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Asymptotic analyses and numerical computations are reported for surges of viscoplastic fluid down an incline with low inertia. The asymptotic theory applies for 

relatively shallow gravity currents. The computations use the volume-of-fluid method for tracking the interface; the constitutive law is dealt with by the augmented- 

Lagrangian method. The anatomy of the surge consists of an upstream region that converges to a uniform sheet flow, and over which a truly rigid plug sheaths 

the surge. The plug breaks further downstream due to the build up of the extensional stress acting upon it, leaving instead a weakly yielded superficial layer, or 

pseudo-plug. Finally, the surge ends in a steep flow front that lies beyond the validity of shallow asymptotics. 
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. Introduction 

Viscoplastic fluids are commonly encountered in natural settings in
eophysics ( e.g. mud and lava) and biology (mucus and blood clots),
nd feature in many engineering processes in, for example, the food
fruit pulp, dairy products and chocolate confections) and petroleum
ndustries (drilling mud, cement and waxy crude oil). These materi-
ls flow like viscous fluid once stresses exceed a certain threshold (the
ield stress), and remain solid-like otherwise. In fact, the most exten-
ively used constitutive laws for these fluids (the Bingham and Herschel–
ulkley laws) discard any deformation below the yield stress, which
omplicates the modelling of viscoplastic flow from a mathematical per-
pective as it renders the stress state indeterminate and the effective
iscosity singular at the yield point. 
The spreading of viscoplastic fluid over an inclined surface has been

tudied experimentally in a number of previous studies, often with the
oal of inferring the yield stress from steady flows [1–3] or the shape
f a final deposit [4–7] . The most thorough and recent laboratory stud-
es include the transient dam-break-type experiments of Ancey and co-
orkers [8–10] and a series of investigations on steady viscoplastic
urges on inclined conveyor belts [11–13] . 
Theoretically, a model for shallow viscoplastic flow based on

eynolds lubrication theory has been widely used to complement such
aboratory studies [14–16] . In this model, the long, thin flow is com-
osed of a fully sheared region adjacent to the underlying surface
uffered from the free surface by a plug-like zone. Importantly, that
one is not truly rigid, but deforms weakly in the direction of flow and
s plug-like in that the transverse velocity profile is largely independent
f depth. This structure is common in many shallow viscoplastic flows
17,18] and results from the separation of length scales in the direc-
ions aligned or perpendicular to flow. The border between the fully
ield region and the plug-like zone is therefore not a true yield surface;
∗ Corresponding author. 

E-mail address: yliu0218@math.ubc.ca (Y. Liu). 

ttps://doi.org/10.1016/j.jnnfm.2019.04.007 

eceived 17 November 2018; Received in revised form 19 April 2019; Accepted 20 A

vailable online 28 April 2019 

377-0257/© 2019 Elsevier B.V. All rights reserved. 
nstead, it is often referred to as a fake yield surface, and the overlying
one as a pseudo-plug. Despite the fact that lubrication theory predicts
he appearance of pseudo-plugs in shallow flows, it is also known that
enuine rigid plugs can appear within these zones surrounding points of
ymmetry [17,19] or replace them in flow down almost uniform chan-
els [20] . This raises the question of whether the superficial regions of a
ree-surface flow can also plug up in the far upstream extent of a steady
urge flow, where the flow becomes almost uniform, as discussed in a
ualitative way by Piau [21] . Indeed, for a truly steady surge that ex-
ends infinitely far upstream, one expects that the flow converges to a
niform sheat flow which, for a yield-stress fluid, is sheathed by a true
lug. 
The purpose of the present study is to explore models for steady,

hallow viscoplastic surges with a length that is sufficiently long that the
ow converges to a steady sheet flow well upstream of the flow front;
.e. the theoretical analogue of the experiments by Chambon et al. [11–
3] . For this task, we reconsider the lubrication analysis of Liu and Mei
14] . First, we consider the upstream extent of the surge to examine how
he surge converges to uniform sheet flow, and how the corresponding
uperficial plug breaks as one progresses downstream. This demands a
ariation of the lubrication analysis that is designed for almost uniform
ows, and parallels theory for flow down weakly varying channels [20] .
econd, once the upstream plugged flow gives way to a fully yielded
urge with a pseudo-plug, standard lubrication theory applies; for this
egion, we improve that theory by continuing the analysis to higher
rder in order to account better for non-shallow effects. 
We complement the shallow-flow analysis with computations us-

ng the Volume-of-Fluid (VOF) method and an augmented Lagrangian
cheme to deal with the yield stress. Such a combination of shallow-
ow analysis and computation has proven effective in our previous work
tudying dambreak flows and their final shapes [22,23] . Here, we exam-
ne the extent to which the theoretical solutions match the observations
pril 2019 
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Fig. 1. Sketch of the geometry of the surge in the frame of reference in which 

there is no net flux and the flow is steady. The free surface is located at 𝑧 = ℎ ; the 
level 𝑧 = 𝑌 divides a fully yield region underneath from either a true plug or a 

weakly yielded pseudo-plug. The flow divides into three regions: a plugged flow 

region (PF) where the superficial layer of fluid is not yielded, a lubrication zone 

(LZ) where the pseudo-plug arises, and the flow front (FF) where the dynamics 

is not shallow. 
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f Chambon et al. and determine the conditions for which the pseudo-
lug of lubrication theory locks up into a true plug. 

. Formulation 

.1. Model equations 

As sketched in Fig. 1 , we consider a two-dimensional surge of incom-
ressible viscoplastic fluid flowing steadily down a plane that is inclined
t an angle 𝜃 to the horizontal. We use Cartesian coordinates aligned
ith the plane to describe the geometry; in the frame of reference of the
urge, the inclined plane travels upslope with a speed u b . We model the
heology of the fluid using the Herschel–Bulkley constitutive law. The
overning equations for the velocity 𝒖 = ( 𝑢, 𝑤 ) , deviatoric stress tensor
, and pressure p are then 

𝛁 ⋅ 𝒖 = 0 , [
𝜕 𝒖 

𝜕𝑡 
+ ( 𝒖 ⋅ 𝛁 ) 𝒖 

]
= − 𝛁 𝑝 + 𝛁 ⋅ 𝝉 + 𝜌𝑔 

( 

sin 𝜃
− cos 𝜃

) 

, (1)

nd 

 

 

 

 

 

𝛾̇𝑗𝑘 = 0 , 𝜏𝐼 < 𝜏𝑌 , 

𝜏𝑗𝑘 = 

( 

𝜅𝛾̇𝑛 −1 + 

𝜏𝑌 

𝛾̇

) 

𝛾̇𝑗𝑘 , 𝜏𝐼 > 𝜏𝑌 , 
(2)

here 𝜌 is the density, g is gravity, 𝜏Y is the yield stress, the plastic
iscosity 𝜇 = 𝜅𝛾̇𝑛 −1 introduces the consistency 𝜅 and power-law index

 as two further rheological parameters, and 𝜏𝐼 = 

√ 

1 
2 
∑

𝑗,𝑘 𝜏
2 
𝑗𝑘 
and 𝛾̇ =

 

1 
2 
∑

𝑗,𝑘 𝛾̇
2 
𝑗𝑘 
denote second tensorial invariants, with 

̇ = 

( 

2 𝑢 𝑥 𝑢 𝑧 + 𝑤 𝑥 

𝑢 𝑧 + 𝑤 𝑥 2 𝑤 𝑧 

) 

. (3)

ere, subscripts on the velocity components represent partial deriva-
ives. 
For the boundary conditions, we assume that there is no slip over

he inclined plane, 𝒖 ( 𝑥, 0) = (− 𝑢 𝑏 , 0) , and that the upper surface is stress
ree, so that 

𝜕ℎ 

𝜕𝑡 
+ 𝑢 

𝜕ℎ 

𝜕𝑥 
= 𝑤 and ( 𝝉 − 𝑝 𝐈 ) ⋅

( 

− ℎ 𝑥 
1 

) 

= 

( 

0 
0 

) 

, (4)

n 𝑧 = ℎ ( 𝑥, 𝑡 ) . The surge ends at a flow front, 𝑥 = 𝑋( 𝑡 ) , where h →0, and
xtends back upstream to where the flow converges to a uniform sheet
ow. 

.2. The sheet-flow solution 

In the frame of reference in which the net flux vanishes, the steady,
niform, sheet-flow solution is given by 

 𝑝, 𝜏𝑥𝑧 ) = (1 , tan 𝜃) 
(
1 − 

𝑧 
)
𝜌𝑔 cos 𝜃 (5)
𝐻 a  

2 
nd 

 = 𝑢 𝑠ℎ𝑒𝑒𝑡 ( 𝑧 ) = 

𝑛  tan 1∕ 𝑛 𝜃
𝑛 + 1 

×

{ [
𝑛 

2 𝑛 +1 𝑌 
2+1∕ 𝑛 
∞ − ( 𝑌 ∞ − 

𝑧 

𝐻 
) 1+1∕ 𝑛 

]
, 0 < 

𝑧 

𝐻 
< 𝑌 ∞, 

𝑛 

2 𝑛 +1 𝑌 
2+1∕ 𝑛 
∞ , 𝑌 ∞ < 

𝑧 

𝐻 
< 1 , 

(6) 

here H is the flow depth and 

 = 

( 

𝜌𝑔𝐻 cos 𝜃
𝜅

) 1∕ 𝑛 
𝐻. (7)

he level 𝑧 = 𝐻𝑌 ∞ corresponds to the yield surface above which the
uid is plugged, with 

 ∞ = 1 − 

𝜏𝑌 

𝜌𝑔𝐻 sin 𝜃
. (8)

ote that, because there is no net flux along the plane in the frame of
he surge, the profile in (6) demands that the speed of the inclined plane
s 

 𝑏 = 

𝑛  tan 1∕ 𝑛 𝜃
𝑛 + 1 

𝑌 
1+1∕ 𝑛 
∞

( 

1 − 

𝑛𝑌 ∞
2 𝑛 + 1 

) 

. (9)

he scales here can be used to non-dimensionalize the problem, as dis-
ussed later. 

.3. Volume-of-fluid computations 

In our computations of the full problem, we use the VOF method to
rack the fluid interface using an advected volume fraction c ( x, z, t ) (see
22,23] ). This scheme immerses the viscoplastic fluid beneath a miscible
mbient Newtonian fluid. The material properties of the bulk mixture
re set by linearly interpolating between the two phases using c , with
he density and viscosity of the Newtonian fluid taken to be relatively
mall in order to minimize the effect of the ambient flow dynamics ( cf.
22,23] ). 
To solve the governing equations, we evolve the system as an initial-

alue problem until a steady state is reached. We use an augmented-
agrangian scheme to deal with the yield stress within a weak formula-
ion of the problem [24,25] , as implemented in C ++ using the PELICANS
latform ( e.g. [26] ). We refer the reader to our earlier work [22,23] ) for
urther computational details, including a discussion of how we avoid
ny resolution issues stemming from the no-slip condition imposed on
he underlying plane. Some additional details relevant for the present
omputations (including a resolution study confirming the fidelity of the
omputations) are provided in Appendix A . 
The computational domain is finite, extending up to a height L z and

o a length L x . The top and right-hand boundaries are chosen to be suf-
ciently distant that their positions do not affect the solution; free slip
onditions are imposed to help suppress the ambient fluid dynamics.
n the lower boundary we impose the fixed velocity ( 𝑢, 𝑤 ) = (− 𝑢 𝑏 , 0) ,
here u b is chosen in a range that the flow adapts to reach a steady
ow regime; for a long thin flow, the upstream current converges to the
heet flow solution above, and so u b is given by (9) . 
To minimize the influence of the left-hand boundary conditions and

nsure that the surge is mostly long and thin, we select domain lengths
 x that are as large as possible. To gauge the residual effect of the left-
and boundary conditions, we compute solutions with two different con-
itions: an infinitely long flow can be simulated by imposing the veloc-
ty here as that given by the sheet-flow solution; i.e. ( 𝑢, 𝑤 ) = ( 𝑢 𝑠ℎ𝑒𝑒𝑡 , 0)
t 𝑥 = 0 . Alternatively, the back wall of the conveyor-belt experiment
f [11–13] can be simulated by setting 𝑢 = 𝑤 = 0 at 𝑥 = 0 . Appendix
.3 summarizes the role played by these boundary conditions. 
From c ( x, z, t ), we define the instantaneous position of the interface

f the slump from the contour 𝑐( 𝑥, 𝑧 = ℎ ) = 
1 
2 . The surface 𝑧 = ℎ ( 𝑥 ) plays

 major role in the asymptotic analysis of Section 3 . 
For the computations with Bingham fluid that we compare with

symptotic theory, we select parameters to minimize inertial effects
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Fig. 2. Asymptotic surge solutions for (a) the plastic limit Y →0, and (b) 

𝑌 ∞ = 1 − 𝑆 −1 𝐵 = 0 . 2 . The solid lines show the improved lubrication solutions for 

h ( x ) plotted against 𝑆( 𝑥 − 𝑥 𝑓 ) with 
1 
2 
𝜖𝜋𝐵 = 0 . 2 (as given by either Eqs. (41) and 

(42) ); the dotted lines indicate the predictions of the leading-order theory. In 

(b), the corresponding fake yield surfaces Y ( x ) are also plotted. The insets show 

magnifications near the flow front. 
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see Section 4.1 and Appendix A.2 ). The Herschel–Bulkley simulations
f Section 4.2 have parameter settings matched to corresponding lab-
ratory experiments; inertia may play a more significant role in these
xamples. 

. Asymptotic analysis 

The anatomy of the surge is illustrated in Fig. 1 : the flow body is
ivided into three regions. A plugged flow (PF) region arises at the back,
here the surge converges to the sheet flow and a true plug exist on top
f the fluid. That plug then breaks to leave a fully yielded flow with
 more significant variation in the free surface. Although there is no
rue plug, the flow remains relatively shallow; in this lubrication zone
LZ), standard shallow-layer analysis applies and there is a superficial
seudo-plug. Finally, at the flow front (FF), the free surface steepens up
o terminate the surge and invalidate shallow-layer theory. 
To prepare the way for asymptotics, we rescale the equations to suit

he shallow geometry [16] . We also focus on the special case of the
ingham model, with 𝜅 ≡𝜇 and 𝑛 = 1 (the extension to Herschel–Bulkley
odel is straightforward and partly described in Appendix B ), and dis-
ard inertia. Hence, we introduce a characteristic depth H and horizontal
ength L with 𝜖 = 𝐻∕ 𝐿 ≪ 1 , and then set 

𝑧 = 𝐻 ̂𝑧 , 𝑥 = 𝐿 ̂𝑥 , 𝑢 = 𝑈 ̂𝑢 , 𝑤 = 𝜖𝑈 𝑤̂ , 

𝑝 = 𝜌𝑔 𝐻 ̂𝑝 cos 𝜃, 𝝉 = 𝜌𝑔 𝐻𝜖 cos 𝜃
( 

𝜎 𝜏

𝜏 − 𝜎

) 

, 

 = 

𝜌𝑔𝐻 
3 cos 𝜃
𝜅𝐿 

, 𝑆 = 

tan 𝜃
𝜖

, 𝐵 = 

𝜏𝑌 𝐿 

𝜌𝑔𝐻 
2 cos 𝜃

. (10) 

otice that S ∼ tan 𝜃 is assumed here. For steady flow, the dimensionless
quations now become, after dropping the hat decoration, 

𝑝 𝑥 = 𝜖𝜎𝑥 + 𝜏𝑧 + 𝑆, 

𝑝 𝑧 = 𝜖2 𝜏𝑥 − 𝜖𝜎𝑧 − 1 , 

𝝉 = 

( 

1 + 

𝐵 

𝛾̇

) 

𝜸̇, 
√

𝜏2 + 𝜎2 > 𝐵, 

0 = ∫
ℎ 

0 
𝑢 ( 𝑥, 𝑧 ) d 𝑧, 

̇ 𝑥𝑥 = 2 𝜖𝑢 𝑥 , 𝛾̇𝑥𝑧 = 𝑢 𝑧 + 𝜖2 𝑤 𝑥 , 𝛾̇ = 

√ 

𝛾̇2 
𝑥𝑥 

+ 𝛾̇2 
𝑥𝑧 
, (11) 
3 
ith 𝑢 ( 𝑥, 0) = − 𝑢 𝑏 and 

𝜏 + ℎ 𝑥 ( 𝑝 − 𝜖𝜎) = 0 

𝑝 + 𝜖𝜎 + 𝜖2 ℎ 𝑥 𝜏 = 0 

} 

on 𝑧 = ℎ. (12)

.1. Plugged flow 

In the PF region, the flow is nearly uniform, so we introduce the
symptotic sequences, 

 = 1 + 𝜖ℎ 1 + … , 𝑝 = 1 − 𝑧 + 𝜖𝑝 1 + … , (13)

= 𝑆(1 − 𝑧 ) + 𝜖𝜏1 + … , 𝑢 = 𝑢 0 + 𝜖𝑢 1 + … (14)

nd 𝜎 = 𝜎0 + … The leading-order terms from (11) recover the velocity
rofile of the sheet-flow solution, this time in dimensionless form: 

 0 = − 𝑢 𝑏 + 
1 
2 𝑆 ×

{ 

𝑧 (2 𝑌 ∞ − 𝑧 ) , 0 < 𝑧 < 𝑌 ∞, 

𝑌 2 ∞, 𝑌 ∞ < 𝑧 < 1 , (15)

ith 

 𝑏 = 
1 
6 𝑆𝑌 2 ∞(3 − 𝑌 ∞) (16)

nd 𝑌 ∞ ≡ 1 − 
𝐵 

𝑆 
. At O ( 𝜖) we now obtain 

 1 𝑥 = 𝜏1 𝑧 + 𝜎0 𝑥 , 

𝑝 1 𝑦 = − 𝜎0 𝑧 , (17) 

xpanding the free surface conditions about 𝑧 = 1 , we find 

𝑝 1 + 𝜎0 = ℎ 1 , 

𝜏1 = 𝑆ℎ 1 , 

} 

at 𝑧 = 1 . (18)

ence, 𝑝 1 + 𝜎0 = ℎ 1 throughout the fluid depth. 
Over the fully yielded region underneath the plug, the constitutive

aw implies that 

0 = 0 and 𝜏1 = 𝑢 1 𝑧 . (19)

t follows that 𝑝 1 = ℎ 1 over this region, and so 

1 = ℎ 1 𝑥 𝑧 + 𝑇 and 𝑢 1 = 
1 
2 ℎ 1 𝑥 𝑧 

2 + 𝑇 𝑧, (20)

here T ( x ) is not yet determined. However, in the overlying plug, 𝜎0 
annot be taken to vanish and the stress state is indeterminate, as (17) do
ot determine all of p 1 , 𝜏1 and 𝜎0 . Instead, the yield condition demands
nly that 𝜎2 

0 < 𝐵 
2 − 𝑆 

2 (1 − 𝑧 ) 2 . 
The stress solution for the yielded region, 

∼ 𝑆(1 − 𝑧 ) + 𝜖( ℎ 1 𝑥 𝑧 + 𝑇 ) and 𝜎 = 𝑂( 𝜖) , (21)

ow implies that the yield surface is shifted to 𝑌 = 𝑌 ∞ + 𝜖𝑌 1 , where 

 1 = 𝑆 
−1 ( ℎ 1 𝑥 𝑌 ∞ + 𝑇 ) . (22)

owever, the plug speed must remain equal to 1 
2 𝑆𝑌 2 ∞ as there is no

eformation in h > z > Y . This demands that 𝑢 1 ( 𝑥, 𝑌 ) = 0 , or 

 = − 
1 
2 𝑌 ∞ℎ 1 𝑥 . (23)

inally, we impose the flux constraint, 

ℎ 

0 
𝑢 d 𝑧 = 0 (24)

hich gives, at O ( 𝜖), 

 𝑏 ℎ 1 = 
1 
2 𝑆𝑌 2 ∞ℎ 1 + 

1 
6 ℎ 1 𝑥 𝑌 

3 
∞ + 

1 
2 𝑇 𝑌 

2 
∞. (25)

ence, 

 1 𝑥 = 2 𝑆ℎ 1 and 𝑌 1 = 𝑌 ∞ℎ 1 , (26)

nd so the departure from the uniform sheet solution grows exponen-
ially in the downslope direction, with an exponent given by 2 S . 
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Fig. 3. Numerical solution for 𝜃 = 10 ◦ and 𝑌 ∞ = 0 . 8 showing (a) 𝜏 I , (b) 𝜏xz and 
(c) 𝜏xx . The darker (blue) lines show sample streamlines and the dotted white 

line is the true yield surface where 𝜏𝐼 = 𝐵. The dashed line shows the contour 
level where 𝜏𝑥𝑧 = 𝐵. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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.2. Breaking the plug 

Returning to (17) , we now observe that, over the plug, 

 1 𝑥 = 2 𝜎0 𝑥 + 𝜏1 𝑧 , (27)

hich can be integrated from 𝑧 = 𝑌 ∞ upto 𝑧 = 1 to give 

𝜕 

𝜕𝑥 ∫
1 

𝑌 ∞

𝜎0 d 𝑧 = 
1 
2 𝑆ℎ 1 (1 − 𝑌 ∞) . (28)

ence 

1 

𝑌 ∞

[ 𝜎0 ( 𝑥, 𝑧 )] 𝑥 −∞
d 𝑧 

1 − 𝑌 ∞
= 

1 
4 ℎ 1 , (29)

hich, given that | h 1 | grows exponentially, implies that the net jump in
xtensional stress across the plug must also increase towards the flow
ront. Moreover, since h 1 must eventually become 𝑂( 𝜖−1 ) to curve the
urge, the plug must inevitably break. 
A further constraint is provided by the unyielded condition of the

lug (given the leading-order shear stress 𝜏 ∼ 𝑆(1 − 𝑧 ) ), 

 

√
𝐵 
2 − 𝑆 

2 (1 − 𝑧 ) 2 < 𝜎0 < 

√
𝐵 
2 − 𝑆 

2 (1 − 𝑧 ) 2 , (30)

hich bounds the integral on the left of (29) . In particular, that inte-
ral cannot exceed 1 2 𝜋𝐵 in absolute size. Therefore, the plug must have
roken when 

ℎ 1 | > 2 𝜋𝐵. (31)

.3. Lubrication zone 

The preceding analysis indicates that the plug breaks when ℎ − 1 =
( 𝜖) . Downstream, the departure from the sheet-flow solution grows
4 
urther as we enter the lubrication zone and ℎ − 1 becomes O (1). With
 = ℎ ( 𝑥 ) ≠ 1 , the leading-order solution of (11) now furnishes the stan-
ard lubrication result for the velocity profile, 

 ∼ − 𝑢 𝑏 + 
1 
2 ( 𝑆 − ℎ 𝑥 ) ×

{ 

𝑧 (2 𝑌 − 𝑧 ) , 0 < 𝑧 < 𝑌 , 

𝑌 2 , 𝑌 < 𝑧 < ℎ, 
(32)

here 𝑌 = 𝑌 ( 𝑥 ) is the position of the fake yield surface. The profile of
he surge itself follows from solving 

𝑌 = ℎ − 

𝐵 

𝑆 − ℎ 𝑥 
, 

 𝑏 ℎ = 𝑢 𝑝 

(
ℎ − 

1 
3 𝑌 

)
(33) 

here 

 𝑝 = 
1 
2 ( 𝑆 − ℎ 𝑥 ) 𝑌 2 (34)

etermines the speed of the overlying pseudo-plug. Over that region,
he extensional stress is given by 

= sgn ( 𝑢 𝑝𝑥 ) 
√ 

𝐵 
2 − ( 𝑆 − ℎ 𝑥 ) 2 ( ℎ − 𝑧 ) 2 , (35)

hich matches one of the limits in (30) for ℎ → 1 + 𝑂( 𝜖) . Thus, the
lugged flow is expected to match continuously to the lubrication zone
nce the plug breaks. 
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Fig. 5. Numerical solution for 𝑌 ∞ = 0 . 8 and 𝜃 = 5 ◦ ( 𝐵 = 0 . 0175 ), showing a den- 
sity plot of 𝜏 I with 𝑧 = ℎ ( 𝑥 ) and the fake yield surface superposed; the true plug is 
shaded black. The dashed lines show the prediction of the leading-order lubrica- 

tion theory (with the flow front aligned). The dotted lines show the predictions 

of the plugged-flow solution in (26) , with 1 − ℎ matched to the simulation at 
𝑥 = 5 . 
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1 Although the stress field is indeterminate here, the algorithm provides an 

admissible solution for the plug which is dictated by the iterative scheme. The 

borders of the true plug are a little rough due to grid-dependent numerical er- 

rors. However, the plugs appear to be robustly detected given that the stress 
Note that (33) predicts that h and Y converge exponentially to the
heet flow solution as 𝑥 → −∞. In particular, 

ℎ 𝑥 ∼
1 
2 𝑆( ℎ − 1) 

𝑌 2 ∞ − 3 𝑌 ∞ + 6 
𝑌 2 ∞ − 3 𝑌 ∞ + 3 

, 

 − 𝑌 ∞ ∼ 1 
2 𝑌 ∞( ℎ − 1) 

𝑌 2 ∞ − 2 𝑌 ∞ + 3 
𝑌 2 ∞ − 3 𝑌 ∞ + 3 

. (36) 

ecause 0 < Y ∞ < 1, this result implies that the fake yield surface lies
bove the true yield surface once we enter the plugged flow region
here ℎ − 1 = 𝑂( 𝜖) . Thus, one does not expect a pseudo-plug to inter-
ene between the fully yielded zone and the true plug ( cf. [20] ). 

.4. Improving the lubrication theory 

With a little effort, as described in Appendix B , the lubrication theory
an be continued to next order to furnish the improved model, 

𝑌 = ℎ − 

𝐵 

𝑆 − ℎ 𝑥 
+ 

1 
2 𝜖𝜋𝐵 

2 ℎ 𝑥𝑥 

( 𝑆 − ℎ 𝑥 ) 3 
, 

 𝑏 ℎ = 𝑢 𝑝 

(
ℎ − 

1 
3 𝑌 

)
+ 

1 
2 𝜖𝜋𝐵 

2 𝑢 𝑝𝑥 

( 𝑆 − ℎ 𝑥 ) 2 
, (37) 

n place of (33) . In principle, this improved model better captures non-
hallow effects. In the limit of 𝜃 = 0 and 𝑢 𝑏 = 0 , the system in (37) re-
uces to the problem for a collapsed two-dimensional slump [22] . In
he limit 𝑢 𝑏 = 0 , the time dependence can be retained to furnish an im-
roved lubrication model for unsteady viscoplastic flow over an inclined
urface. 
The plastic limit of (37) is achieved when Y →0 throughout the

urge, and permits further analytical headway in constructing the sur-
ace profile. Setting 𝑌 = 0 in the first equation in (37) furnishes 

 − 

𝐵 

𝑆 − ℎ 𝑥 
+ 

1 
2 𝜖𝜋𝐵 

2 ℎ 𝑥𝑥 

( 𝑆 − ℎ 𝑥 ) 3 
= 0 . (38)

iven that Y →0 demands that B / S →1 at the back of the surge, the
eading-order solution is 

 + log ( 1 − ℎ ) ∼ 𝑆( 𝑥 − 𝑥 𝑓 ) , (39)

hich corresponds to the final shape of an inclined dambreak [14,15] .
ontinuing with the improved model, (38) is equivalent to 

 𝑆 − ℎ 𝑥 ) ℎ − 𝑆 + 
1 
𝜖𝜋𝐵 ℎ 𝑥 = 𝑂( 𝜖2 ) , (40)
2 i

5 
r 

 − 
1 
2 𝜖𝜋𝐵 + 

(
1 − 

1 
2 𝜖𝜋𝐵 

)
log 

⎛ ⎜ ⎜ ⎝ 1 − ℎ 

1 − 
1 
2 𝜖𝜋𝐵 

⎞ ⎟ ⎟ ⎠ ∼ 𝑆( 𝑥 − 𝑥 𝑓 ) , (41)

f 𝑥 = 𝑥 𝑓 denotes the front position. Note that the front of the surge here

as finite height, with ℎ ( 𝑥 𝑓 ) = 
1 
2 𝜖𝜋𝐵 , as found in [22] . Further discus-

ion of the slumped shapes predicted by (38) and (41) is provided in
ppendix C . 
Away from the plastic limit, we can again iterate (37) to O ( 𝜖2 ) into

he second-order system, 

 − ( ℎ − 𝑌 )( 𝑆 − ℎ 𝑥 ) = 
1 
2 𝜖𝜋𝐵 ( ℎ 𝑥 − 𝑌 𝑥 ) , 

𝑢 𝑏 ℎ − 𝑢 𝑝 

(
ℎ − 

1 
3 𝑌 

)
= 

1 
4 𝜖𝜋𝐵 𝑌 [(2 ℎ − 𝑌 ) 𝑌 𝑥 − 𝑌 ℎ 𝑥 ] . (42) 

eginning from a position upstream where the surge is close to the sheet-
ow solution, this system can be integrated downstream to the flow
ront using initial conditions based on (36) . Again, the surge ends at
nite depth where the free surface becomes vertical and h and Y are
 ( 𝜖). A sample solution with 𝑌 ∞ = 0 . 2 ( 𝐵∕ 𝑆 = 0 . 8 ) is shown in Fig. 2 and
ompared with the predictions of the leading-order lubrication model
nd the corresponding solutions in the plastic limit. 

. Numerical results 

.1. Comparison with asymptotics 

In this section, we report computations with the Bingham model,
 = 1 , for comparison with the asymptotic analysis. Following along the
ines of that theory, we also place the problem into a dimensionless
orm by scaling variables using the depth of the expected sheet flow H

nd its characteristic velocity  . The stresses are scaled by 𝜌gH cos 𝜃. In
ddition, in the computations, there is no significance to the lengthscale
 , so we set 𝐿 = 𝐻 which is equivalent to taking 𝜖 = 1 . Shallow surges
hen arise when the longitudinal length far exceeds the depth. We use
 ∞ and 𝜃 as the main parameters, which translate to a dimensionless
elt speed and yield stress of 

 

 

 

 

 

𝑢 𝑏 = 

1 
6 
𝑌 2 ∞(3 − 𝑌 ∞) tan 𝜃

𝐵 = (1 − 𝑌 ∞) tan 𝜃
(43) 

n all the computations we report in this subsection, inertia is not suffi-
ient to significantly affect the solution (see Appendix A.2 ), and we use
eft-hand boundary conditions given by an upstream sheet-flow solution.
Fig. 3 shows a sample solution with 𝜃 = 10 ◦ and 𝑌 ∞ = 0 . 8 . The plots

how the deviatoric stress invariant and components as densities over
he ( 𝑥, 𝑧 )− plane. Superposed are streamlines and the free surface, with
n upstream section of the solution not shown in order to remove the
egions where the boundary conditions at 𝑥 = 0 play a role. The shear
tress 𝜏xz matches the stress invariant 𝜏I throughout the lower part of the
urge, but deviates over a superficial layer adjacent to the free surface.
here, the Augmented Lagrangian algorithm detects a genuine plug 1 for
 ≲15. This plug then breaks to leave, over 15 ≲ x ≲18, a weakly yielded
uperficial region with 𝜏I ∼B; i.e. a pseudo-plug. In the numerical simu-
ations, the fake yield surface 𝑧 = 𝑌 ( 𝑥 ) can be picked out by determining
he level where 𝜏𝑥𝑦 = 𝐵 (see Fig. 3 ). The true and fake yield surfaces are
ontinuous at the breakage of the plug. All this anatomy of the surge
as already anticipated by the asymptotic analysis in Section 3 . 
Fig. 4 shows sample flow profiles h ( x ) and fake yield surfaces Y ( x ),

or 𝜃 = 10 ◦ and varying Y . The two panels compare the simulations
nvariant 𝜏 I lies significantly below B over this part of the surge. 
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Table 1 

Experimental parameters from [13] . 

𝜏Y (Pa) 𝜅 (Pa s n ) n 𝜃 ( ∘) u b (m/s) 

C2 7.2 5.1 0.41 11.9 0.26 

C5 7.2 5.0 0.43 15.3 0.148 
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Fig. 6. Experiment C5 of [13] , showing (a) u ( x, z ) and (b) w ( x, z ) as densities 

over the ( 𝑥, 𝑧 )− plane, for a qualitative comparison with their Fig. 6. A selection 
of streamlines is also shown (thinner blue lines). The dashed lines shows the 

levels where 𝑢 = 0 and 𝑧 = 𝑌 ( 𝜏𝑥𝑧 = 𝐵). In leading-order lubrication theory, 𝑢 = 0 
along 𝑧 = 𝑌 − 𝑌 [ 𝑛𝑌 ∕ ℎ (2 𝑛 + 1)] 𝑛 ∕( 𝑛 +1) ; this prediction is also drawn as the lighter 
(pink) solid line. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 7. Experiment C2 of [13] : shown are (a) log 10 ( ̇𝛾∕0 . 26) , (b) the surface ve- 
locity, and (c)–(h) velocity profiles at the 𝑥 − positions indicated in (b), for a 
comparison with figure 10 in [13] (the scaling factor of 0.26 being selected in 

that paper). The (red) dashed lines indicate the predictions of the leading-order 

lubrication theory. In (a) the solid white line shows the contour 𝜏𝑥𝑧 = 𝐵, whereas 

the dashed white line is the fake yield surface 𝑧 = 𝑌 ( 𝑥 ) of the leading-order lu- 
brication theory. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
ith the predictions of the leading-order and improved asymptotic the-
ries. The latter leads to a mildly better comparison of h ( x ), correcting
or a spread in the predicted profiles which are found in the simulations
o collapse closely to one another. However, the improved asymptotics
heory does not lead to a substantially better agreement with the simu-
ations in the examples shown in Fig. 4 because the lubrication zone in
hese solutions is not particularly long, with the free surface steepening
p quickly from the plugged flow upstream to the flow front. 
We provide a more quantitative comparison of a numerical solution

or 𝑌 ∞ = 0 . 8 and 𝜃 = 5 ◦ with the asymptotic theory in Fig. 5 . This fig-
re highlights the free surface, the true plug of the numerical solution,
nd the fake yield surface underneath the pseudo-plug (again defined
y 𝜏𝑥𝑧 = 𝐵 in the simulations). These are compared with the predic-
ions of the plugged flow solution (26) and the leading-order lubrication
heory ( Section 3.3 ). The plug breaks in the simulation when 1 − ℎ ≈
 . 12 , in satisfying agreement with the prediction 1 − ℎ = 2 𝜋𝐵 = 0 . 11 of
ection 3.2 . 

.2. Comparison with experiments 

Chambon et al. [11–13] have presented a comprehensive experimen-
al study on viscoplastic surges on a conveyor belt. For comparison with
heir results, we perform numerical simulations matching some of their
xperimental parameters. More specifically, we choose the two sets of
arameters denoted by C2 and C5 in [13] . The rheology of the two sam-
les and the inclination and speed of the belt are given in Table 1 . The
uid in these experiments is an aqueous suspension of Carbopol with
ensity 𝜌 = 10 3 kg/m 

3 . We employ a no-slip back wall to provide the
eft-hand boundary conditions. 
Figs. 6–8 display the results of the computations. Fig. 6 plots the

elocity field for experiment C5, and corresponds to Fig. 6 in [13] .
igs. 7 and 8 show the strain-rate field, surface velocity and sample
ertical profiles of the velocity components in the frame of the con-
eyor belt for both experiments (for comparison with their Figs. 9 and
0). Distances are scaled by the thickness of the expected uniform sheet-
ow, H , and velocities by the mean downslope velocity 𝑢 (the scalings
sed by Chambon et al.). Although the identification of the true plug is
ore difficult (owing to the power-law viscosity of the Herschel–Bulkley
aw), the computations still detect that the stress invariant near the free
urface falls below the yield stress a scaled distance of about four units
ehind the flow front for C2, and three units for C5. The figures also
ontrast the numerical results with the predictions of the leading-order
ubrication theory, which performs well in reproducing the simulations.
vidently, the fine details of the plugged flow or the improved lubri-
ation theory are minor, and non-shallow flow effects are insignificant
way from the flow front. Importantly, the numerical solutions converge
owards the uniform-flow state at the back of the surge (over a longitudi-
al distance of about 10 H ; see Appendix A.3 ), and there is no mismatch
etween H and the depth at the back of the surge. This supports the
nference of Chambon et al. that some rheological effect is responsible
or their observation that the experimental surges are deeper than the
xpected sheet flow. 
The broad match between simulations and leading-order lubrication

s somewhat better than Chambon et al.’s comparison of experiments
nd asymptotics, although there is qualitative agreement between all
hree. For example, the differences between the predictions of lubri-
ation theory and simulations for the surge profile and surface veloc-
ty are very small in Figs. 7 and 8 , unlike the corresponding figures of
6 
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Fig. 8. A similar picture to Fig. 7 , but for Experiment C5 of [13] and for com- 

parison with their Fig. 9 (with log 10 ( ̇𝛾∕0 . 38) plotted in (a), as in that paper). 

Fig. 9. Flow profiles for a simulation with 𝜃 = 14 . 6 ◦, 𝜏𝑌 = 6 Pa, 𝜅 = 6 . 65 Pa s n 

and 𝑛 = 0 . 405 (the experiment C_PIV of [12] ), for (a) 𝑢 𝑏 = 0 . 2 , 0.4, 0.8, 1.2 and 
1.4 m/s, in the steady state, and (b) 𝑢 𝑏 = 1 . 6 m/s at a succession of times, starting 
from the initial profile shown by the dashed line ( 𝑡 = 0 , 0.06, 0.08, 0.11, 0.17 
and 0.19 s). In (a), the profile for 𝑢 𝑏 = 1 . 4 m/s is shown by the solid line and 
several streamlines are also plotted (dotted lines). 
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7 
13] , which reveal noticeable differences. The front of the experimental
urges are also rounded and overturn, as in the simulations but not the
symptotics, although the nose occurs at dimensionless heights of about
.25-0.3 whereas it lies well below 0.1 in the simulations. We interpret
ll this to imply that the shallow approximation is not responsible for
he main quantitative disagreements between theory and experiment. 
We quantify this further using two distance diagnostics defined by

hambon et al. The first of these records the distance from the flow
ront, 𝑥 𝑓𝑐,𝑢 = |𝑥 − 𝑥 𝑓 |, where 
 

∫
ℎ 

0 
( 𝑢 𝑒𝑥𝑝 − 𝑢 𝑎𝑠𝑦 ) 2 

d 𝑧 
ℎ 

] 1∕2 
= 0 . 07 𝑢 

here the subscripts refer to PIV measurements and the leading-order
symptotic prediction, and 𝑢 is again the mean donwslope speed. Cham-
on et al. quote values for x fc,u from 0.5 H to H for all their experiments.
he same mean difference between the velocity profiles of our simula-
ions and the asymptotics indicates that x fc,u ≈0.34 H for C2 and 0.18 H
or C5. In other words, the asymptotic prediction for the velocity profile
emains close to that of the simulation for distances much nearer the
ow front. 
The second diagnostic denotes the distance, 𝑥 𝑓𝑐,ℎ = |𝑥 − 𝑥 𝑓 |, from

he flow front where |ℎ 𝑠𝑖𝑚 − ℎ 𝑎𝑠𝑦 | reaches 0.6 mm. Again, Chambon et al.
nd that x fc,h is order of H ; this time, they quote values between 1.5 H
nd 2 H for their tests. By contrast, in our C2 simulation, 𝑥 𝑓𝑐,ℎ = |ℎ 𝑠𝑖𝑚 −
 𝑎𝑠𝑦 | ≈ 0 . 3 𝐻, whereas the difference in flow depths never reaches such
 threshold for C5, always being less than 0.3 mm. 
All the experimental or asymptotic results described above relate to

elatively shallow surges. As the belt speed increases, however, the surge
hortens and deepens, leading to profiles like those shown in Fig. 9 (a).
n these cases, the aspect ratio of the flow profile is O (1), with the fluid
eginning to climb up the (no-slip) back wall. Raising the belt speed still
urther leads to a sudden catastrophic overturning event that interrupts
he passage to a steady equilibrium, as illustrated in Fig. 9 (b). In this
ase, the fluid climbs up the wall before collapsing down in the manner
f a breaking wave; bubbles of ambient fluid become entrained into the
urge and the reliability of the simulation is quickly lost, leading us to
erminate the computation before any convergence to a steady state.
t this stage it is not clear whether the overturn heralds the loss of the
teady state and the onset of a continued cascading flow. As far as we are
ware, this type of dynamics has not yet been observed experimentally.

. Concluding remarks 

We have conducted a theoretical study of viscoplastic surges down
n inclined surface, combining asymptotic analysis with numerical sim-
lations. We have focussed on the steady states reached in frames mov-
ng at constant speed down the slope, although we have also reported a
ituation in which such steady surges do not appear to be attainable and
n unsteady cascading state is reached instead. The numerical compu-
ations of shallow surges mostly agree with the asymptotic predictions,
ore so than the experiments by Chambon et al. [11–13] , which are less
omparable with the asymptotics though still in broad agreement. That
iscrepancy between the experiments and asymptotics is not therefore
he result of non-shallow flow effects, but must originate elsewhere. 
The computations confirm the phenomenology expected for a surge,

amely that there is an upstream sheet flow with a rigid plug that
reaks as one moves downstream due to the build up of the extensional
tress across the plug. This leaves a weakly yield zone atop the fluid,
he pseudo-plug, as predicted by standard lubrication theory. The surge
ventually steepens and terminates at a relatively abrupt flow front. 
We have chiefly operated in the limit in which inertial effects play

ittle role in the surge, which is clearly a limitation with regard to many
pplications in the geosciences. In particular, we have not catalogued
ny secondary instabilities of the steady surges (such as roll waves [27] )
r found any multiple equilibria, both of which might well appear at
igher Reynolds number. We leave such considerations for future work.
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Fig. A.1. Simulations of a Bingham surge profile with 𝜃 = 10 ◦ and 𝐵 = 0 . 0522 
( 𝑌 ∞ = 0 . 7 , fluid area of 24, 𝑢 𝑏 = 0 . 041 and 𝑅𝑒 = 1 ) with the grid sizes indi- 
cated. (a) shows h and Y ; (b) a magnification near the flow front; (c) contours 

of constant 𝜏xz / B , as indicated (with the surge profile of the finest resolution 

case shown by the lighter grey line); (d) the shear stress along 𝑧 = 0 . 025 (the 
lowest grid cell of the coarsest computation). In (a), the inset shows the flow 

front X f , mean shear stress, 𝜏𝑥𝑧 ∕ 𝐵 = ∫ ∫ ( 𝜏𝑥𝑧 ∕ 𝐵) 𝑐 d 𝑥 d 𝑧, and 𝜏xz at the point 
( 𝑥, 𝑧 ) = (18 , 0 . 4) , all plotted against the vertical grid spacing Δz ( Δ𝑥 = 4Δ𝑧 ). The 

convergence of 𝜏𝑥𝑧 is impeded by the need to resolve the sharply localized region 

of high stress underneath the flow front ( cf. Fig. 3 and panels (c) and (d)). 
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ppendix A. Additional numerical details 

In this appendix we provide further details of the numerical com-
utations. We use the dimensionless version of the problem in which
engths are scaled by H and velocities by  as in Section 4.1 . 
To find the steady surge states, we solve suites of initial-value prob-

ems in the frame of reference of the surge, following the strategy out-
ined in [22,23] . We begin from initial conditions in which motionless
iscoplastic fluid is deposited on the inclined plane with a rectangular
hape whose depth is set by the sheet-flow solution. The front of the
ectangle is smoothed over a streamwise scale of order of a fraction of
he fluid depth using a arc tangent function. The simulations do not
ppear to be sensitive to the initial condition, at least at the Reynolds
umbers chosen for most of our simulations ( Section A.2 ), with no indi-
ation of multiple equilibria or unsteady states (but see the discussion
urrounding Fig. 9 ). 
The initial-value problem is solved exploiting the PLIC (Piecewise

inear Interface Calculation) algorithm to evolve the interface within
he volume-of-fluid scheme. The essential details of the algorithm can
e found in [28] , although we modify it slightly to surmount a numerical
ifficulty arising from an unresolved layer of the ambient fluid coating
he inclined plane, as is described in [22,23] . In brief, the modifica-
ion amounts to monitoring the volume fraction adjacent to the inclined
lane and adjusting the value of c there if it exceeds a threshold (set to
.99). This replacement of ambient fluid with yield-stress material de-
troys mass conservation, which is restored by rescaling the flow height
niformly over the length of the surge, incurring a further error, of order
 fraction of a grid spacing. 
The evolution observed in these initial-value problems suggest that

he final steady states possess no contact line along the underlying plane.
ather, a continually thinning finger of ambient fluid coats the plane
s one progresses upstream. Therefore, although the adjustment to the
LIC algorithm applies an approximation to allow the contact line of
he initial condition to migrate with the plane to create this finger, once
hat feature is established, the scheme simply amounts to neglecting the
mall amount of ambient fluid within the finger once it becomes thin-
er than the lowest grid cell. This prevents interpolation errors in the
elocity field and shear stress of the finger from excessively lubricating
he surge, and permits the computation to otherwise remain resolved,
s we now document. 

1. Resolution study 

Fig. A.1 shows the results of a resolution study for the profile of a
ingham surge with 𝜃 = 𝜋∕18 and 𝐵 = 0 . 0522 ( 𝑅𝑒 = 1 , 𝑢 𝑏 = 0 . 041 and
he total area of fluid is 24). At the rear of the surge, a no-slip back
all is imposed, and the grid spacing is uniform with Δ𝑥 = 4Δ𝑧 . Varying
hat grid spacing by a factor of 8 (as indicated) furnishes barely any
iscernible difference in the free surface profile. Indeed, the root-mean-
quare difference in the velocity field, defined as 

 ∬ |𝒖 − 𝒖 ∗ |2 𝑐 ∗ d 𝑥 d 𝑦 
∬ 𝑐 ∗ d 𝑥 d 𝑦 

, 

etween the coarsest and finest of these simulations is about 0.088 u b ,
nd decreases to 0.025 u b between the two finest simulations. Here, c ∗ 

nd u ∗ denote the reference solution, which is that for the finest sim-
lation, interpolated onto the grid of the coarser solution. Also shown
re selected contours of constant shear stress 𝜏xz (which closely match
hose of 𝜏 below the plug), illustrating the convergence with resolu-
I 

8 
ion, at least for stress levels sufficiently in excess of B . Contours closer
o B show significantly less degree of convergence, as highlighted by the
oughness of the yield surfaces plotted in Fig. 4 , and the stress solution
emains sensitive to resolution for 𝜏I < B . These latter deficiencies are
ot problematic as the solution is independent of the stress state over
he plug as long as the fluid there is not yielded. Note that the compu-
ations reported in Section 4 and the remainder of this appendix all use
he finest grid of the resolution study. 

2. Inertial effects 

Fig. A.2 shows numerical simulations of Bingham surges with vary-
ng Reynolds number Re = 𝐻 ∕ 𝜅 from 0.1 to 10 (which span the range
f all the simulations reported in this study), with a back wall provid-
ng the left-hand boundary conditions. With the scalings of the problem
utlined in Section 4.1 , the dimensionless problem retains the Reynolds
umber only as a factor in front of the inertial terms. Consequently,
he flow profile becomes independent of Re in the inertialess limit. In-
eed, the flow profiles and stress levels shown in Fig. A.2 closely col-
apse (save for the relatively rough yield surface) and the root-mean-
quare differences in the velocity field and stress invariant are less than
 × 10 −3 𝑢 𝑏 and 0.01 B , respectively. Thus we conclude that inertial ef-
ects are not significant. The computations reported in Section 4.1 are
onducted with 𝑅𝑒 = 1 . 

https://doi.org/10.13039/501100001809
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Fig. A.2. Simulations of Bingham surges for 𝜃 = 10 ◦, 𝑢 𝑏 = 0 . 041 and 𝐵 = 0 . 0522 
( 𝑌 ∞ = 0 . 7 ) for the Reynolds numbers indicated (the total area of fluid is 24). 
Plotted are h, Y ( 𝜏𝑥𝑧 = 𝐵) and the stress levels 𝜏𝐼 ∕ 𝐵 = 1 , 2 and 3. 

Fig. A.3. Simulations for 𝜃 = 10 ◦ and 𝐵 = 0 . 0354 ( 𝑌 ∞ = 0 . 8 ) with different left- 
hand boundary conditions: (a) ( 𝑢, 𝑤 ) = ( 𝑢 𝑠ℎ𝑒𝑒𝑡 , 0) and (b) ( 𝑢, 𝑤 ) = (0 , 0) . Shown is 
the second invariant 𝜏 I as a density on the ( 𝑥, 𝑧 )− plane. The (true) yield surfaces 
are indicated by the solid (green) lines. The simulation in (a) corresponds to the 

truncated solution shown in Fig. 3 . The profiles and the true and fake yield 

surfaces are compared in (c). 
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3. The effect of the back wall 

To gauge the effect of the back wall on the computations, Fig. A.3
ompares two simulations with different boundary conditions imposed
long 𝑥 = 0 . In the first, the velocity field corresponding to the uniform
heet flow is imposed (so ( 𝑢, 𝑤 ) = ( 𝑢 𝑠ℎ𝑒𝑒𝑡 , 0) ); for the second, we impose
 no-slip condition, 𝑢 = 𝑤 = 0 The figure displays the stress invariant
I and plug regions; the solutions are much the same except within a
egion near the back wall in which flow adjustments arise due to the
oundary condition there (and which changes the flow length slightly).
n all our simulations, the extent of these flow adjustments was restricted
o along-slope lengths of about 4 H . 
9 
ppendix B. Improved lubrication solution 

For Herschel–Bulkley fluid, the dimensionless system is 

𝑝 𝑥 = 𝜖𝜎𝑥 + 𝜏𝑧 + 𝑆, 𝑝 𝑧 = − 𝜖𝜎𝑧 + 𝜖2 𝜏𝑥 − 1 , 

0 = 𝜏( 𝑥, ℎ, 𝑡 ) + [ 𝑝 ( 𝑥, ℎ, 𝑡 ) − 𝜖𝜎( 𝑥, ℎ, 𝑡 )] ℎ 𝑥 , 

0 = 𝑝 ( 𝑥, ℎ, 𝑡 ) + 𝜖𝜎( 𝑥, ℎ, 𝑡 ) + 𝑂( 𝜖2 ) , ( 

𝜎

𝜏

) 

= 

( 

𝛾̇𝑛 −1 + 

𝐵 

𝛾̇

) ( 

2 𝜖𝑢 𝑥 
𝑢 𝑧 + 𝜖2 𝑤 𝑥 

) 

for 0 < 𝑧 < 𝑌 , 

𝐵 
2 = 𝜎2 + 𝜏2 for 𝑌 < 𝑧 < ℎ, 

𝛾̇ = 

√ 

4 𝜖2 𝑢 2 
𝑥 
+ ( 𝑢 𝑧 + 𝜖2 𝑤 𝑥 ) 2 , 

ℎ 𝑡 = − 

( 

∫
ℎ 

0 
𝑢𝑑𝑧 

) 

𝑥 

. 

In the fully yielded region, u z ∼O (1), 𝜎 ∼O ( 𝜖) and 𝛾̇ ∼ 𝑂(1) , and drop-
ing the O ( 𝜖2 ) terms then gives 

 𝑧 = −1 and 𝑝 𝑥 = 𝜏𝑧 + 𝑆 (B.1)

ence 

𝑝 = ℎ − 𝑧 + 𝑃 

𝜏 = ( 𝑆 − ℎ 𝑥 − 𝑃 𝑥 )( 𝑌 − 𝑧 ) + 𝐵 

 = ℎ + 

𝑇 − 𝐵 

𝑆 − ℎ 𝑥 − 𝑃 𝑥 
(B.2) 

here 𝑃 = 𝑃 ( 𝑥 ) and 𝑇 = 𝑇 ( 𝑥 ) , which further imply that 

𝜏 = 𝐵 + 𝑢 𝑛 
𝑧 
, 

 𝑧 = ( 𝑆 − ℎ 𝑥 − 𝑃 𝑥 ) 
1 
𝑛 ( 𝑌 − 𝑧 ) 

1 
𝑛 , 

𝑢 = 

𝑛 

𝑛 + 1 
( 𝑆 − ℎ 𝑥 − 𝑃 𝑥 ) 

1 
𝑛 

[
𝑌 

𝑛 +1 
𝑛 − ( 𝑌 − 𝑧 ) 

𝑛 +1 
𝑛 

]
− 𝑢 𝑏 , (B.3) 

ll to O ( 𝜖2 ). 
In the pseudo-plug, 𝑢 = 𝑢 𝑝 ( 𝑥 ) − 𝑢 𝑏 + 𝜖𝑢 1 ( 𝑥, 𝑧 ) , and so 

̇ = 𝜖

√ 

4 𝑢 2 
𝑝𝑥 

+ 𝑢 2 1 𝑧 + 𝑂( 𝜖) = 𝜖Γ. 

ence, 
 

𝜎

𝜏

) 

= 

𝐵 

Γ

( 

2 𝑢 𝑝𝑥 
𝑢 1 𝑧 

) 

+ 𝑂( 𝜖𝑛 ) , (B.4)

f n < 1. Thus 

= 

√
𝐵 
2 − 𝜏2 + 𝑂( 𝜖𝑛 ) (B.5)

orce balance over this region demands 

 𝑥 = 𝑆 + 𝜏𝑧 + 𝜖𝜎𝑥 & 𝑝 𝑧 + 𝜖𝜎𝑧 = −1 + 𝑂( 𝜖2 ) , (B.6)

hich, given the surface stress conditions, now provide 

𝑝 = ℎ − 𝑧 − 𝜖𝜎 + 𝑂( 𝜖2 ) , 

= ( 𝑆 − ℎ 𝑥 )( ℎ − 𝑧 ) + 2 𝜖
( 

∫
ℎ 

𝑧 

𝜎𝑑𝑧 

) 

𝑥 

+ 𝑂( 𝜖2 ) , (B.7) 

r, given (B.5) , 

= ( 𝑆 − ℎ 𝑥 )( ℎ − 𝑧 ) + 
1 
2 𝜖𝐵 

2 
( 

2 𝜃 + sin 2 𝜃
𝑆 − ℎ 𝑥 

) 

𝑥 

+ 𝑂( 𝜖𝑛 +1 ) , 

here 

= sin −1 
( 𝑆 − ℎ 𝑥 )( ℎ − 𝑧 ) 

𝐵 

. (B.8) 

Next we observe that P ∼O ( 𝜖2 ), because 𝑝 = ℎ − 𝑧 + 𝑃 and 𝜎 = 𝑂( 𝜖)
n the fully sheared region, but 𝑝 = ℎ − 𝑧 − 𝜖𝜎 + 𝑂( 𝜖2 ) in the pseudo-
lug. The match of 𝜏 = ( 𝑆 − ℎ 𝑥 )( ℎ − 𝑧 ) + 𝑇 in z < Y with 

 𝑆 − ℎ 𝑥 )( ℎ − 𝑧 ) + 2 𝜖
( 

∫
ℎ 

𝑧 

√
𝐵 
2 − 𝜏2 𝑑𝑧 

) 

𝑥 

+ 𝑂( 𝜖𝑛 +1 ) 
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Fig. B.1. Slump profiles for (a)-(b) 𝑆 = 0 and (b)-(c) S ≠0. For (a)-(b), scaled 
variables are plotted, which eliminates any free parameters; in (c)-(d) the pro- 

files are shown for 1 
2 
𝜖𝜋𝐵 = 0 . 2 . The dark solid lines show the solutions to (38) , 

whereas the dotted lines show the solutions to the iterated version in (40) ; the 

dashed lines show the leading-order approximation. In (a)–(b) the lighter (red 

and blue) lines show the results of a series of simulations from [22] with 𝜖 = 1 , 
𝐵 = 0 . 02 , 0.03, … , 0.1 and the flow fronts aligned. In (c)–(d) the lighter (red) 

lines show additional simulations of the slump of a rectangular block on an in- 

cline with 𝐵 = (0 . 1 , 0 . 2 , 0 . 3 , 0 . 4)∕ 𝜋 and 𝜃 = 5 ◦; the inset shows the aligned, but 
unscaled profiles. 
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or z > Y , then demands that 

 = 2 𝜖𝐵 

⎛ ⎜ ⎜ ⎝ ∫
ℎ 

𝑌 

√ 

1 − 

( 𝑆 − ℎ 𝑥 ) 2 ( ℎ − 𝑧 ) 2 

𝐵 
2 𝑑𝑧 

⎞ ⎟ ⎟ ⎠ 𝑥 
= 

1 
2 𝜖𝜋𝐵 

2 
( 

1 
𝑆 − ℎ 𝑥 

) 

𝑥 

. (B.9)

ow we match the velocity profile of the fully yielded region in
B.3) with that of the pseudo-plug 𝑢 = 𝑢 𝑝 − 𝑢 𝑏 + 𝜖𝑢 1 , to find 𝑢 1 ( 𝑥, 𝑌 , 𝑡 ) = 0
nd 

 𝑝 = 

𝑛 

𝑛 + 1 
( 𝑆 − ℎ 𝑥 ) 

1 
𝑛 𝑌 

𝑛 +1 
𝑛 . 

Finally we compute u 1 and the downslope flux: in the pseudo-plug,

𝑢 1 𝑧 
2 𝑢 𝑝𝑥 

= 

𝜏

𝜎
= 

( 𝑆 − ℎ 𝑥 )( ℎ − 𝑧 ) √
𝐵 
2 − ( 𝑆 − ℎ 𝑥 ) 2 ( ℎ − 𝑧 ) 2 

+ 𝑂( 𝜖) , (B.10)

nd so, given that ( 𝑆 − ℎ 𝑥 )( ℎ − 𝑌 ) = 𝐵 + 𝑂( 𝜖) , 

 1 = 2 𝑢 𝑝𝑥 

√
𝐵 
2 − ( 𝑆 − ℎ 𝑥 ) 2 ( ℎ − 𝑧 ) 2 

𝑆 − ℎ 𝑥 
+ 𝑂( 𝜖) . 

he flux can then be computed as 

∫
ℎ 

0 
𝑢𝑑𝑧 = ∫

𝑌 

0 
𝑢𝑑𝑧 + ∫

ℎ 

𝑌 

( 𝑢 𝑝 − 𝑢 𝑏 + 𝜖𝑢 1 ) 𝑑𝑧 

= 𝑢 𝑝 

(
ℎ − 

𝑛 

2 𝑛 + 1 
𝑌 

)
− 𝑢 𝑏 ℎ + 

1 
2 𝜖𝜋𝐵 

2 𝑢 𝑝𝑥 

( 𝑆 − ℎ 𝑥 ) 2 
. 

he equations of the improved model quoted in the main text now fol-
ow, on taking 𝑛 = 1 . 
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ppendix C. Improved slump profiles 

Curiously, the improved model for slumped shapes on slopes given
y (38) implies that 

ℎ 𝑥 ∼ − 
1 
2 𝜖𝜋𝐵 

2 ( ℎ −1 
𝑥 
) 𝑥 or ℎ ∼ [3 𝜖𝜋𝐵 

2 ( 𝑥 𝑓 − 𝑥 )] 1∕3 , 

or x → x f . This contrasts sharply with the solution of the iterated version
f the model in (41) which has a finite depth at the edge. Evidently, the
reedom afforded by the extra derivative allows us to reach the flow
ront with h →0 and ℎ 𝑥 → −∞. This feature of the improved asymptotic
heory was not appreciated in our earlier papers [22,23] , where the
impler iterated version of the model was implemented. 
Fig. B.1 compares the various asymptotic solutions, with or without

 background slope. The two versions of the improved model differ by
 ( 𝜖2 ) away from the flow front; within a distance of O ( 𝜖2 ) of 𝑥 = 𝑥 𝑓 ,

owever, the flow depths become O ( 𝜖) different, permitting the iterated
ersion to terminate at finite depth. For comparison, Fig. B.1 (a)-(b) also
ncludes simulation data from figure 14 of [22] for dambreaks on a hor-
zontal surface with either square or triangular initial conditions. The
red) corners visible in panel (b) are relics of square initial conditions,
hereas the (blue) sharp spikes at the back evident in panel (a) are
emnants from triangular initial conditions (in the scaled coordinates
he slumps have different lengths). Further computations for the slump
f a rectangular block on an incline (with unit height and an upstream
ack wall) are included in Fig. B.1 (c)-(d). Both comparisons indicate that
he two versions of the improved model outperform the leading-order
heory away from the flow front. Near that steep feature, the smooth
ecline to zero thickness of the non-iterated model provides a slightly
ore satisfying comparison with simulations. However, the asymptotic
heory is not valid at the flow front where the slope of the free surface
iverges. Moreover, the surface in the numerical simulations eventually
verturns to create multi-valued profiles with a finite elevation at the
eading edge. Consequently, it is not clear which version of the improved
odel is superior; the iterated model (which we have employed previ-
usly, and continue to use in the main text) has the advantage of being
he simpler. 
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