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We report computations of the axisymmetric slump of viscoplastic fluid using the volume-of-fluid (VOF) method.
The constitutive law is dealt with by either regularization or the augmented-Lagrangian method. The interface
is tracked by the PLIC scheme, modified in order to avoid resolution issues associated with the over-ridden
finger of ambient fluid that results from the no slip condition and the resulting inability to move the contact
line. Numerical results are compared with asymptotic analyses for shallow gravity currents or slender vertical
columns. The critical yield stress for failure is computed and bounded analytically using plasticity methods. The

simulations are compared with experiments either taken from existing literature or performed using Carbopol. The
comparison is satisfying for lower yield stresses; discrepancies for larger yield stresses suggest that the mechanism
of release may affect the experiments.

1. Introduction

Many fluids in industry or nature behave like viscoplastic fluids, in-
cluding toothpaste, cement, mortar, foam, mud and mayonnaise. The
crucial property of these materials is the yield stress, 7y, that must be
breached in order for fluid to flow. If the imposed stresses fail to reach
this threshold, the material remains solid-like, with any deformation
often assumed small and discarded. In that situation, which underpins
popular constitutive models such as the Bingham and Herschel-Bulkley
laws, the stress state of the material becomes formally indeterminate
[1]. Together with the need to track the boundaries of the yielded
regions, this complicates significantly efforts aimed at theoretical
modelling. Numerical strategies to overcome such difficulties have been
developed in recent years and here we apply them to the particular prob-
lem of the axisymmetric slump of a yield-stress fluid under gravity.

Such collapses are exploited widely to gauge fluid rheology in the
concrete, mineral and food industries. The slump test, for example, is
commonly used to measure the yield stress of fresh concrete. In this
test, a container filled with concrete is lifted to release the material and
allow it to spread under gravity; at stoppage, the vertical distance over
which the concrete falls, the “slump height”, is measured as an indicator
of yield stress. A number of experimental studies have been directed at
establishing the precise relation of the slump height to the yield stress
for a variety of different types of viscoplastic fluids [2-5].

Theoretical studies of the slump test have been performed using ei-
ther numerical computations, asymptotic analysis suitable for the limit
of shallow flow, or estimates and bounds based on plasticity theory
[2,4,6-14]. The numerical simulations have been conducted using a
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variety of numerical techniques, although most of the algorithms em-
ployed were not specially designed to capture yield-stress rheology or
carefully track fluid interfaces. The current status of the modelling of
the slump test is reviewed by Roussel et al. [11].

One goal of the current article is to provide a reliable solution of
the benchmark problem proposed in [11], and to offer a more complete
description of the slump behaviour over a wider range of physical condi-
tions. For the task, we perform computations based on the VOF method
to deal with the fluid interface and exploiting specially designed codes
to capture the yield-stress rheology. Our study follows on from an ear-
lier one [15] in which we considered two-dimensional dambreaks of
viscoplastic fluid. We complement the computations with asymptotic
theory for shallow gravity currents and slender vertical columns, and
bounds from plasticity theory to constrain the mode of failure for slumps
near the critical yield stress whereat no collapse actually occurs.

A second goal is to compare our theoretical modelling with exper-
iments, collating some of the existing measurements from the litera-
ture [2,3]. These experiments have not previously been performed suf-
ficiently thoroughly to disentangle the effects of material rheology, the
mechanism of release, and any interaction with the underlying surface
(effective slip). Therefore, we also perform our own suite of experi-
ments using aqueous suspensions of Carbopol. This suspension is often
suggested to be well characterized by a Herschel-Bulkley rheology and
potentially eliminates some of the confounding effects brought into ex-
periments by non-ideal material behaviour [1]. We thereby provide a
demanding test of the theory whilst gauging the effects of the release
mechanism and any effective slip.
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Fig. 1. Sketch of the geometry.
2. Formulation
2.1. Problem set-up and solution strategy

The geometry of the problem is shown in Fig. 1: we use an axisym-
metric cylindrical polar coordinate system (r, 2) to describe the sudden
release of a cylinder of incompressible Bingham fluid with radius R and
height A. The fluid has density p;, yield stress 7y and plastic viscosity
41 and is immersed in an ambient Newtonian fluid with density p, and
viscosity p,. The density and viscosity ratios are set at the small values

22 — £ — (0,002 in order to minimize the effects of the ambient fluid (we

ﬁiave Vleriﬁed that the precise values of these ratios have no significant
effect on the computations once one deals with the resolution issues
described in Section 2.3). We use the VOF method to track the fluid
interface, which introduces an advected concentration field c(r, 2, t) to
distinguish the fluid phase: ¢ = 1 represents the viscoplastic fluid, and
¢ = 0 denotes the Newtonian ambient. Given c, bulk material parameters
are computed using linear interpolation. The initial configuration is

c(r,z,0) = {

The two fluids are miscible, eliminating interfacial tension.

The computation domain extends to a height L, and radius L,, which
are chosen to ensure that these boundaries remain remote and do not
affect the evolution of the slump. We impose no slip (u = 0, w = 0) on the
bottom z = 0, regularity conditions on the axis r = 0 (i.e.u = dw/dr = 0),
and no normal flow and free slip conditions along r = L, and z = L,.

We use two methods to deal with the yield-stress constitutive law: a
regularization scheme that treats the unyielded region as a highly vis-
cous fluid, and an augmented-Lagrangian scheme that explicitly treats
the yield stress within a weak formulation of the problem [16,17]. Both
are implemented in C++ as an application of the PELICANS platform
(e.g [18]).

1for0<r<RO<z<H,

0 elsewhere.

2.2. Dimensionless model equations

We scale lengths by the initial height A, velocities by the speed scale
U = p, gA?*/u,, and time by H /U, where g is the gravitational accelera-
tion; the stresses and pressure are scaled by p, g H. The governing equa-
tions for the concentration field c, velocity u = (u, w), deviatoric stress
tensor 7, and pressure p are then

V-u=0, 0—C+(u-V)c=0,
ot o
pRe[Z—':+(u~V)u =—Vp+V~r—p<(l)>,
where
p=c+(-02 and p=c+a-o ©)
P1 M

The unregularized Bingham constitutive law, used in the augmented-
Lagrangian method, is

;'/jk =0, 7 <c¢B,
B (3)
Tjj = <Il + Cf)}"jk, T>cB,
Y
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whereas the regularization method uses the variant,

T = +CB y
Jk H P e

_ 1 2 Lo 1 ) . i
where z = /3 3, 77, and y = /5 ¥, 75, denote second tensorial in

variants, and the deformation rates are given by

“)

}.'rr }.’ré’ j/rz 2ur 0 u; +w,
Yor Yoo Yoz |= 0 2ufr 0 j )
yzr }.’19 j/zz u, +w, 0 sz

with subscripts represent partial derivatives, except in the case of tensor
components. The scalings introduce the dimensionless initial radius (or
aspect ratio), and the Reynolds and Bingham numbers,
_nU A Ty A

and B= .
Hy mU

Re

(6)

The regularization parameter ¢ in (4) is taken to be 10~%, which was
verified to be sufficiently small that the modification of the constitutive
law had an insignificant effect on the results reported below (but see the
comment at the end of Section 2.3). Given the concentration field, we
define the instantaneous position of the surface of the slump to be given
by c(r,z=h) = % For most of the computations, we select parameters
so that inertial effect is small, Re = 103, and vary B and R.

2.3. PLIC Scheme with interface correction

The piecewise-linear-interface-construction (PLIC) [19,20] is a con-
temporary standard in the VOF method. The interface is represented by
a line segment in each grid cell, which is computed using the volume
fraction ¢, as in [19]. Then, given the velocity field, the line segment
is advected to a new position, and ¢ updated accordingly. In view of
the boundary conditions, there is no flux of c into or out of the domain,
which is incorporated into the scheme in the manner in which the solver
advects ¢ along the boundary. Importantly, the bottom boundary is no
slip, which does not permit the contact line to move and introduces an
awkward resolution issue, as in the 2D problem in [15]. More specif-
ically, as the viscoplastic fluid collapses and spreads out, a finger of
ambient fluid adhering to the bottom surface is over-ridden. For the
relatively low density and viscosity ratios that we employ, this finger
lubricates the slumping viscoplastic current and thins dramatically to
introduce the resolution issue [15]. A key problem is that the scheme
fails to accurately evolve ¢ when the interface is inside the lowest grid
cell, leaving the finger artificially thick and lubricating.

A common way of moving the contact line in problems with sur-
face tension and Newtonian fluid is to replace the boundary condition
with another that permits slip. However, numerical solutions may not
converge with mesh refinement [21]. Instead, in [15] we suggested a
correction scheme that eliminates the finger in a different way, allow-
ing the computations to remain well resolved over long times. The main
point is that, with no slip, a finger of ambient fluid must still coat the
underlying surface. However, counter to the un-corrected VOF scheme,
the finger actually becomes too thin to lubricate the slump and should
instead be ignored. Practically, the scheme implements this idea by re-
moving all the ambient fluid from a grid cell adjacent to the base when ¢
exceeds a threshold near unity (chosen to be 0.99). This procedure clips
the interface when it invades the lowest grid cells, thereby truncating the
finger and rendering the computation convergent in grid spacing [15].

Despite the success of the scheme for 2D dambreaks, the algorithm
is not conservative, with the mass of viscoplastic fluid growing with
time. This awkward feature does not impair computations in 2D, but
it does become more problematic in axisymmetric geometry, for which
the convergence of the solutions with mesh refinement is weakened. For
the current computations we therefore modified the correction scheme
so that it conserved mass. In particular, whenever a correction to ¢ was
implemented, and some of the ambient fluid removed from the one of
the lowest grid cells, the lost material was added back by uniformly re-
distributing it into the grid cells containing the interface (where ¢ = %).
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Fig. 2. Time series of flow height H(¢) and front position R(r) for Bingham slumps with R =1 and B = 0.01, 0.03, 0.05, 0.08, 0.125, 0.2 and 0.3. Blue curves are
from regularization, and red circles from the augmented-Lagrangian method (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.).

Essentially, this redistribution incurs an error in the position of the inter-
face that is of the order of a small fraction of the grid spacing, but in such
a way that mass is conserved. Though hard to justify from a physical
perspective, the resulting conservative correction scheme converges
more satisfyingly with mesh refinement for slumps with Newtonian
fluid than the original non-conservative scheme (see Appendix A),
chiefly because the latter suffers a resolution-dependent mass loss.

The conservative correction scheme also performs better for
Bingham fluid using either the regularized constitutive law or the
augmented-Lagrangian solver. Moreover, both produce comparable re-
sults for the global properties of the slumps (see, for example, Fig. 2
below), and their interaction with the PLIC scheme does not intro-
duce any additional unexpected issues. In more detail, the regulariza-
tion scheme has the drawback that the fluid can never truly come to
rest and can fail to correctly predict the positions of the yield surfaces
[22]. However, the regularization scheme is faster than the augmented-
Lagrangian code. Therefore, we use regularization scheme for exploring
global features of the slumps (defining the flow to have come to rest
when Max(|v|) < 107%), while for the finer details such as the yield sur-
faces, we compare both schemes.

3. Bingham slumps

Fig. 2 shows the slumps of cylinders of Bingham fluid for R = 1 and
varying yield stress B. Displayed is the central depth H(¢) along with
the radial position of the flow front R(r) (defined as the largest radial
extent of the interface, ¢ = %). The computations suggest that flow is
arrested in finite time and illustrate how collapse only occurs when the
yield stress is below a critical value B,. A selection of the final profiles
is illustrated in Fig. 3(a).

Further details of the phenomenology of a slump are shown in
Fig. 4. Initially, the stresses exceed the yield value throughout the cylin-
der except over a small conical region at its core. Fluid subsequently
slumps outwards, reducing the stresses and allowing that plug to ex-
pand with time. Eventually, stresses decline towards B all the way to
the flow front, bringing the fluid to rest. Note that, there is only a sin-
gle central plugged region; for equivalent two-dimensional dambreaks
[15] plugs persist at the periphery of the initial configuration, leading
to sharp corners that decorate the final deposit. Rigid features of this
sort cannot occur in axisymmetric slumps because the fluid edge must
expand in order to fall. However, analogous weakly yielded zones per-
sist during the collapse, then plug up to create sharp rings that disfigure
some of the final shapes (see Fig. 3).

As for 2D dambreaks [15], when the initial configuration is suffi-
ciently wide, fluid only collapses near the edge, leaving an unyielded
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Fig. 3. Profiles of the final deposit of cylindrical slumps with (a) R = 1, B = 0.01,
0.02, 0.04, 0.07, 0.125, 0.2 and 0.275, and (b) R = 4, B = 0.1 and 0.19. The solid
curves show numerical computations, the dashed curves show the improved
shallow-layer asymptotic result in (11) (for the lowest four values of B in (a)),
and the dotted lines show the initial cylinders.

Fig. 4. Evolution of the interface for a slumping cylinder with (R, B) = (1,0.1).
The main panel shows the interface at the times ¢t =0, 2, 4, 6, 8, 20, 200 and
1000. The three insets show the stress invariant r as a density on the (r, z)—plane
for the times ¢ = 2, 20 and 1000 (with a common scale for the last two cases).
The green curve shows the yield surface. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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flat-topped central section. Such “incomplete slumps” arise when the
central plug spans the entire fluid layer and are illustrated in Fig. 3(b).

3.1. Shallow flow

When flow is shallow and inertia is negligible, lubrication theory can
be applied to obtain analytical results [12]. With our current scaling of
the problem, this limit is achieved when B« 1. To account for the low
aspect ratio, we rescale the horizontal coordinate r = ¢~! y, deviatoric
stress components 7;; = e%;; and Bingham number B = B using a small
parameter ¢ <1, and then restate the force balance equations for the
viscoplastic layer:

€ v € . v
Dy + ;(/Yrrr)/y - ;THH + Trzz = 0,

2 )]
-p, + ;()(%,Z)I +et,,, = L

Neglecting the ambient fluid, the surface of the current can be located
by the elevation z = h(y, 1), and is force free, demanding that

%'Z+h1(p_€%”)=o} at z = h.

p—¢€t,, + ezhx'i,z =

®)

At leading order, we find that p ~ h - z and #,, ~ —h ,(h - z). The con-
stitutive law and depth-integrated continuity equation can then be used
to derive an evolution equation for h(y, t) [12,23]. However, the final
profile arises when radial spreading speeds subside and #,, — B at the
base of the fluid layer z = 0. Thence %,,(y,0) ~ —hh v~ B, which gives

h(r) ~ \/2B(ro, — 1),

in terms of the original variables, where r_, is the final radius.

In [15] a higher-order approximation for the final profile of a 2D
slump was developed by continuing the asymptotic solution to O(e),
assuming that ¥ — B throughout the fluid layer. We follow suit here,
although a significant complication emerges owing to the axisymmetric
geometry. In particular, in addition to the two force balance equations,
we must also satisfy

©))

%rr + %99 + %zz =0

Lo 20 | 2 D) a0
E(Trr +T{7‘9 +Tzz) +Trz =B ’
leaving us one equation short for determining the full stress state (i.e.
we have four equations for the five unknowns p, %,., %y, £,, and %,,).
The origin of this indeterminacy is the component #,,, which does not
arise in 2D and highlights how the stress field cannot, in general, be con-
structed independently of the velocity field. The situation is identical to
classical plasticity theory where the so-called von Karman-Haar hypoth-
esis is often invoked to avoid this problem. The hypothesis, which states
that %y, must equal one of the principal stresses in the (r, z)—plane, im-
plies that #2, = %E’z [24]. However, ¥2 — B2 at z =0 for the leading
order lubrication solution, indicating that %,, must vanish at the base of
the fluid layer. Therefore, the von Karman-Haar hypothesis contradicts
the leading-order asymptotic solution and cannot be invoked here.

Instead, we add the approximation ¥, ~ ¥j,, which is suggested by
both the velocity field of the leading-order asymptotic solution and the
numerical computations; see Appendix B. With this alternative hypoth-
esis, the asymptotic analysis can be continued to O(¢) in order to arrive
at the higher-order asymptotic approximation,

h(r) ~\/2B(ro, —r)+ ?n’B

(again in terms of the original variables).

The predictions in (9) and (11) are compared to a numerical simu-
lation for a slump with B = 0.0074 and R = 0.2546 in Fig. 5. Fig. 3 also
compares the improved approximation (11) with computed final shapes
over a wider range of B. Note that (11) predicts that the final profile
ends in a vertical cliff, violating the shallow-layer asymptotics. Never-
theless, (11) provides a meaningful prediction along the flow body that

an
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furnishes a better approximation than the leading order result (9), even
when the flow is not particularly shallow (B> 0.04).

In the example of Fig. 5, the fluid yields significantly almost every-
where, removing any sign of the initial shape in the final profile. Indeed,
computations that begin with the same amount of fluid but conical ini-
tial shape also lead to similar final profiles. Fig. 5 includes a computation
using an initial cone with a top radius of Ry, = 1/6 and bottom radius
of Ry,se = 1/3, which corresponds to the ASTM standard geometry; the
final state cannot be distinguished from that of the cylindrical dambreak
in the plot. Thus, the example shown in this figure corresponds to the
benchmark problem proposed in [11]. Indeed, on the right-hand side
of the figure, the profiles are replotted in dimensional variables using
H = 30 cm; the results can then be directly compared with Fig. 5in [11].

The agreement amongst the computations in [11] is relatively poor,
a discrepancy that may arise from different treatments of the contact line
and the fluid rheology. By contrast, the current computations align satis-
fyingly with (11), have converged with respect to mesh refinement, and
are independent of the numerical algorithm (augmented-Lagrangian or
regularization). Our computation indicates that the final (dimensional)
radius is 28 cm, in comparison to the average of 29.5 cm quoted in [11].
Fig. 5 also tells the cautionary tale of the results when we fail to resolve
the finger of upper-layer fluid by applying the uncorrected PLIC scheme,
or overly regularize the constitutive model. Both deficiencies lead to an
enhancement in spreading. Note that there is essentially no effect of
inertia on the profiles shown in Fig. 5: recomputing the results with a
Reynolds number based on the benchmark conditions, rather than the
artificially low value used for the bulk of our simulations, leads to no
significant differences.

When a complete slump does not occur but a central section of the
initial cylinder survives, the shallow-layer solution is modified accord-
ingly:

1, O<r<ry,—-—

3
V2B(ry, — 1)+ %—B, Foo — % <r<ry
This approximation is again compared with numerical final shapes in
Fig. 3(b).

h= 12)

3.2. Slender columns

For a tall slender column (R < 1), the asymptotic analysis of [15] can
be generalized to determine the instantaneous radius r = r(a,f) < 1 in
terms of a Lagrangian coordinate a€ [0, 1] corresponding to initial
height: where the fluid is locally yielded, we find

1—15(r)/‘r2
(x)dx
V3B Ja
a 2 _B
z(a,t):/ ydx, E(f)y=e V3,
0 r x,1)

where ry(a) represents the shape of the initial column. As t — o0, we then
obtain

1
rz(a): L/ rz(x)dx,
V3B Ja "’
fOl rg(x)dx

/al r(z)(x)dx .

r(a,1) = E(t)rk(a) +

13)

14
z(a) = \/EB In

The solution in (13) and (14) must be matched to a plugged upper sec-
tion of the column, which always remains unyielded. The yield surface
is given by ry(ay) = r(ay). The dimensionless slump height s (the differ-
ence between the initial and final heights) is therefore

V3Bri(ay)

. 15)
/01 rg(a)da

s=ay+\/§Bln
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Fig. 5. Final profile for a cylindrical dambreak with B = 0.0074 and R = 0.2546. The thin black curve shows the numerical simulation. On the left, the data is plotted
using dimensionless variables, and the leading-order and improved asymptotic predictions in (9) and(11) are included as the dotted (green) line and (red) points,
respectively. On the right, the data is replotted in dimensional variables assuming A = 0.3 m. Also shown are three other final profiles: one from a simulation

beginning with a cone with the same volume, with a top radius of Ry,

= 1/6 and bottom radius of Ry,, = 1/3 (the ASTM standard geometry; thick light grey line); a

second from a simulation with the regularized Bingham model in which the regularization parameter is increased to 10~* (dashed line); and a third from a simulation
that does not apply the interface correction scheme to remove the underlying finger of ambient fluid (thin red contour) (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.).

(a) B=0.15, t=1, 2, 4, 8, 1000 (b) Final shapes, varying B
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Fig. 6. (a) Collapse of a cylindrical column with B = 0.15, showing the interface
at the times indicated. (b) Final shapes of cylinder with R = 0.025 and B = 0.15,
0.20, 0.25, 0.30, 0.35, 0.40 and 0.45. Dashed lines indicate the slender asymp-
totic predictions (13) and (14); solid lines are from numerical simulations.

For an initial cylinder, ry(a) = R, and

s=1-13B+V3BIn(\/3B),

which is widely used as a prediction of the slump test [2]. This im-
mediately implies that the column will not yield anywhere if B > B, =
1/v/3 = 0.577.

Fig. 6 compares numerical computations with the slender-column
asymptotics for initial shape with ry(a) = R = 0.025. First, the dynami-
cal evolution of a column with B = 0.15 is shown; second, the final shape
is compared for cases with varying yield stress B. Note that undulations
in the surface profile do not appear near the base of the column in the
axisymmetric simulations, unlike in 2D [15]. As a result, the computa-
tions and slender-column theory agree more satisfyingly, except at the
very base of the column where the no slip condition is not correctly
captured by the asymptotics.

(16)
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Fig. 7. Critical yield stress for collapse, B,, as a function of initial radius R.
Blue stars indicate the results from numerical simulations; the solid line shows
the lower bound assuming a mechanism involving basal collapse (labelled I);
the dotted line shows the result from [14]. In (a) we show the range R<1 and
include experimental data from [27]. In (b) we show the range R<4 and an
alternative lower bound assuming a peripheral collapse (labelled II) (For inter-
pretation of the references to color in this figure legend, the reader is referred
to the web version of this article.).

3.3. Failure mode

Just below the critical value B.(R) for which no slump will occur,
the collapse is characterized by a particular mode of failure that de-
pends on the initial shape. To compute the critical yield stresses and
find the failure modes, we use the augmented-Lagrangian method and
monitor the rate at which the iterations of the scheme converge dur-
ing short-time computations ending at ¢ = 1; iterations converge signif-
icantly faster when B> B.. The results are plotted in Fig. 7. As R—0,
B, converges to 1/ V/3, the limit for a slender column; as R — oo, B, ap-
proaches the value 0.265, corresponding to the failure of a 2D vertical
embankment [25,26].

Fig. 8 collects together computational results for sample failure
modes, extracted from the initial velocity field for simulations with
B~B,. Much as expected on physical grounds and found for 2D
dambreaks, the fluid collapses by failing first over a basal region for
thinner initial cylinders, and only at the periphery with a wider ini-
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Fig. 8. Strain-rate invariant plotted logarithmically as a density on the (r, 2) plane for solutions with B~ B, Re~ 0, t~0, at the values of R indicated by the r-axis
limits. Also shown are a selection of streamlines. In (a) — (c), the solid blue lines indicate the border of the plastic region predicted by limit analysis (17). In (e), the
blue line indicates the circular failure surface of the lower bound solution in 2D geometry [15] (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.).

tial state; cylinders with radii around unity show mixed types of failure
modes.

The critical yield stress can be bounded using methods from plastic-
ity theory [28]. In particular, lower bounds on B, can be established by
maximizing

J wrdrdz
// Byrdrdz’
over families of trial velocity fields. Guided by the numerical failure
modes in Fig. 8, we find a lower bound for slender initial cylinders by
considering trial velocity fields that are composed of a rigid central sec-
tion in z < f(r), an overlying descending plug for z > g(r), and a plastically
deforming region sandwiched in between. We take the “yield surfaces”
f(r) and g(r) to have parabolic shape and the (incompressible) plastic
deformation to have a cubic horizontal velocity profile. Thus, our trial
is

B= (17

0,-1) grn<z<l1
v=1 (u,w) firn<z<glr (18)
0,0) 0<z< f(r)
with
“= 0 6—rf<r>"(l -’
w=—(6—8y+ 35 — 6rn(1 — n)*y, (19)
_ 2= J0
g — £

Optimization of B can then be performed over the parameters ¢; of
the parabolas defining f = ¢;(R — r) + ¢;(R — r)> and g = ¢; + ¢,(R — ) +
es(R—r)%.

Upper bounds on B, can also be constructed using trial admissi-
ble stress fields [28]. However, in axisymmetric geometry, without a
velocity field to determine all the stress components, an additional
assumption is needed such as the von Karman-Haar hypothesis. This
artifice permitted Chamberlain et al. [29] to construct upper bounds on
B.. Unfortunately, this hypothesis is not appropriate for our axisymmet-
ric slump and so their upper bound does not apply here.

50

Note that the trial velocity field in (19) is continuous across the
curves z = f(r) and g(r), in line with the structure of the failure modes
of Fig. 8. This contrasts sharply with the 2D problem in which failure
can occur over distinct curves that support velocity jumps and which
become smoothed into viscous boundary layers in numerical solutions.
Indeed, Chamberlain et al. [14] have previously computed bounds for
the failure of cylinders using trial velocity fields more similar to the
2D failure modes. However, distinct failure lines and viscous boundary
layers do not characterize our axisymmetric solutions, leading to the
choice of the cubic velocity field in (19). This choice complicates the
optimization computation but significantly improves the results.

The lower bound on B, for basal failure is included in Fig. 7, and
compares well with numerical computations when R is small. Fig. 8 also
displays the predictions of the optimization calculation for the surfaces
z = f(r) and g(r), which have some correspondence with the computed
yield surfaces. For larger values of R, the bound diverges from the com-
putations and the trial velocity field is less similar to the actual failure
modes. Both occur because of the switch in the form of the failure mode,
from a basal collapse to a peripheral one.

For a lower bound on B, for peripheral failure we require a different
trial velocity field. In 2D, a useful bound is found by assuming that a cir-
cular arc of failure connects the foot of the vertical face at the edge with
some point on the top surface; above this arc, material rotates rigidly
out of initial position. For a simple axisymmetric generalization of this
trial, we again assume that a circular arc of failure arises, but divide the
2D velocity field by r (with the horizontal coordinate x replaced by r),
which ensures that the trial is incompressible. The resulting bound is
shown in Fig. 7, and always lies below the 2D bound (though converges
to it for R = o).

4. Comparison with experiments
4.1. Methods

To complement the theory, we performed experiments using an
aqueous suspension of Carbopol Ultrez 21 (with a concentration of about
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Fig. 9. (a) Comparison of experimental slump height with previously published data for R < 2. The points are colour coded by R, as indicated by the colour bar. The
published data is taken from [5] (Gao; R = %), [2] (Pashias-a: data at R ~ % for differing materials; Pashias-b: data for red mud with varying R), [3] (Saak; R = 0.52)

and [4] (Clayton; R = %). On the right, slump height is plotted against (b) the rate of release (i.e. the inverse of the time taken to lift up the cylinder) for R=3cm

and A = 3.8 cm, and (c) R for A ~ 3.1 cm. Most slumps were conducted by releasing the fluid over about a second, but not recording the time precisely; several
repeated slumps with this protocol are plotted at release rate 1.25 s™'. In (b) and (c) the fall of the corner of the initial cylinder 1 — H, is also recorded (open circles).
Panel (b) also shows the residual mass attached to the cylinder after the release of the fluid, and data for slumps that were conducted over a smooth surface (red
stars; in these cases the slumps were left to come to rest for five minutes) (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.).

0.5% by weight, and neutralized by sodium hydroxide). A Herschel-
Bulkley fit to the flow curve measured in a rheometer (MCR501, An-
ton Paar, with roughened parallel plates) gave 7y =39 Pa, n = 0.3 and
K =32Pas".

Slump tests were conducted by filling a variety of cylinders with dif-
ferent geometry with the suspension, smoothing the fluid’s upper sur-
face with a sharp edge. The cylinders, with radii varying from 10 to
95 mm and heights over the range of 11 to 562 mm, were attached to
a pivoted arm that raised each container in a relatively controlled and
reproducible fashion. For most of the tests, the arm was raised relatively
quickly, releasing the fluid over a time of about 1 s, and the surface over
which the fluid slumped was a plexiglass plate roughened with sandpa-
per. Measurements of the final deposit were taken after waiting for a few
minutes. However, we also conducted tests in which we varied the rate
at which the cylinder was raised, or replaced the roughened plexiglass
with either a smooth sheet or covered it with 60 grit sandpaper. Note
that for the smaller aspect ratio cylinders that we used (R < %), there
was a tendency for the slumps to topple over sideways if the cylinder
was not raised sufficiently slowly (which typically lengthened the re-
lease time to a couple of seconds), highlighting an instability of tall thin
columns [30]. We abandoned any tests that showed substantial sideways
motion.

To remove the effect of the manner in which the fluid was released,
we conducted a second series of extrusion experiments. Here, the Car-
bopol was pumped up onto the surface through a vent with a diameter
of about 0.5 mm. For both the slump tests and extrusions, thickness
profiles h(r, t) were extracted by taking photographs from the side, al-
lowing measurements of the final central height and radius (except for
the extrusions over the smooth surface, as discussed below, the tests
were axisymmetric).
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Note that, for the slump tests, we continue to use the Bingham model
to provide theoretical solutions to compare against the experiments, de-
spite the fact that the Carbopol is better fitted by the Herschel-Bulkley
law. Thus, we implicitly assume that the power-law viscosity plays a mi-
nor role in controlling the form of the final state of a slump. We explic-
itly confirmed this for isolated examples of dambreak computations in
which we implemented the Herschel-Bulkley model with a power-law
index suggested from the flow curve of the Carbopol (ie. n = 0.3, see
the end of Section 4.2 and Fig. 12). In order to improve the comparison
with experiments, we also used this alternative rheological model for
our computations of time-dependent extrusions. Specifically, the com-
putations exploited the regularization,
e l’:—f(l —o+ y% o 20)
The characteristic velocity scale in this case is given by U =
(pgH™ ! JK)'/" (p =103 kgm™3, g = 9.81 m s72).

4.2. Cylindrical dambreaks

The conventional slump test focuses on the distance fallen at the
centre of the fluid, the so-called slump height .S = 1 — H_, where H_, is
the final central depth. A summary of our results for this diagnostic is
presented in Fig. 9. An important experimental parameter that we varied
in the current suite of experiments is the aspect ratio of the cylinder,
R = R/H. Most previous experiments have conducted tests with aspect
ratios close to a half, concluding that this parameter has little significant
effect. However, the theoretical results summarized in Section 3 clearly
expose how R plays an important role if varied over a sufficiently wide
range. This is confirmed in our experiments, which clearly demonstrate
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Fig. 10. (a) Experimental and (b) numerical slump heights against B for R < 2.
Shown in (a) are both S (filled circles) and the distance fallen by the corner
of the initial cylinder 1 — H, (open circles), as illustrated by the experimental
image for (R, B) ~(1.25, 0.13) inset above (a) (and also shown in Fig. 12). Inset
above (b) are the final profiles (red) of the computations with R = 1.25; that
matching the value of B of the experiment is highlighted (blue). The colour
coding of the points by R is the same as in Fig. 9, and a collection of previous
data (with R = 1) from numerical computations are also plotted in (b) (crosses
[51; stars [7]; pentagrams [13]). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.).

how S decreases with R at fixed B; see the colour coding of the points in
panel (a), and the plot for cylinders with similar initial height A in (c).

The decrease of the slump height with increasing initial radius is a
natural consequence of the growth of the rigid core of the dambreak and
the eventual emergence of an incomplete slump. Indeed, for the latter,
H,, = 1and S = 0, rendering this diagnostic useless for sufficiently large
R. Instead, a measure of the degree of slump at the edge of the initial
cylinder is provided by the distance fallen by the upper circular cor-
ner, which clearly decorates the final deposit except for very low yield
stresses (see Figs. 3 and 10). This alternative diagnostic, denoted by
1 — H, where H, is the final height of the corner, is compared with S in
Figs. 9 and 10. Evidently, 1 — H, is less sensitive to variations in R. Note
that, for some of the cylinders with relatively small aspect ratio, our side
imaging of the thickness profile obscures the centre of the deposit when
the circular corner falls less far; in this situation, the measurement of S
is actually given by 1 — H..

Despite the reduced sensitivity of 1 — H, to R, this diagnostic does
depend on the rate at which the fluid is released (Fig. 9(b)). Evidently,
the speed at which the cylinder is raised affects how much fluid yields
at the fluid edge, which partly controls the fall there. Indeed, the release
rate correlates closely with the amount of material left on the cylinder
after it is raised (which we measured on a weigh scale in this series of
experiments; see Fig. 9(b)). The impact of the release mechanism on
the degree of slump has been reported previously [5], and includes the
possibility that both inertia and adhesion to the cylinder play important
roles in the dynamics. Here, our goal is to complement our inertia less
axisymmetric dambreak computations with similar, if not identical ex-
periments, and so the effect of the release mechanism is a distraction
that precludes a quantitative comparison of theory and experiment. In
particular, the action of lifting the cylinder must force the fluid to yield
even if B> B,, which may well explain why the existing experimental
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Fig. 11. The central depth and radius of the final deposit against Bingham num-
ber, all scaled by R%3, for R < 4. Our results for Carbopol slumps are shown by
the filled circles; the crosses show data from [5]. The results from the numerical
simulations also plotted in Fig. 10 are shown by the solid lines; the improved
asymptotic prediction from (11) is shown by the dotted line. The colour coding
by R is the same as in Fig. 9.

data at higher B does not progress to the unyielded slump value S =0
(0.265 < B, < 1/\/_ ~ 0.577 over the full range of R).

Fig. 10 compares in more detail the experimental slump heights with
the results of our simulations. The two agree qualitatively, if not quan-
titatively, with the wider initial cylinders of the simulations slumping
less far. The comparison is worse for previously reported numerical data
[5,7,13] for Bingham slumps, which mostly collapse even further. We
suspect that this is due to resolution issues, as illustrated in Fig. 5.

Fig. 11 shows another comparison of the final central depth and
radius of the deposit against yield stress. Here, the data is scaled by
R?/3, which corresponds to choosing a length scale based on the initial
volume of the cylinder rather than its height, and constitutes a more
natural choice in the shallow limit where much of the memory of the
initial shape is lost. The rescaling collapses both the height and radius
data close to a common curve matching the asymptotic prediction from
(11) (at least for the aspect ratios used in the plot, with R <4), in con-
trast with the slump height diagnostic of Figs. 9 and 10.

Previous experiments have also invariably been conducted over
smooth surfaces. However, it is known [31] that spreading drops of vis-
coplastic fluid can suffer effective slip unless the surface is either chem-
ically treated or roughened. Indeed, when we conduct slumps over the
smooth plexiglass, the fluid collapses noticeably further, implying a de-
gree of slip (the contact angle is also noticeably different, exceeding
90° for the roughened surface, but not for the smooth one). By contrast,
slumps over a surface covered with sandpaper are similar to those above
our roughened plexiglass, providing confidence that our surface rough-
ening significantly reduces slip in the bulk of our tests. Fig. 12 compares
the final shapes of a particular slump conducted over the different three
surfaces, and Fig. 9(b) includes data for the same slump over the smooth
plexiglass.
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Fig. 12. Side images from the slump experiments and theoretical final profiles:
the photographs compare slumps over the roughened, smooth and (green) sand-
paper surfaces (from top to bottom); vertical dashed lines indicate the final radii,
and the scale of the photographs is indicated in the first panel, for which the
rectangle shows the initial fluid cylinder, of height 3 cm and radius 3.8 cm.
The plot shows computations matching the experiments (R = 1.29, B = 0.13 and
Re = 0.28) and using the surface boundary conditions indicated (blue line for
no slip, red for free slip); the dashed lines indicate the shallow-layer asymptotic
predictions in (11) and (C.9). For the no slip case, two other computations are
shown: a computation with artificially high Reynolds number (Re = 35; thick
grey line) and one with Herschel-Bulkley model (n = 0.3; green dots). For the
free slip case, the green dots again show a computation with the Herschel-
Bulkley model (n = 0.3). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.).

For a theoretical examination of the effect of surface slip, we con-
duct simulations in which the no slip condition is replaced by free slip
(i.e. we impose 7,, = 0 at z = 0). Fig. 12 compares the result with that
using no slip for simulations in which the geometrical parameters and
yield stress are matched to the experiments. A free slip version of the
asymptotic analysis for shallow flows can also be provided, as summa-
rized in Appendix C; the final shape is predicted to remain cylindrical,
with a depth of 2B+/3 and a radius of R/(12B2)Y/4. Both this predic-
tion and that of the improved no slip theory in (11) are also plotted in
Fig. 12. The fluid spreads noticeably further with free slip, mirroring the
experiments. The spread over the smooth plexiglass is, however, rather
less significant than suggested by the free slip computations, as would
be the case if there was a residual surface interaction.

Fig. 12 also includes results from a simulation in which inertial ef-
fects are promoted by taking a higher Reynolds number than that match-
ing the experimental conditions (Re is about 125 times higher in this
case). The two solutions can barely be distinguished in the figure, high-
lighting how inertia plays little role in controlling the final shape in the
simulations. Indeed, our computations suggest that inertial effects are
relatively minor over most of the range of physical conditions of our ex-
periments: Fig. 13, shows the slump height S and sample final profiles
for computations with R = 1 and varying B and Re. Inertia plays no role
in controlling the final shape for Re < 1; the slump height increases for
higher Reynolds number, but the effect is modest for our experiments
(with Re <125).

A final feature of Fig. 12 is the inclusion of computations using the
Herschel-Bulkley model in (20), rather than the Bingham law (for both
no slip and free slip surfaces). Evidently, as alluded to earlier, the power-
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Fig. 13. The dimensionless slump height for cylindrical dambreaks with R = 1,
varying B and the Reynolds numbers indicated. The inset shows three sample
triplets of the final shape at the Bingham numbers indicated.
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Fig. 14. Maximum radius R(t)/B = pgR/z, versus depth H(t)/B = pgH /7y for
experimental extrusions with a pump rate of 31.5 ml/min over the rough (stars)
and smooth (squares) plexiglass. Also plotted are the leading-order and im-
proved asymptotic predictions, and Herschel-Bulkley simulations matching the
physical parameters of the experiment with either no slip or free slip boundary
conditions.

law viscosity has little effect on the final shape. However, there do ap-
pear to be some minor quantitive differences, especially in the vicinity
of the corner stemming from the upper edge of the initial cylinder. It
is conceivable that these result from differences in the time evolution
of the plugs during the collapse, which then impacts the final deposit.
Otherwise, the viscous stress is not expected to feature directly in the
force balance controlling the final shape. Nevertheless, any differences
in the final radius and height that may be introduced in this manner
from the power-law rheology are unlikely to upset the comparison of
experiments and Bingham theory in Figs. 9-13.

4.3. Extrusions

The impact of the release mechanism on the slump is removed in
experiments in which fluid is extruded slowly from a vent onto the un-
derlying surface, allowing a clearer examination of the effect of sur-
face slip and a more quantitative comparison with theory. Results of a
sample extrusion are shown in Fig. 14, which plots the instantaneous
radius R(t)/B = pgR/7y against central depth H(r)/B = pgH /7y, both
scaled by B. Rescaling the results in this way removes the scaling by
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Fig. 15. Images and profiles from the extrusion experiments also shown in Fig-
ure 14. The top images show top and side images of an extrusion over the rough
(left) and smooth (right) plexiglass (a ruler straddles the extrusions to add a
scale for the side images). The first row of plots underneath show a sequence of
height profiles at similar times (extruded volumes; the side photographs corre-
spond to the sixth profiles). The insets show magnifications of the contact line.
The lowest row of plots shows height profiles from corresponding numerical sim-
ulations applying either a no slip (left) or a free slip (right) boundary condition
on z = 0 (less one profile for the free slip case). The times of the snapshots are
not perfectly matched owing to irregularities in pump rate in the experiments.
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Fig. 16. Slump heights for Bingham dambreaks with an initially conical shape
corresponding to the ASTM standard, computed using a no slip (solid line with
points) or free slip (dashed-dotted line with stars) condition on the underlying
plane. Squares show experimental data from [4]. The dashed line shows the
prediction for a slender conical column in Appendix D. The diamonds show the
results of numerical computations of [9].

H implicit in the non-dimensionalization of the problem in Section 2,
which has no meaning for the extrusions. Instead, distance is scaled by
the length scale 7y/pg.

Fig. 14 includes data from an extrusion with similar pump rate over
the smooth plexiglass. The radius-height relation, R /B versus H /B, is
very different and reflective of a shallower flow. This is illustrated fur-
ther in Fig. 15, which displays sample images and height profiles taken
from the experiments. In fact, the extrusions over the smooth plexiglass
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became noticeably non-axisymmetric over late times, developing inter-
esting lobe patterns towards the rim of the extruded dome (see the im-
ages shown at the top of Fig. 15). It is not clear whether these patterns
reflects an intrinsic instability of sliding extensional flow [cf. 32] or a
more pronounced sensitivity to surface imperfections at the contact line.
When the extrusion flux is relatively small, the developing dome
above the vent is expected to be close to a steady equilibrium state,
allowing us to recycle the shallow asymptotics of Section 3.1. In partic-
ular, the radius-height relation from (11) is

V3

+ Ty

2R

B

which is also included in Fig. 14, along with the leading-order result
H/B = /2R /B. The improved model in (21) is unrealistic for R — 0,
where the invalid treatment of the edge predicts a finite central depth,
which is the analogue of the vertical cliff predicted at the fluid edge by
(11).

For equivalent numerical computations, we perform simulations as
outlined in Section 2, but using the Herschel-Bulkley law and replac-
ing the no-penetration condition w(r,0,1) = 0 with w(r,0,1) = 2z~ (R? -
%)/ R for r<R,, where R, is the dimensionless radius of the vent. As
initial condition, we take c(r, z,0) = 0 everywhere except over a shal-
low prewetted film spanning the vent and of depth 0.05. In these com-
putations, A no longer has any meaning as the characteristic height
of the initial configuration, but can be defined using the net dimen-
sional flux Q: in view of our prescription for the vertical velocity, the
dimensionless flux is unity, so that Q = A2U = H%(pgH'*"/K)'/". Thus,
& = (KQAn/pg)l/(H}n).

A numerical simulation designed to match the experimental
conditions is included in Figs. 14 and 15. The numerical simulation
over-predicts the central height in comparison to the experiments, but
otherwise tracks the observed radius-height relation. The comparison of
surface profiles illustrates how the theory reproduces the shape of the
observed extruded dome, but again reveals the slight discrepancy be-
tween theory and experiment. We suspect that this originates from the
incomplete removal of slip over the underlying roughened plexiglass
surface (fluid in the experimental extrusion flows further than in the
simulation and the side profiles are less steep). However, errors in the
fluid rheology (the Herschel-Bulkley fit, or non-ideal properties of the
Carbopol) might also be responsible.

Figs. 14 and 15 also include simulations results for a computation
in which the no slip condition on z = 0, r>R,, is replaced by free slip.
As for the axisymmetric dambreaks, the enhanced spread of the fluid
and the attendant modification in the height profile are reminiscent of
how the experiments on the smooth plexiglass differ from those above
the roughened surface, reinforcing our conclusions regarding surface
slip. Once more, however, the freely sliding computations spread even
further than the extrusions on smooth plexiglass, suggestive of residual
surface traction.

"

3 @2n

5. Concluding remarks

In this paper, we have presented a theoretical analysis of the
axisymmetric dambreak of a cylinder of viscoplastic fluid, and com-
pared the results with experiments using a Carbopol gel. In the theory,
we used computations with either a regularized Bingham model or an
augmented-Lagrangian scheme to study the fluid slump, complemented
by asymptotic analyses relevant for shallow gravity currents or tall thin
columns. We also examined the states at the brink of failure to determine
the conditions under which the initial cylinder does not collapse.

The computations, which are based on the VOF method to track the
fluid interface, are complicated significantly by the need to resolve the
flow adjacent to the underlying no slip surface. Without special attention
to this detail, computations inevitably become unresolved and spread
excessively far as a result. Both this and inaccurate treatments of the
yield stress likely reduce the reliability of slump test computations. Here,
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we adopted a numerical device which ensures that our computations
remain resolved, and acts by adjusting the fluid interface and allowing
the contact line to move over the surface.

For dambreaks (cylindrical slump tests), theory and experiment
agree qualitatively and are consistent with previous experiments that
measure the dimensionless “slump height” (the distance fallen by the
centre of the cylinder divided by the initial height), and use a variety
of different kinds of (less ideal) viscoplastic fluids. However, one must
be careful to eliminate slip over the underlying surface, which can sig-
nificantly enhance the collapse. Moreover, the mechanism by which the
fluid is released introduces quantitative differences between theory and
experiment, either through the interaction with the lifted container, or
via the amount of inertia imparted at the moment of release. The ef-
fect of the release mechanism is avoided when fluid is pumped slowly
through a vent onto the surface. In such extrusions, the agreement be-
tween theory and experiment is improved, although there are some re-
maining differences that are most likely due either to residual slip or an
inaccurate treatment of fluid rheology.

A main motivation of the current work was to shed further light on
the fluid dynamics of the slump test. That practical device exploits a
conical initial shape rather than a cylinder, begging the question of how
the present results carry over to this other geometry. Fig. 16 plots sim-
ulation results for the slump height computed for Bingham fluid with
an initial shape given by an ASTM standard cone (which is 30 cm high,
with a top radius of 5 cm and a basal radius of 10 cm). As for the cylin-
der, the theoretical slumps do not collapse as far as experiments (this
time taken from [4]) at higher yield stresses, a discrepancy that could
arise from either the release mechanism or slip. However, although the
threshold for failure depends on the slip condition on the underlying
surface (B, ~0.27 or 0.32 for this geometry with either no or free slip,
respectively), the continued significant slump of the experimental cones
for higher yield stress suggests that the release mechanism, not slip, is
more important. Except for low yield stresses, the simulations results
also disagree significantly with those reported by Roussel and Coussot
[9], especially for the failure criterion.
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Appendix A. Numerical convergence study

Fig. A.17 shows the results of a resolution study for the runout of
a Newtonian slump with R =1 and varying grid size. The first panel
presents results for the PLIC scheme with the non-conservative correc-
tion of [15]; those with the conservative correction are plotted in the
second panel. Both are compared with the results of lubrication theory
[12,33]. Also included in Fig. A.17(b)-(c) are corresponding results for
the runout of a Bingham slump with B = 0.05 and a comparison of the
fluid interfaces of the various solutions at ¢ = 250, all for the case of the
PLIC scheme with the conservative correction (and both values of B).

Fig. A.18 shows further details of the resolution studies with B =0
and 0.05, plotting the runout and central depth of the slump at ¢ = 250
for various computations with differing resolution. Computations both
with and without the correction schemes are presented; the results for
the original PLIC algorithm converge much more slowly than those for
the corrected schemes, with the conservative correction scheme being
superior. For B = 0.05, the three different treatments of the interface
are shown for a computation using the regularization method to deal
with the yield stress. Also shown is a series of computations using the
augmented-Lagrangian method and the PLIC scheme with a conserva-
tive correction, which illustrates how the two methods for the dealing
with the yield stress yield similar results.
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Fig. A17. Computations with varying grid size (as indicated). Panels (a) and
(b) show the flow front as a function of time for a Newtonian slump with R = 1
using the PLIC scheme with the non-conservative and conservative corrections,
respectively. Also inclued in (b) are corresponding results for a Bingham slump
with B =0.05 (green curves). Panel (c) shows the interfaces at 1 = 250 of the
computations in (b) (with inset showing magnifications near the flow fronts).
The red circles show leading-order shallow-layer solutions [33,34] (For inter-
pretation of the references to color in this figure legend, the reader is referred
to the web version of this article.).
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Fig. A18. (a) Runout and (b) central depth at 1 = 250 with varying grid size for
a Newtonian (B = 0; top) and Bingham slump (B = 0.05; bottom) using various
interface-tracking schemes and Navier-Stokes solvers: regularization with the
PLIC algorithm including the non-conservative (crosses), conservative (stars) or
no correction (circles) scheme, or using the augmented-Lagrangian method with
PLIC and the conservative correction (squares). There is no difference between
the Navier-Stokes solvers for B = 0.
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Appendix B. Higher-order shallow asymptotics

When flow becomes arrested, throughout the bulk of the fluid the
constitutive model reduces to the plasticity law z;; = By;; /7. In combi-
nation with the rescaled equations in (7) and (10), one may then deduce
the leading-order stress components,

%, = B(1 = z/h),
VI=( —z/hy)
N e +uu1/)(’

where hy = /1 - y/x, and u are the leading-order profile and radial
velocity, with y =er. If we instead neglect only the O(e?) terms in
(7) and (8), we find that p+e¢#,, =h—z+ O(€?). An integral of the ra-
dial force balance over the depth of the fluid then furnishes the equation

B.1)

(%m %99) = B(“I’ ){_1“)

~ 3¢ d
hh, + B =

2dy
e d

2 [l
ﬁa[ﬂ(/ﬂ (Trr_THG)dZ]'

To correct the profile, we evaluate the O(¢) terms on the right of (B.2) us-
ing the leading-order stress components.

In order to accomplish this, however, we must first determine the
leading-order radial velocity u in order to fix the indeterminacy of the
axisymmetric stress components. The convergence of the leading-order
slump solution to rest has been explored previously in [12], extending
the work of Matson and Hogg [35] for 2D dambreaks. It was found that,
for t - oo, the radial velocity u is plug-like throughout the fluid depth
and given by u = Q? /(4€), where

ho
[ (T, + %Gg)dz] +
0

(B.2)

d
dé
with & = \/1 — z/x and A~ 23.3855. With the solution of this problem
in hand, we may then compute #,. and ¥, to leading order. The results
are compared with components extracted from the numerical simula-
tions in Fig. B.19(a) for a sample slump near the arrest of motion. Plotted
are the stress components along the level where 7,, = 0 (which is z = A
in the leading-order asymptotics), after recasting the asymptotic predic-
tions in terms of the original variables. Except near the centre and edge
of the collapsed cylinder (where the shallow-layer asymptotics breaks
down), the two agree qualitatively. Evidently, z,, is almost constant in
radius, whereas 7, and 7, match one another up to a small correction.

The approximation %,, ~ #,, (which corresponds to a plug speed u«r;
cf.Fig. B.19(b)), offers a simpler analytical pathway to a corrected final
profile: the yield condition now implies that

[a-802| =220 -1 -0), (B3)

Journal of Non-Newtonian Fluid Mechanics 258 (2018) 45-57

which provides the solution quoted in Section 3.1.

Appendix C. Shallow slippy flows

When the fluid slides more freely over the underlying surface, the
lubrication model of [23] no longer captures the leading-order dynam-
ics. In particular, the extensional stress components (7., 7gg, 7,,) be-
come promoted to higher order in comparison to the shear stress z,,
because the reduced surface traction generates little vertical shear and
the horizontal flow becomes plug-like throughout the fluid layer. In this
circumstance, the relevant asymptotic description is that of a viscoplas-
tic membrane model [36]: rather than rescaling as in Section 3.1, we
set only 7,, = e%,,. Then, ignoring inertia, the leading-order momentum
equations are

0= 1 L\ c1
——p;,+;(ﬂ,,),+rrz,z— 3 + O(e), (C.H

0=-p. + T2z,2 — 1+ 0(e), (C2)

With the rescaled horizontal velocity u ~ e~'ii(y, ) > w(y, z,t), the con-
stitutive law predicts that

(T2 Tpp) ~ 2(1 + ?B>(al,a/;(), (€3)
y~2,/a§(+aal/;(+a2/;{2, (C4)

which are independent of z. The surface boundary conditions in (8) are
replaced by

{-rz + h)((Trr -p)

(C.5)
p+7,,

}:O(e)onz:h.

The integral of (C.2) now furnishes p + z,, = h — z toleading order. From
the depth integrated continuity equation and (C.1), it then follows that

h, + %( xhi), =0, (C.6)
T 1 T, — T,
0=—h, - Zb + [z, + 769)] , + ——2. (€7

Here 7, = %,,(r,0,7) is the basal shear stress, which must be specified by
an additional model of slip.

For a cylindrical dambreak with free slip (¢, = 0), the equations ad-
mit a simple solution in which the fluid retains the shape of a cylin-
der, with h=H(r) and i = yU'(t) for y < eR(t), and R = RU'. The
extensional stresses become 7, = 7y =2U" + B/ /3, and mass conser-
vation demands that R>H = R?. Although (C.7) is now satisfied, the

. 2
P . 2B 1— (1 _z ) (B.4) combined gravitational and extensional stress must still vanish at the
e V3 hy /)’ edge of the cylinder, which implies that —%HZ + H(Q21,, + 799) = 0, OF
and so the corrected profile now follows from (B.2) as %H =6U+B \/§ Thus,
o« 3 . 2
hh, + B ~ ”\/_eBh , B5)  F=-2HE = LRVHBVE - Ln). (C.8)
4 x R 6 2
——— . . 1
S 1} Tzz Y Numerics
~ - 08 Asymptotics
N L Tror o)
~ 0.8 0]
s e eennssses g 06
£ op|< e Z
S >
£ 041 - n_:_‘ 04
L ooz2pr o0 0.2
T @ , , , L (b)
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
r/R r/R

Fig. B19. (a) Scaled stress components (z,,, 7,4, 7,,)/B and (b) radial speed u/u,,, plotted against r/R along the level where 7, = 0 at the end of the computation

of a simulation with B =0.01 and R = 1.
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Provided B < 1/ (2\/5), the cylinder therefore collapses to a final state
given by

H=2BvV3 and R R

= 2Bs €9

Appendix D. Tall slender cones

Most practical slump tests take a truncated cone as the initial shape
with the radius at the top equal half of that at the base. The slender
analysis in this case has been derived by Clayton et al. [4] using the
Tresca yield condition. For von Mises, the corresponding result is

(1+a1) -1

s=1—h0—\/3_‘Bln 3
(1+athy)" -1

(.1

where h is the height of the unyielded region, given by
e (lrahy)’ -1

C3VE (L+athy)

and @ = Ryqp/(Ryase = Riop)-

B

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.jnnfm.2018.04.012.
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