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ABSTRACT

Asymptotic analyses and numerical computations are reported for surges of viscoplastic fluid down an incline with low inertia. The asymptotic theory applies for
relatively shallow gravity currents. The computations use the volume-of-fluid method for tracking the interface; the constitutive law is dealt with by the augmented-
Lagrangian method. The anatomy of the surge consists of an upstream region that converges to a uniform sheet flow, and over which a truly rigid plug sheaths
the surge. The plug breaks further downstream due to the build up of the extensional stress acting upon it, leaving instead a weakly yielded superficial layer, or
pseudo-plug. Finally, the surge ends in a steep flow front that lies beyond the validity of shallow asymptotics.

1. Introduction

Viscoplastic fluids are commonly encountered in natural settings in
geophysics (e.g. mud and lava) and biology (mucus and blood clots),
and feature in many engineering processes in, for example, the food
(fruit pulp, dairy products and chocolate confections) and petroleum
industries (drilling mud, cement and waxy crude oil). These materi-
als flow like viscous fluid once stresses exceed a certain threshold (the
yield stress), and remain solid-like otherwise. In fact, the most exten-
sively used constitutive laws for these fluids (the Bingham and Herschel-
Bulkley laws) discard any deformation below the yield stress, which
complicates the modelling of viscoplastic flow from a mathematical per-
spective as it renders the stress state indeterminate and the effective
viscosity singular at the yield point.

The spreading of viscoplastic fluid over an inclined surface has been
studied experimentally in a number of previous studies, often with the
goal of inferring the yield stress from steady flows [1-3] or the shape
of a final deposit [4-7]. The most thorough and recent laboratory stud-
ies include the transient dam-break-type experiments of Ancey and co-
workers [8-10] and a series of investigations on steady viscoplastic
surges on inclined conveyor belts [11-13].

Theoretically, a model for shallow viscoplastic flow based on
Reynolds lubrication theory has been widely used to complement such
laboratory studies [14-16]. In this model, the long, thin flow is com-
posed of a fully sheared region adjacent to the underlying surface
buffered from the free surface by a plug-like zone. Importantly, that
zone is not truly rigid, but deforms weakly in the direction of flow and
is plug-like in that the transverse velocity profile is largely independent
of depth. This structure is common in many shallow viscoplastic flows
[17,18] and results from the separation of length scales in the direc-
tions aligned or perpendicular to flow. The border between the fully
yield region and the plug-like zone is therefore not a true yield surface;
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instead, it is often referred to as a fake yield surface, and the overlying
zone as a pseudo-plug. Despite the fact that lubrication theory predicts
the appearance of pseudo-plugs in shallow flows, it is also known that
genuine rigid plugs can appear within these zones surrounding points of
symmetry [17,19] or replace them in flow down almost uniform chan-
nels [20]. This raises the question of whether the superficial regions of a
free-surface flow can also plug up in the far upstream extent of a steady
surge flow, where the flow becomes almost uniform, as discussed in a
qualitative way by Piau [21]. Indeed, for a truly steady surge that ex-
tends infinitely far upstream, one expects that the flow converges to a
uniform sheat flow which, for a yield-stress fluid, is sheathed by a true
plug.

The purpose of the present study is to explore models for steady,
shallow viscoplastic surges with a length that is sufficiently long that the
flow converges to a steady sheet flow well upstream of the flow front;
i.e. the theoretical analogue of the experiments by Chambon et al. [11-
13]. For this task, we reconsider the lubrication analysis of Liu and Mei
[14]. First, we consider the upstream extent of the surge to examine how
the surge converges to uniform sheet flow, and how the corresponding
superficial plug breaks as one progresses downstream. This demands a
variation of the lubrication analysis that is designed for almost uniform
flows, and parallels theory for flow down weakly varying channels [20].
Second, once the upstream plugged flow gives way to a fully yielded
surge with a pseudo-plug, standard lubrication theory applies; for this
region, we improve that theory by continuing the analysis to higher
order in order to account better for non-shallow effects.

We complement the shallow-flow analysis with computations us-
ing the Volume-of-Fluid (VOF) method and an augmented Lagrangian
scheme to deal with the yield stress. Such a combination of shallow-
flow analysis and computation has proven effective in our previous work
studying dambreak flows and their final shapes [22,23]. Here, we exam-
ine the extent to which the theoretical solutions match the observations
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Fig. 1. Sketch of the geometry of the surge in the frame of reference in which
there is no net flux and the flow is steady. The free surface is located at z = h; the
level z =Y divides a fully yield region underneath from either a true plug or a
weakly yielded pseudo-plug. The flow divides into three regions: a plugged flow
region (PF) where the superficial layer of fluid is not yielded, a lubrication zone
(LZ) where the pseudo-plug arises, and the flow front (FF) where the dynamics
is not shallow.

of Chambon et al. and determine the conditions for which the pseudo-
plug of lubrication theory locks up into a true plug.

2. Formulation
2.1. Model equations

As sketched in Fig. 1, we consider a two-dimensional surge of incom-
pressible viscoplastic fluid flowing steadily down a plane that is inclined
at an angle 6 to the horizontal. We use Cartesian coordinates aligned
with the plane to describe the geometry; in the frame of reference of the
surge, the inclined plane travels upslope with a speed u;,. We model the
rheology of the fluid using the Herschel-Bulkley constitutive law. The
governing equations for the velocity u = (u, w), deviatoric stress tensor
7, and pressure p are then

V-u=0,
Ju sin 6
p[E+(u~V)u] ——Vp+V-‘r+pg<_cose>, 1)
and
7ik =0, 77 < Ty,

-1, T, 2
Tj = (Ky" s ?>yjk, T > Ty,

where p is the density, g is gravity, zy is the yield stress, the plastic
viscosity u = k7"~! introduces the consistency x and power-law index

n as two further rheological parameters, and 7; = 4/ % ik T}k and y =
1 .2 s . .
Vi3 Xk 7;;, denote second tensorial invariants, with

. 2 +

p=(, ) 3)
U, + w, 2w,

Here, subscripts on the velocity components represent partial deriva-

tives.

For the boundary conditions, we assume that there is no slip over
the inclined plane, u(x,0) = (—u,,0), and that the upper surface is stress

free, so that
—n\ _ (0
and (r —pl)- ( 1 > = <0>, “

oh , oh _
ot ox

on z = h(x, t). The surge ends at a flow front, x = X(¢), where h — 0, and
extends back upstream to where the flow converges to a uniform sheet
flow.

2.2. The sheet-flow solution

In the frame of reference in which the net flux vanishes, the steady,
uniform, sheet-flow solution is given by

D, 7)) = (l,tanb?)(l — %)pg cos @ 5)
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and

nU tan'/" 9
n+1

n 2+1/n z
2n+1Y°° ’ Yo < 7= L

u= usheer(z) =

Q)

where H is the flow depth and

<o\ 1/
. <ng cosé’) " o
K

The level z = HY_, corresponds to the yield surface above which the
fluid is plugged, with
Ty

Yo=1-—21—. ®)
pgH sin 0

Note that, because there is no net flux along the plane in the frame of
the surge, the profile in (6) demands that the speed of the inclined plane
is

- —”U‘a“”"ey'”/n(l - > ©)

T T & 2n+ 1

The scales here can be used to non-dimensionalize the problem, as dis-
cussed later.

2.3. Volume-of-fluid computations

In our computations of the full problem, we use the VOF method to
track the fluid interface using an advected volume fraction c(x, z, t) (see
[22,23]). This scheme immerses the viscoplastic fluid beneath a miscible
ambient Newtonian fluid. The material properties of the bulk mixture
are set by linearly interpolating between the two phases using ¢, with
the density and viscosity of the Newtonian fluid taken to be relatively
small in order to minimize the effect of the ambient flow dynamics (cf.
[22,23]).

To solve the governing equations, we evolve the system as an initial-
value problem until a steady state is reached. We use an augmented-
Lagrangian scheme to deal with the yield stress within a weak formula-
tion of the problem [24,25], as implemented in C++ using the PELICANS
platform (e.g. [26]). We refer the reader to our earlier work [22,23]) for
further computational details, including a discussion of how we avoid
any resolution issues stemming from the no-slip condition imposed on
the underlying plane. Some additional details relevant for the present
computations (including a resolution study confirming the fidelity of the
computations) are provided in Appendix A.

The computational domain is finite, extending up to a height L, and
to a length L. The top and right-hand boundaries are chosen to be suf-
ficiently distant that their positions do not affect the solution; free slip
conditions are imposed to help suppress the ambient fluid dynamics.
On the lower boundary we impose the fixed velocity (u, w) = (-u,;,0),
where u;, is chosen in a range that the flow adapts to reach a steady
flow regime; for a long thin flow, the upstream current converges to the
sheet flow solution above, and so uy, is given by (9).

To minimize the influence of the left-hand boundary conditions and
ensure that the surge is mostly long and thin, we select domain lengths
L, that are as large as possible. To gauge the residual effect of the left-
hand boundary conditions, we compute solutions with two different con-
ditions: an infinitely long flow can be simulated by imposing the veloc-
ity here as that given by the sheet-flow solution; i.e. (u, w) = (ugpe0-0)
at x = 0. Alternatively, the back wall of the conveyor-belt experiment
of [11-13] can be simulated by setting u = w =0 at x = 0. Appendix
A.3 summarizes the role played by these boundary conditions.

From c(x, z, t), we define the instantaneous position of the interface
of the slump from the contour ¢(x,z = h) = % The surface z = h(x) plays
a major role in the asymptotic analysis of Section 3.

For the computations with Bingham fluid that we compare with
asymptotic theory, we select parameters to minimize inertial effects
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Fig. 2. Asymptotic surge solutions for (a) the plastic limit Y— 0, and (b)
Y,, = 1 — S7!'B = 0.2. The solid lines show the improved lubrication solutions for
h(x) plotted against S(x — x ) with %ser = 0.2 (as given by either Egs. (41) and
(42)); the dotted lines indicate the predictions of the leading-order theory. In
(b), the corresponding fake yield surfaces Y(x) are also plotted. The insets show
magnifications near the flow front.

(see Section 4.1 and Appendix A.2). The Herschel-Bulkley simulations
of Section 4.2 have parameter settings matched to corresponding lab-
oratory experiments; inertia may play a more significant role in these
examples.

3. Asymptotic analysis

The anatomy of the surge is illustrated in Fig. 1: the flow body is
divided into three regions. A plugged flow (PF) region arises at the back,
where the surge converges to the sheet flow and a true plug exist on top
of the fluid. That plug then breaks to leave a fully yielded flow with
a more significant variation in the free surface. Although there is no
true plug, the flow remains relatively shallow; in this lubrication zone
(LZ), standard shallow-layer analysis applies and there is a superficial
pseudo-plug. Finally, at the flow front (FF), the free surface steepens up
to terminate the surge and invalidate shallow-layer theory.

To prepare the way for asymptotics, we rescale the equations to suit
the shallow geometry [16]. We also focus on the special case of the
Bingham model, with k =y and n = 1 (the extension to Herschel-Bulkley
model is straightforward and partly described in Appendix B), and dis-
card inertia. Hence, we introduce a characteristic depth H and horizontal
length L with e = H/L <« 1, and then set

p=pgHpcosh, t=pgHecosh (6 T),

T -0
H3cos0 : L
U= g cos . s= tan 0 B= Ty ) (10)
kL € pgH? cos 0

Notice that S ~ tan € is assumed here. For steady flow, the dimensionless
equations now become, after dropping the hat decoration,

Px = €0, + 1, + S,
2

p, =€r1,—€0,—1,
r=<1+£>7, V12462 > B,
14
h
0=/ u(x,z) dz,
0

7xx = zeuw }.'xz =uy+ ezwx’ v = \/ y)%x + }.’)%z’ an
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with u(x,0) = —u;, and

t+h(p—ec)=0
onz=h. (12)
p+€6+€2hxr=0

3.1. Plugged flow

In the PF region, the flow is nearly uniform, so we introduce the
asymptotic sequences,

h=1+4+ch +..., p=l—-z+ep +..., (13)

t=S(U-2)+ery+..., u=uyg+eu +.. 14)

and ¢ = o;, + ... The leading-order terms from (11) recover the velocity
profile of the sheet-flow solution, this time in dimensionless form:

1 zQ2Y,—z), 0<z<Y_,

- _ RN o o 15
o =yt 3 X{Yi, Y, <z<l, (1)
with
uy = éSYéG—Ym) (16)
andY, =1- g. At O(e) we now obtain
Pix = Tiz T 00x»

Piy = —0pz. 17
Expanding the free surface conditions about z = 1, we find
py+oy=hy,

e atz=1. (18)

T = Shy,

Hence, p, + o = h; throughout the fluid depth.

Over the fully yielded region underneath the plug, the constitutive
law implies that
oy =0 and T = Uy, (19)
It follows that p; = h; over this region, and so
f=huz+T  and w = 3h, 2 +Tz, (20

where T(x) is not yet determined. However, in the overlying plug, o
cannot be taken to vanish and the stress state is indeterminate, as (17) do
not determine all of p;, 7; and o. Instead, the yield condition demands
only that 67 < B? - §%(1 — 2)%.
The stress solution for the yielded region,

t~S(1-2)+eth,z+T) and o = 0(e), 2D
now implies that the yield surface is shifted to Y = Y + €Y}, where

Y, =S h, Y, +T). (22)

However, the plug speed must remain equal to %SY; as there is no
deformation in h>z> Y. This demands that u,(x,Y) = 0, or

1
T=-1v h,. (23)

Finally, we impose the flux constraint,

h
/ udz=0 24)
0

which gives, at O(e),

uphy = 3SY2hy + $h Y3 + 3TYZ. 25)
Hence,

h,,=2Sh, and Y, =Y_h,, (26)

and so the departure from the uniform sheet solution grows exponen-
tially in the downslope direction, with an exponent given by 2S.
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Fig. 3. Numerical solution for § = 10° and Y, = 0.8 showing (a) z;, (b) 7, and
(c) 7. The darker (blue) lines show sample streamlines and the dotted white
line is the true yield surface where 7, = B. The dashed line shows the contour
level where 7, = B. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

3.2. Breaking the plug

Returning to (17), we now observe that, over the plug,
hy =200, + 715, 27)

which can be integrated from z = Y, upto z = 1 to give

1

0
ax ], o dz = 3Sh(1-Y,). (28)
Hence
1
d
/Y [o(x. D1 o 75 = 31 9)
o ©

which, given that |h; | grows exponentially, implies that the net jump in
extensional stress across the plug must also increase towards the flow
front. Moreover, since h; must eventually become O(¢™!) to curve the
surge, the plug must inevitably break.

A further constraint is provided by the unyielded condition of the
plug (given the leading-order shear stress = ~ S(1 — z)),

—VBZ =521 - 22 < 6y < VB2 — S2(1 - 2)2, (30)

which bounds the integral on the left of (29). In particular, that inte-
gral cannot exceed %nB in absolute size. Therefore, the plug must have
broken when

|| > 27 B. &3))
3.3. Lubrication zone

The preceding analysis indicates that the plug breaks when h — 1 =
O(e). Downstream, the departure from the sheet-flow solution grows
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True plugs
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Fig. 4. Flow profiles and fake yield surfaces for (a) numerical simulations,
(b) leading-order lubrication theory and (c) improved asymptotic theory (us-
ing (42)), with # = 10° and Y, = 0.4, 0.6 and 0.8. The solid and dashed lines
show h and Y, with Y defined as the contour level where z,, = B for the simu-
lations. The flow profiles steepen with increasing Y. The shaded regions in (a)
show the true plugs (which extend up to the free surface in each case, and with
the shading darkening with increasing Y,).

further as we enter the lubrication zone and # — 1 becomes O(1). With
h = h(x) # 1, the leading-order solution of (11) now furnishes the stan-
dard lubrication result for the velocity profile,

z2Y —z), 0<z<Y,

Y2, Y <z<h, 32)

u~—ub+%(S—hX)><{

where Y = Y(x) is the position of the fake yield surface. The profile of
the surge itself follows from solving

B
Y=h-——o,
S—h,
uyh = up<h - %Y) (33)
where
u, = 1(S = h)Y? (34)

determines the speed of the overlying pseudo-plug. Over that region,
the extensional stress is given by

o = sgn(u, )\ B~ (5 — h 2(h - 22, (35)

which matches one of the limits in (30) for 4~ — 1+ O(e). Thus, the
plugged flow is expected to match continuously to the lubrication zone
once the plug breaks.
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Fig. 5. Numerical solution for Y = 0.8 and = 5° (B = 0.0175), showing a den-
sity plot of z; with z = h(x) and the fake yield surface superposed; the true plug is
shaded black. The dashed lines show the prediction of the leading-order lubrica-
tion theory (with the flow front aligned). The dotted lines show the predictions
of the plugged-flow solution in (26), with 1 — 4~ matched to the simulation at
x=35.

Note that (33) predicts that h and Y converge exponentially to the
sheet flow solution as x — —co. In particular,

. Y2 -3Y,+6
hy ~ 38(h =1 S———,
YZ-3Y,+3
Y-Y, ~ iy 1)}7"%’_21["“r3 (36)
R Y2 -3Y, +3

Because 0 <Y, <1, this result implies that the fake yield surface lies
above the true yield surface once we enter the plugged flow region
where h — 1 = O(¢). Thus, one does not expect a pseudo-plug to inter-
vene between the fully yielded zone and the true plug (c¢f. [20]).

3.4. Improving the lubrication theory

With a little effort, as described in Appendix B, the lubrication theory
can be continued to next order to furnish the improved model,

B 1 2 hxx
Y =h- + sex BT ————,
S—h 2T (S —hyp
u
_ 1 1 2 px
ubh = Mp(h - EY) + EEIFB m, (37)

in place of (33). In principle, this improved model better captures non-
shallow effects. In the limit of § = 0 and u, = 0, the system in (37) re-
duces to the problem for a collapsed two-dimensional slump [22]. In
the limit u, = 0, the time dependence can be retained to furnish an im-
proved lubrication model for unsteady viscoplastic flow over an inclined
surface.

The plastic limit of (37) is achieved when Y— 0 throughout the
surge, and permits further analytical headway in constructing the sur-
face profile. Setting Y = 0 in the first equation in (37) furnishes

B h
“sont %enBzm =0. (38)
Given that Y— 0 demands that B/S—1 at the back of the surge, the
leading-order solution is

h+log(l—h)~S(kx—xjp), (39

h

which corresponds to the final shape of an inclined dambreak [14,15].
Continuing with the improved model, (38) is equivalent to

(S = hh =S+ lexBh, = O, (40)
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or

1-h

h—texB+ (l - leer)log
2 2
1- EenB

~Skx—xj), (41)

if x = x, denotes the front position. Note that the front of the surge here
has finite height, with h(x,) = %e;rB, as found in [22]. Further discus-
sion of the slumped shapes predicted by (38) and (41) is provided in
Appendix C.

Away from the plastic limit, we can again iterate (37) to 0O(e?) into
the second-order system,

B—(h=Y)S —hy) = texB(h, - 1),

2
uph — up(h - %Y) = LexBY[2h - Y)Y, - Yh,]. “2)

Beginning from a position upstream where the surge is close to the sheet-
flow solution, this system can be integrated downstream to the flow
front using initial conditions based on (36). Again, the surge ends at
finite depth where the free surface becomes vertical and h and Y are
O(e). A sample solution with Y, = 0.2 (B/.S = 0.8) is shown in Fig. 2 and
compared with the predictions of the leading-order lubrication model
and the corresponding solutions in the plastic limit.

4. Numerical results
4.1. Comparison with asymptotics

In this section, we report computations with the Bingham model,
n = 1, for comparison with the asymptotic analysis. Following along the
lines of that theory, we also place the problem into a dimensionless
form by scaling variables using the depth of the expected sheet flow H
and its characteristic velocity U". The stresses are scaled by pgHcos 6. In
addition, in the computations, there is no significance to the lengthscale
L, so we set L = H which is equivalent to taking e = 1. Shallow surges
then arise when the longitudinal length far exceeds the depth. We use
Y,, and 6 as the main parameters, which translate to a dimensionless
belt speed and yield stress of

)
u,=-Y-3-Y,_ )tan@
b 6 © ) (43)
B=(1-Y,)tan6

In all the computations we report in this subsection, inertia is not suffi-
cient to significantly affect the solution (see Appendix A.2), and we use
left-hand boundary conditions given by an upstream sheet-flow solution.

Fig. 3 shows a sample solution with # = 10° and Y, = 0.8. The plots
show the deviatoric stress invariant and components as densities over
the (x, z)—plane. Superposed are streamlines and the free surface, with
an upstream section of the solution not shown in order to remove the
regions where the boundary conditions at x = 0 play a role. The shear
stress 7,, matches the stress invariant z; throughout the lower part of the
surge, but deviates over a superficial layer adjacent to the free surface.
There, the Augmented Lagrangian algorithm detects a genuine plug’ for
x 5 15. This plug then breaks to leave, over 15 $x <18, a weakly yielded
superficial region with z; ~ B; i.e. a pseudo-plug. In the numerical simu-
lations, the fake yield surface z = Y (x) can be picked out by determining
the level where 7,y = B (see Fig. 3). The true and fake yield surfaces are
continuous at the breakage of the plug. All this anatomy of the surge
was already anticipated by the asymptotic analysis in Section 3.

Fig. 4 shows sample flow profiles h(x) and fake yield surfaces Y(x),
for 6 = 10° and varying Y. The two panels compare the simulations

1 Although the stress field is indeterminate here, the algorithm provides an
admissible solution for the plug which is dictated by the iterative scheme. The
borders of the true plug are a little rough due to grid-dependent numerical er-
rors. However, the plugs appear to be robustly detected given that the stress
invariant 7, lies significantly below B over this part of the surge.
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Table 1
Experimental parameters from [13].
7y (Pa) k(Pas®) n 6 () u, (m/s)
c2 7.2 5.1 0.41 119 0.26
C5 7.2 5.0 0.43 15.3 0.148

with the predictions of the leading-order and improved asymptotic the-
ories. The latter leads to a mildly better comparison of h(x), correcting
for a spread in the predicted profiles which are found in the simulations
to collapse closely to one another. However, the improved asymptotics
theory does not lead to a substantially better agreement with the simu-
lations in the examples shown in Fig. 4 because the lubrication zone in
these solutions is not particularly long, with the free surface steepening
up quickly from the plugged flow upstream to the flow front.

We provide a more quantitative comparison of a numerical solution
for Y, = 0.8 and 6 = 5° with the asymptotic theory in Fig. 5. This fig-
ure highlights the free surface, the true plug of the numerical solution,
and the fake yield surface underneath the pseudo-plug (again defined
by z,, = B in the simulations). These are compared with the predic-
tions of the plugged flow solution (26) and the leading-order lubrication
theory (Section 3.3). The plug breaks in the simulation when 1 — h =
0.12, in satisfying agreement with the prediction 1 — h = 2zB = 0.11 of
Section 3.2.

4.2. Comparison with experiments

Chambon et al. [11-13] have presented a comprehensive experimen-
tal study on viscoplastic surges on a conveyor belt. For comparison with
their results, we perform numerical simulations matching some of their
experimental parameters. More specifically, we choose the two sets of
parameters denoted by C2 and C5 in [13]. The rheology of the two sam-
ples and the inclination and speed of the belt are given in Table 1. The
fluid in these experiments is an aqueous suspension of Carbopol with
density p = 10> kg/m3. We employ a no-slip back wall to provide the
left-hand boundary conditions.

Figs. 6-8 display the results of the computations. Fig. 6 plots the
velocity field for experiment C5, and corresponds to Fig. 6 in [13].
Figs. 7 and 8 show the strain-rate field, surface velocity and sample
vertical profiles of the velocity components in the frame of the con-
veyor belt for both experiments (for comparison with their Figs. 9 and
10). Distances are scaled by the thickness of the expected uniform sheet-
flow, H, and velocities by the mean downslope velocity u (the scalings
used by Chambon et al.). Although the identification of the true plug is
more difficult (owing to the power-law viscosity of the Herschel-Bulkley
law), the computations still detect that the stress invariant near the free
surface falls below the yield stress a scaled distance of about four units
behind the flow front for C2, and three units for C5. The figures also
contrast the numerical results with the predictions of the leading-order
lubrication theory, which performs well in reproducing the simulations.
Evidently, the fine details of the plugged flow or the improved lubri-
cation theory are minor, and non-shallow flow effects are insignificant
away from the flow front. Importantly, the numerical solutions converge
towards the uniform-flow state at the back of the surge (over a longitudi-
nal distance of about 10H; see Appendix A.3), and there is no mismatch
between H and the depth at the back of the surge. This supports the
inference of Chambon et al. that some rheological effect is responsible
for their observation that the experimental surges are deeper than the
expected sheet flow.

The broad match between simulations and leading-order lubrication
is somewhat better than Chambon et al.’s comparison of experiments
and asymptotics, although there is qualitative agreement between all
three. For example, the differences between the predictions of lubri-
cation theory and simulations for the surge profile and surface veloc-
ity are very small in Figs. 7 and 8, unlike the corresponding figures of

Journal of Non-Newtonian Fluid Mechanics 268 (2019) 1-11

-160 -140 -120 -100  -80 -60 -40 -20 0
XX, (mm)

Fig. 6. Experiment C5 of [13], showing (a) u(x, 2) and (b) w(x, 2) as densities
over the (x, z)—plane, for a qualitative comparison with their Fig. 6. A selection
of streamlines is also shown (thinner blue lines). The dashed lines shows the
levelswhereu = 0and z = Y (z,, = B). In leading-order lubrication theory, u = 0
along z = Y — Y[nY /h(2n 4+ 1)]"/+D; this prediction is also drawn as the lighter
(pink) solid line. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

N
02 . )
(a) logyo(4/0.26) : , -
0
1.25 - (b) Surface velocity -~~~ Asymptotics [
Simulation p
1.2 —% - , T T
-14 -12 -10 -8 -6 -4 -2 0
1 XX,
(© (@ O]
0.4+4w
0.5
u
0
M © (h)
0.5 h ‘ ;
N , I’ I 1 ]
4 ’ ,I P
v -, - ==
0
0 0.5 1 0.5 1 0.5 1
u, 0.4+4w

Fig. 7. Experiment C2 of [13]: shown are (a) log,,(7/0.26), (b) the surface ve-
locity, and (c)—(h) velocity profiles at the x—positions indicated in (b), for a
comparison with figure 10 in [13] (the scaling factor of 0.26 being selected in
that paper). The (red) dashed lines indicate the predictions of the leading-order
lubrication theory. In (a) the solid white line shows the contour 7., = B, whereas
the dashed white line is the fake yield surface z = Y(x) of the leading-order lu-
brication theory. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 8. A similar picture to Fig. 7, but for Experiment C5 of [13] and for com-
parison with their Fig. 9 (with log,,(7/0.38) plotted in (a), as in that paper).
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Fig. 9. Flow profiles for a simulation with 6 = 14.6°, 7, = 6 Pa, k = 6.65 Pas"
and n = 0.405 (the experiment C_PIV of [12]), for (a) u, = 0.2, 0.4, 0.8, 1.2 and
1.4 m/s, in the steady state, and (b) u, = 1.6 m/s at a succession of times, starting
from the initial profile shown by the dashed line (+ = 0, 0.06, 0.08, 0.11, 0.17
and 0.19 s). In (), the profile for u, = 1.4 m/s is shown by the solid line and
several streamlines are also plotted (dotted lines).
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[13], which reveal noticeable differences. The front of the experimental
surges are also rounded and overturn, as in the simulations but not the
asymptotics, although the nose occurs at dimensionless heights of about
0.25-0.3 whereas it lies well below 0.1 in the simulations. We interpret
all this to imply that the shallow approximation is not responsible for
the main quantitative disagreements between theory and experiment.

We quantify this further using two distance diagnostics defined by
Chambon et al. The first of these records the distance from the flow
front, x /., = |x — x|, where

h
d
|;/0 (uexp - uasy)ZTZ

where the subscripts refer to PIV measurements and the leading-order
asymptotic prediction, and u is again the mean donwslope speed. Cham-
bon et al. quote values for x, , from 0.5H to H for all their experiments.
The same mean difference between the velocity profiles of our simula-
tions and the asymptotics indicates that xs , ~0.34H for C2 and 0.18H
for C5. In other words, the asymptotic prediction for the velocity profile
remains close to that of the simulation for distances much nearer the
flow front.

The second diagnostic denotes the distance, x., = [x — x|, from
the flow front where |h;,, — h,,,| reaches 0.6 mm. Again, Chambon et al.
find that xg j, is order of Hj this time, they quote values between 1.5H
and 2H for their tests. By contrast, in our C2 simulation, x ., = A, —
hgsyl = 0.3H, whereas the difference in flow depths never reaches such
a threshold for C5, always being less than 0.3 mm.

All the experimental or asymptotic results described above relate to
relatively shallow surges. As the belt speed increases, however, the surge
shortens and deepens, leading to profiles like those shown in Fig. 9(a).
In these cases, the aspect ratio of the flow profile is O(1), with the fluid
beginning to climb up the (no-slip) back wall. Raising the belt speed still
further leads to a sudden catastrophic overturning event that interrupts
the passage to a steady equilibrium, as illustrated in Fig. 9(b). In this
case, the fluid climbs up the wall before collapsing down in the manner
of a breaking wave; bubbles of ambient fluid become entrained into the
surge and the reliability of the simulation is quickly lost, leading us to
terminate the computation before any convergence to a steady state.
At this stage it is not clear whether the overturn heralds the loss of the
steady state and the onset of a continued cascading flow. As far as we are
aware, this type of dynamics has not yet been observed experimentally.

172
=0.07u

5. Concluding remarks

We have conducted a theoretical study of viscoplastic surges down
an inclined surface, combining asymptotic analysis with numerical sim-
ulations. We have focussed on the steady states reached in frames mov-
ing at constant speed down the slope, although we have also reported a
situation in which such steady surges do not appear to be attainable and
an unsteady cascading state is reached instead. The numerical compu-
tations of shallow surges mostly agree with the asymptotic predictions,
more so than the experiments by Chambon et al. [11-13], which are less
comparable with the asymptotics though still in broad agreement. That
discrepancy between the experiments and asymptotics is not therefore
the result of non-shallow flow effects, but must originate elsewhere.

The computations confirm the phenomenology expected for a surge,
namely that there is an upstream sheet flow with a rigid plug that
breaks as one moves downstream due to the build up of the extensional
stress across the plug. This leaves a weakly yield zone atop the fluid,
the pseudo-plug, as predicted by standard lubrication theory. The surge
eventually steepens and terminates at a relatively abrupt flow front.

We have chiefly operated in the limit in which inertial effects play
little role in the surge, which is clearly a limitation with regard to many
applications in the geosciences. In particular, we have not catalogued
any secondary instabilities of the steady surges (such as roll waves [27])
or found any multiple equilibria, both of which might well appear at
higher Reynolds number. We leave such considerations for future work.
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Appendix A. Additional numerical details

In this appendix we provide further details of the numerical com-
putations. We use the dimensionless version of the problem in which
lengths are scaled by H and velocities by U as in Section 4.1.

To find the steady surge states, we solve suites of initial-value prob-
lems in the frame of reference of the surge, following the strategy out-
lined in [22,23]. We begin from initial conditions in which motionless
viscoplastic fluid is deposited on the inclined plane with a rectangular
shape whose depth is set by the sheet-flow solution. The front of the
rectangle is smoothed over a streamwise scale of order of a fraction of
the fluid depth using a arc tangent function. The simulations do not
appear to be sensitive to the initial condition, at least at the Reynolds
numbers chosen for most of our simulations (Section A.2), with no indi-
cation of multiple equilibria or unsteady states (but see the discussion
surrounding Fig. 9).

The initial-value problem is solved exploiting the PLIC (Piecewise
Linear Interface Calculation) algorithm to evolve the interface within
the volume-of-fluid scheme. The essential details of the algorithm can
be found in [28], although we modify it slightly to surmount a numerical
difficulty arising from an unresolved layer of the ambient fluid coating
the inclined plane, as is described in [22,23]. In brief, the modifica-
tion amounts to monitoring the volume fraction adjacent to the inclined
plane and adjusting the value of c there if it exceeds a threshold (set to
0.99). This replacement of ambient fluid with yield-stress material de-
stroys mass conservation, which is restored by rescaling the flow height
uniformly over the length of the surge, incurring a further error, of order
a fraction of a grid spacing.

The evolution observed in these initial-value problems suggest that
the final steady states possess no contact line along the underlying plane.
Rather, a continually thinning finger of ambient fluid coats the plane
as one progresses upstream. Therefore, although the adjustment to the
PLIC algorithm applies an approximation to allow the contact line of
the initial condition to migrate with the plane to create this finger, once
that feature is established, the scheme simply amounts to neglecting the
small amount of ambient fluid within the finger once it becomes thin-
ner than the lowest grid cell. This prevents interpolation errors in the
velocity field and shear stress of the finger from excessively lubricating
the surge, and permits the computation to otherwise remain resolved,
as we now document.

Al. Resolution study

Fig. A.1 shows the results of a resolution study for the profile of a
Bingham surge with 0 = z/18 and B = 0.0522 (Re =1, u, = 0.041 and
the total area of fluid is 24). At the rear of the surge, a no-slip back
wall is imposed, and the grid spacing is uniform with Ax = 4Az. Varying
that grid spacing by a factor of 8 (as indicated) furnishes barely any
discernible difference in the free surface profile. Indeed, the root-mean-
square difference in the velocity field, defined as

J lu—u,|?c, dxdy
Jf ¢, dxdy ’

between the coarsest and finest of these simulations is about 0.088uy,
and decreases to 0.025u;, between the two finest simulations. Here, c«
and u- denote the reference solution, which is that for the finest sim-
ulation, interpolated onto the grid of the coarser solution. Also shown
are selected contours of constant shear stress 7,, (which closely match
those of 7; below the plug), illustrating the convergence with resolu-
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Fig. A.1. Simulations of a Bingham surge profile with ¢ = 10° and B = 0.0522
(Y, =0.7, fluid area of 24, u, =0.041 and Re =1) with the grid sizes indi-
cated. (a) shows h and Y; (b) a magnification near the flow front; (c) contours
of constant 7,,/B, as indicated (with the surge profile of the finest resolution
case shown by the lighter grey line); (d) the shear stress along z = 0.025 (the
lowest grid cell of the coarsest computation). In (a), the inset shows the flow
front X;, mean shear stress, 7_/B = [ [(r,,/B) cdxdz, and r,, at the point
(x,z) = (18,0.4), all plotted against the vertical grid spacing Az (Ax = 4Az). The
convergence of 7, is impeded by the need to resolve the sharply localized region
of high stress underneath the flow front (cf.Fig. 3 and panels (c) and (d)).

tion, at least for stress levels sufficiently in excess of B. Contours closer
to B show significantly less degree of convergence, as highlighted by the
roughness of the yield surfaces plotted in Fig. 4, and the stress solution
remains sensitive to resolution for z; <B. These latter deficiencies are
not problematic as the solution is independent of the stress state over
the plug as long as the fluid there is not yielded. Note that the compu-
tations reported in Section 4 and the remainder of this appendix all use
the finest grid of the resolution study.

A2. Inertial effects

Fig. A.2 shows numerical simulations of Bingham surges with vary-
ing Reynolds number Re= HVU"/x from 0.1 to 10 (which span the range
of all the simulations reported in this study), with a back wall provid-
ing the left-hand boundary conditions. With the scalings of the problem
outlined in Section 4.1, the dimensionless problem retains the Reynolds
number only as a factor in front of the inertial terms. Consequently,
the flow profile becomes independent of Re in the inertialess limit. In-
deed, the flow profiles and stress levels shown in Fig. A.2 closely col-
lapse (save for the relatively rough yield surface) and the root-mean-
square differences in the velocity field and stress invariant are less than
4x 1073u, and 0.01B, respectively. Thus we conclude that inertial ef-
fects are not significant. The computations reported in Section 4.1 are
conducted with Re = 1.
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Fig. A.2. Simulations of Bingham surges for § = 10°, u, = 0.041 and B = 0.0522
(Y, =0.7) for the Reynolds numbers indicated (the total area of fluid is 24).
Plotted are h, Y (r,, = B) and the stress levels 7, /B =1, 2 and 3.
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Fig. A.3. Simulations for 6 = 10° and B = 0.0354 (Y, = 0.8) with different left-
hand boundary conditions: (a) (1, w) = (., 0) and (b) (u, w) = (0,0). Shown is
the second invariant 7; as a density on the (x, z)—plane. The (true) yield surfaces
are indicated by the solid (green) lines. The simulation in (a) corresponds to the
truncated solution shown in Fig. 3. The profiles and the true and fake yield
surfaces are compared in (c).

A3. The effect of the back wall

To gauge the effect of the back wall on the computations, Fig. A.3
compares two simulations with different boundary conditions imposed
along x = 0. In the first, the velocity field corresponding to the uniform
sheet flow is imposed (50 (u, w) = (U, 0)); for the second, we impose
a no-slip condition, u = w = 0 The figure displays the stress invariant
7; and plug regions; the solutions are much the same except within a
region near the back wall in which flow adjustments arise due to the
boundary condition there (and which changes the flow length slightly).
In all our simulations, the extent of these flow adjustments was restricted
to along-slope lengths of about 4H.
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Appendix B. Improved lubrication solution

For Herschel-Bulkley fluid, the dimensionless system is
py =€o,+1,+5, p, = —eo, +e*r, — 1,
0 =z(x,h,t) + [p(x, h, 1) — €0 (x, h,D]h,,

0 = p(x, h, 1) + €o(x, h, 1) + O(e?),

2
<G ):(7"f‘+§)< 6“;‘ )forO<z<Y,
T 4 u, +ew,

Bl=c2+72forY <z<h,

7= /4€M2 + (uy + 2w, )?,
h

h, = —</ udz) .
0 x

In the fully yielded region, u, ~ O(1), 6 ~ O(¢) and y ~ O(1), and drop-
ping the O(e2) terms then gives

p,=-1 and Px=1,+S (B.1)
Hence
p=h—-z+P
t=(S—-h,-P)Y-2+B
T-B
Y=h+ —— B.2
+S—h - P (B2

X X

where P = P(x) and T = T(x), which further imply that
T =B+ “Z’

1 1

u, =S —h,—P)n(Y —2)n,
n

n+1

all to O(e?).
In the pseudo-plug, u = up(x) — uy + euy (x, 2), and so

R P 2 —
y=¢€ 4upx+ulz+0(e)—er.

Hence,

(") B (2“/”‘) +O(eM), (B.4)
T '\ u,

if n<1. Thus
c=VB2-12+0(" (B.5)

Force balance over this region demands

(S—hx—Px)ﬁ[Y% —(Y—z)”ni] —up, (B.3)

p=S+r,+e0, & p,+eo,=—1+0(), (B.6)

which, given the surface stress conditions, now provide

p= h—Z—€O’+O(€2),

h
t=(S-h)h-2)+ 26(/ adz) + 0(eY), (B.7)
or, given (B.5),
_ 1 2 20 + sin20 n+l
T=(S— hx)(/'l -2)+ EGB <S——hx>x + O(¢ + ),
where
9 =sin~! W (B.8)

B

Next we observe that P~ O(e2), because p = h — z+ P and ¢ = O(¢)
in the fully sheared region, but p = h — z — ec + O(¢?) in the pseudo-
plug. The match of = (S — A, )(h — z) + T in 2< Y with

h
(S—hx)(h—z)+2€</ \/B2—T2dz> +0(e"™



Y. Liu, N.J. Balmforth and S. Hormozi

12t -
10} T
-~ ~
-~ ~
0 8r ~
N4 ~
& ~
= 6f
N
4l Improved theory
-------- Iterated improved theory
— — Leading-order
2r Simulations (squares)
Simulations (triangles)

-60 -50 -40 -30 -20
22
4(X—Xf)/7r B

0.8

0.6

Sh/B

0.4

0.2

Simulations (inclined rectangles)

-4 -3 -2 -1 0 -0.1  -0.05 0
S%(x-x)/B

Fig. B.1. Slump profiles for (a)-(b) .S =0 and (b)-(c) S+#0. For (a)-(b), scaled
variables are plotted, which eliminates any free parameters; in (c)-(d) the pro-
files are shown for ez B = 0.2. The dark solid lines show the solutions to (38),
whereas the dotted lines show the solutions to the iterated version in(40); the
dashed lines show the leading-order approximation. In (a)-(b) the lighter (red
and blue) lines show the results of a series of simulations from [22] with e =1,
B =0.02,0.03, ..., 0.1 and the flow fronts aligned. In (c)—(d) the lighter (red)
lines show additional simulations of the slump of a rectangular block on an in-
cline with B =(0.1,0.2,0.3,0.4)/x and 6 = 5°; the inset shows the aligned, but
unscaled profiles.

for z>Y, then demands that

h — 2 — 2
et [ \/l_wdz
Y B?

X

1 2 1
lenB (S_h)x. (B.9)

Now we match the velocity profile of the fully yielded region in
(B.3) with that of the pseudo-plug u = u, — Uy + euy, to find u;(x,Y,1) =0
and

~
1]

n 1 ntl
u, n+1(S—hX)nY no.

Finally we compute u; and the downslope flux: in the pseudo-plug,

Wy T (S—=h)h-2) +000),

= (B.10)
2upe 0 \BT—(S—h )X (h—2)?

and so, given that (S — h,)(h —Y) = B+ O(e),

VB2 = (S = h)2(h—2)?

- T +0(e).

u =2u

The flux can then be computed as

h Y h
/ udz:/ udz+/ (up —up +eu)dz
0 0 Y

n 1o Upx
=uy(h= Y ) —uph+ fenB?
w 1 ) T TR T e

The equations of the improved model quoted in the main text now fol-
low, on taking n = 1.
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Appendix C. Improved slump profiles

Curiously, the improved model for slumped shapes on slopes given
by (38) implies that

hhy ~=3exB(h;"), or h~[BexB(x; - x)]'/?,

for x — x;. This contrasts sharply with the solution of the iterated version
of the model in (41) which has a finite depth at the edge. Evidently, the
freedom afforded by the extra derivative allows us to reach the flow
front with h — 0 and s, — —oo. This feature of the improved asymptotic
theory was not appreciated in our earlier papers [22,23], where the
simpler iterated version of the model was implemented.

Fig. B.1 compares the various asymptotic solutions, with or without
a background slope. The two versions of the improved model differ by
0(e2) away from the flow front; within a distance of O(e?) of x = x 1
however, the flow depths become O(¢) different, permitting the iterated
version to terminate at finite depth. For comparison, Fig. B.1(a)-(b) also
includes simulation data from figure 14 of [22] for dambreaks on a hor-
izontal surface with either square or triangular initial conditions. The
(red) corners visible in panel (b) are relics of square initial conditions,
whereas the (blue) sharp spikes at the back evident in panel (a) are
remnants from triangular initial conditions (in the scaled coordinates
the slumps have different lengths). Further computations for the slump
of a rectangular block on an incline (with unit height and an upstream
back wall) are included in Fig. B.1(c)-(d). Both comparisons indicate that
the two versions of the improved model outperform the leading-order
theory away from the flow front. Near that steep feature, the smooth
decline to zero thickness of the non-iterated model provides a slightly
more satisfying comparison with simulations. However, the asymptotic
theory is not valid at the flow front where the slope of the free surface
diverges. Moreover, the surface in the numerical simulations eventually
overturns to create multi-valued profiles with a finite elevation at the
leading edge. Consequently, it is not clear which version of the improved
model is superior; the iterated model (which we have employed previ-
ously, and continue to use in the main text) has the advantage of being
the simpler.
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