CORONIZATIONS AND BIG PIECES IN METRIC SPACES
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ABsTRACT. We prove that coronizations with respect to arbitrary d-regular sets
(not necessarily graphs) imply big pieces squared of these (approximating) sets.
This is known (and due to David and Semmes in the case of sufficiently large
co-dimension, and to Azzam and Schul in general) in the (classical) setting of
Euclidean spaces with Hausdorff measure of integer dimension, where the ap-
proximating sets are Lipschitz graphs. Our result is a far reaching generalization
of these results and we prove that coronizations imply big pieces squared is a
generic property. In particular, our result applies, when suitably interpreted, in
metric spaces having a fixed positive (perhaps non-integer) dimension, equipped
with a Borel regular measure and with arbitrary approximating sets. As a novel
application we highlight how to utilize this general setting in the context of par-
abolic uniform rectifiability.
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1. INTRODUCTION

The monumental works of G. David and S. Semmes [DS1], [DS2] concerning
equivalent characterization of uniformly rectifiable (UR) sets £ C R” remain a
source of continuous inspiration for anyone interested in geometry and analysis.
Their results apply in the Euclidean metric space (X, dist, 1) = (R”", |- |2, H?Y), where
d < n and H? is the d-dimensional Hausdorff measure. The following three char-
acterizations of uniformly rectifiability of an Ahlfors-regular set E are proved in
[DS1] (we refer to [DS1] for definitions and precise statements):

e E admits a coronization with respect to Lipschitz graphs.
e F has big pieces of bi-Lipschitz images.
e E satisfies a ‘geometric lemma’ quantified in terms of S-numbers.

In particular, in [DS1] it is proved that uniformly rectifiability of an Ahlfors-regular
set E can be characterized by the property that E admits, for each 7 > 0, a corona
decomposition with respect to Lipschitz graphs in the class & = 8{,‘”’ where 85”’
denotes the class of Lipschitz graphs with Lipschitz constant no larger than n > 0.

This paper is primarily concerned with two notions: coronizations and big pieces.
The former notion is quite technical (see Definition 2.14), while the latter can be
summarized rather easily. The phrase ‘E has big pieces of & means that £ has a
uniformly ‘large amount’ of coincidence with a set from &, at every location (point
on E) and at every scale. This big pieces ‘functor’ can be iterated (see Definition
2.16) and, in classical settings, it often preserves quantitative properties of the set
such as uniform rectifiability [DS2] or the boundedness of singular integral opera-
tors [D, FO]. Since the developments in the study of singular integral operators on
Lipschitz graphs [CMM, CDM, CCFJR, CS, D] motivated much of the early work
on UR sets, it became natural to ask if the big pieces functor ‘stabilizes’ when
repeatedly applied to the collection of Lipschitz graphs. More precisely, one may
ask whether there is a j € N such that every UR set is BP/(LG) where this nota-
tion means iterating the big pieces (BP) functor j times and LG is the collection of
Lipschitz graphs (with uniform control on the Lipschitz constants). In fact, while
it was proved by Hrycak!, that not every UR set is BPLG = BP'(LG), in [DS2] it
is proved that UR sets are BP%(LG), when n > 2d + 1. More recently, in [AS] J.
Azzam and R. Schul proved, via the characterization of UR sets by big pieces of
bi-Lipschitz images, that every UR set is BP*(LG).

The purpose of this paper is to give a far reaching generalization of these results
and to prove that “coronizations imply big pieces squared” is a generic property.
To give a first statement of our main result we consider, as we do throughout the
paper, a fixed triple (X, dist, u) where (X, dist) is a metric space and yu is a Borel
regular measure. To limit the number of parameters introduced in definitions and
theorems we will for simplicity and consistently assume that diam(X) = oo: this

IThis work went unpublished. One can use the “venetian blinds” construction (see [Fal, Theorem
6.9] or [Mat, Lemma 6.9]) to provide such an example.
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assumption is not essential (see Remark 2.17 below). We also fix a ‘dimension’
d € (0,00). While (X, dist, u) is fixed, all constants appearing in our results will
be independent of the particular metric measure space (X, dist, u) (while of course
depending on the quantitative parameters describing the space, e.g., the dimension
d, the d-regularity constants, etc.). The following theorem, of which the precise
statement can be found at the beginning of Section 3, is our main result.

Theorem 1.1. Let E C X be a d-regular set with respect to the measure u (see
Definition 2.1). Suppose that & is a collection of closed subsets of X each of which
is d-regular with respect to the measure u (with uniform bounds on the regularity
constant). If E admits a coronization with respect to & (see Definition 2.14) then E
has big pieces squared of & (see Definition 2.10).

We emphasize that although the formulation of Theorem 1.1 does not require
any particular quantitative restriction on the class &, in typical applications, the
class & is subject to some specified quantitative control, and in this case the theorem
says that the big pieces squared approximation is obtained with respect to sets
having the same (uniform) quantitative control.

In the classical Euclidean setting discussed above & = S,L,’p and given that a d-
regular set E C R",d < n, has a corona decomposition with respect to gkiv , we de-
duce from our Theorem 1.1 that E is approximable in the big pieces squared sense
by Lipschitz graphs in the class &', for the specified > 0. In particular, based on
characterization of UR sets in [DS1], we recover the result of [AS] concerning big
pieces squared approximability of uniformly rectifiable sets by Lipschitz graphs.

An alternate proof of the result of J. Azzam and R. Schul [AS] in the case d =
n — 1, based on corona-type constructions, was given by the first and third author
in [BH1]. While Theorem 1.1 applies in far more general settings beyond the
setting of UR sets in Euclidean spaces, a consequence of Theorem 1.1, and the
characterization of UR sets by coronizations with respect to Lipschitz graphs (see
[DS1]), is that we here provide a ‘corona analysis’ type of proof of the result of J.
Azzam and R. Schul [AS] for d < n. However, it should be noted that in their work
[AS]J. Azzam and R. Schul also establish several other results beyond the fact that
UR sets are BP2(LG). Their work has been further expanded upon by G. C. David
and Schul [GCDS].

Another use of Theorem 1.1 is that it allows easy passage from a coronization
to general ‘geometric lemmas’ [J, DS1, DS2]. It is a general fact that in the present
setting (general) geometric lemmas are stable under the ‘big pieces functor’ (in
particular when applying it twice!). This big piece stability is just a matter of
carefully checking that the proofs of David and Semmes [DS2] and Rigot [R] adapt
to our setting. Using Theorem 1.1 we can prove the following theorem and we
refer to the bulk of the paper for definitions of the geometric lemmas stated in the
theorem.

Theorem 1.2. Let E C X be a d-regular set with respect to the measure y. Sup-
pose that & is a collection of closed subsets of X each of which is d-regular with
respect to the measure u with uniform bounds on the regularity constant, and that
A is a collection of subsets of X (not necessarily d-regular). Suppose E admits a
coronization with respect to &. Then the following implications hold:
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e If p € (0,), g € (0, 0] satisfy
L + 1 >0,
qg p d
and if every Ecé& satisfies the (p, q)-geometric lemma with respect to A,
with uniform control on the Carleson measure constant, then E satisfies
the (p, q)-geometric lemma with respect to A.

o [fevery E€é& satisfies the weak geometric lemma with parameter € with
respect to A, with uniform control on the Carleson set constant, then E
satisfies the weak geometric lemma with parameter Ce with respect to A.
Here C depends only on dimension and the d-regularity constants.

o [fevery Ecé& satisfies the bilateral weak geometric lemma with parameter
€ with respect to A, with uniform control on the Carleson set constant,
then E satisfies the bilateral weak geometric lemma with parameter Ce
with respect to A. Here C depends only on dimension and the d-regularity
constants.

We emphasize that all implications stated in Theorem 1.2 are of a quantitative
nature. The reader should also bear in mind that in the context of uniform recti-
fiability, the collection A is the collection of all d-dimensional affine spaces. The
structure of the sets A is not important in the proofs given by David and Semmes
[DS2] and Rigot [R].

While Theorem 1.1 and Theorem 1.2 are, by their nature, very general and of
interest in many different contexts, one of our main motivations is the application
of these results in our ongoing project concerning a parabolic version of parts of
[DS1], [DS2], with the goal of establishing equivalent characterization of parabolic
uniformly rectifiable sets £ C R In [HLN1], [HLN2] the third and fifth author,
together with John Lewis, introduced a notion of parabolic uniformly rectifiable
sets and proved, among other things, the existence of big pieces of regular parabolic
Lipschitz graphs under the additional assumption that E is Reifenberg flat in the
parabolic sense. These studies were motivated by the study of parabolic or caloric
measures in rough domains, but up to now no systematic and correct study of
parabolic uniformly rectifiable sets has appeared in the literature. It is true that in
[RN1, RN2, RN3], the author took on the ambitious challenge to develop the theory
of parabolic uniformly rectifiable sets. Unfortunately though, in [RN1, RN2] the
author either gives no proofs of his claims or supplies proofs which have gaps,
a few of which we pinpoint in [BHHLNI1]. In [RN3] the author states that the
parabolic corona decomposition implies parabolic UR, with a proof going through
the corresponding ‘alpha’ numbers as in [To]. On the other hand, this result is also
a corollary of our Theorem 1.2 (see Theorem 4.15), and as our proof is based on an
entirely different method, we have not checked in detail the validity of the method
claimed in [RN3].

In forthcoming papers, including [BHHLN1], along with the present paper, we
conduct a thorough study of parabolic uniformly rectifiable sets, and in the context
of this paper we note that in [BHHLN1] we prove, among other things, that para-
bolic uniformly rectifiable sets (see Definition 4.1), satisfy a corona decomposition
with respect to regular Lip(1,1/2) graphs (see Definition 4.6). Such graphs are the
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natural parabolic analogues of Lipschitz graphs, from the point of view of both
singular integral theory, and PDE/potential theory (see [H1, H2, HL, LM, KW]).
In the present paper, we obtain a converse to this result from [BHHLN1], as we
prove that corona decomposition with respect to regular Lip(1,1/2) graphs implies
parabolic uniformly rectifiability. This converse is a rather straightforward conse-
quence of the general results established in this paper; we refer to Section 4 for
details, see in particular Theorem 4.15 (i). In combination, the present paper and
[BHHLN1] show that, just as in the elliptic setting [DS1], we can characterize par-
abolic uniform rectifiability in terms of the existence of a corona decomposition
with respect to an appropriate family of graphs (regular Lip(1,1/2) graphs). We
further obtain that all sufficiently “nice” parabolic singular integral operators are
L? bounded on a parabolic uniformly rectifiable set; see Theorem 4.16 and Corol-
lary 4.17 below.

The rest of the paper is organized as follows. Section 2 is of preliminary na-
ture. Theorem 1.1 is proved in Section 3 and the proof is based on an induction
argument. Theorem 1.2 is a consequence of Theorem 1.1, and Propositions 2.29,
2.30 and 2.31 which establish stability of various ‘geometric lemmas’ in this gen-
eral setting, and are stated in the bulk of the paper. In fact, minor modifications
aside, the proofs of the three propositions follow almost exactly the corresponding
proofs in [DS2, R]. In this sense we claim little originality in this part and we
therefore postpone the proofs (or perhaps rather the confirmations of the validity)
of Propositions 2.29, 2.30 and 2.31 to an appendix at the end of the paper, Appen-
dix A. However, these proposition are used in Section 4 where we detail and prove
our applications to parabolic uniform rectifiability and we note that Propositions
2.29, 2.30 and 2.31 have previously not appeared in the literature in the context of
parabolic uniform rectifiability.

2. PRELIMINARIES

Recall (X, dist, u) and d introduced in the introduction. In the sequel, B(x, r), for
x € X and r > 0, will always denote a closed metric ball defined with respect to
dist and centered at x with radius .

As is customary, we use the letters ¢, C to denote harmless positive constants,
not necessarily the same at each occurrence, which depend only on dimension (d)
and the constants appearing in the hypotheses of theorems/lemmas (which we refer
to as the “allowable parameters”). In some cases, we shall simply use the letter C
to denote one of these fixed allowable parameters (see, e.g., Definition 2.1 below).
We shall also sometimes write @ < b and a = b which mean, respectively, that
a <Cband 0 < ¢ < a/b < C, where the constants ¢ and C are, unless otherwise
stated, as above. When a constant is given a numerical subscript (e.g. Cp) its value
will be fixed.

Definition 2.1 (d-regularity). Let E C X. We say E is d-regular (with respect to
) up to scale Ry € (0, o] and with constant C > 1, written E € Reg(C, Ry) if E is
closed and

C'r <uB(x,nNE)<Crl, VYxeE,re(0,Ry).
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We call the upper bound here the upper regularity condition and the lower bound
here the lower regularity condition. In the case Ry = co we simply write E €
Reg(0).

2.1. Trading for scales. The following lemma allows us to localize any d-regular
set.

Lemma 2.2, Let E € Reg(C). Then for every x € E and r > O there exists Ey, C E
such that E, , € Reg(26d10dC, 10r) and

B(x,r)NECE;, CB(x3r)NE.
In particular, diam(E, ) > C —2/d(y/2).
Proof. The statement about the diameter of E, , immediately follows from the reg-
ularity of E and that B(x,r) N E C E, C B(x,3r) N E. Indeed,
w(B(x,C~¥r/2) N E) < 279u(B(x,r) N E),

since the the right hand side is non-zero this implies there exists y € E N B(x,r) \
B(x,C~%4r/2), which immediately gives the diameter estimate.

Now we produce the set E, .. Let Ag = B(x,r) N E and for k = 1,2,... we
defined Ay, inductively by

Ap = U B(z,27*)NE.

2€Ak-1
Set A = [ J; Ax. Obviously B(x,r) N E C A.

Let z € A be fixed. Then z € A, for some ky and by definition there exists
20,21 - - - » Zkg—1 Such that z; € Ay, dist(zo, x) < r, dist(zx,-1,2) < 2%y and

dist(zg, zk+1) < 27kl

It immediately follows from the triangle inequality that

dist(z, x) < Z 27k = 2r,
k=0

which gives that A C B(x,2r) N E. Let s € (0,27%0*37]. Using that B(z,2%s)NE c
B(z,27%~1r) N E C A we have

C 127 < ,Ll(E N B(z, 2_6s)) = y(B(z, 2_6s) N A)
< u(E N B(z, 5)) < Cs°,

where we used the d-regularity of E in the first and last inequalities. Now suppose
that s € [27/~17,27/r) for some j € {0,1,...kg — 6}. Then with {zk}l,io:z)l as above
we have that dist(zx, z) < 27%r, so that B(z 455 2777%) N E c B(z, s) N A. Thus,

C 1275 < 712 < (B(zj45, 277 ) N E)
< u(B(z, s) N A) < Cs?,

where we used the regularity of E and that A C E in the last line. If s € [r, 10r),
then 5" = s/10 € (0, r), so appealing to the analysis above we obtain

C'107%s < u(B(z, s/10) N A) < u(B(z, s) N E) < Cs“.
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This shows that
C'107927%s < u(B(z, s) N A) < Cs?, Vze A, s€(0,10r).
Notice that no point of A is isolated. We take E, , to be the closure of A, then

since E is closed Ey, C E. If w € E,,, € € (0,1/2) and s € (0, 10r) then there
exists z € A such that dist(z, w) < es and hence

C'107927%(1 — ©)%s? < (A N B(z, (1 — €)s))
< u(E,, N Bw, 5)) < u(E N B(w, s)) < Cs%.

which gives that E,, € Reg(2%/109C, 10r). The fact that B(x,r) N E C E,, C
B(x, 3r) follows from the analysis above as well. O

Remark 2.3 (“Trading For Scales”). In the proof of Lemma 2.2 we used a tech-
nique which one might call “trading for scales”, where we sacrifice some portion
of a structural constant in order to gain in ‘scale’. This can also be done with the
constants in the big pieces definition (see Definition 2.16) and is demonstrated in
Lemma 2.19. This idea will be used frequently in the proof of Theorem 1.1 and,
due to the focus on other technical matters, at that time we will use this technique
without mentioning it at each occurrence.

As an example of trading for scales we produce the following lemma, which is
applicable to the set constructed in Lemma 2.2.

Lemma 2.4. Suppose that E € Reg(C, R) with R > diam E. Then
E € Reg(C(R'/R),R"),
forallR" > R.
Proof. If r € (0,R) then C™'r¢ < u(E N B(x,r)) < Cré forall x e E. If r € [R,R’)
then r > diam E and hence for x € E
w(E N B(x,r)) = w(E N B(x,R)) > C"'R?
= C 'R /R R = C"' (R IR

Additionally, for r € [R,R’) and x € E it holds

W(E N B(x,r)) = w(E N B(x,R)) < CR < Cr.

These estimates give the lemma. O

2.2. Dyadic notation.

Lemma 2.5. (Existence and properties of the ‘“dyadic grid”) [DS1, DS2], [Chr],
[HK]. Suppose that E € Reg(C) Then there exist constants ay > 0,y > 0 and
C| < oo, depending only on d and C, such that for each k € Z, there is a collection
of pairwise disjoint Borel sets (“cubes”)

Dy = {Qf CE:je 3,
where 3y, C N denotes some index set depending on k, satisfying

(i) E =V;0% foreachkeZ.
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(i1) If m > k then either Q7' C Q/]‘. or 07N Q/J‘. =0Q.

(iii) For each (j, k) and each m < k, there is a unique i such that Q’; c o
(iv) diam (Q%) < C;27%

(v) Each Qﬁ contains some “surface ball” A(xﬁ,aOZ‘k) = B(xﬁ,a02‘k) NE.

A few remarks are in order concerning this lemma.

o In the setting of a general space of homogeneous type, this lemma was proved by
Christ [Chr], with the dyadic parameter 1/2 replaced by some constant ¢ € (0, 1).
In fact, one may always take 6 = 1/2 (see [HMMM, Proof of Proposition 2.12]).
In the presence of the Ahlfors-David property, and in Euclidean space the result
already appears in [DS1, DS2].

e We shall denote by D = D(E) the collection of all relevant Q’J‘., ie.,
D := UDy.

e Properties (iv) and (v) imply that for each cube Q € Dy, there is a point x¢g € E,
a metric ball B(xg, r) and a surface ball A(xp,7) := B(xg,r) N E such that r =
27 ~ diam(Q) and

(2.6) A(xg,7r) C O C A(xg,Cr),
for some uniform constant C. We shall denote this ball and surface ball by

2.7) By := B(xg, 1), Ag = Alxg, 1),
and we shall refer to the point x¢ as the “center” of Q.

e For a dyadic cube Q € Dy, we shall set £(Q) = 27k and we shall refer to this
quantity as the “length” of Q. Evidently, £(Q) ~ diam(Q).

e For a dyadic cube Q € D and K > 1 we define

KQ :={xe E : dist(x, Q) < (K — 1)diam(Q)}.
o If O € Dy and Q' € Dy are such that Q' C O we say Q’ is a “child” of Q.
Definition 2.8 (Localized Dyadic Grids and Sawtooths). Let C > 1, E € Reg(C)
and D = D(E) as above. ForQ e DwesetDg ={Q' €D : Q' C Q). If F ={Q,} is
a countable collection of pairwise disjoint cubes in D then we set Dy = D\ U;Dyg .

If 9 € Dand ¥ = {Q/} is a countable collection of pairwise disjoint cubes in D
then we set

DT,Q = DQ N Deg.
2.3. Carleson measures and decompositions.

Definition 2.9 (Discrete Measures and Discrete Carleson Norms). Suppose C > 1,
E € Reg(C) and D = D(E) be as above. Let {ag}gep, where ag € [0, ). We let
m be the discrete measure associated to {ap}oep be defined by

mD) =Y ap.

Qeb’
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for any collection of cubes D’ € D. If ¥ = {Q;} is a countable collection of
pairwise disjoint cubes in D we define mg by

mg(D") = m(D" N Dyg).

If ¥ = {Q;} is a countable collection of pairwise disjoint cubes in D we define the
global Carleson norm of mg as

mg(Dg)
Imglic = sup ———=E
oeb  M(Q)
and for Qg € D the localized Carleson norm of mg (with respect to Qp) as
mg(Dg)

Im#llegy) = sup

0eDg, HM(Q)

Here if ¥ = @ we write m in place of mg in the notation above.

An important ingredient in the proof of Theorem 1.1 is the following decompo-
sition of a discrete Carleson region.

Lemma 2.10. [HM, Lemma 7.2] Suppose that C' > 1, E € Reg(C’) and let D(E)
be as above. Suppose that m is a discrete measure associated to {ag}oecp. There
exists C depending on d and C’ such that the following holds. Given a > 0, b > 0,
and Q € D such that m(Dg) < (a + b) u(Q), there is a family ¥ = {Q;} C Do of
pairwise disjoint cubes such that

(2.11) Imzllc) < Cb,

a+b
2.12 B < —— ,
(2.12) H( )_a+2bu(Q)
where B is the union of those Q; € F such that m (DQ/. \ {Qj}) > au(Q)).

2.4. Corona decompositions and big pieces. Before we introduce the notion of
corona decomposition we need the following definition.

Definition 2.13 ([DS2]). Suppose E is d-regular with dyadic cubes D(E). Let
S ¢ D(E). We say that S is “coherent” if the following conditions hold:

(a) S contains a unique maximal element Q(S) which contains all other ele-
ments of S as subsets.
(b) If Q belongs to S, 0 e Dand Q € O C O(S), then O € S.

(c) Given a cube Q € S, either all of its children belong to S, or none of them
do.

We say that S is “semi-coherent” if only conditions (a) and () hold.

Definition 2.14 (Coronizations). Let C,, C.. > 1. Suppose that E € Reg(C.) and
let D(E) be as above. Let & C Reg(C..). Suppose 0 < 7 and K > 1. We say that
E admits an (17, K)-coronization with respect to & if the following holds. There is
a disjoint decomposition D(E) = G U B, satisfying the following properties.

(1) The “Good”collection G is further subdivided into disjoint stopping time
regimes {S}secs, such that each such regime S € S is coherent (cf. Defini-
tion 2.13).
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(2) The “Bad” cubes, as well as the maximal cubes Q(S) satisfy a Carleson
packing condition: There exists a constant C;, ¢ > 0 such that

d>ooow@) + D u(QO) < CuruQ). YQeDE).

0'CO,Q'eB S:0(8)cQ
(3) For each S, there exists I's € & for every Q € S,
(2.15) sup dist(x,I's) < n€(Q).
xeKQ

In the sequel, we write M = {Q(S)}ses to denote the set of maximal cubes.

Definition 2.16 (Big Pieces). Suppose that C,C’,C"” > 1, 6,6’ > 0. Suppose that
&E C Reg(C). We say that E € Reg(C’) has big pieces of & with constant 6, written
E € BP(E)(, "), if for for every x € E and r > 0 there exists I' € & such that

u(TNENB(x,r) > 6.

We say that E € Reg(C”) is in BP(BP(E)(9, C"))(@’, C”), if for every x € E and
r > 0 there exists I' € Reg(C”) N BP(E)(, C’) such that

p(TNENB(x, 1) =671

Remark 2.17. It is implicit in the preceding definition that diam(E) = oco. We
shall work with unbounded sets E (except when utilizing the localization Lemma
2.2), for the sake of convenience, but this is a minor matter. In Euclidean space
with p the Hausdorff measure, if the property in question holds in particular for
d-planes, then there is a standard procedure to treat the case of bounded sets: if E
is a bounded set satisfying a corona decomposition with respect to some class of
sets &, and if d-planes also enjoy the corona property with respect to the same class
&, then we may consider the set E, = E' U P, where P is a d-plane whose distance
to E is comparable to the diameter of E. Then Theorem 1.1 says that E, € BP*(E),
and hence E inherits the BP> property.

More generally, in a metric space setting one can modify our proofs mutatis
mutandis to the bounded setting. We leave the details to the interested reader.

Remark 2.18. Below we will always establish results where the values
C.C',C",0,0

are all controlled by the allowable parameters. For this reason and to ease notation
we will often simply write BP(E) in place of BP(E)(4, C’) and BP?(&) in place of
BP(BP(E)(H, CH)(@,C”). We are quite sure that the reader will appreciate this.

Trading for scales (see Remark 2.3) and using the dyadic cube construction al-
lows us to check the big pieces condition only on dyadic cubes.

Lemma 2.19 (Big pieces on cubes is big pieces). Let 8 > 0. Let E € Reg(M) and
& c Reg(L) for some M,L > 0. There is a constant ¢ = c(d, M), such that if for
every cube Q € D(E), there exists I' € &, with

n@NI) = 6u(Q),
then E € BP(E)(cOH, M). Conversely, there is a constant ¢’ = ¢’(M, d), such that if
E € BP(E)(0, M), then for every cube Q € D(E), there exists I' € & such that

wQNT) 2 c'6u(Q).
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Proof. Suppose that Q € D(E) there exists I' such that u(Q N T') > 6u(Q). Let
x € E and r > 0. Recall the dyadic cubes have the property that diam(Q) ~ £(Q) ~
w(Q)4 and Ugep, = Q with Q € Dy meaning £(Q) = 27k Then we may choose k
and Q € Dy such that k = log, r, x € Q and diam(Q) < r/2. Thus, Q C B(x,r) N E
and there exists I' € & such that

#(B(x,r)NT) 2 u(QNT) 2 6u(Q) ~ 6LQ)" ~ 6r.
As the implicit constants above only depend on d and M it follows that £ €
BP(E)(ch, M) for some ¢ = c(d, M) > 0.

Now suppose that £ € BP(E)(6, M). By the properties of dyadic cubes, there
exists ap > 0 depending only on d and M such that for any cube Q € D(E),
B(xg,aot(Q)) N E C Q. Let Q € D then by hypothesis there exists I' € E such that

u(QNT) = u(B(xg, aot(Q)) N E) > 6laot(Q))") = 0L(Q)! ~ 6u(Q).

This proves the lemma. m|

2.5. f-numbers and geometric lemmas. We now state the definitions of some
geometric lemmas. Here the words ‘geometric lemmas’ mean unilateral or bilateral
closeness of a regular set to a family of sets (which are not necessarily regular),
quantified in terms of a Carleson measure or Carleson set condition.

Definition 2.20 (8-numbers for general sets). Let A be an arbitrary collection of
(non-empty) sets. Fix E € Reg(C). For g € (0, 0), Q € D(E) we define

1/q
Paa(Q) = inf {u(Q)‘l / [(diam Q)" dist(y, 4)]” dﬂ(y)} :
S 2Q

and when g = oo we define for Q a dyadic cube

Ba(Q) := Bwa(Q) = inf 3 diam(Q)™" sup dist(y, A) o .
AeA ye20
Definition 2.21 ((p, g)-general geometric lemmas). For fixed p € (0,0) and g €
(0, oo] we say that E satisfies the (p, g)-general geometric lemma with respect to A
written E € GLem(A, p, g) if there exists M > 0 such that

> [Bea(@Pu(Q) < Mu(R), R € D(E).

QCR

At times, we shall want to stress the Carleson measure constant M and we then
write E € GLem(A, p, g, M).

Definition 2.22 (The weak geometric lemma). Given € > 0 we say that E sat-
isfies the weak geometric lemma with parameter € with respect to A, written
E € WGLem(A, €) if there exists M > 0 such that

Y HQ) < Mcu(R), ReDE).
OCR
Ba(Q)>e

At times, we shall want to stress the Carleson set constant, and we then write
E € WGLem(A, e, M,).
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Definition 2.23 (Bilateral versions and the bilateral weak geometric lemma). We
also define a bilateral version of S, for any dyadic cube Q as

bBA(Q) = diam(Q)_1 inf < sup dist(y,A) + sup dist(z, E) ; ,
AeA | ye20 Z€ANB(xg,2 diam(Q))
where xg is the ‘center’ of Q, as in (2.6). We say E satisfies the bilateral weak
geometric lemma with parameter € with respect to A, written £ € BWGLem(A, €)
if there exists M, > 0 such that

> WQ) < Mcu(®), ReDE).
OcR
bBa(Q)>€
We shall write E € BWGLem(A, €, M) when we want to stress the Carleson set
constant.

Remark 2.24. The ‘dilation parameter’ 2 in the definitions of 8 and b8 could be
replaced by any « > 2, i.e., with «Q, xdiam(Q) in place of 2Q, 2 diam(Q).

Remark 2.25. Concerning the definition of b8(Q), if the set
(2.26) AN B(xgp,2diam(Q)) =@,

with xg as in (2.6), then we set SUP_cxnp(x,,2 diam(g)) dist(z, E) = 0. This is not
a problem in applications as € in the definition of BWGLem(A, €, M) is typi-
cally (very) small, and when (2.26) holds, the first term in b8 is greater than or
equal to 1. For instance, the membership £ € BWGLem(A, €, M) and E €
WGLem(A, €, M) hold vacuously for any regular set E whenever € > 2 and A
is any collection of sets such that for every x € X there exists A € A such that
x €A (e.g. X =R"and A is the collection of all d-dimensional affine spaces).

Remark 2.27. In the literature, the weak and bilateral weak geometric lemmas
are often stated in a ‘parameterless’ manner. In particular, we say the weak geo-
metric lemma holds for E if there is a function y : (0,1] — R such that £ €
WGLem(A, €, y(¢€)), for every € € (0, 1].

Remark 2.28. We would like to point out that the ‘choice’ of dyadic grid is not
important in the definitions of the geometric lemmas, provided one is willing to
lose something in the parameters (e and the Carleson constants). For instance, if
E € GLem(A, p, g, M) with respect to some grid D then E € GLem(A, p,q, M’)
for any other grid D, where M’ depends only on M, d, and the regularity of E.

2.6. Stability of geometric lemmas under the ‘big piece functor’. We here state
three propositions concerning the stability of geometric lemmas defined in the pre-
vious subsction under the ‘big piece functor’. The proofs of these propositions can
be found in Appendix A. Concerning the general geometric lemma, weak geomet-
ric lemma and bilateral weak geometric lemma the following hold.

Proposition 2.29. Let A be a collection of subsets of X. Let C. > 1, 8, M > 0 and
p € (0, 00), g € (0, o] satisfy

111
S —4+=>0.

qg p d
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Suppose that E € Reg(C,) and that
& c Reg(C,) N GLem(A, p, g, M).

IfE € BP(E)(, C) then E € GLem(A, p, q, M"), where M’ depends on C..,0, M, p, q
and dimension.

Proposition 2.30. Let A be a collection of subsets of X. Let C. > 1, €,6,M > Q.
Suppose that E € Reg(C.) and

& C Reg(C,) N WGLem(A, €, M).

If E € BP(&E)O,C.) then E € WGLem(A, Ce, M’), where C depends only on
dimension and C, and M’ depends on C., €,0, M > 0 and dimension.

Proposition 2.31. Let A be a collection of subsets of X. Let C. > 1, €,6,M > Q.
Suppose that E € Reg(C.) and

& c Reg(C,) NBWGLem(A, €, M).

If E € BP(E)(H,C.) then E € BWGLem(A, Ce, M’), where C depends only on
dimension and C, and M’ depends on C., €,0, M > 0 and dimension.

Remark 2.32. We remark that in the statements of the preceding propositions, there
is no loss of generality to assume that the d-regularity constants for £ and & are the
same, as in general we may simply take the larger of the two. This same remark
applies in the sequel.

3. Proor oF THEOREM 1.1

In this section we prove Theorem 1.1. Using the notation introduced in the
previous section the following is the precise formulation of Theorem 1.1 and this
is the statement that we will prove. We observe that Remark 2.32 applies here.

Let C. > 1. Suppose that E € Reg(C.) and let D = D(E) be the set of dyadic cubes
as Lemma 2.5. Assume that & C Reg(C.) and that E admits an (n, K)-coronization
(see Definition 2.14) with respect to & for some n > 0 and K > 1. Then E € BP*(E)
with constants depending on C.,d,n, K and C) g (the constant in Definition 2.14).

From this point forward we assume that £ € Reg(C.), & C Reg(C.) and that E
admits an (7, K)-coronization with respect to & for some n > 0 and K > 1. We
define

3.1 g = {ﬂ(Q), if 0 e MU B,

0, otherwise.

and we let m be the discrete measure with respect to {@g}gep. Note that by as-
sumption

(3.2) Imlle < Cy k.
Let O € S forsome S € S and let I's be the set in & supplied by the coronization.

Let Xy € I's be such that dist(Xp, xp) < nf(Q), where lower case x is the ‘center’
of Q as in (2.6). Let I's(Q) := (I's)x,.cot(0) be the d-regular localization of I's
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as in Lemma 2.2, where, by the triangle inequality and (2.15), we can choose
Co 24, (K + 1) such that I's(Q) satisfies

3.3) sup dist(x,I's(Q)) <nt(Q), YO CQ,0€S
xeKQ’

and

I's(Q) € B(xg, SCol(Q)).
Here we use that I's N B(Xp, Cot(Q)) € I's(Q) and the properties of the dyadic
cubes. Recall by construction (see Lemma 2.2) that I's(Qp) is closed, cCof(Q) <
diam(I's) < 3Co£(Q) for a constant ¢ depending only on d and C. and that ['s(Q) €
Reg(26d 104C,, 10Cot(Q)). (Note that we can always use Lemma 2.4, to prove that
I's(Q) € Reg(26d 10MeC,, MCyt(Q)) for any fixed M and we will do so below.)

By perhaps taking Cy larger (depending on d and C.) we may also assume that if
Q' € D(E) and Q" is the grandparent of Q’ then diam(Q*) < Cof(Q’). In particular,
with this extra condition on Cy and Q’, O* as above

dist(xg, xg) < Col(Q").

3.1. Preliminary observations. We here record two important observations as
lemmas.

Lemma 3.4. Fix x € E and S € S. If there exists an (infinite) nested sequence of
cubes Q02 012 Q>..., withx € Qi and Qi € S, then x € I's(Qyp).

Proof. The proof of this lemma is simple. Since Q1 C Ok, it follows that £(Qy) <
27%¢(Qp). Then (3.3) gives that dist(x,I's(Qp)) < 27%¢(Qp) for all k € N. Since
I's(Qp) is closed, x € I's(Qp). ]

Lemma 3.5. If Q¢ € D(E), ¥ is a collection of pairwise disjoint subcubes of Qg
and

lIm#llegy) < 1/2
then there exists S € S such that Q € S whenever Q € Dy g,.

Proof. This proof is also simple but requires chasing a few definitions. We first
note that we can assume that & # {Qp}, as otherwise the lemma is vacuously true.
For O € Dy o, we have

ag/u(Q) < m(Q)/u(Q) < lImglley < 1/2.

By definition ap/u(Q) € {0, 1} and hence Q € D# o, can never be a maximal or a
bad cube.

Let Sy be the stopping time regime such that Qg € Sg. Suppose, for the sake of
contradiction, that Q € D¢ o, but Q ¢ Sy. Since Q is not maximal or bad, it must
be the case that Q € S for some S # Sp. It can’t be the case that Qyp € O(S) (the
maximal cube for S) as by coherency of the stopping time regimes, Qg € S, which
would yield a contradiction. On the other hand, if Q(S) C Qy then since Q € Q(S)
we have Q(S) € Dy o,. This is contradiction to the fact that Dg o, contains no
maximal cubes. |

Combining the two lemmas above, we obtain the following.



CORONA IMPLIES BP? 15

Lemma 3.6. Let Oy € D(E) and ¥ = {Q;}; be a collection of pairwise disjoint
subcubes of Qo, with ¥ # {Qo} and

Im#lley) < 1/2.

Let Sy be the stopping time regime such that Qg € So, which exists by Lemma 3.5.
Set A = Qo \U;Q;. If x € A then x € I's,(Qo).

Proof. If x € A then, by properties of dyadic cubes for Q € Dy, with x € Q we have
that Q is not contained in Dy, for any j since this would imply that x € Q;. Thus
Q € Dg g, and it follows from Lemma 3.5 that Q € Sg. Then let Q;,i =0,1,2...
be such that Q; is the unique subcube of Q; such that x € Q;;;. Then x € Q; and
the collection Q; satisfy the hypothesis of Lemma 3.4 and hence x € I's,(Qp). O

3.2. Proof of Theorem 1.1 by induction. We are now ready to prove Theorem
1.1 and the proof proceeds via induction. We form two statements.

For a > 0, let H(a) be the following statement: There exists positive constants
Ca» €y, Cly, 6, such that if m(Dg,) < au(Qo), then there exists F'g, with the following
properties:

(1) Fo, C B(xg,,20C{(Qo)) and diam(Fg,) > c,L(Qop).

(ii) Fg, € Reg(Cy, Cot(Q)) and F, is in BP(E) up to the scale Cof(Qp), that
is, for every x € Fp, and r € (0, Col(Qp)) there exists I' = I'(x, r) € & such
that

u(@T N Fg, N B(x, 1)) > 0,17
(iii) u(Fo, N Qo) = c;u(Qo)-

We also formulate another hypothesis. For a > 0 let H*(a) be the follow-
ing statement: There exists positive constants cq, ¢, C,, 6, such that If m(Dg,) <
au(Qo) then there exists Fg, with the following properties:

(I) Fp, € Reg(C,) and Fgp, € BP(E)(6,,C,). Recall this means for every
x € Fg, and r € (0, c0) there exists I" € & such that

uT N Fo,NB(x,r) > Gard.
(ID) u(Fg, N Qo) = cu(Qo).

Using Lemma 2.19 we see that to prove the theorem it is enough to verify that
H*(a) holds for all a € [0, C, k], with bounds depending only on a and allowable
parameters. In particular, we want to prove that H*(C,, ) holds as, by the definition
of the coronization, m(Dg) < C, xu(Q) for all Q € D. Notice hypothesis H(a) is
a localized version of H*(a). A crucial part of the proof below is taking unions
of these constructions in a way that does not destroy the ADR property. We will
prove these statements simultaneously as the proofs are similar.

We first verify that H(0) and H*(0) hold, which is essentially trivial. Indeed,
m(Dg,) = 0 implies that |[me|lcgy = 0 < 1/2 with ¥ = @. Then A = Qy in
Lemma 3.6 and hence Qg € Sy for some Sy € S with Qp € I's(Qyp). To verify H(0)
we take Fo, = I's,(Qo) and property (iii) is satisfied with ¢/, = 1. By construction
I's,(Qo) has all the properties necessary in H(0). To verify H*(0) we take Fo, =
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Is,. Since I's,(Qo) C I's, we have that property (II) is satisfied with ¢/, = 1 and the
other properties hold trivially.

We now fix b > 0 depending on d and C., such that Cb < 1/2, where C is from
Lemma 2.10. We prove that if H(a) and H*(a) hold then H(a + b) and H*(a + b)
hold.

Let Qg be such that m(Dg,) < (a + b)u(Qp). We apply Lemma 2.10 to Qo
to obtain ¥ = {Q;}, a collection of pairwise disjoint subcubes of Qp, with the
properties stated in Lemma 2.10. An important observation is that by our choice
of b we have

Imzlley < 1/2,

and this allows us to utilize Lemmas 3.5 and 3.6 (in the case ¥ # {Qp}).

We define the following objects”: G := ¥ \ B, where B is from Lemma 2.10 and
G =Ug,egQj. Setya =1- 22 > 0andlet A = Qg \ (Ug,er Q;). By Lemma 2.10
we have that u(B) < (1 — y,)u(Qp) so that

HA U G) = u(Qo N BY) = yap(Qo).

This allows us to consider two cases.

Case 1: u(A) > (v./2)u(Qp). In this case, we use Lemma 3.6 to say that there exists
So, a stopping time regime, such that Qg € Sp, and x € A implies that x € I's,(Qo).
To verify H(a) (in Case 1) we again take Fo, = I's,(Qo) and since A C I's,(Qo) we
have u(Fo, N Qo) = va/2u(Qop) so that property (iii) holds. As the other properties
((1) and (ii)) hold by construction, this takes care of this case for H(a). To verify
H*(a) (in Case 1) we take Fg, = I',.

Case 2: u(G) > (v4/2)u(Qo). We decompose this case further.

Case2a: ¥ = {Qo}. In this case, m(Dg, \ {Qo}) < au(Qp) (otherwise B = Qp which
violates the second property in Lemma 2.10). By definition of m (and pigeon-
holing) there exists Qg a child of Qg for which m(Q) < au(Qg). In this case
we may apply the induction hypothesis® to Q- Upon allowing the constants to get
“worse”, accommodating for the fact that £(Q;) = (1/2){(Qo) we have that H(a+b)
and H*(a + b) hold in this case.

Case2b: ¥ # {Qo}. By definition of G, for every Q; € G there exists Q j» a child
of Q;, for which it holds that m(é i) < a,u(é ;). Thus, we can apply the induction
hypothesis to any 0 ;€ é, the collection of all children of the cubes in G satisfying
m(é i) < a,u(é ;). Before we do that, we need to work with a collection of separated

Q; so that later we can maintain the upper regularity when we combine the sets
F 0 from the induction hypothesis. Using a standard covering lemma argument,
J

Here and below for notational convenience we take B and G to be collections obtained by using
Lemma 2.10, and not the collections from the corona decomposition. When we wish to describe a
cube from the corona decomposition, we will use the words to ‘good’,‘bad’ or ‘maximal’ cube.

3Here we apply H(a) when trying to prove H(a + b) and H*(a) when we are trying to prove
H*(a+D).
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we extract from é a finite* collection of cubes G’ = {0} € é such that

1(Ug Q) 2 u(UgQ)) = wG) 2 (va/2)(Qo),

where the implicit constants depend on d and C,, and
dist(Q, Q) = 80Co max{¢(Q), {(Qp)}, VO, O € G'(j # k).

Remark 3.7. Recall that since ||mg|| < Cb < 1/2 and Qg ¢ F it must be the case
that Qg € Sy for some stopping time regime Sy and, in fact, we have, by Lemma
3.5, that every cube Q € Dy ¢, has the property that Q € S as well. In particular, if
forevery Q' € G’ we write O to denote the grandparent of Q’; we have O’ € Dy g,
and hence Q}‘- € Sp.

To proceed with Case2b we now construct the set Fg,. If we are proving H(a+b)
we set Fy := I's,(Qp), where Sy is the stopping time regime such that Qg € Sp. If
we are proving H*(a + b), we take Fp = I's, (as usual). Now, regardless of whether
we are proving H(a + b) or H"(a + b), for each Q’; € G’, we apply the induction
hypothesis H(a) and we let

F j= F Q;_

be the set satisfying properties (i), (ii), (iii) (adapted to the scale/size of Q;-). Fi-
nally, we set
FQO = U?/:OFJ'.

Note that F, is a closed set, because it is the finite union of closed sets. We now
verify that the set F, has the necessary properties. When proving H(a + b) we
see that property (i) holds rather trivially, using the triangle inequality’. The next
easiest property to verify is (iii) (or (I) when proving H*(a + b)) and we do that
next.

F g, has property (iii) (or (II) when proving H*(a + b)): Recall that we have
shown that u(Ug Q}) > u(Qo), where the implicit constant depends on d and the
regularity constant for E. Also, by property (iii) for F; we have that u(F; N Q) >
ca(Q)). As the Q} are pairwise disjoint it follows that

Qo Fp) 2> wQiNF) =Y Q) 2 u(Qo).

i1 =1
which yields property (iii).
It remains to verify property (ii) (or (I) when proving H*(a + b)) for Fp, and

we decompose the verification into two steps: F, satisfies the upper regularity
condition and Fo, satisfies the lower regularity condition and Fp, € BP(E).

Fp, satisfies the upper regularity condition: Here we prove the upper bound
in the definition of Reg(C,, Cof(Q)) (When proving H(a + b)) or Reg(C’) (when
proving H*(a + b)). The proof is the same in either case (H(a + b) or H*(a + b)).

4Aside from finiteness, we do not control the cardinality. This is done only to ensure the union is
also closed.

SHere we use that Xp, € B(xg,, Cot(Qo)) so that B()CQ;_,ZOCOK(Q;‘)) C B(xg,,20Col(Q)) +
Col(Qo)) C B(xg,,20Col(Qy)), where we use that £(Q) = (1/2)((Q;) < (1/2)(Qo). Thus, using
property (i) for @ we have F; C B(xg,, 20Co¢(Qy)).
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Let x € Fg, and r € (0, 00). We consider the contributions from Fy and {F} >
separately. Notice that Fp C I's, regardless of whether we are showing H(a + b) or
H*(a+b), so that F satisfies the upper regularity condition. If B(x, r) meets F then
B(x,r) C B(y,2r) for some y € F and hence u(B(x,r)NFy) < u(B(y,2r)NFy) s r"
by the upper regularity property for Fo. We dominate the contribution from the
union of the sets {F;};>1 by

d uBErNFY< > uBxHNF)+ Y uBr)NF)
j=>1 j:é’(Q})>r j:t’(Q_’i)Sr
=: T1 + T2.

We first handle the term 7'} and we will see there is at most one non-zero term in
T. Note that by hypothesis F; C B(xQ;_, ZOCO{’(Q})) so that (as Cy > 1) if B(x,r)
meets F'; with E(Q}) > r, then B(x,r) C B(xQ}, 21C0€(Q;)). If B(x, r) were to meet
Fy for k # j then

B(xg;,21Cot(Q))) N B(xg;, 21Cot(Q)) # D,

and this contradicts the fact that dist(Q}, Q) = 80Cy max{f(Q}), £(Qy)}. Thus,
Ty =0or Ty = u(B(x,r) N F) for a single F'; with K(Q}) > r and, in that case, we
can use the upper regularity of F'; to conclude that 7 < .

We next handle the term 773. The collection of F; with £( Q;-) < r1is contained in
B(x,Cr) (C = 80Cy will do). Using the upper regularity for F'; we have u(F;) <
diam(Fj)d < g(Q;)d < ,U(Q}) and using that F; C B(xQ},ZOCof(Q})) we have
Q} C B(x,2Cr). Thus

Ty= Y u(F;nB(xr)

JQ)r

S Y, m@)<pBxCrHnE) s,
j:Qf/CB(x,ZCr)

where we have used that £ € Reg(C,). This shows that Fy, satisfies the upper
regularity condition.

Fg, satisfies the lower regularity condition and Fp, € BP(E): Let x € Fgp,
and r > 0 with the further restriction that r < Cof(Q) in the case we are proving
H(a + b). We decompose the proof into cases:

Case a: x € Fy.
Case §: x € F; for some j > 1 and r < (800 + n)COK(Q;-).
Case y: x € Fj for some j > 1 and r > (800 + n)Cof(Q}).

Case a: x € Fy. In this case, if we are trying to prove H(a + b) we just use
that F € Reg(26dC*, Col(Q) and Fy C I's, with I's, € &. Thus, by construction
Fy satisfies the lower regularity condition and is BP(E) (up to scale €(Qp)). In
particular, u(B(x,r) N Fg,) > u(B(x,r) N Fp) 2 r? and the set B(x,r) N Fy is a
subset of a set in & This takes care of case @ when showing H(a + b). When
showing H*(a + b), the proof is almost identical.
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Case 5: x € F; for some j > 1 and r < (800 + n)Coé’(Q}). In this case, we
simply use the BP(E) and lower regularity conditions for F';. In particular,

ﬂ(B(xa I") N FQO) Z,U(B(x, r) N Fj) > [

by the lower regularity property of F'; and using the BP(E) property of F; there
exists I' € & such that u(B(x,r) N Fo, NI > u(B(x,r) N F; NI 2 r". (Recall
that these properties hold for F; up to the scale £(Q;) by property (ii) for F';.) This
takes care of case 3.

Case y: x € F; for some j > I and r > (800 + n)Cof(Q;). Recall by the
discussion above (see Remark 3.7) that Q7 the grandparent of Q} is in the stop-
ping time regime Sg and hence, by choice of Cy, dist(xQ;,l"so(Qo)) < nf(Qj-).
Moreover, by the choice of Cy we have that dist(xQ},xQ;) < Col(Q)) and F; C
B(xQ;_, 40C0€(Q})). Thus, there exists z € I's,(Qp) such that dist(xQ}, 7) < né’(Q;-) +
80C0€(Q}) and the condition on r shows that B(z,r/2) C B(x,r). Now, using the
arguments of case a with r replaced by r/2 (which produces slightly worse esti-
mates) we can conclude that case vy can be taken care of

We have now proved property (ii) if we were trying to prove H(a + b) (or (I)
when proving H*(a + b)) and hence H(a + b) and H*(a + b) hold.

4. APPLICATIONS TO PARABOLIC UNIFORM RECTIFIABILITY

In this section we use Theorem 1.1, Theorem 1.2 and results from [BHHLN1]
to give a new characterization of parabolic uniformly rectifiable sets. We consider
n € Z and we will always assume that n > 1. We consider the Euclidean (n + 1)-
space R™! where points will be denoted by (Y,f) = (yi,...,yn?), where ¥ =
1,--.,yn) € R" and ¢ represents the time-coordinate. Let (-, -) denotes the standard
inner product on R” and let |Y| = (Y, Y \1/2 be the Euclidean norm of Y. We let
(Y, )]l := [Y] +14"/2. Given (Y, 1), (Z, 5) € R™*! we let

dpy(Y,1,Z,5) = dp(Y, 1), (Z, ) = Y = Z] + |t = 5]/,
Throughout the section we consider the triple
(X, dist, ) : X :=R"!, dist := dy, = HZ“,

and we let
d:=n+1.

Here Hﬁ” is the parabolic Hausdorff measure defined by

HYN(E) = a“l& HI5\(E),
where
HS () = inf {3 diam(Ej)"*! : E € UjE;, diam(E)) < 5}

(the diameter is taken with respect to the parabolic distance). We also let  denote
the set of hyperplanes in X containing a line parallel to the ¢ axis.
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As noted in the introduction, in [HLN1], [HLN2] the third and fifth author,
together with John Lewis, introduced a notion® of parabolic uniformly rectifiable
sets. Using the notation introduced the paper this notion of parabolic uniformly
rectifiable sets can be defined as follows.

Definition 4.1. Let £ C X. E is parabolic uniformly rectifiable set, or E is uni-
formly rectifiable in the parabolic sense, if £ € Reg(C) N GLem(P, 2, 2), for some
finite C > 1.

To introduce the Lipschitz type graphs of which we want to consider big pieces,
we first note that in [H2], [HL], [LM], [LS], [M] the authors established the correct
notion of (time-dependent) regular parabolic Lipschitz graphs from the point of
view of parabolic singular integrals and parabolic measure. To expand a bit on
this, recall that i : R" ! xR — R is called Lip(1,1/2), or Lip(1,1/2) regular, with
constant b, if

(4.2) W(x, 1) = Yy, I < bllx =yl + [t = s]'/%)

whenever (x,7) € R", (y,s) e R". ' =T C R™! is said to be a (unbounded)
Lip(1,1/2) graph, with constant b, if

(4.3) =Ty ={(x,%,1) e R XRXR : x, = ¢h(x, 1))}

for some Lip(1,1/2) function ¥ having Lip(1,1/2) constant bounded by b. ¢ =
w(x, 1) . R™! xR — R is called a regular parabolic Lip(1,1/2) function with
parameters by and by, if i satisfies

(i) WD) —vO, 0 <blx—y,x,ye R 1 eR,
(4.4) (i) Dy € BUOR"), D]yl < by < 0.

Here Dt1 /zg.l/(x, t) denotes the 1/2 derivative in ¢ of Y¥(x, -), x fixed. This half deriva-
tive in time can be defined by way of the Fourier transform or by

. _ A [ Yxs) —Y(x, D)
4.5) D p¥(x, 1) =¢ . T s—pr

for properly chosen ¢. || - ||. denotes the norm in parabolic BMO(R"). For a def-
inition of the space parabolic BMO(R") we refer to [HLNI1]. It is well known,
see [HL], that if  is a regular parabolic Lip(1,1/2) function with parameters b
and by, then y is Lip(1,1/2) regular with constant b = b(by, b;). However, there
are examples of functions ¢ which are Lip(1,1/2) regular but not regular parabolic
Lip(1,1/2), see [LS].

ds

Definition 4.6. We say that I" is a regular (or good) parabolic graph with pa-
rameters b; and by, I' € GPG(by, by) for short or simply I' € GPG if the pa-
rameters are implicit, if after a possible rotation of the spatial variables I' = T,
can be represented as in (4.3) for some a regular parabolic Lip(1,1/2) function
W =y(x, 1) : R x R = R with parameters by and b,.

SIn the original works of Hofmann, Lewis and Nystrom the product measure H"~' x H' was used.
This is unnecessary restrictive as was shown in [BHHLNT1]. In fact, using the methods here, one can
show that the weaker notion, using H;;*' implies the stronger notion using the product measure. This
is discussed in detail in [BHHLN1].
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We next formulate the following lemma which states that good parabolic graphs
are uniformly rectifiable in the parabolic sense.

Lemma 4.7. Assume that after a possible rotation of the spatial variables I" =T,
can be represented as in (4.3) for a Lip(1,1/2) function . Then T is uniformly
rectifiable in the parabolic sense if and only if D} ¥ € BMOR"), in particular, if
I' e GPG(by, by) then T" € GLem(%P, 2,2, M), where M only depends on d, by, b.

Proof. The fact that I' € GPG(by, by) implies I' € GLem(P, 2,2, M), with M de-
pending on d, by, b>, is proved in [H2, pp. 249-251]. In [H2] a different formula-
tion of the half-order derivative condition was used, but the two formulations are
equivalent for Lip(1,1/2) graphs, as is proved in [HL, Section 7]. The converse im-
plication, i.e., that if " is uniformly rectifiable then D} Y € BMO(R"), is proved
in [HLN1, pp. 370-373]. For both of these implications, the proofs in the cited
references are given in terms of continuous parameter versions of 3, rather than
the dyadic version, but it is easy to see that a Carleson measure condition for the
former is equivalent to a dyadic Carleson measure condition for the latter. O

To proceed we next state the following result concerning Corona decompositions
of parabolic uniformly rectifiable sets. The theorem is proved in [BHHLN1].

Theorem 4.8. Let E C X and assume that E € Reg(C,) N GLem(P,2,2, M), i.e.,
E is uniformly rectifiable in the parabolic sense. Suppose 0 < nand K > 1. Then
there exists by, by, both depending at most of d, C.., M and n, K such that E admits
an (1, K)-coronization with respect to & = GPG(b, by).

Using Theorem 4.8 we are able to specify and apply Theorem 1.1 and Theorem
1.2 to the parabolic setting. Theorem 1.1 yields the following.

Theorem 4.9. Suppose that E € Reg(C.) admits a coronization with respect to
& = GPG(by, by) for some fixed by, b,. Then E € BP?(GPG(b, b»)) with constants
depending on d, C,, by, by and the constants in the coronization.

Theorem 4.7 says that I' € GPG(by, by) implies I € GLem(%, 2,2, M) with M =
M(by, by, d). It is easy to deduce the weak geometric lemma from the geometric
lemma (see, e.g., [HLN1, Section 2]), and in particular, I' € GPG(by, by) implies
that for every € € (0, 1] there exists M, depending on d, b1, b, and € such that
I' e WGLem(P, €, M¢). Due to the graph structure the following lemma holds.

Lemma 4.10. Assume that after a possible rotation of the spatial variables I' =
[y can be represented as in (4.3) for a Lip(1,1/2) function . Suppose that for
every € € (0, 1] there exists M, such that I' € WGLem(P, €, M¢). Then for every
€ € (0, 1] there exists M. depending on the Lip(1,1/2) constant, d and the function
v(€) := M such that T € BWGLem(P, €, M)). In particular, if T € GPG(by, by)
then for every € € (0, 1] there exists M depending on d,b,by and € such that
I' e BWGLem(P, €, M).
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Proof. Given € € (0, 1] assume that I' € WGLem(P, €, M,). Let Q € D(I') and let
(Xg, tp) denote the center of Q. Consider

Ber(Q) = inf dialm(Q)_1 sup dist((Y, s), P) .
s (Y,5)€20
Given Q we let

Po :={P € P : P passes through (Xg,?9)}

and we introduce

(Ys)e20

Brr(Q) = inf {diam(Q)‘1 sup dist((Y, s),P)}.
PePg

Then
(4.11) Br.r(Q) < Bpr(Q) < Bpr(Q)

where the constant ¢ > 2 is independent of Q and I'. Consider an arbitrary P € P.
Then

bBpr(Q) < diam(Q)™" sup dist((Y, 5), P)
Y,5)e20

(4.12) + diam(Q)~! sup dist((Z, 7),T).
(Zr)ePNB((Xp,tp),2 diam(Q))

Using that I is the graph of a Lip(1,1/2) function with constant b we see that there
exists a constant K = K(b) > 1 such that

(4.13) sup dist((Z,7),I) < sup dist((Y; s), P).
(Z1)ePNB(Xg,ip),2 diam(Q)) (Y.s)eKQ

Combining (4.11)-(4.13) we deduce that

(4.14) bBpr(Q) < c(b)Bpr(KQ).

Using this inequality we see that for every € € (0, 1] there exists M. depending
only on b, d and the function y(€) := M, such that

[ e BWGLem(®P, €, M)).
m}

Theorem 1.2 now yields the following where Lemma 4.10 is used in part (iii).

Theorem 4.15. Suppose that E € Reg(C.) admits a coronization with respect to
& = GPG(by, by) for some fixed by, by. Then the following hold.

(i) E € GLem(P, 2,2, M) where M depends on C., by, b,,d and the constants
in the coronization. In particular, E is uniformly rectifiable in the parabolic
sense.

(ii) For every € € (0, 1] there exists M, depending on €,C., b1, b>,d and the
constants in the coronization, such that E € WGLem(P, €, M,).

(iii) For every € € (0, 1] there exists M., depending on €,C.,by,by,d and the
constants in the coronization, such that E € BWGLem(%, €, M)).

Specializing to the case of the Geometric Lemma, we conclude with the follow-
ing, which is an immediate corollary of previously stated results.
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Theorem 4.16. Suppose that E ¢ R""!, and E € Reg(C.,), for some C, > 1. Then
the following are equivalent:

(1) E is uniformly rectifiable in the parabolic sense.
(i1) E admits a coronization with respect to & = GPG(by, by) for some by, b.
(iii) E € BP2(GPG(b;, by)).

Indeed, observe that (i) implies (ii) is Theorem 4.8, which is one of the results
that will appear in our forthcoming paper [BHHLNT1]; (ii) implies (iii) is Theorem
4.9; finally, the implication (iii) implies (i) follows from Lemma 4.7, and the stabil-
ity result Proposition 2.29, applied with p = g = 2, and with A = P, the collection
of all hyperplanes parallel to the r-axis.

We conclude this section with a corollary concerning singular integral operators
on parabolic uniformly rectifiable sets. Let d = n + 1 denote the parabolic homo-
geneous dimension of R”. Given a positive integer N, we shall say that a singular
kernel K satisfies (d-dimensional) “C-Z(N)” estimates if K € CN(R™*! \ {0}) and

V¢ K0 < Cill( ™72, VO<j+k<N.

Corollary 4.17. Suppose that E ¢ R™! is uniformly rectifiable in the parabolic
sense. Let K € CN(R™! \ {0}) be a C-Z(N) kernel. Assume further that K(Y, 1) is
odd in'Y, for each fixed t, i.e., K(Y,t) = —K(-Y,t), for every Y € R",t € R. For
each € > 0, define the truncated SIO

T.f(Y,1) := ff KY-2Z1t-5)f(Z s)dYds.
IY=Zt=9)ll>¢

Then for N sufficiently large, we have the uniform L* bound
(4.18) sup ITefllr2y < Cllfllz2ey »
>0

where C depends only on K, n, and the constants in the parabolic uniformly recti-
fiable and ADR conditions for E.

By the “good-1" method employed Guy David (and Cotlar’s inequality for max-
imal singular integrals, see [D, Proposition 111.3.2]), the L? bounds in (4.18) are
stable under the “big pieces functor”. Thus, by Theorem 4.16, the conclusion of
the corollary is reduced to the case that E is a Good Parabolic Graph in the sense
of Definition 4.6. In turn, the latter case follows essentially from [H2] (using the
method of [CDM]). The results in [H2] apply directly only to the case that K
satisfies the parabolic homogeneity condition

K@pY.p’n = p K(Y,0, Yp>0,
but in fact the arguments in [H2] may be adapted to treat the non-homogeneous
case as well. Details will appear in a future publication, see the note [BHHLNZ2].

To conclude this section we make an observation that draws a contrast between
the study of uniformly rectifiable sets and sets which are uniformly rectifiable in
the parabolic sense.

Observation 4.19. Let n > 2. There exists a Lip(1,1/2) graph T in R™*! such that
for every € > 0, ' € BWGLem(P, €, M)) with M. depending on €, but T is not
uniformly rectifiable in the parabolic sense.
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This observation seems to suggest that there may be no ‘useful’ Carleson set
conditions which characterize sets which are uniformly rectifiable in the para-
bolic sense (there are many such characterizations of uniformly rectifiable sets).
To make the observation, we simply use the Lip(1,1/2) graph constructed at the
end of [HLN1], which is not uniformly rectifiable in the parabolic sense (and re-
lies on the work of Lewis and Silver [LS]). The function defining the graph is
a product of a smooth compactly supported function of the spatial variables and
a function of #. The modulus of continuity of the function of ¢ is bounded by
w(t) = C min{(7/ log(1/ 7))!/2, 1}. From this information we make the estimate

bBp(Q) < C, min{(log(1/6(Q) "%, 6"}, VQeD.

Therefore if bBp(Q) > € > 0 then it must be the case that £(Q) € [e~ €/ C,/€].
Thus, for any fixed € > 0, the collection of cubes Q € D such that bBp(Q) > €is a
subset of a finite collection of generations of the dyadic lattice D. Using this fact,
for any fixed € > 0 the packing condition for the collection {Q € D : bBp(Q) > €}
in Definition 2.23 holds.

APPENDIX A. PrOOFS OF ProPosITIONS 2.29-2.31

We here prove Propositions 2.29, 2.30 and 2.31 concerning the stability of var-
ious ‘geometric lemmas’ in this general setting. As previously stated, we claim
modest originality but the propositions are used in our application to parabolic uni-
form rectifiability in the previous sections and the propositions have previously not
occurred in the literature in that context. While the proofs of the propositions fol-
low almost exactly those in [DS2, R], a difference is that we work with the dyadic
versions of the ’s and I’s, rather than the continuous parameters versions. In the
generality in which we work here, it is not clear to us whether the continuous pa-
rameter 3’s are necessarily measurable.

As the proofs of Propositions 2.29, 2.30 and 2.31 all start the same we start out
by proving them simultaneously. Recall that we are assuming E € BP(&) where &
is a collection of regular sets satisfying a particular geometric lemma (depending
on which proposition we are proving).

Fix R € D(E) and let E € & be such that u(E N R) > cf (see Lemma 2.19).
Suppose that Q C Rand QN E # . Then there exists Q = Q(Q) € D(E) such that
diam(Q) > 10diam(Q), 0N 0 # @, and

diam(Q) < C, diam(Q),

for some constant C; depending only on the d-regularity constant and dimension.
For every such cube Q we choose one such Q. Note that by regularity of E for
fixed Q" € D(E),

(A.1) #{0 € D(E) : 10diam(Q) < diam(Q’) < C> diam(Q)} < L,

where L depends only on the d-regularity of E and dimension. Let 6(y) = dist(y, E)
and E1 = E\ E.

In the following we will for simplicity write B, 8, b for Ba 4, Ba, bBa. In anal-
ogy we let 5,8, b denote the B’s defined with respect to £
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We next state five lemmas, Lemmas A.2-A.6. Lemma A.3, Lemma A.4 and
Lemma A.5 pertain to Propositions 2.29, 2.30 and 2.3 1, respectively. We postpone
the proofs of Lemma A.2-A.6 for now to completed the proof of Propositions 2.29,
2.30 and 2.31. The proofs of the lemmas given at the end of the section.

Lemma A.2 ([DS2, Lemma IV.1.12]). Let E € Reg(C,) and a : D(E) — [0, 00).
Suppose that there exists N > 0 and n > 0 such that

u xX€ER: Z a(Q) <N > nu(R), VYR eD.
03x, QCR

Then there exists C = C(C.,d, N,n) such that
> AQu(Q) < Cu(R). VReD.

QOCR

Lemma A.3. For g€ (0,00) if O N E+Q
BAQ) < C@) [B0) + 140)]

where
1/q

W@ = w@™ [y, NG duo)

8(y)<2 diam(Q)
LemmaAd. fONE + @
BO) < Cu [B(O) + 1-(0)] .

where

Io(Q) = sup  [6(y)(diam(Q))™'].
_ ye20NE)
o(y)<2 diam(Q)

LemmaA.5. fQNE + @
BEO) < Cy [BBA(D) + () + 1l D)

where

1(0) = sup [dist(z, E)(diam(Q))"].
7€20NE;
dist(z,E)<2 diam(Q)

Lemma A.6 ([DS2, Lemma IV.1.37]). Consider E;, E3 € Reg(C.) and let, for
0 € D(Ey) and q € (0, ),

1/q
1,(0) = (u(Q)‘l / [dist(z, Ez)(diam(Q))_l]"du(z)>

dist(z,E3)<2 diam(Q)
and set
1(Q) = sup [dist(z, E3)(diam(Q))™'].
z€20
dist(z,E3)<2 diam(Q)
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Assume that p € (0,00) and g € (0, o] satisfy é - % + é > 0. Then there exists a
constant Cp, 4 depending on p, q,d and C, such that

(A7) S 1,0V 1(Q) < Cpgu(R), VR ED.
OCR

Moreover,
> u(Q) < CuR),

OCR
I(Q)>€

where C depends only on d and C...

A.1. Completing the proofs of the main propositions. Now with Lemmas A.3,
A.4 and A.5 in hand, we prove each proposition separately. To prove Proposition
2.30 is similar and easier than proving Proposition 2.31 and we therefore leave
the proof of Proposition 2.30 to the interested reader. In the following we prove
Proposition 2.29 and Proposition 2.31 and we start with the proof of the latter.

Notice for x € RN E when x € O C R the cube we associate in E satisfies
Q € B*(R) = B(xg,10C; diam(Q)) and diam(é) < Cpdiam(R). By making C»
larger we may assume that é is contained in a cube R such that C, diam(R) <
diam(R) < C3 diam(R). Set

F ={R € D(E) : RN B*(R), C; diam(R) < diam(R) < C5 diam(R)}.

By the d-regularity of Eit follows that #F < L', where L’ depends only on dimen-
sion and the d-regularity of E. Moreover, by the hypothesis that E € BWGLem(A, €, M)
and Lemma A.6

ol X wO+ Y wO| <) B
ReF™ \QCR. bp(Q)>e OCR, T(Q)>€ ReF
(A.8) S u(R),
where the implicit constant depends on € M, the d-regularity constant and dimen-

sion and we used the cardinality bound on ¥, the d-regularity of E and the fact that
diam(R) ~ diam(R). Moreover, directly from Lemma A.6

> Q) < R,
QCR
I (Q)>€

where the implicit constant depends on €, d-regularity and dimension.

SEt C= ;%VC "3 then by Lemma A.5 if 8(Q) > 3Cpe it must be the case that either
bB(Q) > €, I.(Q) > € or I,(Q) > €. Using that

/ N > 1| dutx) < > Jrite)
RNE

03x, OCR, f(Q)>3Cpe OCR, B(Q)>3Cpe, QNE2D

oY, wO+Y | Y wd+ Y, w0,

OCR, 1o(Q)>€ ReF \QCR, bp(Q)>¢ OCR, Io(Q)>€
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and that as the expressions on the second line is bounded by < Acu(R) we can
conclude that

(A9) Ll X 1) s ase,
ROE\ 0sx, OcR, B(Q)>3Cye

where A, depends on €, M, the d-regularity constant and dimension. Here we used
(A.1) and u(Q(Q)) =~ u(Q). Thus, using Chebyschev’s inequality, if a(Q) defined
by

0 otherwise,

o(0) - {1 if B(Q) > 3Cye

there exists N, 7 > 0 depending on 6 and A such that

p|{xeR: > a(@<Nj | 2nu®, VReD.
O>x, QSR

Indeed, for if

Fy={xeRNE: ) a@=N;,
O>x, OCR
then the estimate (A.9) above gives
Nu(Fn) < Aeu(R).
In particular, N sufficiently large u(Fy) < (c6/2)u(R) < (1/2)u(RN E) and hence

UR\ Fy) 2 (1/2u(R N E) 2 (c0)/2u(R) =: nu(R).
Applying Lemma A.2 gives Proposition 2.31.

Now we prove Proposition 2.29, which is similar to Proposition 2.31. Let # be
as above. Since E € GLem(A, p, g, M)

> B O £ ) u(R) S p(R).
ReF QCR ReF
Again, using Lemma A.6 directly we have
> 1,0 u(Q) $ u(R).
OCR
Then using Lemma A.3, we obtain

/R~ ST B | dur < YT BUOPH(Q)

NE \ 02x, OcR OCR, ONE+(
SLpg O Y B0 1(Q)
ReF QQE

+3 1, u(Q)

OcR
< A'u(Q),
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where A’ depends on M, the d-regularity constant and dimension. Arguing along
the same lines as above we can conclude that there exist N* > 0 and 7 > 0 such
that

p|SxeR:D B <N 3 | 27u(R), YReD.

O>x
OCR

Applying Lemma A.2 gives Proposition 2.29.

A.2. Proof of Lemma A.2-Lemma A.6.

Proof of Lemma A.2. The lemma is of John-Nirenberg type the lemma holds in our
setting with no modifications compared to proof in [DS2]. m|

Proof of Lemma A.3. The proof follows almost exactly as in [DS2, Lemma IV.1.20]
Fix Q, O, g as in the hypotheses of the claim and 7 > 0. Let A € A be such that

(A.10) </1(Q)_l / _dist(y, A)? d#@) < [diam Q]B,(0) + 1.
20
By definition we also have, for this choice of A,

1/q
(A.11) [diam Q]B,(Q) < <,U(Q)_l /2 0 dist(y,A)"du(y)) .

To simplify notation, in what follows we set p(u) = dist(u, A) for u € X. By the
triangle inequality (with a constant in the case 0 < g < 1) we have

1/q
[diam Q]B8,(Q) < C(q) (u(Q)‘1 / ~;O(y)qdu(y)>
20NE

1/q
+C(Q) (u(Q)l / p(y)qdﬂ(y)>
20NE;

< C(g, C, d)([diam Q18,(Q) + 1)

(A.12)

1/q
+C(q) <ﬂ(Q)_1 / P(J’)qd,u()’)> ,
20NE;

where we have used that E, E are d-regular with constant C to get u(Q) = ﬂ(é),
with constants depending only on the homogeneous dimension d and the regularity
constant C, and also the fact that 20 N E C 20 by the properties of Q. It thus
remains to estimate the last expression in the above.

We set g(') = dist(-, £) and define the following “multiplicity” function M :
E x(0,00) > R given by

. By -d _. < -d
(A.13) M(z,s) := /weEl,E(w)SS o(w)™“ du(w) —./F ow)™“ du(w).
. e (z.8)
dist(z,w)<26(w)
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The first basic property of M that we will need is that there exists Ky > 0 such
that for every u € X and s > 0 it holds

(A.14) / M(z, 5) du(z) < Kos°.
B(u,s)NE
This is a simple application of Fubini’s Theorem:
/ Mz, 5)du(z) = /~ / g(w)_le(Z,s)(w) lB(u,s)nE(Z) du(w) du(z)
B EJE

(A.15) 7BEINE

<[ Gt [ dueduo
B(u,3s)NE Bw,26(w))NE

where we have used the fact that if w € F(z,s) then dist(u,w) < dist(u,2) +
dist(z, w) < s+ 26(w) < 3s. The desired bound now follows from the regular-
ity of E and E.

We now define, for K; > 0 and the set
(A.16) G(y) := {z € E : z € B(y,25(y)), M(z,20(y)) < Kl} .

It follows from (A.14) and Chebyshev’s inequality that there exists K, depending
only on d and the regularity constant C, such that

(A17) w(GQ)) = sy,

for some constant ¢ > 0 also depending only on d and C. Notice also that the re-
verse inequality, with a different constant, follows immediately from the regularity
of E and the fact that G(y) C B(y, 2y).

We claim that, for every y € E; N 20,
(A.18) ()7 < Clq.d, O + Cg.d, CIF() ™ /G P )
Y

To see this we fix y as above and z € G(y) to obtain, by the triangle inequality,

(A.19) P! < C(g)dist(y, 2)? + C(q)p(2)?.

Integrating the z variable over G(y), and using (A.17), the estimate (A.18) follows.
We use this to estimate

w0y / ()7 duy)
20NE;

< C(g.d. Op(Q)"! /

20NE

5()7 du(y)
+C(q,d, Op(Q)™ / s ™ / p(2)7 du(z) du(y)
20NE| G(®y)

< C(g,d, O)u(Q)™" / ™ [ p)? du(z) du(y)

20NE, G@)
+ C(q,d, C)[diam Q]71,(Q)?

(A.20) =: C(q, d, C)[diam Q]1(J,(Q)* + 1,(Q)?).
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Using Fubini’s Theorem, together with the fact that for y € 2Q we have G(y) C
B(y,20(y)) N E C 20 by definition of G(y) and Q, we can estimate J, as follows

[diam 017/,(Q)"
(A21) - W) / / 50) p () L6y La0mi () du(z) i)
EJE
(A22) U™ [ [ 300 (Y o).
20 !
2€G(y)
We now claim that the inner integral is bounded by the constant K1, i.e.
- )
(A23) Lo, 30V dut) < Ki. - vzeE.
z€G(y)

To prove this we fix z € E and choose yo € E1 N20 such that z € G(yp) (if no such
Yo exists then the integral is zero and we’re done), with the additional property

- 1 -
(A.24) 0(yo) = 5 sup{é(y) : y € 20N Ey, z€ GOy}

By definition of G(yg) we have M(z, 25(yo)) <Kj,ie.

(A.25) / s du(y) < K.
F(2,26(y0))

The claim now follows from noting that
(A.26) (ye E:ye20nE; zeG(y)C F(z25(y)).

Ihis in turn follows from the fact that z € G(y) implies |z — y| < 25(y), while
6(y) < 26(yp) by our choice of yg. This proves (A.23).

Using (A.23) in the estimate for J, we arrive at

1/q
[diam Q]J4(Q) < C(g,d, C) <,U(Q)_1 /2 ép(z)q du(z)>

(A.27) < [diam Q1B,(Q) + 1,

where we used our choice of A € A for the last inequality.

Plugging this estimate into (A.20) we see

w(Q)™! /2 o o du(y) < C(g,d, C)[diam Q11(B,(Q)! + I,(Q)7)
NE;
(A.28) +C(q,d,C)nf.

Going back to (A.12) and letting 7 — O the result follows. |

Proof of Lemma A.4. The proof of this claim will be omitted. It follows the same
lines as Lemma A.5, and is in fact simpler. The idea is to mimic the argument in
the proof of that claim, with the obvious modifications, up to the estimate (A.32)
at which point we let 7 — 0. |
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Proof of Lemma A.5. Fix Q, Q as in the statement of the claim and n > 0. Let
A € A be such that

(A.29) sup dist(y, A) + sup dist(z, E) < [diam Q16B(Q) + 1.
ye20 2€ANB(x 5,2 diam 0)

By definition of 8(Q), for this choice of A it holds

[diam Q]bB(Q) < sup dist(y,A) + sup dist(z, E)
(A.30) ye20 2€ANB(xg,2 diam Q)

=11+ 111

To estimate // we proceed as follows. Fix y € 20 and let y € E such that
dist(y,y) < 6(y) +n. By our choice of Q, in particular since Q N E # @ and
diam Q > 10diam Q, we may assume y € 20 so that

dist(y, A) < dist(y, y) + dist(¥, A)
(A.3D) < 3(y) + sup dist(¥, A) + 1.
ye20

Taking the supremum over all y € 2Q we arrive at

11 = sup dist(y,A) < sup g(y) + sup dist(y,A) + 7
ye20 ye20 }ewé

= sup g(y) + sup dist(y,A) + 7
(A.32) YE20NE, 720
5(y)<2 diam Q

= [diam Q]I(Q) + sup dist(y, A) + 1,
ye20

where in the sgcond line we have used the definition of 6 = dist(-, E), and again the
fact that QN E # @.

To estimate /11 we proceed similarly. Fix z € A N B(xp,2diam Q) and lety € E
be such that dist(y, y) <d(z,E) +n. Arguing as before we see that we can choose
y such that y € 20 and 6(y) < 2 diam Q, so that

dist(z, E) < dist(z, y) + dist(y, E)
< dist(z, E) + dist(y, E) +
(A.33) <dist(z, E)+ sup dist(,E) + 7
ye20
5()<2 diam Q0
= dist(z, E) + [diam Q]I(Q) + n.

Taking the supremum over all such z gives

(A.34) I < sup dist(z, E) + [diam Q]1(Q) + 7.
2€ANB(x5,2 diam 0
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Combining the estimates for /7 and /1] we arrive at

I1 + 11 < sup dist(y, A) + sup dist(z, E)
y€20 2€ANB(x .2 diam 0)

+ [diam Q]I(Q) + [diam Q]I(Q) + 21
< [diam Q1bB(Q) + [diam Q1I(Q) + [diam Q]I(Q) + 37,

(A.35)

where we used (A.29) for the last line. Plugging this last estimate into (A.30) and
letting 7 — O the result follows. m|

Proof of Lemma A.6. First note that the last statement follows from the case g = o
p = 2d and Chebyshev’s inequality. In the following we give the proof in the case
p = q (this case always satisfies the inequality for d, p and ¢). Using Tonelli’s
theorem

D 1(QuQ) =Y 1,0 ()

OCR OCR
= Z [dist(z, E3)(diam(Q)) 17 du(z)
OCR 2€20
dist(z,E3)<2 diam(Q)
- / Z [dist(z, E3)(diam(Q))""1? | du(z)
2R

2057
2 diam(Q)>dist(z,E3)

e / 1 du(z) < Cu(R).
2RNE3

Now notice that I,(Q) < C, so that the case g < p easily reduces to the case p = g.
The question then becomes how large we can make g. Observe that

1o(Q) " < C,1,(0),

where Q is the smallest cube containing Q for which diam(@) > 2diam(Q). This
follows from the fact that if z € 2Q with 0 < dist(z, E3) < 2 diam(Q) then by the
d-regularity of E

[dist(z, E3) diam(Q) ™'

< Cu(Q)! / [dist(w, E3) diam(Q)™' du(w)
B(zdist(y,E3)/10)NE>
< CL(Q).

Notice that we can make the assumption that dist(z, E3) > O since the z for which
dist(z, E3) = 0 do not factor into the definition of /.,(Q) unless I,(Q) = 0. The rest
of the proof is just playing ‘the exponent game’ and we refer the reader to [DS2]
for the details. O
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