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1 Introduction

The landscape of M-theory [1–5] and F-theory [6–9] compactifications gives rise to the
largest class of four-dimensional N =  1 string vacua to date. Despite strong coupling effects in
general, a supergravity approximation is valid in the large volume limit of a compact
background geometry of special holonomy. Additional non-perturbative effects can then
be captured by appropriate branes wrapping various cycles, which may or may not be
calibrated. Altogether, there is a tight link between the low energy supersymmetric effective
physics in four dimensions and the geometry of high-dimensional Ricci flat manifolds.

Nevertheless, our understanding of M-theory compactifications on G2-manifolds stands
in stark contrast to F-theory compactifications on elliptic Calabi-Yau fourfolds. For one,
we have no fundamental description of M-theory, while F-theory can certainly be defined as
type I I B  supergravity with a gauged SL(2, Z) duality group, and with background D 3 and
(p, q) 7-branes. In such a vein, we have no similar understanding of the duality group
in
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M-theory; the type I IB  supergravity action can be written in a manifestly SL(2, Z)-covariant
fashion, while a similar property is not known for eleven-dimensional supergravity. Finally,
we only have a preliminary understanding of weak coupling limits in M-theory on compact
G2-manifolds [10], while there is a systematic understanding in a special class of F-theory
compactifications via the Sen limit, which allows us to check various computations with
those of perturbative type I I B  string theory.

Our understanding of the respective geometries is plagued with a similar dichotomy.
Despite the lack of an explicit bound and a classification, the birational geometry of elliptic
Calabi-Yau fourfolds is relatively well-understood via the minimal model program. In
particular, working within the category of algebraic varieties gives us a precise control
of the Kähler cone and more refined linear and homological structures beyond just the
cohomology of the underlying topological space. On the other hand, the state-of-the-art
results for the geometry of compact G2-manifolds pale in comparison, primarily due to
the lack of analogous algebraic techniques. There is no analogous classification program,
finiteness bounds on the cohomology, or a wealth of constructions with singularities of
varying co-dimension. Similarly, there are no clear finiteness and polyhedral conjectures for
the G2 analog of the Kähler cone, part of which can be attributed to the fact that calibrated
submanifolds do not necessarily stay calibrated upon deformations in G2-moduli space.

This state of affairs provides an excellent arena for physical insight to inform the
geometry of compact G2-manifolds. Some of the most exciting questions involve physical
structures that have historically been surprising in the geometry of Calabi-Yau threefolds,
namely, the complexification of G2-moduli space and the realization of singularities leading to
non-abelian gauge dynamics and chiral matter. Such a line of inquiry has proven to be fruitful;
for example, the authors in [11] conjectured an analogue of the Kähler cone for compact G2-
manifolds and a general scheme to realize singularities leading to SU(2)-gauge enhancements
based on general, physical grounds. Conversely, recent substantial progress on constructions
of new compact G2-manifolds, such as the twisted connected sum construction [12–14],
presents a concrete setting to interpret the corresponding physics [11, 15, 16] and to test
new conjectures [17]. For M-theory compactified on a specific class of twisted connected
sum G2-manifolds, [18] established a detailed chain of dualities relating the effective physics
with that of F-theory compactified on a class of elliptic Calabi-Yau fourfolds.

This duality provides a natural playground to explore the G2-analogues of well-
understood F-theory phenomena and leads us to the main subject of our paper: how do the
D3-brane dynamics and SL(2, Z)-monodromies dualize to the geometry of G2-manifolds?
Emboldened by this global duality with F-theory, we will conjecture an extrapolation of
the M-theory dual results of the local D3-brane dynamics to the global compactification,
which we would normally be somewhat more hesitant to do based on the complexities of
the gravitational couplings.

1.1 Summary of results

Given an M-theory compactification on a G2-manifold X ,  we wish to identify codimension-2
singular loci in the complexified moduli space and their associated monodromy action on
charged states of the theory. To  perform this analysis explicitly, we specialize to the
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chain of dualities in [18] and identify the M-theory duals of D3-brane monodromies around 7-
branes. Such M-theory models are realized by a twisted connected sum (Z± , ϕ),  with
asymptotically cylindrical ends Z ±  and gluing ϕ, with each factor additionally admitting an
elliptic fibration. One factor, Z�, is fixed in all models and the associated K3-fibration
contains 12 reducible K3-fibers. The singular loci we study corresponds to the contraction of
each of these 12 components to a point, and we study the precise correspondence with the
dual D3-brane physics.

Our main results and organization are as follows:

1. In section 2, we review the twisted connected sum construction and the chain
of dualities established in [18]. Specifically, we describe explicitly a class of G2-
compactifications with a Higgsable En-gauge symmetry dual to an F-theory model
with base P1 ´  P1 with an E n  7-brane stack.

2. In section 3, we focus on a single building block Z�, which will give one half of the
twisted connected sums in all our models. This will be the relevant half for the D3-
brane dynamics, and we explain in detail the existence of a contraction of a reducible
component in the reducible K3-fibers in Z�.

3. In sections 4.1 and 4.2, we review the global and local aspects of the M-theory
compactification. We demonstrate that in a local limit, the results of [18] reduces
to the two dual realizations of the coulomb branch of the S 1 reduction of the 5d E n

S C F T  via the moduli of a D3-brane in F-theory and via type I I A  compactified on a
local C Y 3 with a shrinking generalized del Pezzo surface. We identify the limit of
a D3-brane colliding with an E n  7-brane stack with the limit where one of the 12
reducible components contracts to a point.

4. Section 4.3 serves as our main result. We review the correspondence between
the lattice of 3 � 7 string states on a D3-probe with the integral cohomology of a
del Pezzo surface. We utilize this correspondence to conjecture the M-theory dual
of the monodromy action of a D3-probe traversing around an E n  7-brane stack and
conjecture the generalization to the global compactification.

5. In section 4.4, we remark and demonstrate that the N =  2 to N =  1 breaking via the
finite Kovalevton is induced by a D-term breaking.

6. In section 4.5, we comment on the generalization of our proposal to the case of multiple
coincident D3-branes.

We believe that our results in section 4.3 should hold for any G2-manifold M ® S 3

fibered by K3-surfaces and exhibiting a semi-stable degeneration at various points in the
base. In the corresponding M-theory compactification, we may consider the physics in
the vicinity of a contractible component of a reducible K3-fiber, which is isomorphic to a
local neighborhood of a del Pezzo surface dPn . Our results in section 4.3 carry over in the
local physics, and while we used the duality with the D3-brane physics in F-theory to justify
lifting the monodromy to the global compactification, we believe that this should be more
general.
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2 Twisted connected sums and a chain of dualities

In this section we will review basic mathematical and physical facts that will be useful in our
construction. In section 2.1 we will review the twisted connected sum (TCS)  construction of
G2 manifold. In section 2.2 we will review the chain of dualities that will be important for
our discussion in the following sections and the construction of a special class of T C S  G2

manifolds which we will be our main focus. In particular we will review how non-Abelian
gauge symmetries arise in this class of geometries. In section 2.3 we will review a duality
between M-theory on the product of S 1 and a local C Y 3  and D3-brane probing 7-branes
which will be important for our later discussions.

2.1 Twisted connected sum construction and the Kovalev limit

In this section we review the basics of twisted connected sum ( T C S )  construction of G2

manifolds and introduce the notion of Kovalev limit where both the geometry and the
physics simplify.

Denote by Z ±  two threefolds admit the K3-fibration structure

K 3  ,® Z ±  ��® P1

with first Chern class c1 (Z± )  =  [S± ]  where [S± ]  is the class of the generic K 3  fiber. The
threefolds Z ±  are called building blocks. We require H 3 ( Z ± , Z )  be torsion-free. Consider
the following map

ρ±  : H 2 ( Z ± , Z )  ® H 2 (S 0 ± , Z )  =  Λ  º  U Å3 Å (�E8 )Å2

induced as the natural restriction maps, where S 0 ±  is a generic smooth K 3  fiber over a
point p0± Î P1 base of Z ± .  We further require N ±  =  im(ρ± ) Ì H 2 (S 0 ± , Z )  be primitive in
H 2 (S0 ± ) ,  i.e., Λ /N ±  is torsion-free and T±  =  N ^  Ì Λ.

From Z ±  we construct two asymptotically cylindrical C Y 3  (aCyl)

X ±  =  Z± \S0±

which asymptotes to S ±  ´  [0, T ] ´  Sb ± .  A  G2 manifold can then be obtained by gluing X ±

´  S e ±  via the T C S  construction. In these asymptotic regions X ±  ´  S e ±  are glued via
identifying S e ±  with Sb� while the asymptotic K 3  fibers are mapped to each other by the
following hyperkähler rotation called Donaldson matching

g� : ω S ±  « Re(ΩS�) g�

: I m (Ω S ± )  « �I m(ΩS�)

where ω is the Kähler form and Ω =  Re(Ω) +  i I m(Ω) is the holomorphic two-form of the K 3
fiber. We will be mainly focusing on the so-called orthogonal matching satisfying the
following condition

N ±  Ä R =  ( N ±  Ä R) Ç (N� Ä R) Å ( N ±  Ä R Ç T� Ä R).
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A  typical example of orthogonal matching is given by the following lattices

T +  =  E 8  Å E 8  Å U2 Å U3

T� =  U1 Å U2

N +  =  U1

N� =  E 8  Å E 8  Å U3
(2.1)

where we see that in particular N +  Ç N� =  0.
For physical applications, in particular in order to read off the spectrum it is important

to know the cohomology of the T C S  G2 manifold M and it was given as follows [14]

H 1 (M , Z) =0 ,

H 2 (M , Z) = N +  Ç N� Å K +  Å K �,

H 3 (M , Z) = Z [ S ]  Å Γ3 ,1 9 /(N+  +  N�) Å (N� Ç T+ )  Å ( N +  Ç T�)

Å H 3 ( Z + )  Å K +  Å H 3 (Z�)  Å K �, (2.2)

H 4 (M , Z) = H 4 ( S )  Å (T+  Ç T�) Å Γ3,19 /(N� +  T+ )  Å Γ3 ,1 9 /(N+  +  T�)

Å H 3 ( Z + )  Å K �  Å H 3 (Z�)  Å K �  ,

H 5 (M , Z) =Γ3 ,1 9 /(T+  +  T�) Å K +  Å K + .

where K ±  =  ker (ρ± )/[S± ]. For a T C S  G2 with an orthogonal matching of the type described in
eq. (2.1) the U(1)’s arise from H 2 (M , Z) =  K +  Å K �  and we will see in section 2.2 that for
the class of T C S  G2 manifolds studied in this work we have |K �|  =  12 therefore there are
always 12 U(1)’s arising from the Z �  building block.

From any C Y 3  X  with holomorphic 3-form Ω and Kähler form ω we can construct
X  ´  S 1 with the torsion-free G2 structure

Φ =  γdθ Ù ω +  Re(Ω), ?Φ =  
2
ω Ù ω � γdθ Ù Im(Ω) (2.3)

where dθ is the one-form on S 1 . Following the recipe given by Kovalev [19] one can give a
G2-structure ΦM to M by writing down the interpolating G2-structures on X ±  ´  S 1 . For
our purpose we will be interested in studying the so-called Kovalev limit where T ® ¥  in
which limit one expects the two sectors whose spectrum correspond to K ±  exhibit N =
2 SUS Y  as the associated geometries become X ±  ´  S 1 [16]. Indeed from eq. (2.2), one
can see that the N =  1 vector multiplets from K ±  Ì H 2 (M , Z) and the N =  1 chiral
multiplets from K ±  Ì H 3 (M , Z)  combine into N =  2 vector multiplets in 4D in the
Kovalev limit. We will see in section 4.4 that the partial breaking from N =  2 to N =
1 by turning on large but finite T is given by a D-term SUSY breaking mechanism at the
leading order and the N =  2 dynamics is exact when T ® ¥  which matches the
expectation that the G2 holonomy of M reduces to the SU(3) holonomy of X ±  ´  S 1 in the
Kovalev limit.

2.2 A  global M/F-theory duality

In this work we will focus on a special class of T C S  G2 manifolds whose building blocks Z ±

are both K 3  and elliptically fibered. The building blocks Z ±  are constructed from
Weierstrass models over P1 ´  P1 as follows:

y2 =  x3 +  f8,4(z, z)w4 +  g12,6(z, z)w6 (2.4)
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where [y : x  : w] are the coordinates of P2,3,1 and f8,4 and g12,6 are polynomials of the
indicated degrees in the coordinates [z1 : z2] ´ [z1 : z2] of P1 ´ P1 . It is then not hard to see
that Z ±  is an elliptic K 3  fibration over P1. For the building block Z +  we take f8,4 and g12,8 to
be generic at this stage which can be described as a hypersurface in the toric ambient space
with the following weight system

y     x      w     z1       z2       z1       z2        P
3      2      1       0       0       0       0       6
6      4      0       1       1       0       0      12
3      2      0       0       0       1       1       6

where the last column indicates the degrees of the defining polynomial. This weight system
will be useful when we construct concrete toric models for the building block in section 3.2.
Note that for generic Z +  there is no non-abelian gauge theory in the 4D effective theory
obtained from M-theory on X  [18], we will discuss how to achieve non-abelian gauge theory
in a moment.

For the building block Z �  we use K 3  surfaces in the family with N  =  U Å E Å2 as
fibers. More concretely for Z �  we specialize the defining Weierstrass model to be

f8,4(z, z) =  z1 z2 f0,4(z, z),

g12,6(z, z) =  z1z2 g2,6(z, z),

Δ24,12(z, z) =  z10z10Δ4,12(z, z).

We see immediately that Z �  supports E 8  ́ E 8  singularity along two non-intersecting divisors z1

=  0 and z2 =  0 and the E 8  singularity worsens at 12 double points z1 =  g2,6 =  0 and z2 =
g2,6 =  0. For our purpose the following topological numbers will also be useful [18]:

h11(Z�) =  31, h21(Z�) =  20, |N�| =  18, |K �|  =  12.

For M-theory compactified a T C S  G2 with the building blocks ( Z + , Z �)  constructed
in this way (with generic Z + ) ,  it was argued in [18] that there exists a dual F-theory
compactification on an elliptic Calabi-Yau fourfold Y with 12 spacetime-filling D3-branes
and trivial G4-flux where Y can be described as a complete intersection in an toric ambient
space with the following weight system

y     x      w     y     x      w     z1       z2       z1       z2        W      W
3      2      1      0      0      0       0       0       0       0        6        0
0      0      0      3      2      1       0       0       0       0        0        6
6      4      0      0      0      0       1       1       0       0       12       0
3      2      0      3      2      0       0       0       1       1        6        6

More concretely the defining polynomials in the ambient space are

W =  �y2 +  x3 +  f4 (z )xw4 +  g6(z)w6,

W =  �y2 +  x3 +  f8,4(z, z)xw4 +  f12,6(z, z)w6.

– 6 –
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Note that the defining polynomial W of Y is very similar to the defining polynomial of Z + .
In fact Y can be viewed as the fiber product

Y =  Z +  ´ P 1  dP9

where the common P1 is the one with coordinates [z1 : z2] and the elliptic fibration structure
of dP9 is described by W =  0. The main claim of [18] can thus be summarized as follows.

Conjecture 2.2.1. The following physical theories are equivalent.

•  M-theory on X .

•  F-theory on Y with G4 =  0 and 12 D3-branes.

On the M-theory side a non-abelian gauge algebra can be achieved by tuning the
Weierstrass model of Z + .  In particular we consider a resolution of a tuning of Z +  with the
following specializations

f8,4(z, ẑ) =  z1 f4,4, g12,6(z, ẑ) =  z1g7,6, Δ24,12 =  z10Δ14,12 (2.5)

which we denote by Z E 8 .  This realizes a K3-fibration where each K 3-fiber contains an E 8

lattice of (�2) curves. The corresponding lattices (compare with T + , N +  in eq. (2.1) in the
generic case) are

TE 8  =  E 8  Å U2 Å U3 N E 8  =  E 8  Å U1

We assume the existence of a hyperkähler rotation identifying the E8-lattice in N E 8  with an
E8-summand of N� in (2.1) yielding a smooth G2-manifold X E 8 .  Moreover, we consider the
singular, unresolved limit of Z E 8 ,  which we denote by ZE8 ,sing and we assume that this
singular limit is compatible with the matching. In particular, this limit forces the collapse of an
E 8  lattice of (�2)-curves in Z �  [18]. We denote the corresponding singular G2-manifold by
XE8 ,sing .

Conjecture 2.2.2. M-theory on XE 8 ,s ing is dual to F-theory on the product ZE8 ,sing ´ P 1

dP9 . In particular, the corresponding low energy effective theory exhibits a Higgsable E 8

gauge symmetry.

The generalization to other gauge symmetries is straightforward. One may simply higgs
the E8-symmetry on the F-theory side which yields a deformation of the singularity on Z E 8 ,
and we assume that this is compatible with the T C S  matching.

2.3 A  local duality

Besides the duality between M-theory on compact M and F-theory on compact Y with 12
D3-branes, we will also be working with its local version. As having been discussed in
section 2.1, at the Kovalev limit (and the large volume limit) the physics becomes N =  2 as
the two building blocks decouple and we will focus on the 4D N =  2 sector obtained by M-
theory compactification on Z �  ́  S 1. In particular we will study the local physics at one of the
12 double points where the E 8  singularity in Z �  worsens.
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It is easy to observe from the defining Weierstrass model of Z �  that at such a point
where the E 8  singularity worsens, one actually has an E 8  � I1  type singularity whose
resolution leads to a compact shrinkable surface V � dPn [20–22]. We will postpone the
detailed analysis of the geometry of Z �  and V until section 3 and focus on the physical
duality in this section.

In the vicinity of such an E 8  � I1  point the sevenfold Z �  ́  S 1 can be approximated
by X V  ´  S 1 where X V  is a local C Y 3  with a compact shrinkable surface V . M-theory
on X V  ´  S 1 leads to a 4D N =  2 theory which will be denoted by TV which is the circle
reduction of a 5D N =  1 theory obtained by M-theory on X V  . For V � dP n this 5D N =  1
theory is well-known to be the 5D rank-1 E n  theory [23, 24]. Hence TV is a 4D rank-1
theory with K K  modes from the circle reduction.

For our purpose it is important to realize TV can also be engineered as the worldvolume
theory of a D3-brane probing an affine 7-brane background. In fact it was conjectured in
[19, 25, 26] that M-theory on X V  ´  S 1 with V � dPn is dual to D3-brane probing E n  7-
branes. It was also argued in [27, 28] that TV can be viewed as D3-brane probing the
Coulomb branch of the 5D rank-1 E n  theory on R4 ´  S 1 where it is clear that the extra 7-
brane that is responsible for the enhancement from E n  to E n  is due to appearance of the K K
modes in the circle reduction.

To  summarize, the following (local) duality will be very useful in our subsequent
discussions

M-theory on X V  �dPn  ´  S 1 ¬® D3-brane probing E n  7-branes

3 Geometry of Z �

As pointed out in section 2 and as will be discuss further in section 4, much of the D3-brane
physics will be entirely encoded in the M-theory dual via the building block Z�. In this
section, we will discuss in detail the geometry of Z�, exhibit a particular birational model as
a hypersurface in a toric variety, and discuss a physically relevant limit in the Kähler
moduli space of Z�.

In section 3.1 we discuss the structure of the reducible K 3  fiber and general aspects of
the geometry of the building block Z�. In particular, we point out how the geometry of
the reducible fibers encodes the structure of an SU(2) gauge enhancement, in agreement
with the results of [11]. In section 3.2, we discuss a particular birational model of Z �  as
a hypersurface in a toric variety. In section 3.3, we discuss a particular realization of the
contraction of a component of a reducible K3-fiber.

3.1 Geometry of the reducible K 3  fibers

In this section, we specialize to the case relevant for our M-theory compactification, specifi-
cally to the K3-fibration Z �  ® P1 ´ P1 given in section 2.2. More precisely, we will carefully
analyze the geometry of building blocks birational to Z�, one of which will be reviewed at
length in section 3.2. In particular, we discuss the structure of natural 5-cycle fibrations in Z�

´  S 1 , reminiscent of the general ansatz realized in [11].
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V1
E C2

S C1 F1      F2

V2 F8

F3      F4      F5      F6      F7

E 8  � I1
P1

Figure 1. The geometry of Z �  with k =  1 and V2 =  gdP8. We have C1   C1  =  C2   C2  =  �1 and F i

F i  =  �2.

Many such building blocks share the following properties, as first discussed in [18].
Recall that at the 12 double points z1,2 =  g2,6(z, ẑ) =  0 of P1, the base of the singular
threefold, the singularity worsens due to the E 8  � I1  intersection. After a sequence of
resolutions, the generic K 3  fiber degenerates into V1 È E  V2, consisting of two rational elliptic
surfaces V1 and V2 intersecting along an elliptic curve [29–31] over the E 8  � I1  point.

In general, we will work with birational models where the reducible components V1, V2

are generalized del Pezzo surfaces, denoted gdPn and gdP18�n respectively. These are
similar to del Pezzo surfaces, where n denotes the number of blowups of P2, but will contain
(�2)-curves in general. One can flop out a (�1)-curve in gdPn to obtain gdPn�1 [8].
In our case flopping (�1)-curves out of V2 k times will lead to the degenerate K 3
geometry which we denote heuristically by gdP9+k È E  gdP9�k . The (�1)-curve C i  Ì Vi

that can be flopped is a rational curve, i.e. a P1, and therefore, by the degree-genus
formula we have K V i  Vi  C i  =  �1. Thus we have the intersection E  Vi  C i  =  1 in all
flopped phases since E  Î | � K V i |  by [32, Lemma 1.7]. The geometry of Z �  is illustrated in
figure 1, where for simplicity, we have made a flop of the (�1)-curve into the k =  1 phase
and made further flops so that V2 =  gdP8. The (�2)-curves are denoted by F i  and
intersect along a Dynkin diagram as illustrated, in general.
As discussed in section 2.2 and in [18], the K  lattice of Z �  is of rank 12, i.e. |K ( Z �) |  =  12. These

come from the 12 reducible K3-fibers, each of which consists of 2 reducible components,
arising as in the previous paragraph. Moreover, by a direct computation, one can verify the
following intersection relations:

[V1] +  [V2] =  [S ], [C1]  [V2] =  [C2]  [V1] =  �[Ci ]  [Vi] =  1 (3.1)

and [Ci ] and [Vi] are Poincaré dual classes in H �(Z�, Z).
From equation (2.2), we deduce that the homology classes of Vi yield non-trivial classes

[Vi ´ S 1 ]  Î H 5 ( X , Z )  and that the homology classes of C i  yield non-trivial classes [Ci  ´ S 1 ]  Î
H 2 (X , Z ) .  Moreover, their intersection products can be computed away from a general
K3-fiber, and we conclude that the canonical pairing H 5 ( X , Z )  ́ H 2 ( X , Z )  ® Z  induced by
Poincarè duality with respect to this basis is nothing by the identity matrix. In section 4,
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we will apply these geometric statements to the resulting M-theory compactifications. In
analyzing the effective physics, it is convenient and sometimes critical, that the homology
classes have calibrated representatives. Thus, we will assume this and note that such an
assumption is well supported by existing evidence in the physics literature.

In [11], a general pattern of SU(2) gauge enhancements in M-theory compactified on a
G2-manifold M was conjectured and studied in a number of examples. In general, a U(1)
gauge field is obtained in four dimensions via reduction of the C3-field along a 2-form which
is Poincarè dual to an integral 5-cycle Σ 5  Ì M . A  main result of [11] was that Σ 5  should
in general admit a fibration by 2-spheres over a 3-cycle [DΣ 5 ]  =  �[Σ5 Ç Σ5 ], which was
called the Joyce class. Physically, M2-branes wrapped on the fibral 2-spheres correspond
to W-bosons on the Coulomb branch of the SU(2) gauge theory which is realized in turn,
by collapsing the 2-spheres to zero volume. In particular, the U(1) gauge coupling is given
by the scaling g2 � v ol (D

 
) .

In light of such a general physical ansatz, we will demonstrate how the corresponding
fibration structure is realized in our setup. We first recall the geometry of the irreducible
component V2 '  dPn as a fibration over P1 [33]. The simplest example of such varieties is
P1 ´  P1 parameterized by homogenous coordinates ([x : y], [s : t]) where a general
anticanonical divisor �K  can be written explicitly as

F �K  : (a1s2 +  a2st +  a3t2)x2 +  (a4s2 +  a5st +  a6t2)xy +  (a7s2 +  a8st +  a9t2)y2 =  0

In the above form, it is convenient to view the coordinates [s, t] as parametrizing the base P1,
and the coordinates [x, y] as parametrizing the fibral P1. Fixing a point [s0, t0], the fiber
intersected with the subvariety F �K  yields

c1s0 +  c2s0t0 +  c3t0 =  0 (3.2)

which generically gives two points in the fibral P1 and one non-reduced point when the
above equation degenerates. Thus, we see that the elliptic curve E  Î O (�K )  can be viewed as
a ramified double covering over the base P1 branched at the points where eq. (3.2)
degenerates.

A  similar picture holds for any del Pezzo surface dPn . Let h denote the pullback of the
hyperplane class from P2, and ei the exceptional divisors. Fixing an exceptional divisor ei,
the linear system h � ei yields a map dPn ® P1, where we denote the class of the fiber P1

by F  =  h � ei. The anti-canonical divisor is then given by

�K  =  3h � 
X  

ei.
i = 1

Moreover, the fiber class F  satisfies F   F  =  0 with genus g (F )  =  0, and hence �K   F  =  2.
This can be interpreted as the elliptic curve E  in the anticanonical class �K  intersecting
each fibral P1 at two points. As a result, E  can be viewed as a ramified double covering
over the base P1. Moreover, we have �K   ej =  1 for each (�1)-curve P1 in the class ej .
Therefore at the n � 1 points of the base P1 where the fiber P1 becomes reducible, i.e.,
becomes P1 È P1 where one P1 is in the class ej and the other P1 is in the class F  � ej , E
intersects each P1 at one point. The geometry of V2 is illustrated in figure 2.
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Ñ = .

F F  � ei ei

h

Figure 2. The geometry of V2. The P1’s are labeled by their classes in V2. The dots are the
intersection points of E  Î O (�K )  with the fibral P1’s in different classes.

From our discussions above, we have a P1-fibration Vi =  gdPn ® P1. Taking the
product Vi ´  S 1 ® P1 ´  S 1, we immediately conclude that the 5-cycle Vi ´  S 1 should be
identified with the 5-cycle in the general setting of [11]. In addition, the base P1 ´ S 1  should be
identified with the Joyce class D Σ 5 ,  and M2-branes wrapping the fibral P1’s should
correspond to the W-bosons. On the other hand, we have that the equalities

�[Σ5 Ç Σ5 ] =  �[Vi Ç Vi ´  S 1 ] =  �[KV i  ´  S1],

which follows from the intersection relations of (3.1). In particular, this is distinctly different
from the base P1 ´  S 1 of the fibration of the integral cycle Vi ´  S 1. The resolution1 is that a
general member of the anti-canonical class �K V i  is an elliptic curve which is a double cover
of the base P1 ´  S 1, ramified at four points. In particular, the volumes

vol(P1 ´  S 1 ) =  vol(�KVi  ´  S 1 )

should be identified, and hence correspond to the same gauge couplings.

3.2 A n  example

In this section, we discuss an explicit construction of a building block realizing Z �  as a
hypersurface in a toric variety. This example was used in the general construction in [18], and we
will follow the discussion in [34].2 The ambient toric variety of the singular Weierstrass
elliptic fibration with an E  ´  E  singularity is given by the following polytope

�
�1 0 2 2 2 0 

�

� 0 �1 3 3 3 0 �
sing � 0 0 �1 1 0 0 � 0

0 0 0 1 �1

whose columns correspond to the rays vx , vy, vz1 , vz2 , vẑ  , vẑ      where each ray is labeled by
its corresponding toric coordinate. The polytope in the M lattice is given by

�
�2 1 1 1 1 1 

�

� 1 1 1 1 1 �1�
� 0 1 1 �1 �1 0 � 0

0 �6 0 �6 0
1We thank Dave Morrison for discussions regarding this point.
2We are grateful to Andreas Braun for sharing initial notes which included discussions on this example.
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The hypersurface equation of Z�,sing in the toric ambient space X Δ s i n g  associated with the
polytope Δsing is given by

0 =  
X  

cmẑhm,vẑ2 i Y
rhm,vr i+1 .

mÎÑ                          vr ÎΔ s i n g

The singular variety Z�,sing can be resolved by adding rays to Δsing to obtain a new
polytope Δ  whose vertices are listed in following matrix

�
�1 0 2 2 2 0 

� 
� 0

�1 3 3 3 0 � � 0
0 �6 6 0 0 �

0 0 0 0 1 �1

Among the rays that are needed to desingularize Z�,sing, the two rays vza =  (0, 0, 1, 0) and vzb

=  (0, 0, �1, 0) are more iinteresting than the others for our purpose. For simplicity we
could consider the partial resolution of Z�,sing by adding only vza and vzb to Δ .  The
hypersurface equation of this partially resolved variety in the toric ambient space is

zazbP (x, y, z, ẑ) =  zaP12,6(z, ẑ) +  zb P12,6(z, ẑ) (3.3)

where P12,6(z, ẑ) are degree 12 in z and degree 6 in ẑ. Since vza and vzb are never in the
same 4D cone of a triangulation of Δ  with additional vza and vzb , in the above hypersurface
equation we will never have za =  0 and zb =  0 simultaneously, neither do the pairs (z1, z2),
(z1, za) or (z2, zb) as can be seen from the triangulation of the toric fan.

Away from the roots of P12,6(z, ẑ) =  0 on P1 eq. (3.3) becomes

zazbP =  C1za +  C2zb

where C1  and C2  are non-zero complex numbers. It is easy to see that over these points the
both {za =  0} and {zb =  0} are empty due to the SR ideal. The K 3  fiber over generic point of
P1 is thus irreducible.

The geometry is quite different over points that are solutions to P12,6(z, ẑ) =  0 on P1.
As the labels a are b are symmetric we focus on the solutions of P12,6(z, ẑ) =  0 denoted by
ẑa. Generically P b 

,6(z, ẑa) =  0. It is easy to see that zb =  0 over ẑa Î P1 as zb =  0 will
necessarily require za =  0 which violates the SR ideal. Therefore over ẑa we have

0 =  za     P  � zaP12,6     .

Thus the K 3  fiber over ẑa splits to two irreducible components {za =  0} and {P �
zaP12,6 =  0}. It is easy to see that the component {za =  0} is toric while the component {P
� zaP12,6 =  0} is not, hence the volume of {za =  0} can be controlled by blowing-up or down
the toric divisor vza . This component is nothing but V1 defined in section 3. Note that the
above arguments hold under the exchange of labels a and b as well.
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3.3 Contraction of a reducible component

One of the critical physical limits that we will discuss in section 4 will be realized geometri-
cally by the contraction of a component of a reducible K 3-fiber in a birational model of Z�.
Thus, it is essential to provide an explicit model of Z �  in which we can realize this limit
through either a birational contraction, or through a limit in the Kähler cone.

Instead of studying an explicit birational contraction of a del Pezzo surface, dPn , in a
semistable degeneration of K3-surfaces, we will study limits in the Kähler cone contracting
dPn to a point. Let π : Y ® B  be a semi-stable degeneration of K3-surfaces with central
fiber Y0 =  π�1(0). By [32], we may assume that Y0 is a strict normal crossings of generalized del
Pezzo surfaces, V1 =  gdPn and V2 =  gdP18�n with n <  9, intersecting along an elliptic curve
contained in the anti-canonical class of both surfaces. We denote by K ( Y )  the Kähler cone of
Y . The main goal of this section is to discuss the following claim, and we defer the
full proof to appendix A

Lemma 3.3.1. There exists a projective model of Y and a Kähler class J  Î K ( Y )  satisfying
the following conditions:

1. J 2   V1 =  0.

2. J 3  =  0.

3. J 2   C1  =  0 for C1  Ì V1 a (�2) curve.

4. If J 2   C2  =  0 with C2  Ì V2 a (�2) curve, then V1  C2  =  0.

We briefly discuss the physics related to the conditions in Lemma 3.3.1. Assume that
Y is a semi-Fano building block for a G2-manifold in the sense of [13, 14]. Assuming that
Lemma 3.3.1 holds for such a model, we expect that such a limit in Kähler moduli space
also exists for the associated asymptotically cylindrical Calabi-Yau threefold Z .  In the
context of type I I A  compactified on Z ,  a Kähler class satisfying conditions (1) and (2)
contracts a surface component V1 =  gdPn , preserving the overall dimension of Z ,  realizing
a 5d S C F T .  As J  satisfies condition (3), the S C F T  has at least an E n  flavor symmetry,
and by condition (4), the flavor symmetry is precisely given by E n .

In appendix A,  we will produce an explicit semi-Fano building block satisfying
Lemma 3.3.1. Such a model will be a minor modification of the example in section 3.2,
and for now, we will discuss the critical aspects as well as an equivalent formulation of the
conditions in Lemma 3.3.1. As discussed, the central fiber Y0 consists of V1, V2 intersecting
along an elliptic curve. Moreover, we note that there are n and 18 � n (�2) curves in
V1 and V2 respectively, which are joined by two (�1) curves distributed between the two
components and intersecting along a point. In appendix A, we will find a toric realization
of such a diagram and flop structure.

Let X  be the ambient toric variety and Y Ì X  the class of the semi-Fano building
block. Let V 0 be a toric divisor such that V1 Ç V 0|Y and V2 Ç V 0|Y be the two mentioned
(�1)-curves. We note that it suffices to check the following four conditions.

1. J   V1  V2  Y =  0
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2. J 3   Y =  0

3. J   V1  V 0  Y =  0

4. J   V2  V 0  Y =  0

Indeed, the first and second are completely equivalent to the respective first and second
conditions in Lemma 3.3.1. The third guarantees that the (�2)-curves in V1 cannot be
flopped into V2 and hence must be contracted in the limit as V1 contracts to a point. The
final condition guarantees that there cannot be additional (�2)-curves in V2 that can be
flopped into V1 before contracting.

4 Duals of D3-branes in G2-compactifications

This section comprises the main results of the paper. In section 4.1 we make some general
remarks regarding the D3-brane physics dual to M-theory on M constructed in section 2.2
and global aspects of the G2-comapctification. In section 4.2, we formulate our conjectural
singular limit. In particular, we discuss the D3-brane position moduli with respect to the 7-
branes to support our conjecture. Moreover, we study the consistency of our proposal with
the expected field theory arising in the Kovalev limit. In section 4.3, we discuss the
corresponding SL(2, Z )-monodromy actions in both the local and global settings. In
section 4.4 we study the breaking of N =  2 supersymmetry to N =  1 induced by the
Kovalevton. In section 4.5 we discuss the physics of multiple D3-branes on top of each other.

4.1 General remarks

Consider M-theory on a twisted connected sum G2-manifold M that has an F-theory dual, as
in the context of sections 2.2 and 2.3. In the context of conjecture 2.2.1, our main goal is to
identify the M-theory dual of the D3-brane sector and the limit when the D3-brane collides
with various 7-brane stacks. In this section, we make several remarks on our compact
G2-manifold M .

Recall that M admits a twisted connected sum decomposition into asymptotically
cylindrical Calabi-Yau threefolds Z ± ,  which were defined in section 2.2. The geometry of
Z �  was studied at length in section 3 and its critical property was that it admits a K3-
fibration with 12 reducible K3-fibers Si .  Moreover, this determines the structure of the 2 and
5-cycles in M ; indeed, we always have

H 2 (M ; Z) =  H 5 (M ; Z) =  12

for any variation of the building block Z +  [18]. We first argue that the D3-brane sector is
controlled precisely by Z�, justifying our analysis in section 3. Recall that there are 12
spacetime filling D3-branes in F-theory required by tadpole cancellation. These source 12
U(1)’s which are dual to the 12 U(1) gauge fields A i  in M-theory arising from Kaluza-Klein
reduction of the M-theory C3-field

C3  =  A i  Ù ωi +  θ j  Ù Φ j (4.1)
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In the above, ωi are the integral 2-forms Poincarè dual to the 5-cycles Vi =  S i  ´  S 1 Ì
Z�  Ì Y [18], and θi and Φ i are 4-dimensional pseudo-scalars and integral 3-forms on M ,
respectively. We note that the Vi’s are precisely the 5-cycles from the reducible fibers
discussed in the previous section. Heuristically, this implies that the D3-brane physics
should be dictated by the geometry of Z�, while other aspects of the F-theory physics
directly depends on the geometry of Z +  by definition of the F-theory Calabi-Yau fourfold
as Y =  Z +  ´ b  dP9. Thus in section 4.2, we will focus on the M-theory physics associated
with Z �  using the discussion in section 3 in the Kovalev limit.

In M-theory on M , there are also additional nonperturbative states described by M2
and M5-branes wrapping 2 and 5-cycles, respectively. From the worldvolume action of an
M2-brane wrapping a curve C  Ì M

Z Z Z
SM 2 =             C3  =              ωi        A i

C ´ R 1 i  C R1

the resulting state in four dimensions has charge 
R 
ωi =  [C ] Z�  [Vi] under the ith U(1) gauge

field Ai .  Similarly, as discussed in [35], an M5-brane wrapping Vi ´  S 1 n-times has charge n
under the gauge field dual to the ith U(1) in four dimensions. From (3.1), we take a basis of
H 2 (M , Z)  generated by a component Vi ´  S 1 of each of the 12 reducible K3-fibers, and a
basis of H 5 (M , Z)  generated by the 12 (�1)-flopping curves C i  Ì Vi. Summarizing, an M2-
brane wrapping C i  has electric charge �δ i j  under A j ,  while an M5-brane wrapping Vi ´  S 1

has magnetic charge δ i j  under A j .
We now review the possible singular limits that can be achieved on M . As summarized

in section 2.2, we can achieve non-abelian gauge symmetry by tuning A D E  singularities in
every K 3-fiber on the K3-fibration of M . Concretely, this can be achieved by engineering
Z +  with K3-fibers carrying a Picard lattice N +  Ç N� of (�2)-curves such that under the
Donaldson matching, we have the condition

N +  Ç N� =  0

To  see this, note that for a curve C  Î N +  Ç N� we have the equalities
Z Z

ω = Re(Ω  )  =  0
C                      C

where the first equality follows from the Donaldson matching, and the vanishing follows by
Poincarè duality as Ω is a (2, 0)-form and C  is dual to a (1, 1)-form. In particular, from such a
gluing, every curve in N +  Ç N� must be of zero volume in every K 3-fiber of M and hence M
cannot be resolved via deformations preserving the twisted connected sum condition.

As in section 2.2, we can tune an E8-gauge symmetry on M by engineering Z +  with
an E8-singularity in every K3-fiber, and having the condition N +  Ç N� =  E8 . Also, there
is a Dynkin diagram of (�2)-curves in each of the 12 reducible K3-fibers, and such a gluing
automatically contracts an E 8  lattice worth of (�2)-curves in each of the 12 components.
Similarly, one can tune an arbitrary A D E  gauge symmetry via an analogous method, and
in the subsequent section, we will describe a further limit of such models realizing the rank-1
superconformal theories with E n  flavor symmetry in the M-theory compactification on M .

– 15 –



J
H
E
P
0
4
(
2
0
2
3
)
0
8
9

1
1

4.2 D3-brane moduli and the singular limit

In this section we study the physics of the geometry described in section 3.1 and our
proposed singular limit. As discussed in section 4.1, we may reduce to a local limit of
conjecture 2.2.1 and 2.2.2. On the M-theory side, we will restrict to a local neighborhood, X V

, of Z �  around a single component of the 12 reducible K3-fibers in Z�. On the F-theory side,
we will restrict to a local neighborhood of a single D3-brane probe in the base P1 ´ dP9  of the
elliptic fibration Y =  Z +  ´ P 1  dP9.

The corresponding physics can be described as follows. In the Kovalev limit, the G2

geometry on one side asymptotes to Z �  ́  S 1 and thus, one can first consider M-theory
compactified on Z �  with a further reduction of that 5D N =  1 theory on an S 1 . The
resulting 4D N =  2 theory, after restricting to the local neighborhood X V  and decoupling the
tower of massive Kaluza-Klein modes, can naturally be viewed as type I I A  compactified on X V

, which is dual to the worldvolume theory of a single spacetime-filling D3-brane in a 7-brane
background in type I I B  [19, 36]. On the M-theory side, the effective physics is an N =  2
U(1)-gauge theory, where the U(1) gauge field is sourced by an integral 2-form dual to the
unique compact surface V Ì X V  . Similarly, the worldvolume theory of the D3-probe is also
an N =  2 U(1) gauge theory in the vicinity of a 7-brane stack.

To  engineer more interesting theories, we will consider singular limits, as discussed in the
previous subsection. For concreteness, we will assume that the F-theory geometry Y carries
an E 8  7-brane stack, while in the M-theory dual, there is an E 8  Dynkin diagram of (�2)-
curves in V =  gdP 8 calibrated to zero volume. Our central claim, which holds for arbitrary
E n  7-brane stacks, is that the limit of the D3-brane colliding with the E 8  7-brane stack is
precisely the limit in the M-theory dual when the compact surface component V =  gdP 8
is calibrated to zero volume, which can be done by the results of appendix A.  Indeed,
the limiting D3-brane theory is well known to be the rank 1 E 8  Minahan-Nemeschansky
theory, which coincides with the M-theory dual limit of contracting V by the results of [22–
24, 37, 38]. In the rest of this section, we will explore in more detail aspects of this field
theory duality, as well as the natural lift to the duality between the two compact geometries.

Away from the singular limit, M-theory on X g d P n  ´  S 1 is well-known to correspond to
the Coulomb branch of the S1-reduced 5d N =  1 E n  theory [27, 28, 39]. All such theories
are of rank 1, which coincides with the D3-brane having a 1-dimensional modulus normal to
the 7-brane stack. Moreover, the singularities of the Coulomb branch correspond precisely to
an E n  stack of 7-branes and an additional I1  associated with the Kaluza-Klein modes from
the S1-reduction in the background of the probe D3-brane [19, 26]. Mass deformations can be
realized as birational transformations of the geometry Xg d P n ,  which correspond in the
latter case, to deformations of the background 7-branes. Finally, as pointed out in section
3, we note that the generalized del Pezzo surface admits a reducible P1-fibration
gdPn ® P1. M2-branes wrapped on the P1-fibers yield W-bosons and their massless limit
yields an SU(2) gauge theory with N f  =  n �1 flavors with bare gauge coupling g2 � vol(P

 
)

scaling inversely with the volume of the base. Similarly, we note that decoupling an I1-fiber
from the E n  7-brane stack yields an identical SU(2) gauge theory phase.

Our discussion elided a subtlety regarding the gauge coupling in the singular limit. The
gauge coupling in the F-theory frame is dictated by the complex structure of the elliptic
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curve fibered over the point in the base. In particular, for n ³  6, the coupling should
approach a fixed point of the SL(2, Z) E n  monodromy matrix, and is a constant value. On
the other hand, in the M-theory frame, the singular limit of gdPn contracted to a point
clearly sends vol(P1) ® 0 and hence the bare coupling to infinity for any n. For a more
precise analysis, we note that the rates of vanishing of vol(gdPn) and vol(C ) play a critical
role [40], where C  Ì gdPn is a curve. In five dimensions, we have [24, 33, 40, 41]

φD  � φ2

where φD  � vol(V2), φ � vol(C ). Hence we have

τ =  ∂φφD �  ® 0.

On the other hand, in four dimenisons the scaling is modified by worldsheet instanton
corrections to φD  � φ and hence τ =  ∂φφD � const. [40]. For n £  5, the scaling g2 ® ¥  is
SL(2, Z)  equivalent to 0, which is consistent with the fact that the E n  theories are all
infrared free. This is particularly clear in the F-theory frame, where all the relevant 7-brane
stacks are perturbative.

Finally, we compare and verify the matching of BPS states between the two field theories
in the local limit. We will be content with matching several lower spin states, and in the
subsequent section, we will describe a more general correspondence between 3 � 7 string
states and the integral cohomology of the del Pezzo surface. One can then match the BPS
spectrum of the matters, in particular the electrically charged states. As we have argued in
section 3.1, an M2-brane wrapping a curve C2  will become an electrically charged BPS state
under the U(1) dual to [Σ5 ]. On the other hand, the E 8  Dynkin diagram inside the surface
V2 '  gdP8 gives rise to the (massive) flavor symmetry of the low energy theory on the
D3-brane probe and the weight of the M2-brane wrapping mode on C2  is (1, 0, 0, 0, 0, 0, 0, 0)
which is the highest weight of 248 of E8 . Therefore in the dual F-theory picture on
the D3-brane we expect to obtain (massive) spin 0 states (1, 248) of U(1) ´  E 8  from the
3–7
strings which are the dual objects of M2-brane wrapping the curves C spin 0 =  C2  + i  a i F i

that satisfy the condition C spin 0 
V2 C spin 0 =  �1 and g(C spin 0) =  0 [22]. Moreover one can

consider the curves C spin 1 with C spin 1 
V2 C spin 1 =  0 and g(C spin 1) =  0 which are the spin 1

BPS states. In particular the (0)-curve that corresponds to the highest weight state
(0, 0, 0, 0, 0, 0, 1, 0) of 3875 of E 8  is [22] (see figure 1)

C spin 1 =  2C2 +  2F1 +  2F2 +  2F3 +  2F4 +  2F5 +  F6  +  F8 .

Recall that due to the matching condition the curves in Z �  in the E 8  lattice in V2

(see figure 1) are forced to shrink to zero volume in which case the E 8  symmetry becomes
massless. In the limit vol(C2) =  0 both the spin 0 states (1, 248) and the spin 1 states
(1, 3875) become massless. If we further let vol(V2) =  0 there will be extra magnetically
charged state under the U(1) dual to [Σ5 ]. This suggests that in the limit vol(V2) =  0 what we
actually have is an S C F T .  Note that the electrically charged massless states (1, 248) and
(1, 3875) non-trivially show up in the BPS spectrum of 4D MN E 8  theory [42]. Indeed one can
compute the BPS states with higher spin and genus along the same line and match
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those with the string junctions computed in the dual picture in [42]. Therefore it is tempting
to conjecture that the 4D MN E 8  theory is realized on the D3-brane world volume in the
limit V2 shrinking to a point where all M2-/M5-brane wrapping modes become massless.
Hence we conjecture

Conjecture 4.2.1. The transverse distance between the D3-brane probe and the E n  7-branes
is proportional to vol(V2) in the local C Y 3  X .

Having formulated the above conjecture in the Kovalev limit, we generalize the argu-
ments to the cases with finite Kovalevton and are led to our main conjecture:

Conjecture 4.2.2. The following theories are equivalent:

•  M-theory on XE n ,s ing  in the limit that a surface S i  Ì XE n ,s ing  is contracted.

•  F-theory on Y E n  with G4 =  0 and a single D3-brane on the E n  singular locus on the base.

The above conjecture is a natural N =  1 generalization of the duality between N =  2
theories from I I A  on X �  and from the 3/7 system described by the mirror of X�.  In
particular, the strongly coupled nature of the singular limit is consistent with the fact that we
have both M2 and M5-branes wrapping 2 and 5-cycles, and hence electric and magnetic
states becoming simultaneously massless.

4.3 Lo cal and global S L ( 2 ,  Z)-monodromies

In the previous subsection, we conjectured the singular limit of M-theory on the compact
G2-manifold X  dual to the limit of the D3-brane colliding with an E n  7-brane stack. The
goal of this section is to explore the SL(2, Z)-monodromy acting on the BPS states induced by
circling this singular limit, which we first discuss in the local case of the 4d N =  2 theory
supported on a D3-brane in the vicinity of a 7-brane stack and its M-theory dual, and then
we extrapolate to the global compactification. We first review the correspondence between
these BPS states and the K-theory of a corresponding del Pezzo surface, and note that the
action induced by a loop around all 7-branes is realized in K-theory by a tensor product
with the canonical bundle. Finally we conjecture a lift of this action to the ambient G2-
manifold. Our discussion parallels and builds on the results of [25], though we mostly follow
the notation and results of [43].

Let π : Y ® Δ  be a local elliptic fibration over a disc Δ ,  with fixed base point p Î ∂ Δ
and C  =  π�1(p), containing an E n  7-brane stack, together with an extra I1 . This implies,

in particular, that the total monodromy is M =       
1 n � 9 

. Let X  É dPn be a local

Calabi-Yau threefold containing a del Pezzo surface dPn which is contractible to a point.
As discussed in the previous subsections, there is an identification between the 4d N =  2
theory on a D3-brane probing the E n  7-brane stack in B  with the 4d N =  2 theory obtained
from type I I A  compactified on X .  The lattice of B P S  states on the D3-brane is described
by the relative homology group H2 (Y , C ; Z)  together with a pairing, which we take to be
an integral modification of the pairing defined in [44–47]. Fixing a basis {v1, . . . , vn+3} of
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(p, q) 7-branes for the E n  7-brane stack, we define the pairing on the basis of 3 � 7 strings
as follows: �

! ! �qipj � pi qj if i  <  j
h i , j      i = 1 if i  =  j

i j �0 if i  >  j

which extends to the full lattice by linearity. Finally, we recall that there is an asymptotic
charge map a(J ) :  H2 (Y , C ; Z)  ® H 1 (C ; Z )  taking a junction J  to the sum of its 7-brane
charges.

The correspondence at the level of the B P S  states can be summarized by the follow-
ing diagram:

H2 (Y , C ; Z)

Knum (dPn )

a ( J )       
H 1 (C ; Z )

(4.2)

i�
K nu m (E )

where i : E  ,®� dPn is the is the inclusion of an elliptic curve, contained in the anti-canonical
class, into dPn . Roughly speaking, the Grothendieck group K 0 ( X )  for X ,  a smooth projective
variety, is the class [F ] of all coherent sheaves F  on X  modulo the relation [F ] =  [E ]  +
[G], if there is an exact sequence E  ® F  ® G  of coherent sheaves on X .  The
numerical Grothendieck group K nu m ( X )  is then defined as the Grothendieck group modulo
the kernel of the Euler pairing χ(�, �) which is defined as χ ( E , F )  = (�1) i dim(E xti (E , F )).

The critical property for our purposes is that K n u m ( X )  is a finite rank lattice, with a
canonical pairing given by the Euler pairing. In our case, one may think of Knum (dPn ) and
K nu m (E )  as simply, the graded integral cohomology rings H �(dPn ; Z)  and H �( E ; Z )  with
the usual pairing of cycles. In particular, Knum (dPn ) is a lattice of rank n + 3, in agreement
with the total number of (p, q) 7-branes.

We now discuss the induced SL(2, Z)-monodromy on both sides. In the F-theory frame,
there is a natural duality induced on the D3-probe by traversing a loop around all (p, q)
7-branes in the base Δ .  Such a loop induces a natural action on the relative homology group
H2 (Y , C ; Z)  via Hanany-Witten moves. As an example, assume that H2 (Y , C ; Z)  =  hv1, v2i
with (p, q)-charges (p1, q1) and (p2, q2) respectively. Then such a loop induces the actions

v2 ® v2 � hv1, v2iv1 v1 ® v1 +  hv1, v2iv2

® v1 +  (hv1, v2i(v2 � hv1, v2iv1)

We remark that critically, the junction pairing is preserved if and only if the D3-brane
traverses a loop around all the 7-branes. In particular, the monodromy induces a duality
of the theory only under such a loop. Indeed, this is consistent with the general strategy
employed in [48, 49] where the precise flavor symmetry and matter spectrum on the D3-
probe was identified by truncating the naive spectrum by a self-duality under a loop around
all the 7-branes in a local neighborhood.

By analyzing diagram (4.2), we should obtain an analogous automorphism of the lattice
Knum (dPn ) preserving the Euler pairing. We claim that such an action is simply induced
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by Serre duality via the tensor product with the canonical bundle:

Knum (dPn ) ® Knum (dPn )

[E ]  ® [ E  Ä ωdPn ]

We will check that such an action induces precisely the total monodromy M =
1 n � 9

!

after pullback to K nu m (E )  via diagram (4.2). Indeed, Knu m (E )  is generated by the classes
[OE ], [Op], i.e. the structure sheaf and a skyscraper sheaf, respectively. In terms of the total
integral cohomology ring H �(E ; Z ) ,  these correspond to the fundamental class and the class of
a point, generating H 0 ( E ; Z )  and H 2 (E ; Z ) ,  respectively.

We will compute the restriction of the classes [OdPn ], [ω�1 ] to K nu m (E )  before
and after the action, and demonstrate that it coincides with the above monodromy.
For simplicity, we work with the corresponding classes in cohomology, which corre-
spond to (1, 0, 0), (1, �KdPn , 2 K 2

P  )  Î H �(dPn ; Z)  respectively. Restricting to E ,  these
yield the classes (1, 0), (1, 9 � n) respectively, where for example, the divisor �K d P n

restricts to 9 � n points on E . On the other hand, the tensor product with ωdPn

yields the classes [ωdPn ], [OdPn ] Î Knum (dPn )  corresponding to the cohomology classes
(1, KdP n ,  1 K d P  ), (1, 0, 0) Î H �(dPn ; Z)  respectively. Restricting to E ,  these yield the
classes (1, n � 9), (1, 0) respectively. Thus, the corresponding action is given by the matrix

n � 9 1 
, which is nothing but our claimed matrix after a change of basis.

From the above two paragraphs, we have found that the monodromy induced by a
D3-probe traversing a loop around all 7-branes is dual to the monodromy action

H �(dPn ; Z)  ® H �(dPn ; Z)

(d4, d2, d0) ® (d4 , d4 KdPn  +  d2, d0 +  d2 Kd P n  +  
2

d4 KdP n )

Our notation reflects the fact that these classes correspond precisely to the D0, D2, and
D4-brane charges in type I I A  on the local Calabi-Yau threefold X .

It is now straightforward to conjecture a generalization of this formula to M-theory on
a twisted connected sum G2-manifold M . Assume that X  is an asymptotically cylindrical
Calabi-Yau threefold with a contractible del Pezzo surface dPn . In the context of the duality
of M-theory on C Y 3 ´ S 1  with type I I A  on C Y 3, an M2-brane wrapped on a 2-cycle in C Y 3
corresponds to a D2-brane wrapped state, and an M5-brane wrapped on a 5-cycle D  ´  S 1

corresponds to a D4-brane wrapped on D .  Thus, we conjecture that the corresponding
monodromy acting on a linear combination of states from an M2-brane wrapping a curve
C  Ì dPn and an M5-brane wrapping dPn ´  S 1 is simply given by the following

H 2 (M ; Z) Å H 5 (M ; Z) ® H 2 (M ; Z) Å H 5 (M ; Z)

(m5, m2) ® (m5 , m5 KdPn  +  m2)
(4.3)

where by m5 KdP n ,  we mean an integer multiple of the 2-cycle K d P n ,  which is the inclusion
of the class of the canonical divisor K d P n  Ì dPn into M .
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As discussed in section 4.1, the compact G2-manifold M satisfies H 2 ( X , Z )  =
H 5 ( X , Z )  =  12 with a rather simple basis for the intersection pairing. Given an element
(m5, m2) Î H 2 ( X , Z )  Å H 5 ( X , Z )  with an expansion

m5 =  
X  

ai[Vi ´  S1],
i

where Vi =  dPn with n £  9, is a fixed component of the ith reducible K 3  fiber, the electric
and magnetic charges, ei, di under the ith U(1) dual to Vi ´  S 1 is given by m2  Vi and ai

respectively. From equation (4.3), the monodromy associated with circling the singular
limit associated with contracting the ith reducible component thus acts as

ei =  m2  Vi ® ei =  m2  Vi +  (9 � n)ai di

=  ai ® di =  ai

where we have used that K d P n   Vi =  9 � n.

(4.4)

4.4 Breaking N  =  2 to N  =  1

Though in the Kovalev limit the low energy effective theory can be well approximated by N
=  2 theory obtained from compactification of M-theory on X �  ́  S 1 , the 4D theory is
actually N =  1 for any finite Kovalevton. It is useful to investigate the SUS Y  breaking
mechanism in this process.

In this section for simplicity we consider the case where the 4D theory is described by
a Lagrangian. We consider a smooth T C S  G2 manifold M with building blocks ( Z + , Z �)
whose G2-structure Φ can be expanded as

[Φ] =  
X  

S i [ρ(3) ]

where [ρ(3)] Î H 3 (M, Z). Upon compactification the three-form field C3  can be expanded as

C3  =  
X  

A I  Ù ω (2) +  
X  

P iρ(3)

I i

where ω (2) Î H 2 (M, Z). In this notation the scalar component of the 4D chiral multiplet is
φi =  �P i +  i S i  [16].

The non-gravitational part of the 4D Lagrangian is

LN G  =  
2
κ I J k  S k F I  Ù ?4 F J  � P k F I  Ù F J

 
� 

2λ 
λ i j  dS i  Ù ?4 dS j +  dP i Ù ?4dP j

(4.5)
where

Z
κ I J k  = ω (2) Ù ω (2) Ù ρ(3),

Z
λ i j  =  

Z X  
ρ(3) Ù ?g(Φ)ρ

(3),

λ0 =  
X  
Φ Ù ?g(Φ)Φ.
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The bosonic part of the chiral multiplet sector of LN G  is

LN G,s  =  �
2λ0 

λ i j  ∂μS i∂μS j +  ∂μP i∂μP j
 
=

�
2λ0 

λij∂μφi∂μφj ,

and the bosonic part of the gauge sector of LN G  is

LN G,g =  
1
κ I J k  S k F I

ν F J,μν  � P k F I  Ù F J

=  
2
κ I J k  Im(φk )F I

ν F J,μν  +  Re(φ k )F I  Ù F J
 
.

Therefore, up to an overall 1/2 factor, LN G  can be written as

LN G  =  � i j  ∂μφi∂μφj � κ i j k Im(φk )F i
ν F j,μν +  κ i j k Re(φk )F i  Ù F j (4.6)

Recall that for any N =  2 gauge theory the bosonic part of the Lagrangian can be
written in the following form [50]:

L =  �Imτ i j  ∂μφi∂μφi +  F i
ν F j,μν

 
+  Reτ i j F I  Ù F J .

Therefore for LN G,g to be N =  2 supersymmetric we must have:

τ i j  =  φk κ i j k

and

Hence we require

Im(τ i j ) =  S k κ i j k  =  �
λ i j  .

S k κ i j k  =  �
λ i j  . (4.7)

Therefore for the K ±  sector in the Kovalev limit we expect the following relation to hold
on X ±  ´  S ±  where X ±  =  Z± \S± :

R (3) (3)

S k      

X ± ´ S 1  
ω (2) Ù ω (2) Ù ρ(3) =  �P

a , b  S

X

S

´ S

X ± ´ S ±  
ρ(3) Ù ?g(Φ)ρ

(3) (4.8)

since in the Kovalev limit one gets N =  2 SUS Y  on X ±  ´  S ±  [16]. In the Kovalev limit we
can also set the dimensionless volume λ0 =  1, i.e., set vol(X )  at its reference volume given
by the moduli S i  Î K ±  at their V E Vs  (eq. (2.25) in [16]) since the Kolevton moduli T
decouples. With these simplifications to show that the system is N =  2 we need to show that
S k κ i j k  =  �λ i j .

Hence we will focus on the term
Z

ρab =  
X ± ´ S ±  

ρ(3) Ù ?g(Φ)ρ
(3)
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where ρ(3) =  ω (2) Ù dt where t parameterizes S ± .  In the Kovalev limit the metric of X ±  ´ S ±
factorizes as

g(Φ) =  g ( X ± )  ´  g (S± ) .

Now we have

ρab =  
Z X ± ´ S 1  

ω (2) Ù dt Ù ?g ( X ± ) ´ g ( S 1  )  ω
(2) Ù dt

=  ω (2) Ù ?g (X ± )ω
(2)

±

With a suitable coordinate transformation of the vector space H �( X ± , Z )  we have the
following expansion [51]:

?g (X ± )ω
(2)  =  �ω (2) Ù J  +  

3
2

R
X 

ω
J  Ù J  Ù J

J  
J  Ù J , (4.9)

where J  is the Kähler form of X ±  and in the Kovalev limit we have (cf. eq. (2.3))

Φ =  �J  Ù dt +  Re(Ω) =  
X  

S iρ (3)

where Ω is the holomorphic 3-form of X and dt is the 1-form of S 1. Thus the non-vanishing
part of ω (2) Ù J  can be written as

ω (2) Ù J  =  �S kω (2) Ù ω (2)

where ω (2) Î K ±  and the lift of ω (2) Ù dt is in H 3 (X ) .  Therefore in the limit vol(X± )  ® ¥
and thus the second term of equation (4.9) vanishes, we have

Z

X ± ´ S 1  
ρ(3) Ù ?g(Φ)ρ

(3) =  �S k κ i j k .

Hence the r.h.s. of eq. (4.7) becomes (with λ0 set to 1)

�λ i j  =  �ρ i j  =  S k κ i j k

which is equal to the l.h.s. Thus we see that N =  2 SUSY holds on X ±  ´ S ±  at the Kovalev
limit.

To  show that LN G  is broken from N =  2 to N =  1 it is sufficient to show that for finite
Kovalevton

S k κ i j k  =  � i j (4.10)

for any finite T .
First we focus on the l.h.s. of eq. (4.10). In general we have

Z
S k κ = ω (2) Ù ω (2) Ù [Φ]

X ± ´ S ±
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and we will focus on the term
Z

κ i j [ S ]  =  
X ± ´ S ±  

ω (2) Ù ω (2) Ù [S ],

where [S ] is the Poincarè dual to the class of the K3-fiber.
We can write the integral κ i j [ S ]  in terms of an intersection in X

κ i j [ S ]  =  Wi X  Wj X  W[S ]

where W[S ] is the homology class corresponds to the K 3  fiber S  and Wi is the 5-cycles dual
to ω ( i) . After restricted to the K ±  sector we can write the above intersection as

κ i j [ S ]  =  Wi X ± ´ S ±  
Wj X ± ´ S ±  

W[S ]

where Wi is the 4-cycle that is the image of Wi under π : X  ® Z ± .  Recall that Z ±  is a K 3
fibration of S  therefore

κ i j [ S ]  =  Wi S  Wj (4.11)

where Wi is the pullback of Wi under the inclusion π : S  ,®� Z ± .
Recall that we have the map

ρ±  : H 2 ( Z ± , Z )  ® H 2 ( S ± , Z )

which, with Poincaré duality, becomes

ρ±  : H 4 ( Z ± , Z )  ® H 2 (S± , Z ) .

As ω (2) Î kerρ±, its Poincare dual Wi Î kerρ± and ρ±  is nothing but the pushforward of π.
Therefore in eq. (4.11), Wi’s are trivial 2-cycles on S  hence κ i j [ S ]  =  0.

The above calculation shows that S k κ i j k ,  i.e., Im(φk κ i j k ) receives no contribution from
the moduli [S ], hence the Kovalevton. Hence we would expect the gauge sector in eq. (4.6):

LA =  �Im(τ i j )F i
ν F j,μν

depends only on the data of the compact sector k±  Ì X ±  and does not depend on the
Kovalevton T .

It then remains to show that the r.h.s. of eq. (4.10) depends on T for any finite value
of T which is actually obvious since λ0 depends on all the moduli of Y , in particular T , as
given by the following equation (eq. (2.25) and (3.25) in [16]):

λ0 � VK 3 (2T +  F (S ))  +  O(e�T )

where F (S )  is a function of the moduli S  other than Kovalevton and an overall volume
modulus R  and VK 3  is the volume of the K 3  fiber. We see that λ i j /λ0  is inevitably a
function of T when the correction is not suppressed for finite T . This T dependence breaks the
equality of eq. (4.10) away from the Kovalev limit as now λ0 =  λ0 (T ) hence breaks the N =  2
SUSY of the X ±  sector at the Kovalev limit as well. In particular we see that in the
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gauge theory sector it is a D-term breaking mechanism at the leading order as it changes
the kinetic coupling of the original N =  2 theory.

Certainly the above Lagrangian approach does not apply to strongly coupled physics
where a Lagrangian description is missing but one can still assume the theory is partially
broken by deforming the original N =  2 theory by certain operator in a similar manner
described in [52]. Note that all the discussions in this section are based on the G2 geometry
hence is on the M-theory side of the duality chain. It is interesting to study the dual of
this partial breaking mechanism in the 3/7 system and we will leave this to future study.
Here we conjecture the N =  2 SUSY in the 3/7 system might be broken by the coupling to
gravity for finite Kovalevton.

4.5 Multiple D3-branes

In this section we discuss the physics of multiple D3-branes on top of each other near the 7-
branes. On the dual F-theory side the physics is quite clear. When n D3-brane are on top
of each other the world volume gauge theory is enhanced to SU(n). The W-bosons that are
necessary for such enhancement are the 3–3 strings stretching between the D3-branes that
become massless in the limit when they coincide.

On the M-theory side the picture is more interesting. Recall that generically there
are 12 distinct double points on P1 Ì Z �  where the K 3  fiber S i  becomes reducible, i.e.,
S i  =  V i  È E  V i , i  =  1,  , 12. As the generic geometry is conjectured to dual to a single D3-
brane probing 7-branes, we would naturally look at the geometry when some of the 12
double points coincide on P1. We assume there are n coincident double points at p
Î P1 Ì Z�. Above p the K 3  fiber Sp becomes reducible and is again Kulikov type I I.
We have

Sp =  V0 ÈC 0 , 1  V1 ÈC1 , 2  V2 ÈC2 , 3   ÈC n �1 , n  Vn (4.12)

where all C i , i + 1  are elliptic curves sharing the same complex structure which we denote by
E .  Moreover V0 and Vn are rational and the other Vi’s are ruled over E .

The ruled surfaces Vi provide good examples of the conjecture in [11] as those Vi’s
admit a fibration structure P1 ,® Vi ® E .  After some birational modifications one can
assume the elliptic ruled surfaces Vi are minimal and can be contracted along the rulings
where E  is the sections [32]. This geometry is now readily recognized as the an An�1 surface
singularity over E .  The geometry of Sp is illustrated in figure 3. M2-branes wrapping Ci ’s in
figure 3 will furnish the W-bosons for the enhancement to SU(n).

Again it is illuminating to take the Kovalev limit. The local physics becomes M-theory
on X  ´ S 1  where X  is a local C Y 3  with a compact surface Sp . In the limit of collapsing Vi’s
to E  (except for V0 and Vn ), the W-bosons obtained by M2-brane wrapping Ci ’s become
massless therefore the gauge group is enhanced to SU(n). In the dual picture we expect
the 3–3 strings become massless to achieve the same gauge enhancement. Moreover in the
M-theory picture we expect there to be an adjoint hyper multiplet since the base of the
fibration is a genus one curve [41]. Therefore the low energy physics is actually N =  4
supersymmetric. In the dual picture we do expect the same amount of SUSY.  This is
because in the M-theory picture we have only considered the local physics associated with
the contractable An�1 surface singularity over E  whereas the 7-brane data is encoded in
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Figure 3. The geometry of Sp . Vi is birationally equivalent to C i  fibration over E  where C i  is
rational. V0 and Vn are rational surfaces.

the geometry of V0 and Vn, not the An�1 type surface singularity. Therefore in the dual
picture the local physics should be described by nothing but n coincident D3-branes filling
the flat 4D spacetime without any nearby 7-branes, thus is also N =  4.

It is not hard to recognize that this geometry, with Vn '  dP8, is actually the same
geometry described in [23]. The surface Vi, i  =  1, . . . , n � 1 are ruled over a genus-1 curve E
while Vn '  dP8 can be viewed as a P1-fibration over a genus-0 curve C  with 7 reducible fibers
[33]. Moreover E  is a double cover of C  as discussed in section 3.1. Thus in the limit of large
base and small fiber the 5D theory obtained from M-theory theory compactification is Sp(n)
+  7 F  +  A S .  Therefore in the Kovalev limit the 4D N =  2 theory is the circle reduction of
Sp(n) +  7 F  +  A S .

In the dual picture there is a corresponding N =  2 3/7-brane system. The above
contraction of Vi ® E  can be viewed as a mass deformation of the 5D theory hence the 7-
brane configuration can again be viewed as decoupling an I1  from the I I �  fiber on its U -
plane as we have mentioned in section 4.2 for the single D3-brane probe case. Generalizing
the result of [27] we expect the physics to be described by n D3-branes probing an I3

singularity. The only difference between this n D3-brane system and the single D3-brane
system discussed in section 4.2 can be described by the following branching for n >  1:

U(2n) ® Sp(n)

Adj  ® Adjn ( 2 n + 1 )  +  ASn (2n�1) .

Moreover, together with seven D7-branes there are seven Sp(n) fundamental hypermultiplets.
Therefore we see that in the singular limit both the M-theory geometry and D3-brane world
volume theory lead to the circle reduction of the 5D Sp(n) +  7 F  +  A S  theory.

It is a well-known fact that the UV completion of 5D Sp(n) +  7 F  +  A S  theory is the
5D rank-n E 8  theory [24]. Therefore it is natural to expect the following:3

Proposition 4.5.1. The geometry

Sp =  V1 ÈC 1 , 2  V2 ÈC2 , 3   ÈC n �1 , n  Vn

is birationally equivalent to the non-flat fiber obtained from resolving the singular geometry
associated with rank-n E 8  theory.

3 See section 3 of [53] for a detailed discussion of the resolved singular geometry associated with the
rank-n E 8  theory.
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From a 5D point of view, shrinking the surface Sp corresponds to UV completing 5D
Sp(n) +  7 F  +  A S  which leads to the 5D rank-n E 8  theory. Further reducing the 5D rank-n E 8

theory on a circle leads to 4D rank-n E 8  MN theory which can be viewed as n D3-branes
probing I I �  singularity. The rank-1 and rank-2 cases are well-studied [39, 54] and we expect
this to be true for any n Î Z + .

Denote by Z E n , �  the building block by further tuning ZE8 ,sing so that there is E 8  � I n

intersection and by XE n ,s ing  the T C S  G2 manifold with building blocks Z +  and ZE n , �.  We
formulate the following conjecture generalizing conjecture 4.2.2 for n D3-branes on top of
each other:

Conjecture 4.5.2. The following theories are equivalent:

•  M-theory on X E 8  ,sing in the limit that n surfaces S i  Ì X E 8  ,sing are contracted.

•  F-theory on YE 8  with G4 =  0 and n D3-branes on the E 8  singular locus on the base.

Note that dual C Y 4  geometry is still YE 8      since the C Y 4  geometry is determined
solely by Z + .

5 Conclusion

In this work, we have argued that for M-theory compactification on a special class of T C S  G2

manifolds M , strongly coupled S C F T  can be obtained by shrinking a surface V Ì M to a
point and it is our main focus to see the SL(2, Z)  action on both the F-theory and M-
theory side of the duality. Of particular interest is the SL(2, Z) monodromy associated with
D3-brane traversing all 7-branes in the system and we find that its M-theory dual action
on X d P n  is induced by Serre duality via the tensor product by the canonical bundle on
Knum (dPn ) in the Kovalev limit. As this construction is local, we also conjecture that its lift
in the compact T C S  G2 is given by an action on H 2 ( X , Z )  Å H 5 (X , Z ) .

Mathematically it will be very interesting to see if the conjectures in this paper can
be built upon more rigorous foundations and physically it would be very interesting to see
if one can further study the N =  1 dynamics directly without going to the Kovalev limit
given that the leading order partial SUS Y  breaking mechanism is a D-term breaking for
finite Kovalevton. Though most evidences in this work are from N =  2 examples in the
Kovalev limit, we expect the partial SUSY breaking at finite Kovalevton do not modify the
main conjectures in a drastic way and the study of N =  1 dynamics will in turn shed light
on the understanding of the geometry of this class of T C S  G2 manifolds.

It will be interesting to further study the deformation of the T C S  G2 manifolds M ,
in particular those make M no longer admit a T C S  construction, and see how those
deformations modify our conjectures on SL(2, Z) monodromies on X .  As our construction
inevitably depends on the fact the 4D theory on the M-theory side is a circle reduction of
a 5D N =  1 theory, it will be interesting to see how one can decouple the extra I1  that
represents the K K  modes in the circle reduction. Such a theory with the extra I1  decoupled
will in principle be dual to D3-brane probing E n  7-branes rather than E n  7-branes therefore
is in some sense more interesting for physical applications.

Moreover, as we have only studied the dual to the monodromy action associated with
D3-brane traversing all the 7-branes, it is interesting to study the dual to the monodromy
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action associated with D3-brane traversing some of the 7-branes in the system. In particular it
will be interesting to study the dual of the SL(2, Z)  action associated with D3-brane
traversing the E n  7-branes without the extra I1 . This will require a more thorough analysis of
the general SL(2, Z)  monodromies on G2 manifolds and we will study these issues in the
future.
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A A  toric construction of Z �

In this appendix we will give a concrete toric model of Z�,sing and its resolution. In
particular we will show that there exists a Kähler class J  that satisfies the four conditions in
section 3.3 therefore the limit vol(V1) =  0 can indeed be achieved without destroying the
elliptic or K3-fibration structure of Z �  which is essential for the M/F-duality to hold.

The toric ambient space X Δ s i n g  of Z�,sing can be represented by a polytope in the 4D
N -lattice whose vertices are summarized in the following matrix

�
�1 0 2 2 2 0 2

�

� 0 �1 3 3 3 0 3�
sing � 0 0 �1 1 0 0 1� 0

0 0 0 1 �1 1

whose columns correspond to the rays vx , vy, vz1 , vz2 , vẑ  , vẑ      and vze where vu is the toric ray
associated with the toric variable u. The singular model Z�,sing can then be constructed as a
hyperspace in the toric ambient space and the monomials of its defining equation are

given by the polytope in the M lattice whose vertices are 
�
�2

1 1 1 1 1 1 
�

� 1 1 1 1 1 �1 1 � �
0 1 1 �1 �1 0 0 �

0 0 �6 0 �5 0 �6

It is not hard to check that after suitable coordinate transformation we have a Weierstrass
model with

f  µ z1z2 ,

g =  z1 z2 zeP (6) +  z1z2 ẑ P (5)  +  z1z2Q
(A.1)

where P1 is now parameterized by [ẑ ze : ẑ  ] and P ( n )  is labeled by its degree on P1. It is easy
to see that the E 8  ´  E 8  singular Weierstrass model enhances at [0 : 1] and another 11 generic
points on P1.
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The singular model Z�,sing can be fully resolved by add rays to the polytope Δsing

whose associated toric variety will be denoted by X Δ .  This polytope in the N -lattice can be
described by the following matrix

�
�1 0 2 2 2 0 2

� 
� 0

�1 3 3 3 0 3� � 0
0 �6 6 0 0 1�

0 0 0 0 1 �1 1

The resolved Z�,sing is then given by a hypersurface in X Δ  with a fine-regular-star triangu-
lation ( F R S T )  of Δ  whose defining monomials are again given by the polytope Ñ in the
M -lattice.

In Δ  it is convenient to single out two rays vza =  (0, 0, 1, 0) and vzb =  (0, 0, �1, 0). The
smooth hypersurface equation of resolved Z�,sing takes the following form

zazbP =  zazeP (6) +  zb ẑ  P (5) (A.2)

where for simplicity we have chosen the same notation for P ( n )  as in eq. (A.1) but in general
their precise expressions in terms of the toric variables can be different. The SR ideals that
will be useful in X Δ ,  hence in resolved Z�,sing, are zazb, zaẑ and zbze which can easily be
checked by giving an arbitrary F R S T  of Δ .

Let us consider the degeneracy of the K 3  fiber over point [0 : 1] Î P1 in which case
both P (6)  and P (5)  can be treated as constants and will be denoted by C1  and C2 . When
ẑ  =  0, we have

za     zbP � C1zaze      =  0.

Due to the S R  ideal zaẑ , over [0 : 1] there is one irreducible component when ẑ  =  0
given by

ẑ  =  zbP � C1zaze =  0.

When ze =  0, we have

zb     zaP � C2zbẑ =  0.

Due to the S R  ideal zbze, we see again that over [0 : 1] Î P1 there is only one irreducible
component given by

ze =  zaP � C2zbẑ  =  0.

Therefore we see that in this slightly modified model over [0 : 1] Î P1 the K 3  fiber splits
into two components {ẑ =  0} and {ze =  0} intersecting the hypersurface in the toric
ambient space.

Since both ẑ  and ze are toric variables in this model, it will be relatively easy to look
into their properties via the toric diagram. Projecting to the x1 =  2, x2 =  3 (hyper)plane
in C4 we have the triangulation in figure 4.

We denote by S ẑ      and Sz e      the intersection of the toric divisor z1 =  0 and ze =  0
intersecting the hypersurface eq. (A.2) in the toric ambient space. In this notation the K 3
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Figure 4. The toric fan of the ambient toric variety projected onto the x1 =  2, x2 =  3 plane with a
given triangulation. In the diagram z0 represents the ray vz0  =  (2, 3, 0, 0).

fiber S  over [0 : 1] Î P1 is S  =  S ẑ  È Sz e . For the triangulation in figure 4, S ẑ      '  dP12 and
Sz e  '  dP6. Clearly by flopping the (�1)-curves in S ẑ      and Sz e  other dPn ’s can also be realized
as the shrinking surface and it is manifest that one can do this easily to obtain n =
3, 4, 5, 6, 7, 8 by flopping the edges ẑ  -zi and ze-zi, e.g., i  =  3 in figure 4.

It is now crucial to check if Sz e  can indeed shrink to a point to realize the duality
we have conjectured in section 4.2. To  check this we will see that exists a Kähler class J
such that

J   V1  V2  Y =  J   V1  V 0 =  0

and

J   V2  V 0 =  0, J   J   V2 =  0, J  J   J   Y =  0

where V1 =  {z4 =  0}, V2 =  {ẑ =  0}, Vz3 =  {z3 =  0} and Y is the class of Z �  in X Δ .  It is
easy to see that

Sz e  =  V1  Y, S ẑ  =  V2  Y.

The toric rays of Δ  are listed in table 1 and the F R S T  of Δ  we used to obtain a valid
J  is given in table 2. Concretely we have V1 =  Vz20 , V2 =  Vz18 , V 0 =  Vz19 and

41

Y = Vzi � Vz5 i = 1

and the generic K 3  fiber of Z �  is given by Vz5  Y . The (�2)-curves in V1 associated with
the Cartan divisors of E 6  are

In this case we choose the basis of the divisors of X Δ  to be

(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22,

23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41)

where the divisors are labeled by their corresponding toric rays in Δ  given by the #  column
in table 1. In terms of this basis we find the following

J  =  (4, �12, 42, 0, �4, 14, �4, 23, �8, 28, �11, �10, �8, �6, �4, 0, 4,

9, 8, 15, 24, 33, 9, �4, 5, �3, �1, 1, 5, 14, �8, �6, �4, 0, 4, 10, 19)

in the Kähler cone of X Δ  that satisfies all the conditions in section 3.3 with the follow-
ing values

J   V2  V 0 =  2, J   J   V2 =  132, J   J   J   Y =  2964.

We have found such J ’s for dPn with n =  3, 4, 5, 6, 7, 8.
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#       Coordinate
1       (�1, 0, 0, 0)
2       (0, �1, 0, 0)
3       (2, 3, �6, 0)
4         (2, 3, 6, 0)
5       (0, 0, 0, �1)
6       (0, 1, �2, 0)
7         (0, 1, 2, 0)
8       (1, 1, �3, 0)
9         (1, 1, 3, 0)
10      (1, 2, �4, 0)

11 (1, 2, 4, 0)
12      (2, 3, �5, 0)
13      (2, 3, �4, 0)
40 (1, 2, 2, 0)

# Coordinate
14 (2, 3, �3, 0)
15 (2, 3, �2, 0)
16 (2, 3, �1, 0)
17        (2, 3, 0, 0)
18        (2, 3, 0, 1)
19        (2, 3, 1, 0)
20        (2, 3, 1, 1)
21        (2, 3, 2, 0)
22        (2, 3, 3, 0)
23        (2, 3, 4, 0)
24        (2, 3, 5, 0)
25 (0, 0, �1, 0)
26        (0, 0, 1, 0)
41        (1, 2, 3, 0)

# Coordinate
27 (0, 1, �1, 0)
28        (0, 1, 0, 0)
29        (0, 1, 1, 0)
30 (1, 1, �2, 0)
31 (1, 1, �1, 0)
32        (1, 1, 0, 0)
33        (1, 1, 1, 0)
34        (1, 1, 2, 0)
35 (1, 2, �3, 0)
36 (1, 2, �2, 0)
37 (1, 2, �1, 0)
38        (1, 2, 0, 0)
39        (1, 2, 1, 0)

Table 1. The rays in Δ .

Simplices
(1, 2, 5, 25)
(1, 2, 5, 26)

(1, 2, 18, 20)
(1, 2, 18, 25)
(1, 2, 20, 26)

(1, 5, 6, 8)
(1, 5, 6, 27)
(1, 5, 7, 26)
(1, 5, 7, 29)
(1, 5, 8, 25)

(1, 5, 21, 29)
(1, 5, 21, 39)
(1, 5, 27, 28)
(1, 5, 28, 39)
(1, 6, 8, 18)

(1, 6, 18, 27)
(1, 7, 20, 26)
(1, 7, 20, 29)
(1, 8, 18, 25)

(1, 18, 20, 29)
(1, 18, 21, 29)
(1, 18, 21, 39)
(1, 18, 27, 28)
(1, 18, 28, 39)

(2, 5, 8, 25)
(2, 5, 8, 30)
(2, 5, 9, 26)
(2, 5, 9, 34)

(2, 5, 22, 33)
(2, 5, 22, 34)

Simplices
(2, 5, 30, 31)
(2, 5, 31, 32)
(2, 5, 32, 33)
(2, 8, 18, 25)
(2, 8, 18, 30)
(2, 9, 20, 26)
(2, 9, 20, 34)
(2, 18, 20, 33)
(2, 18, 30, 31)
(2, 18, 31, 32)
(2, 18, 32, 33)
(2, 20, 22, 33)
(2, 20, 22, 34)

(3, 5, 8, 10)
(3, 5, 8, 12)

(3, 5, 10, 35)
(3, 5, 12, 35)
(3, 8, 10, 18)
(3, 8, 12, 18)

(3, 10, 18, 35)
(3, 12, 18, 35)

(4, 5, 9, 11)
(4, 5, 9, 24)

(4, 5, 11, 24)
(4, 9, 11, 20)
(4, 9, 20, 24)

(4, 11, 20, 24)
(5, 6, 8, 10)

(5, 6, 10, 35)
(5, 6, 27, 35)

Simplices
(5, 7, 9, 11)
(5, 7, 9, 26)

(5, 7, 11, 41)
(5, 7, 29, 40)
(5, 7, 40, 41)
(5, 8, 12, 13)
(5, 8, 13, 30)
(5, 9, 22, 23)
(5, 9, 22, 34)
(5, 9, 23, 24)

(5, 11, 22, 23)
(5, 11, 22, 41)
(5, 11, 23, 24)
(5, 12, 13, 35)
(5, 13, 14, 30)
(5, 13, 14, 36)
(5, 13, 35, 36)
(5, 14, 15, 30)
(5, 14, 15, 37)
(5, 14, 36, 37)
(5, 15, 16, 30)
(5, 15, 16, 37)
(5, 16, 17, 32)
(5, 16, 17, 37)
(5, 16, 30, 31)
(5, 16, 31, 32)
(5, 17, 19, 32)
(5, 17, 19, 38)
(5, 17, 37, 38)
(5, 19, 21, 32)

Simplices
(5, 19, 21, 38)
(5, 21, 22, 33)
(5, 21, 22, 40)
(5, 21, 27, 38)
(5, 21, 27, 39)
(5, 21, 29, 40)
(5, 21, 32, 33)
(5, 22, 40, 41)
(5, 27, 28, 39)
(5, 27, 35, 36)
(5, 27, 36, 37)
(5, 27, 37, 38)
(6, 8, 10, 18)

(6, 10, 18, 35)
(6, 18, 27, 35)
(7, 9, 11, 20)
(7, 9, 20, 26)

(7, 11, 20, 41)
(7, 20, 29, 40)
(7, 20, 40, 41)
(8, 12, 13, 18)
(8, 13, 18, 30)
(9, 20, 22, 23)
(9, 20, 22, 34)
(9, 20, 23, 24)

(11, 20, 22, 23)
(11, 20, 22, 41)
(11, 20, 23, 24)
(12, 13, 18, 35)
(13, 14, 18, 30)

Simplices
(13, 14, 18, 36)
(13, 18, 35, 36)
(14, 15, 18, 30)
(14, 15, 18, 37)
(14, 18, 36, 37)
(15, 16, 18, 30)
(15, 16, 18, 37)
(16, 17, 18, 32)
(16, 17, 18, 37)
(16, 18, 30, 31)
(16, 18, 31, 32)
(17, 18, 19, 32)
(17, 18, 19, 38)
(17, 18, 37, 38)
(18, 19, 21, 32)
(18, 19, 21, 38)
(18, 20, 22, 33)
(18, 20, 22, 40)
(18, 20, 29, 40)
(18, 21, 22, 33)
(18, 21, 22, 40)
(18, 21, 27, 38)
(18, 21, 27, 39)
(18, 21, 29, 40)
(18, 21, 32, 33)
(18, 27, 28, 39)
(18, 27, 35, 36)
(18, 27, 36, 37)
(18, 27, 37, 38)
(20, 22, 40, 41)

Table 2. Simplices of the chosen F R S T  of Δ .  Each 4D cone of the F R S T  of Δ  is expanded by the
rays (vi , vj , vk , vl) for the simplex (i, j, k, l).
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