1) -1 (1, 1)

(0, 0, 1, 0, 0,−1) 1 (−1,−1)

(0, 0, 1, 1, 1, 0) 1 (−1,−1)

(0, 1, 1, 0,−1,−1) 1 (−1, 0)

(0, 1, 1, 1, 0, 0) 1 (−1, 0)

(1, 0, 0,−1, 0, 0) 1 (1, 0)

(1, 0, 0, 0, 1, 1) 1 (1, 0)

(1, 1, 0,−1,−1, 0) 1 (1, 1)

(1, 1, 0, 0, 0, 1) 1 (1, 1)

Table 7. The 16 junctions near the point of enhancement III → I∗

0
. The middle column is the

charge of the state under the Cartan U(1) of SU(2). a(J) is computed with respect to the first

three 7-branes which are the gauge 7-branes.

of which the discriminant locus is:

∆ = z4(4z2 + 27t4). (4.35)

The 7-branes near the point of enhancement z = t = 0 are SG = {π1, π3, π1, π3} and

SR = {π1, π3, π1, π3}. Therefore there is a branching rule at the point of enhancement:

E6 → SU(3) : (4.36)

78 → 8 + 9 × (3 + 3) + 16 × 1 (4.37)

The monodromy matrix ML is that of type IV ∗, ML =

(

0 −1

1 −1

)

while it is clear that

ML̄ is trivial. The orbits of the asymptotic charges under ML are:

Orbit 1 : (1, 0) → (0, 1) → (−1,−1) → (1, 0) (4.38)

Orbit 2 : (−1, 0) → (0,−1) → (1, 1) → (−1, 0) (4.39)

The junctions at the point of enhancement are listed in table 8.
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Junction SU(3) charge a(J)

(−1,−1, 0, 0, 0, 0, 1, 1) (−1, 0) (−1,−1)

(−1,−1, 0, 0, 1, 0, 0, 1) (−1, 0) (−1,−1)

(−1,−1, 0, 0, 1, 1, 0, 0) (−1, 0) (−1,−1)

(−1,−1, 1, 0, 0, 0, 0, 1) (0,−1) (0,−1)

(−1,−1, 1, 0, 0, 1, 0, 0) (0,−1) (0,−1)

(−1,−1, 1, 0, 1, 1,−1, 0) (0,−1) (0,−1)

(−1, 0, 0,−1, 0, 0, 1, 1) (1,−1) (−1,−1)

(−1, 0, 0,−1, 1, 0, 0, 1) (1,−1) (−1,−1)

(−1, 0, 0,−1, 1, 1, 0, 0) (1,−1) (−1,−1)

(−1, 0, 0, 0, 0,−1, 1, 1) (0,−1) (−1, 0)

(−1, 0, 0, 0, 0, 0, 1, 0) (0,−1) (−1, 0)

(−1, 0, 0, 0, 1, 0, 0, 0) (0,−1) (−1, 0)

(0,−1, 0, 0, 0, 0, 0, 1) (−1, 1) (0,−1)

(0,−1, 0, 0, 0, 1, 0, 0) (−1, 1) (0,−1)

(0,−1, 0, 0, 1, 1,−1, 0) (−1, 1) (0,−1)

(0,−1, 1, 1,−1, 0, 0, 0) (−1, 0) (1, 0)

(0,−1, 1, 1, 0, 0,−1, 0) (−1, 0) (1, 0)

(0,−1, 1, 1, 0, 1,−1,−1) (−1, 0) (1, 0)

(0, 0,−1,−1, 0, 0, 1, 1) (0, 1) (−1,−1)

(0, 0,−1,−1, 1, 0, 0, 1) (0, 1) (−1,−1)

(0, 0,−1,−1, 1, 1, 0, 0) (0, 1) (−1,−1)

(0, 0,−1, 0, 0,−1, 1, 1) (−1, 1) (−1, 0)

(0, 0,−1, 0, 0, 0, 1, 0) (−1, 1) (−1, 0)

(0, 0,−1, 0, 1, 0, 0, 0) (−1, 1) (−1, 0)

(0, 0, 0,−1, 0, 0, 0, 1) (1, 0) (0,−1)

(0, 0, 0,−1, 0, 1, 0, 0) (1, 0) (0,−1)

(0, 0, 0,−1, 1, 1,−1, 0) (1, 0) (0,−1)

(0, 0, 0, 1,−1,−1, 1, 0) (−1, 0) (0, 1)

(0, 0, 0, 1, 0,−1, 0, 0) (−1, 0) (0, 1)

(0, 0, 0, 1, 0, 0, 0,−1) (−1, 0) (0, 1)

(0, 0, 1, 0,−1, 0, 0, 0) (1,−1) (1, 0)

(0, 0, 1, 0, 0, 0,−1, 0) (1,−1) (1, 0)

(0, 0, 1, 0, 0, 1,−1,−1) (1,−1) (1, 0)

(0, 0, 1, 1,−1,−1, 0, 0) (0,−1) (1, 1)

(0, 0, 1, 1,−1, 0, 0,−1) (0,−1) (1, 1)

(0, 0, 1, 1, 0, 0,−1,−1) (0,−1) (1, 1)

(0, 1,−1,−1, 0,−1, 1, 1) (1, 0) (−1, 0)

(0, 1,−1,−1, 0, 0, 1, 0) (1, 0) (−1, 0)

(0, 1,−1,−1, 1, 0, 0, 0) (1, 0) (−1, 0)

(0, 1, 0, 0,−1,−1, 1, 0) (1,−1) (0, 1)

(0, 1, 0, 0, 0,−1, 0, 0) (1,−1) (0, 1)
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(0, 1, 0, 0, 0, 0, 0,−1) (1,−1) (0, 1)

(1, 0, 0, 0,−1, 0, 0, 0) (0, 1) (1, 0)

(1, 0, 0, 0, 0, 0,−1, 0) (0, 1) (1, 0)

(1, 0, 0, 0, 0, 1,−1,−1) (0, 1) (1, 0)

(1, 0, 0, 1,−1,−1, 0, 0) (−1, 1) (1, 1)

(1, 0, 0, 1,−1, 0, 0,−1) (−1, 1) (1, 1)

(1, 0, 0, 1, 0, 0,−1,−1) (−1, 1) (1, 1)

(1, 1,−1, 0,−1,−1, 1, 0) (0, 1) (0, 1)

(1, 1,−1, 0, 0,−1, 0, 0) (0, 1) (0, 1)

(1, 1,−1, 0, 0, 0, 0,−1) (0, 1) (0, 1)

(1, 1, 0, 0,−1,−1, 0, 0) (1, 0) (1, 1)

(1, 1, 0, 0,−1, 0, 0,−1) (1, 0) (1, 1)

(1, 1, 0, 0, 0, 0,−1,−1) (1, 0) (1, 1)

Table 8: The 54 junctions near the point of enhancement IVs → IV ∗. The middle column is the

charge of the state under the Cartan U(1)2 of SU(3). a(J) is computed with respect to the first

four 7-branes which are the gauge 7-branes.

Orbit 1 gives 3 and Orbit 2 gives 3. We first consider the 9 3’s. There are three

of them with a(J) = (1, 0), three of them with a(J) = (0, 1) and three of them with

a(J) = (−1,−1). We see that these three sets are all on Orbit 1 so after identifying

states via monodromy, there are 3 3’s left. Next we consider the 9 3’s. There are three

of them with a(J) = (1, 1), three of them with a(J) = (0,−1) and three of them with

a(J) = (−1, 0). We see that these three sets are all on Orbit 2 so after identifying states

via monodromy, there are 3 3’s left. In total there are 3 (3 + 3)’s left which are the three

full hypers required by 6D anomaly cancellation.

4.5 Type IV ∗

s

The Weierstrass model we are using for type IV ∗

s is:

f = z3,

g = t2z4
(4.40)

of which the discriminant locus is:

∆ = z8(4z + 27t4). (4.41)

The 7-branes near the point of enhancement z = t = 0 are

SG = {π1, π3, π1, π3, π1, π3, π1, π3}, SR = {π1, π3, π1, π3}.

We see that there are 12 7-branes at codimension 2. The first eight 7-branes are the E6

gauge branes and the last four 7-branes are the I1’s associated with the solutions of ∆̃ = 0

with respect to g4. Near the enhancement point z = g4 = 0 the geometry is sketched in

figure 8.
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Figure 8. The gauge 7-branes of E6 algebra are on top of each other and denoted by the red line.

The four red lines denote the four I1’s which are obtained from solving the equation ∆̃ = 0 with

respect to g4. The black line segment denotes a disk D that intersects the 12 7-branes.

π1

π3

π3

π1

E6

Figure 9. On disk D there are four I1’s and the E6 gauge branes. The 10 branes enclosed by the

dashed circle are {π1, π3, π1, π3, π1, π3, π1, π3, π1, π3} which are the brane content of an E8 algebra.

We choose a disk D that intersects the 12 7-branes near the enhancement point. On

D the branes can be organized into a set of 10 7-branes that realizes an E8 algebra and

two extra branes π1 and π3 as shown in figure 9.

The branes in figure 8 can then be grouped to form the configuration shown in figure 10.

We can see that because of their asymptotic charges, l1 and l3 can actually be deformed to

junctions that loop around all the 12 7-branes via trivial Hanany-Witten moves since l1 can

be pulled across the branch cut of π1 without creating a new prong and l3 can be pulled

across the branch cut of π3 without creating a new prong. Via Hanany-Witten move we

can show that l1 is equivalent to the junction Q1 = (1, 1, 0, 1,−1, 0,−1,−1, 0,−1, 1, 0), l3 is

equivalent to the junction Q3 = (1, 0, 1, 1, 0, 1,−1, 0,−1,−1, 0,−1) and l2 is equivalent to

the junction Q2 = (2, 1, 1, 2,−1, 1,−2,−1,−1,−2, 1,−1). We can see that Q2 = Q1 +Q3.

Actually, all the junctions lL that loop around all the 12 7-branes of this system is a

superposition of l1 and l3 and its charge QL is a linear combination of Q1 and Q3.
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π1 π3E8

l3

l1

l2

Figure 10. The E8 branes obtained from the grouping together the E6 gauge branes and the extra

π1 and π3 branes are denoted by the big black point. l1 is a junction that loops around the E8

branes and a π3 brane with charge a(l1) = (1, 0). l3 is a junction that loops around the E8 branes

and a π1 brane with charge a(l3) = (0, 1). l2 is a junction that loops around all the 12 7-branes

with charge a(l2) = (1, 1).

The intersection matrix of this system with 12 7-branes is:

I =







































−1 1

2
0 1

2
0 1

2
0 1

2
0 1

2
0 1

2
1
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2
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2
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1

2
0 1

2
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1
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0 −

1

2
0

0 −
1
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0 −

1

2
0 −

1
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2
0 1
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1

2
0 1

2
0 1

2
0 1

2
−1 −

1

2
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1

2
0

0 −
1

2
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1

2
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1

2
0 −

1

2
−1 1

2
0 1

2
1

2
0 1

2
0 1

2
0 1

2
0 1

2
−1 −

1

2
0

0 −
1

2
0 −

1

2
0 −

1

2
0 −

1

2
0 −

1

2
−1 1

2
1

2
0 1

2
0 1

2
0 1

2
0 1

2
0 1

2
−1







































. (4.42)

It is easy to show that with respect to I the self-intersection numbers (l1, l1) = (l2, l2) =

(l3, l3) = 0. The junctions correspond to the simple roots of E8 are:

α1 = (0, 0, 0, 1,−1,−1, 0,−1, 1, 1, 0, 0),

α2 = (0, 0, 0, 0, 0, 0, 0, 1, 0,−1, 0, 0),

α3 = (0, 0, 0, 0, 0, 0, 1, 0,−1, 0, 0, 0),

α4 = (0, 0, 0, 0, 1, 0,−1, 0, 0, 0, 0, 0),

α5 = (0, 0, 1, 0,−1, 0, 0, 0, 0, 0, 0, 0),

α6 = (0, 1,−2,−1, 0,−1, 1, 0, 1, 1, 0, 0),

α7 = (1,−1, 1, 1, 0, 1,−1, 0,−1,−1, 0, 0),

α8 = (0, 0, 0, 0, 0, 1,−1,−1, 1, 0, 0, 0).

It is easy to show that (ai, l1) = (ai, l2) = (ai, l3) = 0. Since any root γ of E8 can be

written as γ =
∑

i aiα1 with (γ, γ) = −2 and any junction lL that loop around all the 12
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7-branes can be written as lL = Al1 + Bl3, we see that (lL, lL) = 0, (γ, lL) = 0 therefore

(γ+nlL, γ+nlL) = −2, where ai, A, B and n are all integers. We denote by Jn the states

γ + nlL. It is obvious that a(Jn) = (0, 0).

Moreover, Sg = {α1, α2, α3, α4, α5, α6, α7, α8, l1, l3} is a set that generates all the junc-

tions with a(J) = (0, 0). So that all the junctions with a(J) = (0, 0) and (J, J) = −2 are of

the form γ+nlL since a(lL) = 0 and (lL, ψ) = 0, ∀ψ ∈ Sg and the only linear combinations

of αi’s such that (
∑

i ciαi,
∑

i ciαi) = −2 and a(
∑

i aiαi) = (0, 0) are the roots of E8, γ.

Now we see that there is an infinite number of states Jn = γ + nlL such that a(Jn) =

(0, 0) and (Jn, Jn) = −2 that are graded by n. For n 6= 0, Jn is a junction that is a

superposition of a junction γ that stretches between E6 gauge branes and the I1 locus

and a junction lL that is a closed string around the 12 7-branes of the system. These

states are not the matters that are localized at the enhancement point at codimension 2

on the base. To extract only the matter content at codimension 2, we need to focus on the

junctions J0, i.e., γ’s that stretch between the E6 gauge branes and the I1 locus without

being superposed with a closed string lL.

Therefore in this system what we actually have is an enhancement from E6 to E8, the

string junctions can be derived via the branching rule:

E8 → E6 : (4.43)

248 → 78 + 3 × (27 + 27) + 8 × 1 (4.44)

The relevant monodromies are:

MLR
=

(

−1 1

−1 0

)

, MLG
=

(

0 −1

1 −1

)

. (4.45)

Therefore we have:

ML =

(

1 0

0 1

)

, ML̄ =

(

−1 1

−1 0

)

(4.46)

We see that ML is trivial and the orbit of ML̄ is:

Orbit :
(1, 0)

(−1, 0)
→

(−1,−1)

(1, 1)
→

(0, 1)

(0,−1)
(4.47)

Out of the three full hypers in 27, one of them is with a(J) = (±1, 0), one the them

with a(J) = ±(1, 1) and one of them with a(J) = (0,±1). We see that all of them are on

the orbit of either ML̄ so they will be identified via the monodromy and there is only one

full hyper in 27 left in the spectrum which is the matter content required by 6D anomaly

cancellation.

4.6 Type III∗

The Weierstrass model we are using for type III∗ is:

f = tz3,

g = z5
(4.48)
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of which the discriminant locus is:

∆ = z9(27z + 4t3). (4.49)

The 7-branes near the point of enhancement z = t = 0 are:

SG = {π1, π3, π1, π3, π1, π3, π1, π3, π1}, SR = {π3, π1, π3}.

By comparing with the result in section 4.5 we see that near the z = t = 0 the brane

content SG + SR is exactly the same as that of type IV ∗. It is clear that the argument

in section 4.5 also holds in this case since it only uses the data of the brane content on

the disk D but not the details of the Weierstrass model. Therefore in this case the gauge

algebra is also effectively enhanced to E8. Hence we have the branching rule:

E8 → E7

248 → 133 + 2 × 56 + 3. (4.50)

The relevant monodromies are:

MLR
=

(

0 1

−1 0

)

, MLG
=

(

0 1

−1 0

)

. (4.51)

Therefore we have:

ML =

(

1 0

0 1

)

, ML̄ =

(

−1 0

0 −1

)

(4.52)

We see that ML is trivial and the orbit of ML̄ is:

Orbit : (0, 1) → (0,−1) → (0, 1). (4.53)

The two 56’s obtained from string junction computation are one with a(J) = (0, 1)

and one with a(J) = (−1, 0). We see that they are on the orbit of ML̄ so they are identified.

We are left with one 56 that forms half hypermultiplet in 56 of E7. This is the matter

content that is required by 6D anomaly cancellation.

4.7 III × III

The Weierstrass model we are using for type III × III is:

f = zt,

g = z2t2
(4.54)

of which the discriminant locus is:

∆ = z3t3(4 + 27zt). (4.55)

The 7-branes near the intersection point z = t = 0 are:

SG = {π1, π3, π2, π1, π3, π2}.
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It is easy to see the branching rule is:

SO(8) → SU(2) × SU(2) :

28 → (3,1) + (1,3) + 4 × (2,2) + 6 × (1,1).

Note that there are two sets of gauge 7-branes SA and SB, therefore we label the asymptotic

charge of the junctions by a(J) = (QA, QB) where QA is the asymptotic charge associated

with SA and QB the asymptotic charge associated with SB.

The 4 (2,2) are respectively with asymptotic charge:

a(J1) = ((1, 0), (−1, 0)),

a(J2) = ((−1, 0), (1, 0)),

a(J3) = ((1, 1), (−1,−1)),

a(J4) = ((−1,−1), (1, 1)).

We have:

ML =

(

−1 0

0 −1

)

, ML̄ =

(

1 0

0 1

)

. (4.56)

Therefore we have J1 → J2 and J3 → J4 under the monodromies ML and ML̄. This gives

rise to one hypermultiplet in the bifundamental representation of SU(2) × SU(2) which

matches the result of 6D anomaly cancellation.

4.8 IVs × IVs

The Weierstrass model we are using for type IVs × IVs is:

f = z2t2,

g = z2t2
(4.57)

of which the discriminant locus is:

∆ = z4t4(27 + 4z2t2). (4.58)

The 7-branes near the intersection point z = t = 0 are:

SG = {π1, π3, π1, π3, π1, π3, π1, π3}.

It is easy to see the branching rule is:

E6 → SU(3) × SU(3) :

78 → (8,1) + (1,8) + 3 × ((3,3) + (3,3)) + 8 × (1,1).

Again there are two sets of gauge 7-branes SA and SB, therefore we label the asymptotic

charge of the junctions by a(J) = (QA, QB) where QA is the asymptotic charge associated

with SA and QB the asymptotic charge associated with SB.
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The 3 (3,3) are respectively with asymptotic charge:

a(J1) = ((1, 0), (−1, 0)),

a(J2) = ((0, 1), (0,−1)),

a(J3) = ((−1,−1), (1, 1)).

And the 3 (3,3) are respectively with asymptotic charge:

a(J4) = ((−1, 0), (1, 0)),

a(J5) = ((0,−1), (0, 1)),

a(J6) = ((1, 1), (−1,−1)).

We have:

ML =

(

0 −1

1 −1

)

, ML̄ =

(

1 0

0 1

)

. (4.59)

Therefore we have J1 → J2 → J3 and J4 → J5 → J6 under the monodromies ML and ML̄.

This gives rise to one hypermultiplet in the bifundamental representation of SU(3)×SU(3)

which matches the result of 6D anomaly cancellation.

4.9 IVs × III

The Weierstrass model we are using for type IVs × III is:

f = zt2,

g = z2t2
(4.60)

of which the discriminant locus is:

∆ = z3t4(4t2 + 27z) (4.61)

We will consider two natural 7-brane systems corresponding to the triple intersection dic-

tated by the discriminant locus. Consider the brane system corresponding to the t-slice:

SGt = {π1, π3, π1, π3, π1, π3, π1, π3}.

The corresponding branching rule at the point of enhancement is:

E6 → SU(3) × SU(2) :

78 → (8,1) + (1,3) + 3 × ((3,2) + (3,2)) + 3 × ((3,1) + (3,1))

+ ((1,2) + (1,2)) + 9 × (1,1)

The monodromy matrix of this system is identical to that of type IVs × IVs,

ML =

(

0 −1

1 −1

)

, ML̄ =

(

1 0

0 1

)

. (4.62)

As in the above, there are two sets of gauge 7-branes SA and SB, but a novelty of

the IVs × III model is that there is an extra I1 brane (or two extra I1 branes as we

– 29 –



J
H
E
P
0
8
(
2
0
2
2
)
1
8
2

will see momentarily) therefore we will label the corresponding asymptotic charges of the

junctions by a(J) = (QA, QB, QI1
) with QA the asymptotic charge with respect to SA, QB

the asymptotic charge with respect to SB and QI1
with respect to the extra I1.

This induces a partition of the set SGt = {SA, SB, I1}, where SA is the first 4 branes

in SGt corresponding to the locus t4 = 0 and the set {SB, I1} denote the intersection of

the SU(2) and I1 seven-brane intersections with the t-slice.

We will consider only the subset of junctions charged under SA and the action of

the monodromy M with respect to the asymptotic charge QA. The 3 (3,1) carry the

asymptotic charges:

a(J1) = ((0, 1)A, (0, 0)B, (0,−1)I1
),

a(J2) = ((−1,−1)A, (1, 1)B, (0, 0)I1
),

a(J3) = ((1, 0)A, (−1, 1)B, (0,−1)I1
).

while the 3 (3,2) carry the asymptotic charges:

a(J4) = ((0, 1)A, (0,−1)B, (0, 0)I1
),

a(J5) = ((−1,−1)A, (1, 0)B, (0, 1)I1
),

a(J6) = ((1, 0)A, (−1, 0)B, (0, 0)I1
).

Therefore we have J1 → J2 → J3 and J4 → J5 → J6 under the monodromies ML

and ML̄. This gives rise to one hypermultiplet in the (3,1) and one hypermultiplet in the

bifundamental representation of SU(3) × SU(2) which matches the result of 6D anomaly

cancellation.

Instead, taking the brane system corresponding to the z-slice, we have the following:

SGz = {π1, π3, π1, π1, π3, π1, π3, π1, π3}.

The corresponding branching rule at the point of enhancement is:

E7 → SU(3) × SU(2) :

133 → (8,1) + (1,3) + 4 × ((3,2) + (3,2)) + 7 × ((3,1) + (3,1))

+ 4 × ((1,2) + (1,2)) + 16 × (1,1)

The monodromy matrix of this system is given by

ML =

(

0 −1

1 0

)

, ML̄ =

(

0 1

−1 0

)

. (4.63)

With notation as in the above, this set of 7-branes is naturally partitioned as SGz =

{SB, SA, I1} where we now have the set {SA, I1} denoting the intersection of the SU(3) and
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2 I1 seven-brane intersections with the z-slice. The 8 (1,2) carry the asymptotic charges:

a(J1) = ((0, 0)B, (0,−1)A, (0, 1)I1
),

a(J2) = ((1, 2)B, (0,−1)A, (−1,−1)I1
),

a(J3) = ((0, 0)B, (−1, 0)A, (1, 0)I1
),

a(J4) = ((1,−1)B, (−1, 0)A, (0, 1)I1
),

a(J5) = ((0, 0)B, (0, 1)A, (0,−1)I1
),

a(J6) = ((−1,−2)B, (0, 1)A, (1, 1)I1
),

a(J7) = ((0, 0)B, (1, 0)A, (−1, 0)I1
),

a(J8) = ((−1, 1)B, (1, 0)A, (0,−1)I1
)

while the 4 (3,2) carry the asymptotic charges:

a(J9) = ((0, 1)B, (0,−1)A, (0, 0)I1
),

a(J10) = ((1, 0)B, (−1, 0)A, (0, 0)I1
),

a(J11) = ((0, 1)B, (1, 0)A, (−1,−1)I1
),

a(J12) = ((−1,−1)B, (0, 1)A, (1, 0)I1
),

Therefore we have {J1, J2} → {J3, J4} → {J5, J6} → {J7, J8} and J9 → J10 → J11 →

J12 under the monodromies ML and ML̄. This gives rise to one hypermultiplet in the (1,2)

and one hypermultiplet in the bifundamental representation of SU(3) × SU(2).

Combining the results from the different slices, we find in total a charged hypermulti-

plet spectrum of (3,2) + (3,1) + (1,2), matching the anomaly cancelling spectrum of [19].

Note that the bifundamental massless spectrum computed from the z-slice is the same state

computed from the t-slice and hence is consistent with expectations.

5 Remarks on localized neutral hypermultiplets

In section 4.1 we noted that our method for the computation of the matter works whether

there exists a smooth or terminal Calabi-Yau minimal resolution, that is, our method is

insensitive to the presence of terminal and not smooth singularities, as we can see from

comparing with [26, 32]. However, we remark that our method, in general, does not

necessarily yield the correct uncharged matter spectrum away from the perturbative limit.

Our theory computes the localized charged matter spectrum at the intersection of

seven-branes. However, localized neutral hypermultiplets may also exist [26]. We would like

to comment on localized neutral hypermultiplets in light of our prescription. In particular,

we will argue that more information must be added to our prescription to account for the

appearance of localized neutral hypermultiplets.

In [26], the physical significance of non-crepant resolvable singularities on an elliptically

fibered Calabi-Yau threefold X was investigated from the perspective of a 6d F-theory

compactification. The central result asserts that after passing to a Q-factorial terminal
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model X̂ → X, the total number of localized, massless neutral hypermultiplets on the

resulting M-theory Coulomb branch is given by the sum

n0
H =

∑

P

mP

over singular points of X̂ where mP is the Milnor number. Moreover, this proposal was

demonstrated to be consistent with 6d gravitational anomaly cancellation and naturally

appears as a summand of the total space of complex structure deformations of X̂.

To demonstrate that our prescription is insensitive to the presence of localized neutral

hypermultiplets, we will focus on the examples explored in ([26], section 5.1). Consider a

type III-model with the following tunings:

f = z1f0, g = z
µg

1 g0 for µg ≥ 2, ∆ = z3
1(4f3

0 + 27z
2µg−3
1 g2

0)

As demonstrated in loc cit., for µg = 2, 3, the model admits a crepant resolution, while for

µg ≥ 4, the partial resolution exhibits a terminal hypersurface singularity. In particular, for

µg = 4, 5, 7, the isolated singularity results in the milnor numbers µ = 1, 2, 4 respectively.

On the other hand, our prescription applied to the type III model in section 4.3, is

insensitive to higher order terms in z1 in the residual discriminant. In particular, our pro-

posed brane content, monodromies, and calculation of junction states would yield precisely

the same matter content in any of the above tuned models as in the generic case with

µg = 2.

Therefore, we conclude that our prescription is incomplete in accounting for localized

neutral matter, and we leave this avenue of investigation for future work.
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