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We report the results of computations for two-dimensional dambreaks of viscoplastic fluid, focusing on
the phenomenology of the collapse, the mode of initial failure, and the final shape of the slump. The
volume-of-fluid method is used to evolve the surface of the viscoplastic fluid, and its rheology is captured
by either regularizing the viscosity or using an augmented-Lagrangian scheme. We outline a modification
to the volume-of-fluid scheme that eliminates resolution problems associated with the no-slip condition
applied on the underlying surface. We establish that the regularized and augmented-Lagrangian methods
yield comparable results, except for the stress field at the initiation or termination of motion. The numer-
ical results are compared with asymptotic theories valid for relatively shallow or vertically slender flow,
with a series of previously reported experiments, and with predictions based on plasticity theory.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The sudden gravitational collapse of a mass of viscoplastic fluid
features in a diverse range of problems from geophysics to engi-
neering. These flows can constitute natural or manmade hazards,
as in the disasters caused by mud surges and the collapse of mine
tailing deposits. In an industrial setting, the controlled release of
a reservoir in a simple dambreak experiment forms the basis of a
number of practical rheometers, including the slump test for con-
crete [1,2] and the Bostwick consistometer of food science [3]. The
slump test features the release of a cylinder of yield-stress fluid.
The focus of the current article is more aligned with the Bostwick
consistometer, in which materials such as ketchup are released in
a rectangular channel, and two-dimensional flow is a convenient
idealization. In view of the relatively slow nature of the flows in
many of these problems, we also consider the limit of small iner-
tia.

Despite wide-ranging practical application, the theoretical
modelling of viscoplastic dambreaks remains relatively unexplored.
Asymptotic theories for shallow, slow flow have received previous
attention and permit a degree of analytical insight into the prob-
lem (see [4,5] and references therein). Numerical computations of
two-dimensional dambreaks have also been conducted to model
flows that are not necessarily shallow [6]. However, these simula-
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tions do not provide a detailed survey of the flow dynamics over
a wide range of physical conditions and have focused mainly on
determining some of the more qualitative aspects of the end state
of a slump, such as its final runout and maximum depth. Com-
plementing both asymptotics and numerical simulation are cruder
predictions of the final shape based on solid mechanics and initial
failure criteria derived from plasticity theory [1,7,8].

The key feature of a viscoplastic fluid that sets the problem
apart from a classical viscous dambreak is the yield stress. When
sufficient, this stress can hold the fluid up against gravity, pre-
venting any flow whatsoever. If collapse does occur, the yield
stress brings the fluid to a final rest and can maintain localized
rigid regions, or “plugs”, during the slump. The evolving plugs and
their bordering yield surfaces present the main difficulty in theo-
retical models, particularly in numerical approaches. Augmented-
Lagrangian schemes that deal with the complications of the yield
stress directly are often time-consuming to run, whereas regular-
izations of the constitutive law that avoid true yield surfaces intro-
duce their own issues [9]. For the dambreak problem, difficulties
are compounded by the need to evolve the fluid surface and im-
pose boundary conditions such as no-slip on the substrate under-
neath the fluid.

In the current paper, we present numerical computations of vis-
coplastic dambreaks spanning a wide range of physical parameters.
Our aim is to describe more fully the phenomenology of the col-
lapse and its plugs, the form of the motion at initiation, and the
detailed final shape. Our main interest is in the effect of the yield
stress, so we consider Bingham fluid, ignoring any rate-dependence
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Fig. 1. A sketch of the geometry for the case of a rectangular initial block.

of the plastic viscosity. We mathematically formulate the dambreak
problem in Section 2 and outline the numerical strategies we use
for its solution. We use both an augmented-Lagrangian scheme
and regularization of the constitutive law to account for viscoplas-
ticity; to deal with the free surface, we use the volume-of-fluid
method. The latter method emplaces the viscoplastic fluid beneath
a less dense and viscous fluid, then tracks the interface between
the two using a concentration field. This effectively replaces the
single-phase dambreak problem with that of a two-phase miscible
fluid displacement (we ignore surface tension), but introduces a
significant complication when imposing a no-slip boundary condi-
tion: because the lighter fluid cannot be displaced from the lower
surface, the slumping heavier fluid over-rides a shallow finger of
lighter fluid which lubricates the overlying flow and thins contin-
ually, leading to difficulties with resolution. We expose this com-
plication for a viscous test case in Section 3, and identify means to
avoid it. We then move on to a discussion of Bingham dambreaks
in Section 4, before concluding in Section 5. The appendices con-
tain additional technical details of the numerical schemes, asymp-
totic theories for shallow or slender flow, and some related plas-
ticity solutions.

2. Formulation
2.1. Dambreak arrangement and solution strategy

To simulate the collapse of a Bingham fluid, we consider a
two-fluid arrangement, with the yield-stress fluid emplaced un-
derneath a lighter viscous fluid. We ignore any interfacial tension.
The volume-of-fluid method is used to deal with the boundary be-
tween the two fluids: a concentration field c(x, y, t) smooths out
and tracks the fluid-fluid interface; c = 1 represents the viscoplas-
tic fluid and the overlying Newtonian fluid has ¢ = 0. The concen-
tration field satisfies the advection equation for a passive scalar; no
explicit diffusion is included although some is unavoidable as a re-
sult of numerical imprecision. Fig. 1 shows a sketch of the geome-
try; the initial block of viscoplastic fluid has a characteristic height
‘H and basal width 22, but we assume that the flow remains sym-
metrical about the block’s midline and consider only half of the
spatial domain.

To deal with the yield stress of the viscoplastic fluid, we use
both an augmented-Lagrangian scheme [10] and a regularization
of the Bingham model. The numerical algorithm is implemented
in C++ as an application of PELICANS'. We refer the reader to
[11,12] for a more detailed description of the numerical method
and its implementation. We use the regularized scheme as the

1 https://gforge.irsn.fr/gf/project/pelicans/ ; PELICANS is an object-oriented plat-
form developed at the French Institute for Radiological Protection and Nuclear
Safety and is distributed under the CeCILL license agreement (http://www.cecill.
info/).

main computational tool; the augmented-Lagragian algorithm is
slower and was used more sparingly, specifically when looking at
flow close to failure or during the final approach to rest. In most
situations, the agreement between the two computations is satis-
fying (examples are given below in Fig. 4); only at the initiation
or cessation of motion is there a noticeable difference, primarily
in the stress field (discounting the solution for the plug, which is
an artifact of the iteration algorithm in the augmented-Lagrangian
scheme).

2.2. Model equations

We quote conservation of mass, concentration and momentum
for a two-dimensional incompressible fluid in dimensionless form:

V=0, 2L @.vie=o (1)
at
ou R
pRe[atJr(u-V)u] =-Vp+V.1-pZ (2)

In these equations, lengths ¥ = (x, z) are scaled by the characteris-
tic initial height of the Bingham fluid, #, velocities u = (u, w) by
the speed scale U = p; gH2/u1, and time t by /U, where g is the
gravitational acceleration; the stresses T and pressure p are scaled
by p1 gH. The Reynolds number is defined as Re = p;U4#H /1. Here,
the subscript 1 or 2 on the (plastic) viscosity n and density p dis-
tinguishes the two fluids, and linear interpolation with the con-
centration field ¢ is used to reconstruct those quantities for the
mixture; ie. after scaling with the denser fluid properties,

p=c+(l—c)& and ,u:c—i—(l—c)&. (3)
L1 M1

In dimensionless form, the unregularized Bingham constitutive
law is

}./jk = 0, T < CB,
cB\ . (4)
Tix=|M+ =)V, T>CB,
14
where
p= W _ W (5)
U p18H

is a dimensionless parameter related to the yield stress Ty, and the
deformation rates are given by

. au] 3uk .

- K = 6
yjk axk + aX] ’ V ( )
The regularized version that we employ is

cB .
Tjx = (M + W)Vﬂo (7)

where € is a small regularization parameter. We verified that the
size of this parameter had no discernible effect on the results pre-
sented below; we therefore consider irrelevant the precise form of
the regularization (which is simple, but not necessarily optimal).

We solve these equations over the domain 0 < x < £y = Ly/H
and 0 <z < ¢; = L;/H, and subject to no-slip conditions, u =w =0
on the top and bottom surfaces (but see Section 3), and symme-
try conditions on the left and right edges, u =0 and wx = 0. The
computational domain is chosen sufficiently larger than the initial
shape of Bingham fluid that the precise locations of the upper and
right-hand boundaries (i.e. ¢x and ¢;) exert little effect on the flow
dynamics.
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Fig. 2. Snapshots of the evolving interface for a Newtonian heavier fluid at the
times t = 1,2, 3,4,5; the inset shows a magnification of the finger of over-ridden
lighter fluid.

Initially, both fluids are motionless, u(x,z,0) =w(x,z 0) =0.
We take the initial shape of the viscoplastic fluid to be either a
block or triangle; the concentration field then begins with

1
0<x<X orX(l——z),
c(x,z,0) =1 for =t=70 0 2

O<z<1lor?2,

and c(x,z,0) =0 elsewhere, where Xy = £/H is the initial aspect
ratio. The different maximum depths ensure that the initial condi-
tions have the same area for equal basal width Xj.

The main dimensionless parameters that we vary are the yield-
stress parameter B (which we loosely refer to as a Bingham num-
ber) and initial aspect ratio Xy. Unless otherwise stated, we set the
other parameters to be

P2 _ 2 _Re=10-.
P11 M

By fixing the density and viscosity ratios to be small, we attempted
to minimize the effect of the overlying viscous fluid (but see the
discussion of the finger of over-ridden fluid below). The relatively
low Reynolds number reflects our interest in the limit of small
inertia, although the PELICANS implementation requires Re # O,
evolving the fluid from the motionless state; we established that
adopting Re = 10~3 minimizes the effect of inertia beyond the ini-
tial transient. Some additional technical details of the computa-
tions are summarized in Appendix A. In this appendix, we also
describe a second scheme that we used to study how the initial
state fails at t = 0; this scheme does not solve the initial-value
problem, but calculates the instantaneous velocity field at t =0,
assuming that Re =0 and the initial stresses are in balance (the
steady Stokes problem).

=5, ¢ =125

3. Newtonian benchmark

The collapse of the initial block of the heavier viscous fluid
creates a slumping current that flows out above the bottom sur-
face. However, because of the no-slip condition imposed there, the
upper-layer fluid cannot be displaced from a thin finger coating
the base that is over-ridden by the advancing gravity current. Prob-
lematically, the finger becomes excessively thin and difficult to re-
solve with the relatively small viscosity and density ratios that
we used to minimize the effect of the lighter fluid. We illustrate
the formation of the finger and its subsequent development in
Fig. 2. Appendix A features further discussion of the finger and its
evolution.

The challenges associated with resolving the finger are illus-
trated in Fig. 3, which plots the evolution in time of the flow front,
X(t) (defined as the rightmost position where c(X,z,t) = %), for
computations with different grid spacing. The first panel in this fig-
ure shows the results using a relatively simple MUSCL scheme for
tracking the interface [13], which was previously coded into PEL-
ICANS [11,12]. This algorithm fails to track the interface well with
the grid resolutions used: as the finger develops, it remains erro-
neously thick and the enhanced lubrication by the lighter viscous
fluid causes the heavier current to advance too quickly (cf. A.3).

An interface-tracking scheme based on the PLIC algorithm pro-
posed in [14] performs better; see Fig. 3(b). The flow front now
advances less quickly. However, the fine scale of the finger still
leads to a relatively slow convergence of the computations with
grid spacing Ax = Az (corresponding to finite elements in the PEL-
ICANS code with equal aspect ratio). Moreover, the resolution fail-
ure is again manifest as an enhancement in the runout of the
current that results from a finger that does not thin sufficiently
quickly. In A.3 we argue that this is an intrinsic feature of the
volume-of-fluid algorithm when the interface is contained within
the lowest grid cell of the numerical scheme.

The resolution problems with the finger are compounded in
computations with Bingham fluid, for which the yield stress fur-
ther decreases the effective viscosity ratio. Although some sort of
local mesh refinement and adaptation would be a natural way to
help counter these problems, we elected to avoid them in a differ-
ent fashion which was more easily incorporated into PELICANS. In
particular, by monitoring c(x, z, t) at z= Az for each time step, we
determined when the finger was expected to be contained within
the lowest grid cell. At this stage, to prevent the resolution fail-
ure from artificially restricting the thinning of the finger in the
volume-of-fluid scheme (see A.3), we reset the concentration field
to c =1 at z= 0. The finger was thereby truncated and the effec-
tive contact line moved. Practically, we reset c(x, 0, t) when c(x, Az,
t) exceeded 0.99 (the results were insensitive to the exact choice
for this value). As shown by Fig. 3(c), this led to computations that
converged much more quickly with grid spacing and fell close to
both the most highly resolved computations with the original PLIC
scheme and the predictions of shallow-layer theory. Nevertheless,
the adjustment destroys the ability of the code to preserve the vol-
umes of the two fluids. For the computations we report here, less
than about one percent of the volume of the lighter fluid was lost
as a result of the adjustment. But, as the velocity profile was then
fully resolved near the boundary and no other unexpected prob-
lems were found, we considered this flaw to be acceptable. Hereon,
all reported computations use this adjusted boundary condition.

To provide a physical basis of the adjustment scheme, we would
need to demonstrate that it corresponds to the addition of another
physical effect, such as van der Waals interactions. We did not do
this here, but simply note that the adjustment acts like the nu-
merical devices implemented in contact line problems with sur-
face tension to alleviate the stress singularity and allow the con-
tact line to move [15]. Indeed, the scheme is much like limiting
the dynamic contact angle to be about 37/4 or less, by adjusting
the interface over the scale of the bottom grid cell but without in-
troducing explicitly any interfacial tension.

An alternative strategy is to change the lower boundary con-
dition so that the lighter fluid freely slips over the lower surface
whilst the heavier fluid still satisfies no slip. This strategy, which
can be incorporated using a Navier-type slip law in which the slip
length depends on c, leads to results that compare well with the
scheme including the concentration correction (see Fig. 3(c)). How-
ever, for Bingham fluid, the diffuse nature of the interface-tracking
scheme and the PLIC algorithm eventually result in the recurrence
of resolution problems over longer times. By contrast, the adjust-
ment scheme successfully survives the long time diffusion process.
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Fig. 3. Flow front X(t) plotted against time for computations with Newtonian fluids using (a) the simple MUSCL scheme, (b) the PLIC improvement, and (c) the PLIC scheme
with the lower boundary condition on c(x, z, t) adjusted according to the algorithm outlined in the main text. In each case, runs with different resolution are shown. For
(c), the (red) dashed-dotted line labelled slip shows a solution computed with the PLIC scheme, but with no slip imposed on the heavier fluid and free slip imposed on the
lighter fluid at z = 0. The circles show the prediction of the leading-order, shallow-layer asymptotics in Appendix B. In (d), we plot the interface shape at t = 250 for the
highest resolution solutions computed with the PLIC scheme with the three different lower boundary conditions.

4. Bingham slumps

For the collapse of a Bingham fluid, we first describe the gen-
eral phenomenology, then explore the details of failure, and fi-
nally categorize the slumped end-states. Along the way, we indi-
cate how the computations approach the asymptotic limits of rel-
atively shallow (low, squat) or slender (tall, thin) slumps.

4.1. Slump and plug phenomenology

When the heavier fluid is viscoplastic, collapse only occurs pro-
vided the yield stress does not exceed a critical value B, that
depends on initial geometry. For B < B, the viscoplastic fluid
collapses, but the yield stress eventually brings the flow to an
almost complete halt (slumps with the regularized constitutive law
never truly come to rest, and iteration errors in the augmented-
Lagrangian scheme prevent the velocity field from vanishing iden-
tically). Fig. 4 plots the position of the flow front X(t) and
central depth H(t) = h(0,t) for computations with varying B, be-
ginning from a square (Xp = 1) initial block. For this shape, the
critical value below which collapse occurs is B, ~ 0.265, and un-
like the inexorable advance of the Newtonian current (shown by
a dashed line), X(t) and H(t) eventually converge to B—dependent
constants (the case with the smallest B = 0.01 requires a longer
computational time than is shown).

Sample collapses from square blocks with B = 0.05 and 0.14 are
illustrated in more detail in Fig. 5. The first example shows a slump
with relatively low yield stress, for which the fluid collapses into a
shallow current. The case with higher B collapses less far, with an
obvious imprint left by the initial shape. Note the stress concentra-
tion that arises for earlier times in the vicinity of the contact line
(a feature of all the slumps, irrespective of initial condition and
rheology).

In general, for rectangular initial blocks with order one initial
aspect ratio, we find that the flow features two different plug re-
gions during the initial stages of collapse (cf. [6]). First, at the cen-
tre of the fluid the stresses never become sufficient to yield the
fluid, and a rigid core persists throughout the evolution. Second,

45F T T T T ————

4r -7
3.5)
3,

25}

2

400 1000

1000

t

Fig. 4. (a) Front position X(t) and (b) central depth H(t) = h(0,t) for Bingham
dambreaks with a square initial block (Xo = 1) and the values of B indicated. The
dashed lines show the Newtonian results. For the viscoplastic cases, the circles
show the result using the augmented-Lagrangian scheme and the lines indicate the
result with a regularized constitutive law. The dotted lines show the prediction of
the leading-order shallow-layer asymptotics for B = 0.01.

the top outer corner is not sufficiently stressed to move at the
initiation of motion. This feature falls and rotates rigidly as fluid
collapses underneath, but eventually liquifies and disappears for
small B; at higher yield stress, the rigid corner survives the fall and
decorates the final deposit. As the fluid approaches its final shape
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Fig. 5. Snapshots of a collapsing square with (a) B=0.05 at t = 0, 2.5, 5, 10, 20, 40, 70, 150, 450, 950, 4000, and (b) B=0.14 at t = 0, 10, 50, 100, 200, ..., 1000. The insets
show density plots of the stress invariant 7 at the times indicated, with the yield surfaces drawn as solid lines (and common shading maps for the final two snapshots in

each case).
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Fig. 6. Snapshots of the evolving interface for a triangular initial condition with Xy =1 and (a) B=0.05 and (b) B=0.14, at t =0, 2.5, 5, 10, 20, 40, 100, 150, 450, 950,
4000. The insets show density plots of the stress invariant T at the times indicated, with the yield surfaces drawn as solid lines (the two later time density plots have a

common shading scheme).

and flow subsides, further plugs appear, particularly near the flow
front; for the deeper final deposits, these plugs appear to thicken
and merge to leave relatively thin yielded zones.

When the initial shape is a triangle with Xy = 0(1), only a few
of the phenomenological details change (Fig. 6): the apex of the
triangle now falls rigidly as material spreads out underneath; this
pinnacle decorates the final deposit unless the yield stress is suf-
ficiently small. Again, the slump features a rigid core and further
plugs form near the nose over late times.

With a relatively wide initial condition, the pattern of evolu-
tion is slightly different: for the rectangle, the central rigid plug
extends over the entire depth of the fluid layer and only the side
of the block collapses. The final deposit then features a flat top
at its centre, as illustrated in Fig. 7(a). Such incomplete slumps are
predicted by shallow-layer theory to occur for 3BXy > 1 [3]. This
estimate can be improved to 3BXy > 1 — 37B/4 using the higher-
order theory outlined in Appendix B (and specifically the final-
shape formula (9)), which adequately reproduces numerical re-
sults for B < 0.15; at higher B, the computations indicate that BX,
must exceed 0.25 + 0.015 for the slump to preserve a rigid central
block

Incomplete slumps of a different kind arise for an initial tri-
angle. In this case, collapses begin over the central regions where
the initial stresses are largest, and may not reach the edge, where

fluid is initially unyielded, if the triangle is too wide. The (leading-
order) shallow-layer model predicts that collapse occurs but does
not reach the fluid edge at x =X, if 4 > BXy > 9/8. As illustrated
in Fig. 7(b), such incomplete slumps are also observed numeri-
cally, though again for a slightly different range of initial widths
(the plugged toe of the triangle is relatively small in the example
shown).

Slender (i.e. tall, thin) initial blocks, with X, <« 1, also col-
lapse somewhat differently, with fluid yielding only at the base
of the fluid and remaining rigid in an overlying solid cap; see
Fig. 8, which shows computations for rectangles (slender triangular
slumps are much the same). The lower section of the column sub-
sequently spreads outwards with the rigid cap descending above it
in a manner reminiscent of the (axisymmetrical) slump test [1,2].
Interestingly, the slender slump also generates undulations in the
thickness of the column. As illustrated by Fig. 8(a), these undula-
tions (which do not occur in the Newtonian problem) appear to-
wards the end of the collapse and are linked to zigzag patterns in
the stress invariant and yield surfaces. The features follow charac-
teristic curves of the stress field (the “sliplines”) that intersect the
side free surface, and which have slopes close to fortyfive degrees
(see D.1); the wavelength of the pattern is therefore approximately
the width of the column.
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Fig. 7. Snapshots of the evolving interface for an initial (a) rectangular with

(Xo,B) = (3,0.11), and (b) triangle with (Xy, B) = (8,0.14), at the times t =0, 10,

20, 30, 50, 100, 400, 700, 1000. The dotted line in (a) shows a modification of the
prediction in (9) that incorporates the central plug (and which terminates at finite
height). The insets show density plots of the stress invariant 7 at the times indi-
cated, with the yield surfaces drawn as solid lines.

4.2. Shallow flow

As illustrated above, when B « 1 the fluid collapses into a
shallow current with |0h/0x| <« 1 whatever the initial condition.
Asymptotic theory [4,5] then provides a complementary approach
to the problem. As illustrated in Fig. 4, the sample collapse with

TITTTD

0.9

0.7

T
1

0.6 .

05 .

02r b

01F 1

0.02 0.04 0.01
X X

0.03 0.01

B =0.01 is relatively shallow and the numerical solutions for the
runout and central depth match the predictions of the shallow-
layer asymptotics.

The asymptotics also predicts that flow becomes plug-like over
a region underneath the interface (see [16] and Appendix B). This
“pseudo-plug” is not truly rigid but is weakly yielded and rides
above a more strongly sheared lower layer. Horizontal velocity
profiles for a collapsing square block with B = 0.01 are shown in
Fig. 9(a) and compared with the predictions of the shallow-layer
theory. Although the pseudo-plugs are less obvious in the numeri-
cal profiles, the horizontal velocity does become relatively uniform
over the predicted pseudo-plug. Fig. 9(b) illustrates how the su-
perficial weak deformation rates associated with the pseudo-plug
feature in a snapshot of log;y ¥, and how the transition to a more
obviously sheared layer underneath approximately follows asymp-
totic predictions.

Nevertheless, the numerical computations show notable dis-
agreements with the shallow-layer asymptotics. None of the true
plugs appear in the asymptotic solution, reflecting how they are
associated with non-shallow flow dynamics: at the midline, the
asymptotics fails to incorporate properly the symmetry conditions,
and at the flow front and the relic of the upper right corner, the
surface always remains too steep for a shallow approximation. The
depth profiles predicted by the asymptotics consequently do not
show any of the finer secondary features imprinted by the true
plugs, as illustrated by the profile for B = 0.05 also plotted in
Fig. 9(c). Only when B is smaller are such features largely elimi-
nated by the fluid flow and the final shape well predicted by the
asymptotics.

Despite these details, the broad features of the numerical solu-
tions are reproduced by the shallow-layer asymptotics, particularly
when first-order-correction terms are included: for the final shape
and if the initial block collapses completely, the leading-order

0.03 : i . d g 0.04

Fig. 8. Slumps of slender columns: the four images on the left show collapsing columns for B = 0.3 and X, = 0.025 at the times indicated in the top right corner. Shown are
the interface, yield surfaces overlaid on a density plot of the stress invariant 7. The evolving side profile for this collapse is shown in panel (a) at the times t =0, 4, 9, 16,
25, 36, 49, 100, 400, 1000. Panels (b)-(e) show columns at t = 50 for the values of B indicated, all with Xy = 0.025. Panel (f) compares the final side profiles (darker/blue)
with the predictions of slender asymptotics (lighter/red). The shading scheme for t for all the colormaps is shown in (e). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Comparison of shallow-layer theory with numerical results for a collapsing
square block (Xo = 1) with B =0.01: (a) Horizontal velocity profiles at x =2.5 and
the times indicated. (b) Logarithmic strain-rate invariant, A density map of log;, y
on the (x,z)—plane, at t = 600. (c) Final shape. In (a) the crosses plot the numer-
ical solution, and the points indicate the asymptotic profile (B.2); the star locates
the bottom of the pseudo-plug. In (b), the solid (green) and dashed (blue) lines
show the surface and fake yield surface (z=Y = h + B/hy) predicted by asymptotics.
In (c), the final profile for B = 0.05 is included. The solid lines show computed fi-
nal states, the dotted lines denote the leading-order result (8) and the dashed line
shows the higher-order prediction (9). The dashed-dotted line is the asymptotic
prediction (13) from [17]. (For interpretation of the references to colour in this fig-
ure legend, the reader is referred to the web version of this article.)

solution is

h(x) = v/2B(X —X): (8)

with the next-order corrections, we find
h=/2B(Xo —x) + %B 9)

(Appendix B). The final runout X.,, or slump length, is dictated
by matching the profile’s area with that of the initial condition.
This implies X, = (9X2/8B)!/3 for (8) and furnishes an algebraic
problem to solve in the case of (9), with approximate solution
X0 ~ (9X2/8B)1/3[1 — 7 (B?/81Xp)1/3]. As shown in Fig. 9(c), the
prediction (9) agrees well with the shapes reached at the end of
the numerical computations, even though the profile ends in a ver-
tical cliff which violates the shallow-layer asymptotics.

4.3. Slender slumps

For a slender column with Xy, « 1, we can again make use of
the small aspect ratio to construct an asymptotic solution. As sum-
marized in Appendix C, this limit corresponds to theory of slender
viscoplastic filaments [18] and indicates that the final state is given

by

Xo z
x_é(z)_ﬁexp<—ﬁ) for0<z<Z (10)
where
Z = —2Bh(0, 0) log(2B) (11)

is the height dividing yielded fluid from the overlying rigid plug.
The fluid adopts its original shape over Z < z < Z + 2Bh(0, 0), hav-
ing fallen a vertical distance (1 —2B)h(0,0) — Z. It follows that the
column will not slump if B > 1,
2B
The latter is equivalent to the “dimensionless slump” reported pre-
viously [1,2], although it was not declared as an asymptotic result
relying on the column being slender. The profile (10) is compared
with the final profiles of numerical computations in Fig. 8. Aside
from the relatively short-wavelength undulations in column thick-
ness over the yielded base of the fluid (whose length scale violates
the slender approximation), the asymptotics are in broad agree-
ment with the numerical results.

Note that overly slender configurations are likely susceptible to
a symmetry-breaking instability in which the column topples over
to one side [19]. This is ruled out here in view of our imposition
of symmetry conditions along the centreline x = 0.

Xoo and H., = 2Bh(0,0)[1 —log(2B)]. (12)

4.4. Failure

4.4.1. Critical yield stress

The critical yield stress, B;, above which the fluid does not col-
lapse is plotted against initial width, Xj, in Fig. 10(a) for rectan-
gular initial blocks. We calculate B in two ways: first, the final
runout X,, recorded in the slumps computed with the PELICANS
software (defined as in Section 4.5) converges linearly to the ini-
tial width Xy as B — B.. Second, in the inertia-less problem, the
initial stresses dictate the initial velocity field, and the maximum
speed also falls linearly to zero as B — B.. Hence, we can deter-
mine B, without performing any time stepping using the scheme
for Re = 0 described in A.2.

As illustrated in Fig. 10(a), B, ~ 0.2646 independently of X,
when Xy > 1. For such initial widths, collapses are incomplete and
a solid core spans the full depth of the fluid, rendering the failure
criterion independent of X,. The initial width matters for Xy < 1,
leading to an increase of B.. Eventually, B, — % for Xy — 0, as ex-
pected from the slender column asymptotics in Section 4.3.

Just below the critical yield stress, velocities are small and
the Bingham problem reduces to an analogous one in plasticity
theory except over thin viscoplastic boundary layers. The incom-
plete slump is analogous to the classical geotechnical problem
of the stability of a vertical embankment (e.g. [23]), provided no
deformation occurs in z < 0. Classical arguments dating back to
Coulomb, describe the form of failure in terms of the appearance
of a slip surface dividing rigid blocks, allowing analytical estima-
tions of B. from balancing the plastic dissipation across the slip
surface with the potential energy release. In particular, assuming
that the failure occurs by the rotation of the top right corner
above a circular arc, one arrives at an estimate B. ~ 0.261, after
maximizing over all possible positions of the centre of rotation (cf.
[24] and Fig. 11(a)). However, this type of solution strictly provides
only a lower bound on B, and may not be the actual mode of
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Fig. 10. Critical yield stress, B, plotted against initial width X, for (a) rectangular
and (b) triangular blocks, found by monitoring either the final runout X,, (stars) or
the initial maximum speed for Re = 0 (solid line). In (a), also shown are the bounds
B = 0.2642 and 0.2651 obtained from plastic limit-point analysis [20-22] (dashed-
dotted), results from slip-line theory [7] (dashed line with points) and the simple
lower bound B. = %(JX@ +1—Xo) [8] (dotted line). The analogues of the latter two
for the triangular blocks (see Appendix D) are shown in (b). The dotted lines with
open circles show improvements of the simple lower bounds allowing for rotational
failure (see D.2).
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Fig. 11. Trial velocity fields to compute lower bounds on B, for (a) the vertical em-
bankment with a circular slip curve, and relatively slender (b) rectangular and (c)
triangular initial blocks. In (b) and (c), the straight (dashed) and circular (solid) fail-
ure surfaces for linear or rotational sliding motion are plotted; these surface can be
parametrized by the local slopes at the bottom corner, sy, and midline, sz and s (for
linear sliding sy = sg).

failure. Indeed, the bound has been optimized and improved
to 0.2642, and a complementary upper bound computed to be
0.2651 [20-22]; the optimization suggests that failure occurs over
a relatively wide region of plastic deformation [21]. The upper and
lower bounds are included in Fig. 10(a), and are indistinguishable
on the scale of this picture, but bracket the value of B, ~ 0.2646
found for our Bingham slumps with Xg > 1.

For a slender column, Chamberlain et al. [8] provide an estimate
of the critical yield stress by assuming that two lines of failure oc-
cur: the lowest cuts off a triangular basal section, whereas the up-
per cleaves off a second triangle that slides away sideways, leaving
the remaining overlying trapezoid to fall vertically; see Fig. 11(b).
Optimizing the slopes of the two cuts furnishes the lower bound,
B: = %(,/1 +X§ — Xp), which is included in Fig. 10. Chamberlain
et al. [7] also provide a numerical solution of the slipline field for
a failure with the form of an unconfined plastic deformation. This
estimate converges towards their lower bound as Xy — 0, as indi-
cated in Fig. 10(a). Our numerically determined values of B, match
Chamberlain et al. slipline solutions for X, < 0.5. For wider ini-
tial blocks, the slipline solutions deviate from the numerical results
and become inconsistent with the bounds for the vertical embank-
ment for Xy > 0.8, highlighting how a different failure mechanism
must operate.

For triangles, no corresponding plasticity solutions exist in the
literature. However, the slipline solution and simple lower bound
of Chamberlain et al. [7,8] can be generalized, as outlined in
Appendix D and illustrated in Fig. 11(c). The slipline solution and
bound are compared with numerical data in Fig. 10(b). Again, B, —
% for Xo — 0. Now, however, the slope of the initial free surface
continues to decline as X is increased, and so there is no conver-
gence to a limit that is independent of width. Instead, the shallow
layer theory of Appendix B becomes relevant and predicts that B,
— 4/Xy for Xy > 1 (a limit lying well beyond the numerical data
in Fig. 10(b)).

Note that the lower bounds of Chamberlain et al. can be im-
proved by allowing the triangle at the side to rotate out of posi-
tion rather than slide linearly; see D.2. The failure surfaces then
become circular arcs, as illustrated in Fig. 11(b,c). For the rectan-
gle, the resulting improvement in the bound on B, amounts to a
few percent and is barely noticeable in Fig. 10(a). More significant
is the improvement of the bound for the triangle, which is brought
much closer to the numerical and plasticity results; see Fig. 10(b).

4.4.2. Flow at failure

The failure modes of our rectangular viscoplastic solutions (for
t = Re = 0) are illustrated in Fig. 12. The thinner initial columns
yield only over a triangular shaped region at the base which
closely matches that predicted by slipline theory [7] (see also D.1).
The failure mode changes abruptly when X, slightly exceeds about
0.5. The failure zone then takes the form of a widening wedge ex-
tending from the lower left corner of the initial block up to the
centre of the top, with the entire side face remaining rigid. Evi-
dently, this mode of failure is preferred over the slipline solution at
these values of X;, leading to the departure of the observed values
of B. from the curve of Chamberlain et al. in Fig. 10(a). The failure
mode changes a second time for Xy ~ 1: wider initial blocks fail
chiefly over a relatively narrow layer connecting the lower left cor-
ner to an off-centre location on the top surface, which lies close to
the circular failure surface of the simple lower bound in Fig. 11(a).

For both the narrower and wider examples in Fig. 12, the failing
deformations are dominated by sharp viscoplastic boundary lay-
ers that likely correspond to yield surfaces. Spatially extensive re-
gions (in comparison to the fluid depth or width) of plastic defor-
mation do, nevertheless, occur, and the failure modes never take
the form of a patchwork of sliding rigid blocks. Note that it is
difficult to cleanly extract the yield surfaces as B — B¢, which
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Fig. 12. Strain-rate invariant plotted logarithmically as a density on the (x,z)—plane for solutions with B = 0.99B; and t = Re = 0 (A.2), at the values of X, indicated by the
x—axis. Also shown are a selection of streamlines. In (a)-(c), the darker (blue) lines indicate the border of the plastic region and expansion fan of the corresponding slipline
solutions (Appendix D). In (e) and (f), the darker (blue) lines indicate the circular failure surface of the lower bound solution. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. A series of pictures similar to Fig. 12, but for initial triangles (with solid blue lines showing the yield surfaces of the slipline solution in (a), and the circular arcs of
the bound of D.2 for rotational failure in (b) and (c)).

complicates the identification of the failure mode. In Fig. 12, we zone with known stresses that can be used to begin the slipline
have avoided showing these surfaces and instead displayed the construction).

deformation rate and a selection of streamlines. Curiously, for Xy For a triangular initial condition, failure for smaller widths
> 0.5, it is difficult to envision how one might construct corre- again occurs through the appearance of a lower plastic zone that

sponding slipline fields (there are no surfaces bounding the plastic compares well with slipline theory; see Fig. 13. This agreement
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Fig. 14. Profiles of the final deposit, starting from (a) a square block and (b) a triangle, with X, = 1, for B=0.01, 0.02, 0.04, ..., 0.22 and 0.24, together with the initial

states.

is confirmed by the match of the observed critical yield stress,
Bc(Xp), with the slipline predictions in Fig. 10(b). Unlike the rect-
angle, however, there is no abrupt change in failure mode as Xj is
increased, at least until the surface slope of the triangle becomes
too shallow to apply the construction of Chamberlain et al. [7] (see
D.1). At the largest widths, the triangle fails at the centre but not
the edge, as already noted in Section 4.1.

4.5. The final shape and slump statistics

To extract statistics of the final shape, we define a stopping cri-
terion according to when the stress invariant first becomes equal
or less than B at each point in the domain. The resulting “final
state” appears to be reached in a finite time (for both augmented-
Lagrangian and regularized computations), in disagreement with
asymptotic theory [25], which predicts that flow halts only after
an infinite time (see also Appendix C). A selection of final profiles
for varying Bingham number is displayed in Fig. 14 for both square
and triangular initial conditions.

Plasticity theory is again relevant in the limit that the slump
approaches its final state. This fact was used previously [17] to con-
struct the final profiles with slipline theory, following earlier work
by Nye [26]. A key assumption of this construction is that the flow
is under horizontal compression. The assumption can also be used
to continue the shallow-layer asymptotics to higher order to pre-
dict the final profile,

2
h=\/23(xw—x)+”32— TB, (13)
4 2

which agrees well with the slipline theory [17]. Unfortunately, nei-
ther the slipline profiles nor (13) compare well with laboratory
experiments.

A sample final state from the numerical computations with a
diagnosis of the associated slipline field is displayed in Fig. 15.

VAVAv.
R

Fig. 15. Final numerical solution for the slump of an initial square with B = 0.02,
showing density maps of (a) pressure, (b) Txx and (c) T, and (d) the slipline field
diagnosed from the numerical solution (solid) and built explicitly by integrating the
slipline equations starting from the curve (9) (dotted). In (d), the plugs are shaded
black, and no attempt has been made to match up the two sets of sliplines.

For the latter, we map out curves of constant p —z 4 2Bf, which
are the invariants that are conserved along the two families of
sliplines, where 6 = —%tanfl(txx/rxz) [27] (see also D.1). As also
shown by Fig. 15(d), the resulting curves compare well with an ex-
plicit computation of sliplines launched from the surface position
predicted by (9), where p = 0 and the sliplines make an angle 7 [4
with the local surface tangent.

The sliplines in Fig. 15 follow a different pattern to Nye’s con-
struction (see Figs. 5 and 6 in [17]). The reason for this discrep-
ancy is that almost all of our slumps comes to rest in a state of
horizontal expansion, rather than compression (we have observed
regions under horizontal compression only in the slumps of rel-
atively wide triangles, as in Fig. 7(b)). Correcting this feature of
the dynamics leads to the revised higher-order asymptotics sum-
marized in Appendix B, which culminates in the prediction for the
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and hexagrams show the fit proposed by Staron et al. [6].
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Fig. 17. Scaled final (a) runout X.,/\/Xo and (b) central depth Hm/\/XT) as a func-
tion of B/\/)Tg for Bingham slumps from rectangular and triangular initial conditions
with Xp = 0.5, 1 and 1.5. The solid lines show the predictions of the higher-order
asymptotics from (9) for a complete slump.

final profile in (9). As is evident from Fig. 9(c), the asymptotic pre-
dictions for horizontal expansion compare much more favourably
with the numerical results than the slipline theory and asymptotics
for horizontal compression.

The comparison is illustrated further in Fig. 16, which shows
scaled final runouts and depths, Xoo/\/)To and Hoo/\/)To, as func-

tions of B/\/XTJ for the numerical computations, slipline theory and
the various versions of the shallow-layer asymptotics. Scaling the
runout and depth in this fashion corresponds to choosing the ini-
tial area as the length scale in the non-dimensionalization of the
problem. The slipline theory and various versions of the shallow-
layer asymptotics furnish curves of Xx/\/Xo and Ha/,/X, against
B/\/XT) that are independent of Xy, implying an insensitivity to the
initial condition. By contrast, the deeper final profiles of the nu-
merical solutions with higher B, and their scaled final runout and
depth, do depend on Xy and the initial shape. This dependence is
highlighted in Fig. 17, which compares data for initial triangles and
rectangles.

Fig. 16 also includes data from laboratory experiments with Car-
bopol [17,28] and some other fluids, which were conducted by
Dubash et al. though not reported in their paper. None of these
fluids are well fitted by the Bingham model, with a Herschel-
Bulkley fit being superior. However, the final state is controlled
by the yield stress and likely independent of the nonlinear vis-
cosity of the material (at least provided inertia is not important),
permitting a comparison between the experiments and our Bing-
ham computations. Although the numerical results compare more
favourably with the experiments than the slipline theory, the com-
parison with the leading-order asymptotic prediction is just as
good. Thus, the discrepancy between theory and experiment noted
by [17] is only partly due to the assumption that the slump came
to rest in a state of horizontal compression, but other factors must
also be at work, such as stresses in the cross-stream direction and
non-ideal material behaviour. Note that the range of dimensionless
yield stresses spanned by the experimental data lie well into the
regime where there should be no significant dependence on the
initial shape. This is comforting in view of the fact that the exper-
iments were conducted using different initial conditions, either by
raising a vertical gate or tilting an inclined tank back to the hori-
zontal (which correspond roughly to our rectangular or triangular
initial conditions).

Finally, Fig. 16 includes the predictions of the slender column
asymptotics in (12) (see Appendix C) for X5 = 1, and a formula pre-
sented by Staron et al. [6] based on their volume-of-fluid compu-
tations with GERRIS and a regularized constitutive law. Given that
the slumps from which the data in Fig. 16 are taken are not slen-
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der, it is not surprising that (12) compares poorly with the numer-
ical results. We suspect that the disagreement between our results
and the fit of Staron et al. [6] originates either from an inadequate
resolution of the over-ridden finger of less dense fluid or the sig-
nificance of inertial effects in their computations. Indeed, these au-
thors quote a final shape that depends explicitly on the plastic vis-
cosity of the heavier fluid, whereas this physical quantity is com-
pletely scaled out in our computations when Re — 0.

5. Concluding remarks

A yield stress introduces two key features in the collapse and
spreading of a viscoplastic fluid: failure occurs only provided the
yield stress can be exceeded, and, when flow is initiated, the yield
stress eventually brings motion to a halt. Here we have provided
numerical computations of the two-dimensional collapse of Bing-
ham fluid, exploring the phenomenology of the flow for differ-
ent initial shapes. We compared the results with asymptotic the-
ory valid for relatively shallow (low, squat) or slender (tall, thin)
slumps, and with solutions from plasticity theory applying near
the initiation and termination of flow. We verified that the com-
putations converge to the asymptotic solutions in the relevant lim-
its and identified where the plasticity solutions apply. We studied
both the initial form of failure, extracting criteria for a collapse to
occur, and the shape of the final deposit, comparing its runout and
depth with previous experiments and predictions.

There are three key limitations of our study with regard to the
collapses of viscoplastic fluids in engineering or geophysical set-
tings. First, our two-dimensional geometry is restrictive and an ax-
isymmetric assumption prefereable for a range of applications such
as the slump test. Such a generalization raises the interesting ques-
tion of how incompressible viscoplastic flow avoids the inconsis-
tency of the von-Karman-Haar hypothesis [27]. Second, the issues
associated with the no-slip condition on the underlying surface are
not merely numerical: viscoplastic fluids can suffer apparent slip
[29], demanding the inclusion of a slip law. Finally, inertia is im-
portant in many applications, an effect that allows slumps to flow
beyond the rest states we have computed. Other interesting gener-
alizations include the incorporation of different rheologies, such as
thixotropy, and surface tension at small spatial scales.
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Appendix A. Further numerical notes
A.1. Parameter settings and other details

PELICANS exploits a Galerkin finite element method to solve a
weak form of the equations of motion using iteration. For the regu-
larized constitutive model, we set € = 1078 in (7). At each step, the
regularized viscosity is computed using the velocity field from the
previous step, and iteration is continued until the L,—norm of the
velocity change over the entire spatial domain falls below 107,
where n is the number of finite elements.

As detailed in [10], the augmented-Lagrangian method intro-
duces additional variables to solve iteratively the weak formula-
tion of the equations of motion whilst avoiding the singular vis-
cosity arising at the yield surfaces and the stress indeterminacy of
the plugs. The iterative scheme includes a relaxation parameter r
which we select to be equal to B. Iteration is continued until the
larger of the L,-norms of the change in the velocity field or y be-
came less than 104,

Based on resolution studies, we found that grids with Ax = 0.01
and Az = 0.005 were sufficient for mesh convergence in problems
for which slumps were order one aspect ratio or shallow (once the
no-slip boundary condition on the base had been modified). For
slender columns, we found it sufficient to take Ax =5 x 10~ with
¢x = 0.1 and distribute the vertical mesh non-uniformly such that
the grid intervals formed a geometric series starting with 5 x 10~4
at the bottom and ending at 0.005 at the top boundary z=¢; =
1.1.

A.2. The failure computation for Re =t =0

For the initial failure mode, we used an alternative numerical
scheme that solved the equations at t = 0 with Re = 0. The scheme
employed an augmented-Lagrangian method to solve the Stokes
equations over the domain shown in Fig. 1. In view of our interest
in yield stresses close to B;, where the velocity field is small and
the viscous stress of the outer fluid likely irrelevant, we simplified
the computation by taking a viscosity ratio of unity.

At each step of the iteration procedure, the linear Stokes and
continuity equations were converted to a biharmonic equation
which was solved using a Fourier sine transform in the x direction
and second-order finite differences in z. For rectangular slumps,
the discontinuity in the yield stress between the two fluids was
imposed directly on the finite difference grid; for triangular shaped
slumps, convergence was much improved by smoothing the dis-
continuity over a few grid points. In both cases, the forcing term
in the biharmonic equation that arises from the discontinuity in
density between the two fluids was dealt with exactly in Fourier
space.

As in our other scheme, the size of the domain was chosen to
be sufficiently large so as to have a negligible effect on solutions
(in most results, I, =4/3 and Iy = 4Xy/3). We selected a vertical
grid and truncation of the horizontal Fourier series such that the
resolution was Az =1/999 and Ax = X;/768; we established that
the solutions were independent of this choice. In the augmented-
Lagrangian scheme, we again chose the relaxation parameter r =
B, and the solutions were considered to be converged when the
maximum change in the strain-rate invariant, y, had fallen below
10-10,

A.3. Thickness of the over-ridden finger

For a relatively thin finger of depth ¢(x, t), flow is driven pri-
marily by the shear stress on the interface,
Ug
T, & MR?v (A1)
where u, is the horizontal velocity of the interface and ug ~
Ua/wq is the viscosity ratio. Conservation of mass implies

9 19 AN,
R F i T & L

R

(A2)

if 7, remains roughly independent of x. The shear stress 7, is of
order one at the beginning of a collapse and we use 115/ = 1073,
Hence u;/¢ = 0(10%). Thus the finger effectively lubricates the
overlying viscoplastic current until its thickness becomes compa-
rable to our grid spacing (Az = 1/320). Moreover, the solution of
(A.2) then indicates that the finger thins like t~1. In other words,
the effective lower boundary condition on the viscoplastic current
only reduces to no slip when the finger becomes difficult to re-
solve, and from then on, the resolution problem steadily worsens.

The critical detail of the volume-of-fluid code regarding the fin-
ger is that it treats each grid cell as a mixture with the rheology
in (3) and (4) (or (7)). In the limit of low inertia, the stress state is
dictated largely by the geometry of the slump and dominated by
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the shear stress at the base. Thus, over the bottom grid cell where
C = (g,

ou (Txz — Bco)

—=— A3
0z co+ (1—co)ur (A-3)
The average horizontal speed over this cell is then

_ Az

Uy ~ 5—(Txe — Beo), (A4)

2C0

if cg lies well away from its limits and g <« 1. On the other hand,
when cg takes such a value, the interpretation is that the interface
can be contained within the lowest grid cell. In that situation, a
genuine sharp interface at 0 <z = ¢ < Az, would imply

ou we—B (<z<Az

az_{ Ug'txe O0<z<(. (A5)
It follows that the average horizontal speed should be

_ TxzC

s TinAz Az-¢) (A.6)

for up < 1. Evidently, uy;/us = O(ug). In other words, when the
interface enters the lowest grid cell, the treatment of the fluid as
a mixture grossly underestimates the speed with which the fin-
ger will be advected horizontally; the finger is therefore not swept
away fast enough, remains too thick, and overly lubricates the vis-
coplastic gravity current. To cure this problematic feature, the fin-
ger must be removed.

Appendix B. Shallow flow

In this and the next appendix we ignore the upper viscous
fluid and consider a spreading viscoplastic current with a stress-
free surface. We summarize analysis and results that are based on
existing literature [4,18], highlighting any relevant new develop-
ments; the reader is encouraged to consult the original references
for additional details of the basic theory.

For relatively shallow flow (for which vertical gradients dom-
inate horizontal gradients), the pressure becomes largely hydro-
static and only the shear stress features in the main force balance
[4,5]. Thus,

p=h-z and Txz = —hy(h — 2), (B.1)

where z=h(x,t) is the position of the free surface. Here, and
throughout this and the following appendices, we use subscripts
of x, z and t as shorthand for the corresponding partial derivatives
(except in the case of the stress components). The velocity field is
now given by

1 2Y —2)z
u:—zhxX{ 52 )

where z=Y = h+ B/hy (for hy < 0) is where the leading-order
shear stress falls below B. This latter level is not a true yield
surface because, although the overlying velocity field is plug-like,
the fluid remains in extension and weakly yielded [16]. Exploiting
the depth-integrated expression of mass conservation, the problem
then reduces to solving the thin-layer equation [4],

_19
T 60x
Note that modifications are needed where Y = h + B/hx < 0, which
signifies that the fluid is not sufficiently stressed to deform. This

true yield criterion can be incorporated into the formulation sim-
ply by defining

0<z<Y,

Y<z<h, (B.2)

hy [Bh—Y)Y?hy]. (B.3)

Y(x, ) = Max(h + h%, o). (B.4)

For our triangular initial condition, with h = 2(1 — x/Xy), the yield
criterion indicates that the fluid will not collapse anywhere when
B > 4/Xp; by contrast, the vertical edge of the rectangular block
ensures the fluid always collapses in the shallow limit. The final
state is given by Y — 0, which leads to (8).

The shallow-layer theory is the leading order of an asymp-
totic expansion which, in the current dimensionless scalings, cor-
responds to the limit B « 1. For the final shape one can go fur-
ther with the analysis and compute higher-order corrections in the
effort to extend the accuracy of the approximation. In particular,
following the analysis in [17] but bearing in mind that the slump
comes to rest in a state of horizontal expansion, we find

px~h—z—+/B?—12,
VT
T ~/B2—1v2— L Txz RV 4+ T1, (B.6)

BZ _1/2

v=—hy(h-2), (B.5)

where
T = —3[1(1/\/32 — 12+ B?sin”! B)] (B.7)
0x L hy B

Imposing the lower boundary condition, tx; = B at z= 0, and inte-
grating in x then gives

1

2
5h2 — hy/B2 — h2h2 — B gin-1 M

hy B
where C is an integration constant. Evaluating the higher-order
corrections in (B.8) (i.e. the second and third terms on the left-

hand side) using the leading-order approximation hhy = —B leads
to (9) with C = BX,, — w2B?/8.

=C —Bx, (B.8)

Appendix C. Slender columns

When the column of viscoplastic fluid remains slender through-
out its collapse, we may use the thin-filament asymptotics out-
lined by [18]. The key detail is that the horizontal gradients are
much larger than the vertical ones and the vertical velocity greatly
exceeds the horizontal speed. Moreover, because the sides of the
column are stress free, shear stresses must remain much smaller
than the extensional stresses and the vertical velocity cannot de-
velop significant horizontal shear and remains largely plug-like.
These consideration indicate that (see [18])

wxrW(zt), u~ —xW;, (C1)
and
P~ Txx = =Tz & B—2W,, (C2)

the latter of which follows from the leading-order horizontal force
balance (which is (7xx — p)x ~ 0) and constitutive law (given y ~
2|W,|). The width-averaged mass conservation equation and verti-
cal force balance then imply [18]

&+ (EW),=0 and §+2(&p):=0, (C3)

where x = £(z, t) is the local half-width.

The equations in (C.3) can be solved analytically by transform-
ing to Lagrangian coordinates (a, t), where a denotes initial vertical
position (i.e. the method of characteristics; cf. [30]). For the rectan-
gular or triangular blocks, we have the initial condition & (a,0) =
Xp or Xp(1— %a), respectively. The transformation then indicates
that

0z XO
& (a, t)% = { Xo(1 — %a) and E(a, t) =—-EW,. (C4)
Hence
§p= %Xo(l —a/a,), (C5)
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(a) B=0.1 - (b) 0.3
0.5F \
0
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Fig. C.18. Slender asymptotic solutions for (a) B=0.1 and (b) B=0.3, for Xp =
0.025, at times t =0, 4, 9, 16, 36, 100 and 1000. Collapsing rectangles (triangles)
are shown by solid (dotted) lines; the dots indicate the final profiles.

given that p = 0 at the top of the column where a =a, =1 or 2. If
the fluid is yielded, the constitutive law implies

2
§

After a little algebra and the use of the bottom boundary con-
dition z(a = 0,t) = 0, we find

p=B-2W, =B+ (C6)

E(at) 1-E a _ —t/2B
£a0) T 28 (“aﬁ)’ E=e™™ (7)
and
2a,B 1—E + 2BE
Z=1_f! [(1 —E)(]—a/a*)-i-ZBE]' (C8)

The yield condition in this limit becomes p < —B, or a < a,(1 —
2B), which translates to

_ _ —Bt/2
2a,B o [1 (1-2B)e ]

z<Z(t) = e 57 T

(C.9)

The column does not therefore yield anywhere when B > % If
fluid does yield, the base spreads out to a distance £(0,t) - Xy =
Xo/(2B), and the column falls to a height H., = 2a,B[1 — log(2B)].
The yield condition and runout are the same for both the rectan-
gle and triangle because, in the slender limit, all that matters is
the weight of the overlying fluid. Sample solutions are shown in
Fig. C.18.

The main failing of the slender asymptotics is that the no-slip
boundary condition is not imposed: the fluid slides freely over
the base, leading to the collapsed column being widest at z=0,
whereas the fluid actually rolls over the base in a tank-treading
motion (¢f. Fig. 8). This failing must be remedied by adding a
boundary layer at the bottom (with different asymptotic scalings).
In any event, we attribute the lack of agreement between the slen-
der asymptotics and the numerical results in Fig. 8 to this feature.

Appendix D. Plasticity solutions

In this appendix, we summarize slipline and bound computa-
tions based closely on existing work in plasticity theory [7,8], em-
phasizing some minor generalizations for triangular initial shapes
and circular failure curves. The reader is referred to [7,8] for fur-
ther details of the basic developments.

0.9 (a) 1L (b) X0=0-5
0.8
0.7
0.6

> 05
0.4
0.3
0.2

0.1

0 -
0 01 02 01 02 03 04 05
X X X

Fig. D.19. Slipline solutions for a rectangle with (a) Xp = 0.2 and (b) Xp = 0.5, and
a triangle with Xy = 1. The dashed and dotted lines indicate the lower bound and
its improvement of D.2.

D.1. Slipline fields

The slipline solutions of Chamberlain et al. [7] begin from the
side free surface where the stress field is specified and are con-
structed as follows: setting

P= g +g & (Txx» Txz) = B(—sin 20, cos 26), (D.1)
the side boundary conditions imply
P=1+Z & 9:3777“1) (D.2)

on X=-SZ where (¥,2)=B'(x,z), and (S ¢)=(0,0) for
the rectangle and (Xp/2,tan™! %XO) for the triangle. On the
o —characteristics,

d
P + 20 = constant, d—i =tan0; (D.3)
for the B—characteristics,

dz
P — 26 = constant, Pl cotf. (D4)

Beginning from the section of the side, 0 <Z < Zp, with Zp a pa-
rameter, the characteristics can be continued into the fluid interior
using a standard finite difference scheme to solve the characteris-
tics equations in (D.3-D.4) [7,27]. Below the resulting web, an ex-
pansion fan is then added that spreads out from the base point
(x,2) = (Xo,0) with 6p <0 <3m/4+ ¢, where 0p is a second pa-
rameter (cf. Fig. D.19). The combined slipline field is then contin-
ued to x =0, or X = —Xy/B. At this point, the two characteristics
that bound the complete slipline field must cross and terminate
with 8 = 3w /4, in view of the symmetry conditions there. This se-
lects the two parameters Zp and 6p. Finally, along the uppermost
o —characteristic, the total vertical force must match the weight of
the overlying plug, which translates to imposing the condition,

0
(P —sin26) dx,

1 oy Z .
Xo — =SB?7: = B? / cos20 dZ+B?
0 Xo/B

2
and determines the relation B = B, (Xp) (as plotted in Fig. 10). Ex-
amples of the slipline field are shown in Fig. D.19. Note that the sli-
plines of the two families begin to cross over one another near the
top of the expansion fan if Xj is increased past some threshold [7].
At that stage a curve of stress discontinuity must be introduced to
render the slipline field single-valued. We avoid incorporating this

(D.5)
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detail here and only provide slipline solutions without a discon-
tinuity, which limits the triangle data in Fig. 10(b) to X; < 1. At
still higher Xy > 2, the construction fails for the triangle altogether
because the «—characteristic from the base of the free surface pro-
ceeds into z < 0.

D.2. Simple failure modes

For the circular failure surface of a relatively wide initial rectan-
gle, we refer the reader to existing literature ( e.g. [24]). Here, we
summarize the computation for slender rectangles and triangles.

We first consider the case where failure occurs on straight lines,
as in [8]. As illustrated in Fig. 11(b-c), we introduce two lines of
failure, with slopes tan y and tan ¢, that divide the initial block up
into a lower stationary triangle, an intermediate triangle that slides
out sideways, and the residual overlying material that falls verti-
cally. When the downward speed of the top is W, the continuity
of the normal velocity across each failure line demands that the
intermediate triangle slides out parallel to the lower failure line
with velocity U(cos y, —siny), where U =W sec{/(tany +tan¢).
Let A; and Aj; denote the areas of the intermediate triangle and top
block and L; and L; be the lengths of the lower and upper failure
lines, both respectively. Equating the plastic dissipation across the
failure lines with the release of potential energy then furnishes (in
our dimensionless notation)

B(ur, + Whusecs
tany +tan¢

Geometric considerations allow us to express all the variables in
terms of Xy and the two angles y and ¢. Eq. (D.6) can therefore be
formally written in the suggestive form, B = B(y, {; Xp). We then
optimize the function B(y, ¢; Xg) over all possible choices of the
two angles (y, ¢) to arrive at the bound B.(Xp). It turns out that
B.=ltany = Jtan¢ = 3(\/1+XZ —Xo) for the rectangular block

[8]. In the case of the triangle, tan¢ = /2(1+tan®y) —tany,

leaving a straightforward algebraic problem to solve for the opti-
mal y and B, with solutions shown in Figs. 11(c) and 10(b). The
failure lines of these bounds are compared to the sample slipline
fields in Fig. D.19, illustrating the manner in which the bound at-
tempts to capture the actual plastic deformation.

The streamlines of the numerically computed failure modes
suggest that the preceding bounds might be improved if the trian-
gle at the side were allowed to rotate out of position rather than
slide linearly. In this situation, the failure surfaces become circu-
lar arcs rather than straight lines which complicates the form of
the power balance corresponding to (D.6) and the geometrical con-
straints. Three optimization parameters are required to define the
circular arcs; we use the local slopes at the bottom corner, s,, and
midline, sg and s, as illustrated in Fig. 11(b,c). The optimization
problem can then be continued through with the help of the com-
puter. We use the built-in function FMINSEARCH of Matlab to per-
form the optimization of B(sq, Sg, s; Xp) and improve the bounds
on B.(Xp). The circular failure arcs corresponding to the three sli-
pline solutions of Fig. D.19 are again included in that picture.

Note that the bounds for the triangle predict that s, falls to
zero for Xy > 2.8 with a straight failure surface and X, > 1.2 for
rotational failure. For wider initial states, this parameter must then
be removed from the optimization, which makes the bounding
procedure less effective. A more general and effective construction,
that retains s, as a parameter, is to allow the lower circular failure
arc to intersect the base for x < Xj, but not pass through that sur-
face, and then continue beyond. That is, we allow the arc to pro-
ceed through a minimum at z = 0 and then intersect the side sur-
face at a finite height (cf. Fig. 13(b,c)). This extension permits com-
putations of improved bounds for arbitrarily wide triangles and

) =A;Usin Y + AgW. (D.6)

is plotted in Fig. 10(b). Fig. 13(b,c) illustrates how the resulting
arcs compare well with the computed failure modes for moderate
width. Even for the widest triangle with X, = 8, the bound (B, >
0.1635) is close to the computed value of B, ~ 0.1642. For Xy > 1,
the bound converges to B, > 3/Xj. By contrast, the shallow-layer
asymptotics predict failure for B, ~ 4/X, (see Appendix B), indicat-
ing that there is further room for improvement in this limit.

References

[1] N. Pashias, D.V. Boger, J. Summers, D.J. Glenister, A fifty cent rheometer for
yield stress measurement, J. Rheol. 40 (1996) 1179.

[2] N. Roussel, P. Coussot, Fifty-cent rheometer for yield stress measurements:
From slump to spreading flow, ]. Rheol. 49 (2005) 705-718.

[3] NJ. Balmforth, R\V. Craster, P. Perona, A.C. Rust, R. Sassi, Viscoplastic dam
breaks and the Bostwick consistometer, J. Non-Newtonian Fluid Mech. 142
(2007) 63-78.

[4] KE Liu, C.C. Mei, Approximate equations for the slow spreading of a thin sheet
of Bingham plastic fluid, Phys. Fluids A 2 (1990) 30.

[5] NJ. Balmforth, R.V. Craster, A.C. Rust, R. Sassi, Viscoplastic flow over an in-
clined surface, J.Non-Newtonian Fluid Mech. 142 (2007) 219-243.

[6] L. Staron, P. Lagree, P. Ray, S. Popinet, Scaling laws for the slumping of a Bing-
ham plastic fluid, ]. Rheol. 57 (2013) 1265-1280.

[7] J.A. Chamberlain, J.E. Sader, K.A. Landman, L.R. White, Incipient plane-strain
failure of a rectangular block under gravity, Int. J. Mech. Sci. 43 (2001)
793-815.

[8] J.A. Chamberlain, D.J. Horrobin, K.A. Landman, J.E. Sader, Upper and lower
bounds for incipient failure in a body under gravitational loading, ]. Appl.
Mech. 71 (2004) 586-589.

[9] LA. Frigaard, C. Nouar, On the usage of viscosity regularisation methods for
visco-plastic fluid flow computation, J. Non-Newtonian Fluid Mech. 127 (2005)
1-26.

[10] M. Fortin, R. Glowinski, Augmented Lagrangian Methods: Applications to the
Numerical Solution of Boundary-Value Problems, North-Holland, Elsevier, Am-
sterdam, 2006.

[11] S. Hormozi, K. Wielage-Burchard, 1. Frigaard, Entry and start up effects in vis-
co-plastically lubricated viscous shear flow in pipe, J. Fluid Mech. 673 (2011)
432-467.

[12] K. Wielage-Burchard, I. Frigaard, Static wall layers in plane channel displace-
ment flows, ]. Non-Newtonian Fluid Mech. 166 (2011) 245-261.

[13] B. van Leer, Towards the ultimate conservative difference scheme. V. A sec-
ond-order sequel to Godunov's method, J. Comput. Phys. 142 (1) (1979)
101-136.

[14] M. Renardy, Y. Renardy, J. Li, Numerical simulation of moving contact line
problems using a volume-of-fluid method, J. Comput. Phys. 171 (2001)
243-263.

[15] Y. Sui, H. Ding, P. Spelt, Numerical simulations of flows with moving contact
lines, Ann. Rev. Fluid Mech. 46 (2014) 97-119.

[16] NJ. Balmforth, R.V. Craster, A consistent thin-layer theory for Bingham plastics,
J. Non-Newtonian Fluid Mech. 84 (1999) 65-81.

[17] N. Dubash, N.J. Balmforth, A.C. Slim, S. Cochard, What is the final shape of a
viscoplastic slump? ]. Non-Newtonian Fluid Mech. 158 (2009) 91-100.

[18] NJ. Balmforth, N. Dubash, A.C. Slim, Extensional dynamics of viscoplastic
filaments: II. Drips and bridges, ]. Non-Newtonian Fluid Mech. 165 (2010)
1147-1160.

[19] N.J. Balmforth, I.J. Hewitt, Viscoplastic sheets and threads, ]. Non-Newtonian
Fluid Mech. 193 (2013) 28-42.

[20] A.V. Lyamin, S.W. Sloan, Lower bound limit analysis using non-linear program-
ming, Int. J. Numer. Methods Eng. 55 (2002a) 573-611.

[21] A.V. Lyamin, S.W. Sloan, Upper bound limit analysis using linear finite ele-
ments and non-linear programming, Int. ]. Numer. Anal. Methods Geomech.
26 (2002b) 181-216.

[22] ]. Pastor, T.-H. Thai, P. Francescato, Interior point optimization and limit analy-
sis: an application, Commun. Numer. Methods Eng. 19 (10) (2003) 779-785.

[23] J. Heyman, The stability of a vertical cut, International Journal of Mechanical
Sciences 15 (10) (1973) 845-854.

[24] W.-E. Chen, M.W. Giger, H.-Y. Fang, On the limit analysis of stability of slopes,
Soils and Foundations 9 (4) (1969) 23-32.

[25] G.P. Matson, A.J. Hogg, Two-dimensional dam break flows of Herschel-Bulkley
fluids: The approach to the arrested state, ]. Non-Newtonian Fluid Mech. 142
(2007) 79-94.

[26] J.F. Nye, The flow of glaciers and ice-sheets as a problem in plasticity, Proc. R.
Soc. Lond. Ser. A 207 (1951) 554-572.

[27] W. Prager, P.G. Hodge, Theory of Perfectly Plastic Solids, Dover; New Ed edition,
New York, 1968.

[28] S. Cochard, Measurements of time-dependent free-surface viscoplastic flows
down steep slopes, Ecole Polytechnique Fédérale de Lausanne, 2007 Ph.D. the-
sis.

[29] M. Jalaal, NJ. Balmforth, B. Stoeber, Slip of spreading viscoplastic droplets,
Langmuir 31 (44) (2015) 12071-12075.

[30] M.AAM.A. Khatib, S.D.R. Wilson, Slow dripping of yield-stress fluids, J. Fluids
Eng. 127 (2005) 687-690.


http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0001
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0001
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0001
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0001
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0001
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0002
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0002
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0002
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0003
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0003
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0003
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0003
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0003
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0003
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0004
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0004
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0004
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0005
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0005
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0005
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0005
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0005
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0006
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0006
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0006
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0006
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0006
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0007
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0007
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0007
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0007
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0007
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0008
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0008
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0008
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0008
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0008
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0009
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0009
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0009
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0010
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0010
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0010
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0011
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0011
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0011
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0011
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0012
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0012
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0012
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0013
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0013
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0014
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0014
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0014
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0014
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0015
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0015
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0015
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0015
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0016
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0016
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0016
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0017
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0017
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0017
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0017
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0017
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0018
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0018
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0018
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0018
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0019
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0019
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0019
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0020
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0020
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0020
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0021
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0021
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0021
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0022
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0022
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0022
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0022
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0023
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0023
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0024
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0024
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0024
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0024
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0025
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0025
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0025
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0026
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0026
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0027
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0027
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0027
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0028
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0028
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0029
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0029
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0029
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0029
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0030
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0030
http://refhub.elsevier.com/S0377-0257(16)30064-7/sbref0030

	Two-dimensional viscoplastic dambreaks
	1 Introduction
	2 Formulation
	2.1 Dambreak arrangement and solution strategy
	2.2 Model equations

	3 Newtonian benchmark
	4 Bingham slumps
	4.1 Slump and plug phenomenology
	4.2 Shallow flow
	4.3 Slender slumps
	4.4 Failure
	4.4.1 Critical yield stress
	4.4.2 Flow at failure

	4.5 The final shape and slump statistics

	5 Concluding remarks
	 Acknowledgements
	Appendix A Further numerical notes
	A.1 Parameter settings and other details
	A.2 The failure computation for 
	A.3 Thickness of the over-ridden finger

	Appendix B Shallow flow
	Appendix C Slender columns
	Appendix D Plasticity solutions
	D.1 Slipline fields
	D.2 Simple failure modes

	 References


