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Modeling material transport
regulation and traffic jam

In neurons using PDE-constrained
optimization

Angran Li' & Yongjie Jessica Zhang®?**

The intracellular transport process plays an important role in delivering essential materials throughout
branched geometries of neurons for their survival and function. Many neurodegenerative diseases
have been associated with the disruption of transport. Therefore, it is essential to study how neurons
control the transport process to localize materials to necessary locations. Here, we develop a novel
optimization model to simulate the traffic regulation mechanism of material transport in complex
geometries of neurons. The transport is controlled to avoid traffic jam of materials by minimizing

a pre-defined objective function. The optimization subjects to a set of partial differential equation
(PDE) constraints that describe the material transport process based on a macroscopic molecular-
motor-assisted transport model of intracellular particles. The proposed PDE-constrained optimization
model is solved in complex tree structures by using isogeometric analysis (IGA). Different simulation
parameters are used to introduce traffic jams and study how neurons handle the transport issue.
Specifically, we successfully model and explain the traffic jam caused by reduced number of
microtubules (MTs) and MT swirls. In summary, our model effectively simulates the material transport
process in healthy neurons and also explains the formation of a traffic jam in abnormal neurons.

Our results demonstrate that both geometry and MT structure play important roles in achieving an
optimal transport process in neuron.

The neuron exhibits a highly polarized structure that typically consists of a single long axon and multiple den-
drites which are both extended from its cell body. Since most of the materials necessary for the neuron are
synthesized in the cell body, they need to experience long-distance transport in axons or dendrites to reach
their effective location'?. The intracellular material transport is therefore especially crucial to ensure necessary
materials are delivered to the right locations for the development, function, and survival of neuron cells. The
disruption of intracellular transport can lead to the abnormal accumulations of certain cellular material and
extreme swelling of the axon, which have been observed in many neurological and neurodegenerative diseases
such as Huntington’s, Parkinson’s, and Alzheimer’s disease®~’. Therefore, it is essential to study and understand
mechanisms of the transport function and dysfunction.

Recent studies have shown that the neuron is critically dependent on molecular motors to transport various
materials along the longitudinal cytoskeletal structure like microtubules (MTs)?-'°. MTs are long and polarized
polymers with biophysically distinct plus and minus ends!!~'*. The polarity of MTs can decide the preferred
direction in which an individual molecular motor moves. For instance, molecular motors from the kinesin and
dynein superfamilies have been identified to convey materials along MTs towards their plus and minus ends
respectively'*'>. Inspired by these findings, there have been many mathematical models proposed to quantita-
tively study the motor-driven transport process and understand the pathology of neuron diseases. For instance,
the partial differential equations (PDEs) of linear reaction-hyperbolic form have been used to approximate the
traveling waves of a single moving species'®. This model was further extended to account for multiple moving
species'” and their diffusion'®". Based on PDE-based transport, stochastic models have also been developed for
both axonal transport**?! and dendritic transport**?*. In addition, several mathematical models were developed
to simulate material transport in unhealthy neurons. Xue et al. presented a stochastic model to explain the seg-
regation of MTs and neurofilaments in neurological diseases*. Bertsch et al. proposed to couple Smoluchowski
equations and kinetic-type transport equations to study the onset and progression of Alzheimer’s disease®.
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Though the aforementioned PDE and stochastic models can successfully simulate and explain certain phe-
nomena during transport, most of these models were solved only in simple one-dimensional (1D) or 2D domains
without considering the complex neuron geometry. Recent developments in numerical methods allow us to
obtain accurate solution of PDEs in complex geometries. Specifically, isogeometric analysis (IGA)?® directly
integrates geometric modeling with numerical simulation and achieves better accuracy and robustness com-
pared to the conventional finite element method (FEM), making it a perfect tool to tackle the highly branched
neuron geometry. In particular, IGA performs simulation with different types of splines as basis functions
instead of Lagrange polynomials used in conventional FEM. The same smooth spline basis functions* used for
both geometrical modeling and numerical simulation lead to accurate geometry representation with high-order
continuity and superior numerical accuracy in simulation. Therefore, IGA has been extensively used in shell
analysis®®!, cardiovascular modeling**~’, neuroscience simulation®®*’, fluid-structure interaction*~*, as well
as industrial application*#*°. Truncated T-splines®*” were developed to support local refinement over unstruc-
tured quadrilateral and hexahedral meshes. Blended B-splines*® and Catmull-Clark subdivision basis functions*
were investigated to enable improved or even optimal convergence rates for IGA. With the advances in IGA, we
developed an IGA-based simulation platform to accurately reconstruct complex neuron geometries and solved
a 3D motor-assisted transport model within them?. We also developed a deep learning framework based on the
IGA simulation platform to predict the material transport process in complex neurite networks™. The results
from our IGA solver showed how the complex neuron geometry affects the spatiotemporal material distribution
at neurite junctions and within different branches. However, the motor-assisted model only provides a simplified
model of the actual transport process but ignores the active regulation from neuron itself.

To model the active regulation from neurons to control the transport process, we propose to use PDE-
constrained optimization (PDE-CO). PDEs are commonly used in science and engineering to mathematically
represent biological and physical phenomena. Recent advances in numerical methods and high-performance
computing equip the development of large-scale PDE solvers. As a result, PDE-CO problems arise in a variety of
applications including optimal design®'~>?, optimal control**-¢, and inverse problem®”*. In particular, PDE-CO
has important biomedical applications in exploiting valuable information from real medical data. For instance,
Hogea et al. presented a PDE-CO framework for modeling gliomas growth and their mass-effect on the sur-
rounding brain tissue®. Kim et al. proposed a transport-theory-based PDE-constrained multispectral imaging
algorithm to reconstruct the spatial distribution of chromophores in tissue®’. Melani utilized the blood flow data
and solved a PDE-CO problem based on fluid-structure interaction to estimate the compliance of arterial walls
in vascular networks®!. PDE-CO problems was also used to model tumor growth model by fitting the numerical
solution with real experiment data and estimating unknown parameters in the model®*.

In this study, we develop a novel IGA-based PDE-CO framework that effectively simulates the material trans-
port regulation and investigates the formation of traffic jams and swirl during the transport process in complex
neurite structures. Our simulation reveals that the molecular motors and MT structure play fundamental roles
in controlling the delivery of material by mediating the transport velocity on MTs. The defective transport on
MTs can cause material accumulation in a local region which may further lead to the degeneration of neuron
cells. Combined with geometry of the neurite network, the motor-assisted transport on MTs controls the rout-
ing of material transport at junctions of neurite branches and distributes transported materials throughout the
networks. Therefore, our study provides key insights into how material transport in neurite networks is mediated
by MTs and their complex geometry. In summary, there are three main contributions in this paper.

® Our PDE-CO model introduces a new objective function to simulate two transport control mechanisms for
(1) mediating the transport velocity field; and (2) avoiding the traffic jam caused by local material accumula-
tion. The control strength can be adjusted through two penalty parameters in the objective function and the
impact of these parameters is also studied;

® Our model introduces new simulation parameters to describe the spatial distribution of MTs, which enables
the simulation of traffic jam caused by abnormal MT structure such as MT reduction and MT swirls; and

® Our study develops an IGA optimization framework for solving the PDE-CO problem in complex neuron
geometries. The optimization framework is transformative and can be extended to solve other PDE-CO
models of cellular processes in complex neurite networks.

IGA-based material transport optimization in neurons

Our interest lies in the transport of particles along an axon or dendrite in neuron cell. In our previous work,
we simulated the material transport process using a macroscopic molecular-motor-assisted transport model
without any transport control®. Built upon this transport model, we propose a novel transport optimization
model to further study the transport control mechanism of neuron and predict the formation of a traffic jam in
abnormal neurons. Assuming the open set 2 C RY(d =20r3) represents the d-dimensional internal space of
the neuron, ny € R,n4 € Randv4 € R are referred as the “state variables” while fr € R are referred as the
“control variables”. The proposed optimization problem is described as

1 /T T T
argmin ¢ (ny,v4,fr) = 7/ /(vi — Vy)2dQdt + g/ / IVnLl?dQdt + é/ /fidet
e fi 2J)o Ja 2 Jo Ja 2 /o Ja
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where V is a predefined velocity field inside neuron; ng, n4 and n_ are the spatial concentrations of free, incom-
ing (relative to the cell body; retrograde), and outgoing (anterograde) particles, respectively; Dy is the diffusion
coefficient of incoming and outgoing materials; v4 and v_ are velocities of incoming and outgoing particles,
respectively; k+ and k/, are rates of MT attachment and detachment of incoming and outgoing materials, respec-
tively; L+ represents the density of MTs used for motor-assisted transport; fi represents the control forces that
mediate the material transport; p is viscosity of traffic flow; A;, 4, represent the degree of loading at inlet and
outlet ends, respectivelyls; and n;, n, represent the boundary value of ng at inlet and outlet ends, respectively. On
the right hand side of Eq. (1d), the concentration gradient term Vn. accounts for the porosity induced by the
material, which models the behavior of molecular motors on MT to speed up when the material concentration
n+ decreases while slow down when n. increases. In this study, we assume the MT system is unipolar that leads
to a unidirectional material transport process and ignoren_,[_,v_,k_,k’_terms in Eq. (1b)-(1f). The selection
of parameters is based on the study of Smith and Simmons'®: the Einstein-Stokes relation for a 1 um sphere in
water gives D+ = 0.4 um?/s and we reduce the value to 0.1 um?/s considering the irregular neuron topology
and a bigger cytoplasmic viscosity; the attachment rate k4 is set to be 1 s~! and the detachment rate k/, is set to
be 0.1 s~1. The default values of simulation parameters are summarized in Table 1.

Herein, we account for active regulation from neuron in the objective function (Eq. 1a), and we assume the
optimal material transportation within neuron can be achieved by solving the proposed optimization model. The
first term in Eq. (1a) measures the difference between v4 and the predefined optimal velocity field V.. It serves
as a velocity control mechanism that neuron expects to achieve the predefined velocity field V. during transport.
The second term measures the cost from concentration gradient Vn4 within the entire neuron cell. It serves as
a traffic jam control mechanism that the neuron can improve local traffic jam by detecting and avoiding high
concentration gradient in the entire geometry. The value of parameter o represents to what extent we want to
optimize the transport process and avoid traffic jams. The third term is a regularization that measures the control
forces applied by neuron to mediate the transport. The value of parameter § represents how much the neuron
can affect the transport velocity. To introduce traffic jams in neurons, we modify the simulation parameters in
the governing equations. In this study, we modify the spatial distribution of L+ to model the traffic jam caused
by abnormal MTs such as the reduction of MTs and MT swirls during transport.

We employ the “all-at-once” method®*® and IGA to formulate and solve the optimization model (Eq. 1a)
with PDE constraints (Eqs. 1b-1f) simultaneously. We first discretize the objective function to obtain its
approximation (14, v+, f+). We also discretize PDE constraints (Eqs. 1b-1f) to obtain their weak form
By (no, nt, v+, f+) = 0. Then, we build a discrete Lagrangian

Ln=In+p" B =0, )

where pT is the Lagrange multiplier and is also referred to as the “adjoint variable”. By taking derivatives of the
discrete Lagrangian with respect to state, control, and adjoint variables and setting the resulting expressions
to zero, we obtain the first-order conditions, or Karush-Kuhn-Tucker (KKT) conditions. The resulting KKT
system is then solved using the GMRES® solver implemented in PETSc®. In this study, we focus on solving
the proposed optimization model in 2D neuron geometries. To handle the ill-conditioning issue of the KKT
system, we implemented the preconditioner following the all-at-once method®. The stopping tolerance for the
optimization problem is set to be 10~7. We do not find other local minima when solving the optimization prob-
lem. However, due to the nonlinear constraints in our model, it is possible to have other local minima. Overall,
there are 7 unknowns in the PDE-CO model, including g, ny, n—, v4,v—, fy and f_. In particular,n_, v_and f_
are ignored when no MT swirl is introduced. The computation usually needs 1 to 3 CPU Nodes (128 cores per
node) and takes 8-12 hours to finish.

As shown in Fig. 1, we use a bifurcation example to illustrate the pipeline of our simulation. We first generate
a control mesh and reconstruct the neuron geometry with Truncated Hierarchical B-splines (THB-spline) by uti-
lizing the geometry information stored in a SWC file. The SWC file is widely used to store neuron morphologies
including vertices and the associated diameters on the skeleton of the neuron. We can obtain the SWC files for
various real neuron geometries from the NeuroMorpho database®®. The raw SWC file needs to be pre-processed
to ensure no duplicated vertices or overlapping skeleton exist in the geometry. During the geometric modeling
of our workflow, we take the cleaned-up neuron skeleton as input and use the skeleton-based sweeping method??
to generate quadrilateral control mesh of the neuron geometry. Then, we build THB-spline on the quadrilateral

Scientific Reports |

(2022) 12:3902 | https://doi.org/10.1038/s41598-022-07861-6 nature portfolio



www.nature.com/scientificreports/

Input
Geometry:

SWC file

IGA \ Optimization
Simulation Result

1.0e+00 < Velocity Field
L.

Geometric

Modeling Inlet o6 2 '1.0e+00
o8 Los
- Ke)
l0'4 s 06 2
[0'2 04 §
0.0e+00 02
I0A0e+oo

Desired Velocity Field
From Navier-Stokes Solver .
» ¢ ! » < Concentration

+

3.0e+00

M2s

% N
RN
AN

W
\:\\\\ N Parameter Setting <
N L2 %
15 g
0.5
PDE-CO t 0.0e+00

Transport Model

Figure 1. An overview of the material transport control simulation in a bifurcation geometry. The traffic jam
is introduced by reducing MTs in the red dashed circle region. Color bars unit for velocity field: um/s and
concentration: mol/um?.

Dy Diffusion coefficient of incoming and outgoing materials [um?/s] 0.1
ket Attachment rate to the MTs that transport materials in the positive (+) and negative (—) directions [s7] | 1.0
L Detachment rate from MTs for materials that move in the positive (+) and negative (-) directions [/s] 0.1
[ Density of MTs used for motor-assisted transport 1.0
Viscosity of the traffic flow [p/m/s] 0.1

Ai Degree of loading at inlet end 2.0
o Degree of loading at outlet end 2.0
n; Boundary value of ng at inlet end [mol/p/m?] 1.0
o Boundary value of ng at outlet end [mol//m?] 0.0
o Penalty parameter for the cost to control high concentration gradient 1.0
B Penalty parameter for the cost of control force fi 1.0

Table 1. Simulation parameters utilized in computations.

mesh®>*! for the final representation of the neuron geometry. Once the spline information for the geometry
is obtained, we run a steady-state Navier-Stokes solver to generate the pre-defined velocity for the optimiza-
tion. We then use the default simulation parameters in Table 1 and modify the spatial distribution of I in the
red circle regions to introduce traffic jam. Finally, we run the optimization solver and obtain the velocity field
and concentration distribution. In this paper, we apply the pipeline to various neural structures with material
transport regulation, traffic jam and MT swirl. All simulations are conducted on the XSEDE (Extreme Science
and Engineering Discovery Environment) supercomputer Bridges at the Pittsburgh Supercomputer Center®*”°.

Results
Simulation of material transport regulation and traffic jam. We first simulate the normal material
transport and the abnormal transport with traffic jam in a single pipe geometry (Fig. 2). The predefined veloc-
ity field for both cases is computed by solving a steady-state Navier-Stokes equation and the result is shown in
Fig. 2A. The other simulation parameter settings are summarized in Table 1. The computed velocity field and
the distribution of concentration in the normal transport are shown in Fig. 2B,E. To model traffic jam caused by
the reduction of MTs, the distribution of I along the pipe is defined as shown in Fig. 2D. The velocity field and
material distribution results in the abnormal transport are shown in Fig. 2C,E. The convergence curve for the
gradient of objective functions is shown in Supplementary Fig. S6 to verify the result. The comparison between
normal and abnormal transport shows that the velocity magnitude decreases in the red dashed circle region due
to the reduced number of MTs, and this further leads to accumulation of the material in this area.

As shown in Fig. 2G-I and Fig. S1, we also perform parameter analysis using the single pipe geometry to
study the influence of simulation parameters on the material distribution results. In particular, we focus on three
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Parameter | Value selection

o 1,0.1,0.01

B 1,0.1,0.01

ke /K, Fixks = 1.0 s7L letky /K =1, 10, 100

Table 2. Value selection for parameter study.
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Figure 2. Simulation of material transport and parameter analysis in a single pipe geometry. (A) The
predefined velocity field V.. Black arrow points to the inlet of the pipe. The computed velocity field in (B) a
healthy neuron and (C) an abnormal neuron with reduced MTs in the red dashed circle region. (D) Distribution
of I; to model the traffic jam caused by the reduction of MTs. Distribution of concentration (19 + ) in (E)

a healthy neuron and (F) an abnormal neuron with reduced MTs in the red dashed circle region. (G-I) The
concentration curve (19 + #n4) on the centerline of the single pipe affected by different settings of (G) o; (H) B;
and (I) k/k’. Unit for color bars: (A-C) um/s and (E, F) mol/um?.

parameters that may have significant effect when dealing with traffic jam caused by the reduction of MTs. The
values selected for these parameters are displayed in Table 2. We assume the active regulation from neuron is less
dominant than natural transport via diffusion or MTs, and thus select two smaller values for o and 8 compared to
the default values in Table 1. Regarding the value selection of k/k’, we refer to the values utilized in”' and ensure
the selected values stay within a biologically realistic range. Figure 2G shows the effect of the penalty parameter
of the concentration gradient cost, , on the concentration distribution. One can see that the decrease of o leads
to a severer material accumulation around the region with reduced MTs in the single pipe geometry. We also
find that the concentration gradient becomes larger around the traffic jam region, which indicates that there is
less control over the concentration gradient due to the decrease of a.

Figure 2H is similar to Fig. 2G but shows the effect of the penalty parameter of the control force, 8, on the
concentration distribution. We find similar phenomena that the traffic jam gets worse when § decreases. By
comparing Fig. 2G with 2H and Fig. S1A with S1B, we find 8 has a greater influence on the concentration than
o when decreasing both parameters by the same amount. Since 8 affects the control force in Eq. (1d) while «
affects the concentration in Eqgs. (1b) and (1c¢), the result indicates that the regulation of transport velocity on
MTs is vital to achieve the optimal material transport process in neuron. In addition, we study the impact of
« and B on the distribution of the control force fand the resulting velocity profile as shown in Supplementary
Fig. S2. When « increases, the velocity increases due to the decrease of V. falso decreases since less control
is needed to regulate the transport. When g increases, f becomes smaller and the overall velocity decreases. We
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Figure 3. Simulation of material transport and parameter analysis in a neuron tree extracted from
NMO_54504. (A) The predefined velocity field V.. Black arrow points to the inlet of the neuron tree. The
computed velocity field in (B) a healthy neuron and (C) an abnormal neuron with reduced MTs in the red
dashed circle region. Distribution of concentration (g + #4.) in (D) a healthy neuron and (E) an abnormal
neuron. We also compare the concentration curve on the centerline from the inlet to every outlet between
normal and abnormal transport in (E). The red dashed curve shows the centerline from the inlet to one of
the outlets and each outlet is indexed by a unique number. (F-H) The concentration curve (19 + #4) on the
centerline from inlet to outlet 2 affected by different settings of (F) «; (G) 8; and (H) k/k’. Unit for color bars:
(A-C) pm/s and (D, E) mol/um?.

also notice that with larger g, the distribution of f is stabler and the sharp velocity change is mitigated in the
traffic jam region, which may explain the reduction of Vx4. Though the increase of regularization reduces the
overall transport, the material accumulation is alleviated and has less hazard to the neuron, which is an expected
control from neuron.

Figure 21 shows the effect of the ratio between the attachment rate and detachment rate, k/k’, on the material
concentration. We find that when k/k’ increases, the location of maximum concentration moves toward right,
which indicates the decrease of detachment rate k' causes more material get attached to MTs and transport faster
as expected in'®. However, the reduction of MTs slows down the motor-assisted transport on MTs and results in
worse traffic jam. Interestingly, when k/k’ decreases from 10 to 1, we also observe a similar traffic jam phenom-
ena. The possible reason is that the increase of k’ causes more material transported via free diffusion. Although
free diffusion helps to transport the material farther along the branch, the slow diffusion speed limits its ability
to mitigate the traffic jam caused by the reduction of MTs.

To account for morphological effect on the transport process, we simulate the normal material transport and
the abnormal transport with traffic jam in two neuron tree structures as shown in Figs. 3 and 4. The predefined
velocity fields for both geometries are shown in Figs. 3A and 4A. To quantitatively study the influence of traffic
jam on the material concentration among tree structures, we also plot the concentration distribution curves along
the centerline from the inlet to each outlet of these two neurons. In each curve plot, we compare the distribution
between the normal transport and the abnormal transport with traffic jam, as shown in Figs. 3E and 4E. For
both cases, we model traffic jam by reducing the number of MTs (1) used for transport in the red dashed circle
regions. As a result, a sudden decrease of velocity (Figs. 3C and 4C) and material accumulation (Figs. 3E and 4E)
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Figure 4. Simulation of material transport in a neuron tree extracted from NMO_54499. (A) The predefined
velocity field V.. Black arrow points to the inlet of the material. The computed velocity field in (B) a healthy
neuron and (C) an abnormal neuron with reduced MTs in the red dashed circle region. Distribution of
concentration (19 + n.) and the concentration curve on the centerline of the circled region in (D) a healthy
neuron and (E) an abnormal neuron. We also compare the concentration curve on the centerline from the inlet
to every outlet between normal and abnormal transport in (E). The red dashed curve shows the centerline from
the inlet to one of the outlets and each outlet is indexed by a unique number. Unit for color bars: (A-C) um/s
and (D,E) mol/um?.

can be observed in these regions. By observing the distribution curve of the outlets downstream the traffic jam
region (curve plots 1-4 of Fig. 3E and 3-8 of Fig. 4E we find that the reduced number of MTs not only causes
high concentration in the local region, but also decreases the material concentration along the downstream of
traffic jam region. The distribution curves of the other outlets (curve plots 5 of Fig. 3E and 1, 2, 9, 10 of Fig. 4E)
demonstrate that more materials are transported to these outlets to minimize the hazard of traffic jam. The result
also shows that materials rely on motor-assisted transport in longer branches of neurons and the directional
transport on MTs contributes significantly to the entire transport process.

As shown in Fig. 3EH and Figs. S3 and S4, we also perform parameter analysis on the concentration dis-
tribution in the neuron tree structure. Similar to the parameter analysis in single pipe geometry, we study the
influence of three parameters on the concentration distribution and the selected values are listed in Table 2. To
quantitatively study the influence, we also plot and compare the concentration curves on the centerline from inlet
to outlet 2 of the neuron tree. We obtain similar results as in single pipe geometry that the decrease of « or S leads
to a severer material accumulation around the region with reduced MTs, and S shows greater effect than « on the
concentration distribution. In addition, we observe in Figs. 3E,F and S3 that when « or § increases, the concentra-
tion in the bottom long branch (pipe 5) has slight increase, indicating that more material is transported to the
unaffected region to mitigate the traffic jam in other branches. As shown in Supplementary Fig. S4, the increase
of regularization parameter 8 reduces the control force f. The overall velocity is also reduced but we observe that
velocity in pipe 5 keeps increasing and is close to the predefined value when 8 = 1.0, which explains the slight
increase of the concentration in pipe 5. In Fig. 3H, we also find that the maximum concentration location moves
downstream slightly when k/k’ increases, and either increasing or decreasing k/k’ intensifies the traffic jam.
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Figure 5. Simulation of material transport in a straight pipe with swelling in the middle region. (A) The
simulation setting for modeling MT swirls. The red and blue arrows show the transport path along swirly MTs.
Due to the MT swirls in the L, region, both I and I_ are increased along centerline and their distributions

on cross-section are also modified. (B,C) The computed velocity field and concentration distribution in the
swollen geometry. Three different curves are labeled for concentration plot. (D) The velocity streamline and
concentration distribution in the swollen region. Different color maps are used to distinguish between velocity
and concentration. (E-J) The concentration curve (g + n.) along three different curves from inlet to outlet
affected by different settings of (E-G) « and (H-J) 8. Unit for color bars: Concentration: mol/um?; Velocity:

m/s.

Simulation of traffic jam with MT swirls and local swelling. Recent studies have shown that the
formation of MT swirls can lead to accumulation of transported material and cause local swelling of neuron
geometries’. In our model, we modify the spatial distribution of I+ and enlarge the radius of neuron in a local
region to simulate the effect of MT swirls and local swelling on the transport process. We explain the simulation
setting by using a straight pipe geometry with MT swirls and swelling in the middle L, region, as shown in Fig. 5.
We assume the normal transport is unidirectional from left to right (4 direction, red arrow in Fig. 5A). Due to
the MT swirls in the middle region, the transport path is extended by two segments: one segment reverses to
transport the material from right to left (- direction, blue arrow in Fig. 5A) and the other segment transports
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in the normal direction from left to right. Therefore, we increase the values of /1 and I_ along the longitudinal
direction in the swelling region to describe the transport path change caused by swirling. We also assume that
the swirl direction is counter-clockwise and assign an asymmetric distribution of I+ on the cross-section in the
swelling region. In particular, I} is higher on the bottom of cross-section while I_ is higher on the top of cross-
section, as shown in Fig. 5A. We perform simulation with the new parameter setting and compare with the
results of normal transport in the same geometry. The velocity field and concentration distribution of normal
and abnormal transport are compared in Fig. 5B,C, respectively. The decrease of velocity and material accumula-
tion can be observed in the swollen region. We also find that the velocity magnitude is not symmetric anymore
due to the MT swirls in abnormal transport. In Fig. 5D, we plot the velocity streamline with concentration dis-
tribution in the zoomed-in swollen region for both normal and abnormal transport. Compared to the uniform
velocity streamline in normal transport, the velocity displays vortex pattern in the abnormal transport, which
reflects a longer transport distance due to MT swirls. We also find that the swirl of velocity streamline usually
happens in the high concentration region, which implies that the material accumulation is caused by the vortex-
shape velocity field. Moreover, we study the effect of regularization parameters on transport and the results are
shown in Fig. 5 and Supplementary Fig. S5. In Fig. 5E-], we compare the concentration distribution obtained
with different o and B along three different curves labeled in Fig. 5C. We observe that the concentration is the
highest in Curve 3 while the lowest in Curve 1, which is caused by non-uniform distribution of [ and I_ on the
cross section. We also find that most curves have two peaks that occur at the two ends of the swelling region.
At the left end of the swelling region, the sudden increase of I makes some materials to move left along “-”
direction MT and thus causes traffic jam. At the right end of the swelling region, the decrease of both I and I
causes more materials to get detached from MT and the slow diffusion causes the second material accumulation.
By comparing Fig. 5E-J, we find that the increase of « reduces the maximum concentration value and the con-
centration gradient, while the increase of B reduces the range of high concentration region. As shown in Fig. S5,
the overall transport velocity increases when « increases and the transport velocity distribution becomes stabler
when g increases, which can explain the improvement of traffic jam.

As shown in Fig. 6, we then apply the same approach to simulate the normal and abnormal transport with
MT swirls in two neuron tree structures with local swelling. The swelling is introduced by increasing the skeleton
radius in the red dashed circle regions. We also assume a counter-clockwise MT swirl in these swollen regions
and modify the distribution of I+ accordingly. For each model, we simulate the abnormal transport process due
to MT swirls to obtain velocity field and concentration distribution results and compare with the result of normal
transport in the same geometry. By comparing Fig. 6A,C with Fig. 6B,D, we find the velocity magnitude decreases
and material accumulates in the swollen region. In other branches that are not downstream the swollen region,
the material concentration also increases to mitigate the traffic jam in the swollen region. In addition, similar to
the results in straight pipe with swelling geometry (Fig. 5D), we also observe that the velocity streamline with
vortex pattern matches with the high concentration region (Fig. 6B,D). These results illustrate that the MT swirls
lead to the circular transport velocity field in a local region which not only extends the transport distance but
also traps the material and causes traffic jam.

Discussion

In this paper, we develop a PDE-constrained optimization model to simulate material transport control in neu-
rons. Using our simulation, we examine both normal and abnormal transport processes in different geometries
and discover several spatial patterns of the transport process. Our results show the formation of traffic jams due
to the reduction of MTs and MT swirls in the local region. We also observe how the traffic jam affects the spatial
patterns of transport velocities that in turn drives the transported materials distributed distinctly in different
regions of neurite networks to mitigate traffic jam. By solving the proposed new optimization problem, we build
a more realistic transport model for neurons by including active traffic regulation. In particular, we assume the
active regulation to be an optimization process and include the potential active regulation mechanism into the
objective function of the PDE-CO model. Though it is challenging and time consuming to solve the inverse prob-
lem, the model can determine a more plausible distribution of the transport control variables within neuron and
provide a more reliable explanation for the active regulation mechanism. Moreover, since the objective function
measures the difference between the desired and simulated results, we can further integrate the experimental
or clinical data with this model to provide more realistic simulations. For instance, we can use the velocity from
clinical data as input to approximate the control variables and find the potential abnormal region in the neuron
that causes the disease. Herein, the model is successfully applied to complex 2D neuron geometries and provides
key insights into how neuron mediates the material transport inside its complex geometry.

Our study shows that MTs have a major impact on the material transport velocity and further affect the
material concentration distribution. As shown in Fig. 2, the reduction of MTs in the middle of the single pipe
slows down the transport velocity downstream and leads to traffic jam in the middle region. When the neuron
has more branches in its geometry (Figs. 3 and 4), the reduction of MTs in one branch has a similar influence
on the transport downstream the branch. However, we observe an increase in transport velocity and material
concentration in other branches, indicating that the active regulation from neuron takes effect to avoid traffic
jams. In addition, we perform parameter analysis to study the influence of different simulation parameters on
the material concentration distribution. The ratio between the attachment rate k and detachment rate k’ affects
the amount of material transported via MTs or free diffusion. This will affect the overall transport speed and
material distribution due to the different transport behavior between motor-assisted transport and free diffusion.
The penalty parameters « and S affect the ability of neuron to handle traffic jams. g has a greater influence on
the traffic regulation compared to « since it directly affects the transport velocity on MTs, this again verifies the
vital role of MTs during the intracellular transport process. Our model can also model the influence of diverse
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Figure 6. Simulation of material transport in neuron trees extracted from (A,B) NMO_54504 and (C,D)
NMO_54499 with swelling in the red circle regions. The first column shows the computed velocity field and
black arrow points to the inlet of the material. The second column shows the concentration distribution. The
last column shows the velocity streamline and concentration distribution in the swollen region. Different color
maps are used to distinguish between velocity and concentration. Unit for color bars: Concentration: mol/ium?;
Velocity: pm/s.

neuron topologies on material distribution. For the transport in healthy neurons (Figs. 3,4B,D), the magnitude
of transport velocity is different among branches due to the asymmetric geometry. The different velocity magni-
tude further contributes to the distinct material concentration in different branches. In particular, we find that
shorter branches tend to have faster transport speed and higher material concentration, which may result from
the high demand of materials for their growth.

Our study also successfully simulates and provides reasonable explanation on the traffic jam caused by MT
swirls. We assume the counter-clockwise MT swirls exist in a local region of neuron geometry which cause traf-
fic jam and geometry swelling. The spatial distribution of MT density (I+) and neuron geometry are modified
accordingly to model this phenomena. We compare the simulation result of abnormal transport on swirly MTs
with normal transport and find that MT swirls have severe impact on the transport velocity field. Compared to
the uniform velocity streamline in normal transport, the abnormal transport exhibits a streamline with counter-
clockwise vortex pattern (Figs. 5D, 6B,D), which is caused by the counter-clockwise MT swirls. This circular
streamline not only extends the transport distance but also traps the material in the local region, and therefore
explains why high concentration region matches with the circular streamline pattern.

Our study develops an IGA solver (available at https://github.com/CMU-CBML/NeuronTransportOptimiza-
tion) for solving the PDE-CO problem in complex neuron geometries. Specifically, we adopt the skeleton-based
sweeping method®**® for mesh generation to represent the tree structures of neuron geometry. Given the geom-
etry information of neurons, our method automatically reconstructs 2D network geometry with high accuracy
and high order of continuity for IGA computation. Our automatic IGA optimization solver provides an efficient
computation tool for studies of material transport regulation in complex neurite networks. The current 2D solver
can be easily generalized to 3D and it is also extensible to solve other PDE-CO models of cellular processes in
complex neurite network geometry.
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Our study has its limitations, which we are addressing in the ongoing work. In the current model, we only
consider the influence of traffic jams on the material concentration but neglect its effect on the deformation of
neuron geometries. In addition, although IGA offers great advantages in accurately simulating material transport
control in complex neuron geometries, the computational cost of simulating transport in large-scale neurite
networks remains very expensive, which limits its biomedical application. To improve the computational effi-
ciency of our model, we will adopt deep learning techniques to build fast and accurate surrogate models®*”>.
Moreover, designing comparable experiments is necessary to verify the active regulation mechanism in our
model. For instance, the photoactivation technique’”® can be used to visualize the material transport process
and extract the velocity or concentration distribution to compare with simulation results. The velocity data from
experiments can also be used as the pre-defined velocities to provide a more realistic simulation. Regarding the
control variables in our model, they may have relationship with the distribution of molecular motors that affect
the transport dynamics on MTs, and thus needs further experimental data for verification. Despite these limita-
tions, our simulation directly shows how the traffic jam is formed in neurons and how neurons could control
material traffic to avoid traffic jams. The simulation results provide references to further answer the question of
how neurons deliver the right material to the right destination in a balanced manner in their complex neurite
networks and how the transport may be affected by disease conditions.

Data availability

The source code for our model and all input data are available for download from a public software repository
located at https://github.com/CMU-CBML/NeuronTransportOptimization. All data generated during this study
can be reconstructed by running the source code.
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