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A B S T R A C T

We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the
Navier–Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor
evolution [1]. In this model, the material behaves as a viscoelastic solid when unyielded, and as a viscoelastic
Oldroyd-B fluid for stresses higher than the yield stress. The porous media is made of a symmetric array of cylinders,
and we solve the flow in one periodic cell. We find that the solution is time-dependent even at low Reynolds
numbers as we observe oscillations in time of the unyielded region especially at high Bingham numbers. The volume
of the unyielded region slightly decreases with the Reynolds number and strongly increases with the Bingham
number; up to 70% of the total volume is unyielded for the highest Bingham numbers considered here. The flow is
mainly shear dominated in the yielded region, while shear and elongational flow are equally distributed in the
unyielded region. We compute the relation between the pressure drop and the flow rate in the porous medium and
present an empirical closure as function of the Bingham and Reynolds numbers. The apparent permeability, nor-
malized with the case of Newtonian fluids, is shown to be greater than 1 at low Bingham numbers, corresponding to
lower pressure drops due to the flow elasticity, and smaller than 1 for high Bingham numbers, indicating larger
dissipation in the flow owing to the presence of the yielded regions. Finally we investigate the effect of the
Weissenberg number on the distribution of the unyielded regions and on the pressure gradient.

1. Introduction

Fluid flows through porous media are relevant for different in-
dustrial applications such as oil recovery, polymer extrusion, filtration
processes and food processing. They are also present in biological flows
that involve mass transfer across organic tissues, like blood vessels,
kidney and lungs. Sedimentary rocks and riverbeds are examples of this
kind of flows in nature [2]. The difficulty in understanding these flows
arises from the complex structure of the porous media as well as from
its multiscale nature; often, the non-Newtonian behaviour of the in-
volved fluids further complicates the dynamics.

The objective of this work is to investigate the elastoviscoplastic (EVP)
flow through a porous medium and understand the role of yield stress in
the relationship between the pressure drop and the flow rate. Hence, the
focus of the work will be on non-Newtonian effects in porous media.

1.1. Porous media

Porous media can be defined as a solid matrix with interconnected
cavities distributed inside. Usually, these materials are described from a

macroscopic point of view, yet the relevant parameters strongly depend
on the microscopic structure. The characteristic properties of a porous
medium are the porosity and the permeability. The porosity, ε, measures
the void space inside the material and is defined as the ratio between the
volume of the voids and the total volume of the medium, thus, varying
between 0 and 1. The permeability, K, measures the ability of the flow to
pass through the porous medium and has the dimension of a length
squared. If the medium is impermeable =K 0 whereas, if the medium
offers no resistance to a flow, the permeability is infinite. Typical values
of porosity for porous media can range from 0.32 for cylindrical packings,
to 0.8 for foam metals [3,4]. Most synthetic and natural porous media
exhibit inhomogeneity due to the randomness of their structure. How-
ever, in literature is a common practice to consider as a first approx-
imation the medium as homogeneous and composed of an array of cy-
linders and consider only a periodic cell [5–7], thus we adopted the same
discretisation in this study.

From an engineering point of view, it is of primary importance to
determine the pressure gradient required to obtain a desired flow rate
through the porous medium. The pioneer in the field was Darcy who, in
1856, derived an empirical one-dimensional relation between flow rate
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and pressure drop, i.e., the well-known Darcy law [8]. The law was then
extended into three dimensions, see for example [9], and also derived
theoretically by Whitaker [10]. Note that this analytical relation be-
tween the pressure drop and the flow rate across the porous media is
valid only for Newtonian fluids. An extension of Darcy law to non-
Newtonian flows has been derived using homogenisation theory, see
[11]. In particular, Hornung [11] states that the system of equations
derived with the homogenisation method reduces to a non-linear Darcy-
like law only if the flow is directional and that “We can not always expect
to have laws as simple as Darcy’s, describing complex natural phenomena”.
It is worth noticing that the law derived in Ref. [11] is based on the
assumption of a steady-state flow and in the absence of elasticity ef-
fects, i.e. generalized Newtonian inelastic fluids. However, many real
flows in porous media exhibit both elastic and plastic properties. Ad-
ditionally, other effects that produce non-Darcy behaviours should be
considered, inertia being one example of those; see for example Refs.
[12,13].

1.2. Non-Newtonian flow in porous media

The fluids flowing inside porous media exhibit often a non-
Newtonian behaviour, characterised by strain- and time-dependent
viscosity, yield-stress and/or stress relaxation [14]. Many models
(constitutive equations) have been proposed in literature to describe
these materials, from simple power laws for inelastic shear-dependent
viscosity fluids to more complex visco-elastic models like the Oldroyd-B
closure. The reader is refereed to Ref. [15] for a detailed review of non-
Newtonian flows in porous media.

Viscoelastic fluids exhibit both viscous-fluid and elastic-solid be-
haviour. Polymer solutions are often modelled as viscoelastic materials.
Their behaviour can be described combining the Newton law for vis-
cous fluid with Hooke law for elastic solid, as done originally by
Maxwell [16]. In viscoelastic fluids, the stress depends on the history of
the rate of strain, with a fading memory. Hence, for slow deformation
viscoelastic materials behave as viscous fluids whereas for fast de-
formation they behave as elastic solids. For this reason, the important
parameter characterising the flow of viscoelastic fluids is the ratio be-
tween the material time scale and the time scale of the flow, indicated
by the Deborah number (De) [17].

Flow of viscoelastic materials through porous media has been the
object of numerous research in the past owing to the large range of
applications involved. Experimental studies have been performed to
investigate the pressure drop changes due to elasticity [18–20] or the
instability onset for high Deborah numbers [5,21–23]. Numerical si-
mulations have also proved to be a valid tool to investigate viscoelastic
flows in porous media, uncovering the details of the fluid deformation
and stresses. Alcocer and Singh [24] studied the viscoelastic flow
through an array of cylinders using the finite element method and a
FENE (finitely extensible nonlinear elastic) model for the stresses. These
authors have shown the influence of the cylinder distribution and De-
borah number on the permeability of the medium. Richter et al. [25]
studied the effects of the Reynolds number on the instability of a FENE-
P viscoelastic fluid flowing around a cylinder and reported an increase
in the drag for higher extensibility of the polymer as well as the sup-
pression of the three-dimensional Newtonian B-mode instability for
Re∼ 300. A similar study, but for the flow around a sphere is presented
in Ref. [26]. The effect of high-Weissenberg number (defined as the
ratio between elastic force and viscous force) has been investigated for
the Oldroyd-B and Giesekus model in Ref. [27,28]. It is shown that by
mean of the log conformation representation it is possible to obtain
average convergence of the solution beyond the limiting Weissenberg.
More recently, Grilli et al. [29] have simulated the elastic turbulent
flow of an Oldroyd-B fluid through an array of cylinders. De et al. [7]
have anaylzed the effect of the arrangement of the cylinders on the flow
at low Reynolds numbers. They have found differences between sym-
metric and asymmetric configuration in the flow characteristic and

effective viscosity. The effects of elasticity on a flow through a porous
medium composed of a random distribution of spheres has been studied
in [30,31] while the effect of the cylinder distribution on the elastic
instability has been investigated in [32]. Similarly, Shahsavari and
McKinley [33] studied the flow of a Carreau fluid through a periodic
array of cylinders and proposed a scaling for the mobility functions.

As already stated before, viscoelasticity is not the only property
exhibited by non-Newtonian fluids. Another important characteristic is
the yield stress or the ability to sustain shear stress. A yield stress fluid,
or visco-plastic fluid, behaves as a solid below the yield stress and as a
fluid above. A list of several materials exhibiting yield stress is provided
in [34]. The first attempt to study the rheology of a viscoplastic ma-
terial dates back to Schwedoff [35], based on the Maxwell model. Next,
Bingham [36] proposed a one-dimensional stress-deformation rate
equation that was extended into three dimensions and coupled with the
Navier–Stokes equations by Oldroyd [37]. The latter also proposed a
new constitutive equation considering a linear Hookean behaviour
before yielding. According to this model, the material is no longer rigid
before yielding and the stress is expressed as function of the strain and
not the strain rate, leading to a cuspid in the constitutive equation.

Experiments of sediments and particles interactions in Carbopol
solutions and Laponite suspensions [38–40] have shown the loss of
symmetry corresponding to the elastic effects. Therefore, it is essential
to include elastic effects in dealing with conventional yield stress test
fluids such as Carbopol, yet only few works have been conducted to
introduce elasticity alongside plasticity.

Recently, Saramito [1] proposed a constitutive equation for EVP
fluid flows based on thermodynamic principles. This model reproduces
a viscoelastic solid for stresses lower then the yield stress whereas the
material behaves as a viscoelastic Oldroyd-B fluid for stresses higher
then the yield stress. To describe the fluidisation process it uses the von
Mises yielding criterion, which has been experimentally confirmed
[41,42]. Other models based on the Papanastasiou regularisation have
also been proposed to model yield stress [43,44], see [45] for a detailed
analysis of these models.

The model proposed in [1] was extended by the same author to
account for shear-thinning effects [46]. The new model combines the
Oldroyd-B viscoelastic model with the Herschel–Bulkley viscoplastic
model, a power law with index n>0. When =n 1 the model reduces to
the one proposed in [1]. Benito et al. [47] derived a minimal, fully
tensorial, rheological constitutive equation for EVP flows to study the
behaviour of immortal fluids: it can describe a large deformation in the
elastic regime and predict viscoelastic fluid after yielding. To avoid the
zero loss modulus at low shear, Dimitriou et al. [48,49] proposed a new
constitutive model based on the Isotropic Kinematic Hardening (IKH)
idea. This model can predict thixotropic behaviours and has been
proven to correctly describe EVP materials such as waxy crude oils.
Armstrong et al. [50] modified the Delaware thixotropic model and
proposed a new structure-based model which accounts for shear-in-
duced aggregation. This new model has been shown to correctly de-
scribe SAOS (small amplitude oscillatory shear) and weak LAOS (large
amplitude oscillatory shear) flows. More recently, Wei et al. [51] pro-
posed a new model to predict transient thixotropic EVP (TEVP) flow.
They combined the multi-lambda (ML) model of Wei et al. [52] with the
IKH of Dimitriou and McKinley [49] deriving a new constitutive
equation, called ML-IKH, with 12 parameters. This new model accounts
for a non-linear thixotropic kinetic equation, kinematic hardening and
linear viscoelasticity and has been proven to correctly describe TEVP
flows in many conditions, such as LAOS and shear reversal.

Many attempts have been carried out in recent years to derive ex-
perimentally a relation between the pressure drop and the flow rate in
porous media for a yield stress fluid [53–56]. Balhoff and Thompson
[57] noted that it is not clear if a general relation can be found for yield
stress fluid flows or it should be derived case-by-case. Cheddadi et al.
[58], in particular, have studied the flow of an EVP fluid around an
obstacle and shown that viscous, elastic and plastic effects cannot be
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considered separately before and after yielding but need to be taken
into consideration simultaneously. Only few numerical studies have
been conducted for yield-stress and, in particular, for EVP flows, see
[59] and references therein. Recently, Roustaei et al. [13] have in-
vestigated numerically the flow of a yield stress fluid along an uneven
fracture. They have shown that the approximation error consequent to
the evaluation of the pressure drop using a Darcy-type law strongly
depends on the geometry of the problem.

We therefore simulate the EVP flow through a model porous
medium, represented by an array of cylinders; here only a symmetric
periodic cell is considered. The non-Newtonian flow is simulated by
solving the full incompressible Navier–Stokes equations coupled with
the model proposed by Saramito [1] for the evolution of the EVP stress
tensor. In the next section, we present the governing equations and
their numerical discretisation, as well as the validation performed to
verify our mathematical formulation and its numerical implementation.
We describe the chosen flow configuration in Section 3 and discuss the
results in Section 4. In particular, we examine the influence of the
Reynolds and Bingham numbers on the flow in the porous media. Fi-
nally, we summarise the main findings and conclusions in Section 5.

2. Formulation

The dynamics of an incompressible EVP flow is fully described by
the Navier–Stokes equations with an additional constitutive equation
for the non-Newtonian stress tensor. The Navier–Stokes equations ex-
pressing the mass conservation and momentum balance read

∇ =u· 0, (1a)

= − ∇ + ∇ + + ∇ τρD
Dt

p μ ρu D f·(2 ) · .f (1b)

In the previous set of equations, the symbol = ∂ ∂ + ∇D Dt t u/ / ·
denotes the material derivative sum of the time derivative and the
advection term, = tu u x( , ) and =p p tx( , ) are the velocity and pres-
sure fields, ρ and μf the density and viscosity (assumed to be constant)
and = ∇ + ∇D u u( )/2T the strain rate tensor. The term f appearing in
the momentum equation is a volume body force used to impose the
boundary conditions on the solid boundaries through an Immersed
Boundary Method. The body force is applied using the direct forcing of
Fadlun et al. [60] with the volume fraction weighting technique. Fi-
nally, the last term =τ τ tx( , ) is the EVP stress tensor which accounts
for the non-Newtonian behaviour of the fluid.

In the present study, to model the EVP stress tensor, we use the
model proposed by Saramito [1]. Fig. 1 illustrates the underlying idea
with a mechanical model: at stresses below the yield stress, the friction
element remains rigid, and the whole system predicts only recoverable
Kelvin–Voigt viscoelastic deformation due to the spring κ and the vis-
cous element μf. In this condition, the total stress is given by an elastic
and a viscous part = +σ κ μɛ ɛ̇e

f . As soon as the stress in the friction
element exceeds the yield value τ0, the element breaks, the additional
viscous element μm activates and the deformation of the fluid is that of
an Oldroyd-B viscoelastic fluid. As shown in Ref. [58], the total strain
rate ɛ̇ is shared between the elastic contribution ɛ̇e and the plastic
contribution ɛ̇p. It is noteworthy to mention that in EVP models it is
possible to have deformation rate below the yield stress due to the
contribution of the elastic deformations. This feature is absent when
dealing with ideal yield stress models. In summary, the model reduces
to the Oldroyd-B model for =τ 0,0 the Bingham model is recovered for
=λ 0, while when both =τ 00 and =λ 0 the fluid is Newtonian with a

total viscosity μ equal to +μ μm f .
The objective frame-independent form of the evolution equation for

τ corresponding to the model previously described can be written as
follows

⎜ ⎟+ ⎛
⎝

− ⎞
⎠

=
∇
τ τ

τ
τλ τ μ Dmax 0, 2 ,d

d
m

0

(2)

where the above transport equation satisfies the second law of ther-
modynamics. Here, λ is the relaxation time, μm is an additional visc-
osity, τ0 the yield stress and = −τ τ τN I1/ tr( )d the deviatoric part of
the EVP stress tensor, N being the dimension of the problem. The op-
erator |τd| represents the second invariant of the stress tensor. The term
∇
τ represents the upper convected derivative of the EVP stress tensor
defined as [61]

= ∂
∂

+ ∇ − ∇ − ∇
∇
τ τ τ τ τ

t
u u u· · · .T

(3)

If U is a characteristic velocity of the flow and L is a characteristic
length scale, the flow of an EVP fluid through a porous medium can be
described by the following non-dimensional numbers: the Reynolds
number, expressing the ratio of inertia and viscous forces, =Re ρUL μ/ ,
the Bingham number, the ratio of the yield stress and viscous stresses,

=Bi τ L μU/0 and the Weissenberg number, the ratio of the elastic and
the viscous force, =Wi λU L/ .

2.1. Numerical details

The equations of motion are solved with an extensively validated in-
house code [62–65]. Eqs. (1) and (2) are solved on a staggered uniform
grid with velocities located on the cell faces and all the other variables
(pressure, stress components and material properties) at the cell cen-
ters. Time marching is performed with a fractional-step method [66]
where Eqs. (1b) and (5) are advanced in time with a third-order Run-
ge–Kutta scheme and a Fast Poisson Solver is used to enforce the di-
vergence-free of the velocity field. All the spatial derivatives are ap-
proximated with second-order centered finite differences except for the
advection term in Eq. (2) where the fifth-order WENO is adopted [67].

In order to overcome the well known high Weissenberg number
problem, the log conformation method is used to ensure the positive
definiteness of the stress tensor [27,68,69]. In this approach, Eq. (2) is
written in terms of the conformation tensor A, defined as +τ Iλ μ/ ,m
and then the logarithm of the conformation tensor =Ψ Alog is con-
sidered in the computations. The core feature of this formulation is the
decomposition of the gradient field ∇uT into two anti-symmetric tensors
denoted by Ω and N, and a symmetric one denoted by C which com-
mutes with the conformation tensor, i.e.,

∇ = + + −u Ω C NA .T 1 (4)

The final expression of the evolution equation in the variable Ψ reads

∂
∂

+ ∇ − − − = −−Ψ uΨ ΩΨ ΨΩ C I
t

F
λ
e·( ) ( ) 2 ( ),Ψ

(5)

where = − τF τmax(0, 1 / )d0 . Finally, the conformation tensor can be

Fig. 1. Sketch of the mechanical model of the elastoviscoplastic fluid proposed
by Saramito [1].
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obtained by the inverse transformation as = eA Ψ .

2.2. Code validation

The present implementation for single and multiphase flows of an
elastoviscoplastic fluid has been extensively validated in [70], where
the details of the algorithm are discussed in further detail. Nonetheless,
we report here some classical test cases for viscoelastic and EVP flows
for the sake of completeness.

In the first test case, we consider a plane Poiseuille flow with an
Oldroyd-B fluid ( =Bi 0). Analytical solutions exist for both the initial
transient behaviour and the steady-state solution of the flow [71]. The
simulation is performed in a two-dimensional channel bounded by two
parallel walls at distance h. The fluid, initially at rest, is accelerated by
the application of a constant pressure gradient dp/dx in the axial x
direction. We choose the distance between the plates h as the char-
acteristic length scale and the maximum steady-state velocity
= − +U h dp dx μ μ/ /8( )f m

2 as the velocity scale, and define the fol-
lowing non-dimensional numbers:

=
+

= =
+

Re
ρUh

μ μ
Wi λU

h
β

μ
μ μ

, and .
f m

f

f m

These are fixed to =Re 0.125, =Wi 0.125 and =β 0.1. Numerical si-
mulations are performed on a uniform grid with grid size = hΔ /180,
where the no-slip boundary condition is applied at the walls and peri-
odicity in the streamwise direction. The time evolution of the

streamwise component of the velocity u at the centerline ( =y h/2) and
of the wall shear stress are depicted in Fig. 2, while the steady state
profiles of the streamwise velocity component u and two stress com-
ponents, τxy and τxx, are shown in Fig. 3. As can be seen from these
figures, there is an excellent agreement between our numerical results
and the available analytical solutions, indicating the validity of the
numerical implementation.

Next, we validate the EVP fluid implementation by considering two
cases. The first test case is a simple shear flow, with the flow driven by a
constant shear rate γ̇0. The fluid flow is assumed to have a constant

velocity gradient ∇ = ⎡
⎣⎢

⎤
⎦⎥
γu 0 1

0 0 ˙ ,0 while the Weissenberg number

=Wi λγ̇0 and the Bingham number =Bi τ μ γ/( ˙ )0 0 are fixed to 1 and
=β 1/9. The time evolution of the non-zero EVP stress components (τxx,

τyy and τxy) is displayed in Fig. 4a; the comparison with the results by
Saramito [1] shows again good agreement.

Finally, we consider the periodic shear flow of an EVP fluid. An
oscillatory flow is created by imposing an oscillatory uniform shear
strain γ0sin (ωt), where γ0 is the strain amplitude and ω the angular
frequency of the oscillations. The Weissenberg number is defined as

=Wi λω and the Bingham number as =Bi τ ργ ω/( )y 0 ; the former is kept
constant at =Wi 0.1, while two values of the latter are considered,

=Bi 0 and 300. Note that, for =Bi 0 the material behaves like a vis-
coelastic fluid (Oldroyd-B) while for =Bi 300 as an elastic solid. β is
assumed null in these simulations, i.e., =μ 0f . The evolution of τxy is
plotted in Fig. 4b for the two cases considered and compared with the

Fig. 2. Poiseuille flow. Time evolution of (a) the streamwise velocity u at the centerline and (b) the wall shear stress τxy. The blue dots represent our numerical results
while the red solid lines the analytical solutions in Ref. [71]. The time T is made non-dimensional with the viscous time +ρh μ μ/( ),f m

2 and the stress components
with +U μ μ h( )/f m . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Poiseuille flow. Steady state profiles of (a) the streamwise velocity component u, and (b) the two stress components, τxx (green line) and τxy (red line). The
blue dots represent our numerical results while the solid lines the analytical solutions in Ref. [71]. The stress components are made non-dimensional with

+U μ μ h( )/ ,f m as in Fig. 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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analytical solution provided by Saramito [1]. Good agreement is found
between the results from our simulation and the analytical solutions
also in this configuration.

3. Problem description

We consider the incompressible EVP flow through a model porous
medium composed by an array of cylinders with porosity =ɛ 0.38.
Here, we focus on a single periodic cell, as sketched in Fig. 5, following
the work by [7].

The numerical domain is a square box of size =L r2.25 , r being the
radius of the cylinders centered in each corner of the domain and the
length-scale of the problem. A periodic boundary condition is enforced
in the streamwise −x direction, while the free-slip boundary condition is
enforced in the −y direction, to properly reproduce the effects of ad-
jacent cells of the porous media. Note that, no-slip boundary conditions
in the −y direction have been tested, providing only slight changes to
the flow. Finally, the no-slip boundary condition is enforced on the
surface of the cylinders.

We initialize the flow by setting the velocity field and the EVP stress
tensor to zero at the beginning of the simulation. The flow is driven at a
constant flow rate so that the bulk Reynolds number is =Re ρUr μ/ ,
where the characteristic velocity U is the bulk flow velocity defined as
the volume average of the horizontal velocity u, and = +μ μ μf m is the
total viscosity and is kept constant. Thus, we compute the streamwise
pressure gradient required to provide the desired flow rate at each
timestep. To investigate the effects of the flow rate, the role of weak
inertial effects, and of the yield stress on the flow in the porous
medium, we perform a series of simulations with different Reynolds

numbers (0.1, 0.4, 0.8, 1.6) and different Bingham numbers (0, 0.1, 1,
10 and 100), the latter defined as =Bi τ r μU/0 . Whenever not specified,
in all our simulations we fix the Weissenberg number, defined as

=Wi λU r/ , to a constant intermediate value =Wi 0.5 and the viscosity
ratio = =β μ μ/ 0.5,f chosen as in De et al. in [7]. In this way, the
viscoelastic behaviour of the flow does not change, and we focus un-
iquely on the role of the Reynolds or the Bingham number. We per-
formed preliminary simulations with a grid size of L/128, L/256 and L/
384 and found no significative differences for the last two configura-
tions. For this reason, in all the simulations, we use a uniform constant
grid size equal to L/256 in all the directions. Note again that the flow
geometry and some of the parameters used are the same as De et al. in
[7] who studied the viscoelastic flow in a model porous media with the
FENE-P model.

4. Results

First, we provide a qualitative picture of the flow through the
porous medium considered hereafter. Fig. 6 shows streamlines and
contours of the streamwise velocity component at a Reynolds number of
0.01 for a Newtonian fluid. The flow enters the domain in the narrow
neck between two adjacent cylinders, strongly decelerates due to the

Fig. 4. Stationary and oscillating shear flow. (a) The evolution of −τ τxx yy (red line) and τxy (green line) in a stationary shear flow. (b) The evolution of the shear stress
τxy in an oscillating shear flow at =Bi 0 (red line) and =Bi 300 (green line). The solid lines represent the analytical solution in Ref. [1] while the blue dots indicate
our numerical results. The stress components in the left panel are made non-dimensional with +μ μ γ( ) ˙ ,f m 0 while in the right panel with +μ μ γ ω( )f m 0 . (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Sketch of the computational domain.

Fig. 6. Streamlines, colored by the streamwise velocity component normalized
with the maximum velocity (red is the maximum equal to 1, blue is the
minimum equal to 0). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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sudden expansion of the geometry and then accelerates again due to the
contraction formed by the following series of cylinders. Close to the top
and bottom boundary the flow generates slowly counter-rotating vor-
tices. We find good agreement between the results of this study and
those in literature (see for example Fig. 3 in [7]).

Next, we investigate the EVP flow through the same porous media.
Despite the low Reynolds numbers investigated, we find the solution to
be unsteady and not periodic in time; especially for the highest
Bingham numbers under investigation, this leads to time oscillations of
the pressure drop and of the yielded/unyielded regions; thus a full
statistical analysis (e.g., mean values and fluctuations) is required to
fully describe the flow. It is worth noting that a similar behaviour has
been reported previously for viscoelastic flows [7,72–75]. The fact that

the steady state flow is not established implies that the flow is not stable
to finite spatial perturbations, i.e, cylindrical obstacles. Therefore, the
stability analysis of these EVP flows deserve further investigations.

Fig. 7 shows the evolution of the unyielded region at three selected
time instants for the case with =Re 0.1 and =Bi 100, one of those
displaying the largest variations in time. The regions where the fluid is
not yielded are mainly located at the center of the domain and in the
two cavities on the vertical centerline; the size of the unyielded region
in the centre changes over time, growing in size in the vertical direction
and merging with the solid-like region in the narrow gaps, alternatively
with the regions on the top and bottom. The central unyielded block
also stretches in the streamwise direction, mainly in correspondence of
its tail. We also note the presence of thin fingers repeatedly appearing
and disappearing between the separate unyielded regions. As a con-
sequence of this unsteady behaviour, there can be an instantaneous loss
of symmetry with respect to the horizontal axis.

Due to the unsteady nature of the flow and the symmetry of the cell,
we average all quantities over time and between the two halves of the
domain with respect to the horizontal axis to double the samples for the
statistics. The mean flow and unyielded regions are shown in Fig. 8 at a
fixed Reynolds number ( =Re 0.1) for all the considered Bingham
numbers, and in Fig. 9 for all the Reynolds number at fixed Bingham
number ( =Bi 100). At low Bingham number (Fig. 8a) only the small
regions located close to the top and bottom boundaries present values
of the stresses lower than the yield stress τ0, where the fluid behaves as
a viscoelastic solid (black region in figure). As the Bingham number
increases, these two unyielded area becomes larger and larger, untill
they completely fill the gap between the cylinders at the top and bottom
of the domain (Fig. 8b–d). A second, disconnected, solid region is
generated along the horizontal centerline; this quickly grows when

Fig. 7. Time evolution of the unyielded region, colored in black, for the EVP
fluid in the model porous medium at =Re 0.1 and =Bi 100. In the figures we
also show the contours of the streamwise velocity component: red is used for
the maximum velocity (5.6) and blue for the minimum (−0.12). The snapshots
are taken at time: a) t = 6.38, b) t = 7.1 and c) t = 8.34. Time is made non-
dimensional with r/U. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. Contour of the streamwise velocity component and solid region for different Bingham numbers Bi: a) 0.1, b) 1, c) 10, d) 100. Red corresponds to the maximum
velocity and blue to the minimum velocity, while the black area represents the unyielded region. The range of velocity is: a) [−0.008:5.13], b) [−0.003,5.15], c)
[−0.012:5.23], d) [−0.014,5.25]. The Reynolds number =Re 0.1 for all cases displayed. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. Contour of the streamwise velocity component and solid region for different Reynolds numbers Re: a) 0.1, b) 0.4, c) 0.8, d) 1.6. Red corresponds to the
maximum velocity and blue to the minimum velocity, while the black area represents the unyielded region. The range of velocity is: a) [−0.014:5.25], b)
[−0.0125:5.325], c) [−0.0067:5.5], d) [−0.005:5.57]. The data pertain the simulations at fixed Bingham number =Bi 100. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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increasing the Bingham number (Fig. 8c and d). For a fixed Bingham
number (Fig. 9) the stress increases as the flow rate increases, thus the
stresses overcome the yield stress value over a larger portion of the
domain and the material behave as a viscoelastic fluid. In particular, the
central unyielded region becomes thinner and more stretched in the
streamwise direction as the Reynolds number is increased, due to the
increased streamwise velocity.

To further investigate the shape of the unyielded regions, we ana-
lyze the velocity and stress distribution for the case with =Bi 10 and

=Re 0.1 (see Fig. 10). The expansion and the contraction, that the flow
undergoes as consequence of the interaction with the porous medium
walls, are responsible for the sharp head and tail of the solid region; the
shape of the unyielded region follows the curvature of the four quarters
of sphere located in the corners of the domain. The center of this solid
region, instead, is influenced by the unyielded region located between
the gap in the top and bottom part of the domain. Both stress compo-
nents, τxx and τxy, follow the shape of the unyielded region in the
leading and trailing edges whereas the hollows shape in the middle
seems to be a consequence of the antisymmetry of τxy with respect to
central axes.

In order to quantify the effect of the Reynolds and Bingham num-
bers on the plastic behaviour of the flow, we compute the mean volume
of the unyielded region Vs for all the cases investigated and report those
in Fig. 11 as a function of the Reynolds number for different Bingham
numbers. We observe that the total volume of solid material is nearly
unaffected by the Reynolds number, with a decrease of only about 5%
between the lowest and highest Reynolds numbers studied, =Re 0.1
and 1.6 respectively. Conversely, Vs is strongly dependent on the
Bingham number; in particular, few percent of the volume are un-
yielded for =Bi 0.1 while more than 70% for =Bi 100. The vertical bars
reported in the figure represent the root mean square (r.m.s.) of the

volume integral and quantify the fluctuations of the unyielded region.
These grow with the Bingham number reaching a magnitude of about
10% of the total volume for the highest Bi considered.

4.1. Velocity profiles and flow topology

We continue our analysis by studying the velocity profiles. Fig. 12
shows the streamwise velocity profiles in the vertical section at =x L/2
for all values of Re and Bi considered. When Bingham is zero, the ma-
terial is a viscoelastic fluid everywhere and the reduction of the max-
imum streamwise velocity in the centerline is due to an elastic effect
only, while the widening of the velocity profile is a consequence of
performing simulations at constant flow rate. Note that, here the
Weissenberg number is constant, therefore the elastic effect is the same
in all the cases. As the Bingham number increases, the yield stress in-
creases, thus the material located near the centerline behaves as a
viscoelastic solid, leading to a further reduction of the maximum ve-
locity and a consequent flattening of the velocity profile in general.
Indeed, the velocity profiles tend to become flat; they also exhibit two
peaks in the fluid region between the unyielded regions (see Figs. 8d
and 9). When the Reynolds number is increased, these peaks move
towards the centerline as a consequence of the unyielded region at the
center becoming thinner (Fig. 9). Finally, in the two narrow gaps be-
tween the cylinders close to the top and bottom boundaries, the
streamwise velocity is very small attaining both positive and negative
values.

Following the analysis by De et al. [7], we compute the flow to-
pology parameter defined as

= −
+

Q D
D

Ω
Ω

,
2 2

2 2 (6)

where = D DD ( : )2 and = Ω ΩΩ ( : ),2 Ω being the rate of rotation
tensor, i.e., = ∇ − ∇Ω u u( )/2T . When = −Q 1 the flow is purely rota-
tional, whereas regions with =Q 0 represent pure shear flow and those
with =Q 1 elongational flow. The distribution of the flow topology
parameter for =Re 0.1 and different Bingham numbers is reported in
Fig. 13a. All the curves exhibit a dominant peak in correspondence to
=Q 0, suggesting that the flow is mostly a shear flow. For the New-

tonian case (black curve), the right tail of the curve drops to zero for
=Q 1 and displays moderate values for Q between 0 and 0.5. On the

contrary, all the EVP curves exhibit nonzero values for =Q 1 indicating
the presence of purely elongational flow, values lower than the New-
tonian fluid for Q between 0 and 0.5 and, for high Bingham numbers,
also negative values of Q. Note that these distributions of the topology
parameter are found to weakly change when increasing the Reynolds
number over the range considered in this study and data pertaining
different Re are therefore not reported here.

Further insight can be gained by showing the histogram of Q se-
parately in the yielded and unyielded regions, as reported in Fig. 13b
for the flow with =Re 0.1 and =Bi 100. The data reveal that the yielded
part of the flow is the one mostly responsible for the shear flow

Fig. 10. Contour and isolines of: a) streamwise velocity (normalized with the maximum value); b) vertical velocity (normalized with the maximum value); c) stress
component τxx; d) stress component τxy. The stresses are normalized with the characteristic viscous stress μU/r. The Bingham number is =Bi 10 and the Reynolds
nuumber is =Re 0.1.

Fig. 11. Volume integral of the mean unyielded region, Vs, as a function of the
Reynolds number, Re, for different Bingham numbers, Bi. The vertical bars
represent the r.m.s. of the volume integral.
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behaviour, whereas shear and elongation flows are almost equally
distributed in the unyielded regions. Similar feature is also observed in
flows of ideal visco-plastic fluids in anfractuous configurations [13,76].

4.2. Pressure drop and effective permeability

At last, we analyse the macroscopic behaviour of the EVP flow in a
porous medium. In particular, we focus on the effect of the Reynolds
and Bingham numbers on the pressure gradient needed to drive the
flow, i.e., to the pressure drop across the domain. As already men-
tioned, all our simulations are performed at a constant flow rate and we
compute the instantaneous value of the streamwise pressure gradient
required to provide the desired flow rate at each time step. When the
fluid is Newtonian, the relation between the mean pressure gradient
Δp/L and the mean velocity in a porous media is given by the Darcy law

= −U K
μ

p
Lɛ
Δ ,

(7)

where U is the mean flow velocity, sometimes called Darcy velocity, ε is
the porosity of the medium and K its permeability. For convenience, we
rewrite the previous relation in a non-dimensional form as

=
p
L Re
Δ *
*

ɛ
Σ

,2 (8)

where p* is the non-dimensional pressure equal to p/ρU2, =L L r* / and
Σ is the non-dimensional permeability defined as = K rΣ / [77]. For

an EVP fluid flowing through a porous media the pressure gradient is in
general a function of inertia (Re), elasticity (Wi), plasticity (Bi) and
geometry (ε and other parameters defining the specific configuration of
the porous medium), i.e., F=p L ReΔ */ * ( , …We Bi, , ɛ, ). For now, the
Weissenberg number, the porosity ε and the geometry of the porous
medium are kept constant, thus the pressure gradient will vary only
with the Reynolds and Bingham numbers, e.g., the other dependencies
are dropped. In the next subsection the effect of the Weissenberg
number will be examinated.

Fig. 14 shows the mean pressure gradient as a function of the
Reynolds number for different values of the Bingham number (panel a)
and as function of the Bingham number for different values of the
Reynolds number (panel b). The pressure drop decreases with the
Reynolds number whereas it increases as a non-linear function with the
Bingham number. In order to derive an expression for F as close as
possible to a Darcy-type law, we assume the function F to be the
product of two terms, one depending on the Reynolds number and the
other on the Bingham number. By fitting the data of our numerical
simulations with a polynomial expression, we find the following ex-
pression to properly describe the relation between pressure drop and
the EVP flow

= +p
L

Bi
Re

Δ *
*

5.494 91.042 ,
0.561

(9)

which is shown in Fig. 14b with the black solid lines. The relation (9)
provides an accurate prediction for all the points pertaining our

Fig. 12. Profile of the streamwise velocity component in the vertical section located at =x L/2 for different Bingham numbers, Bi, and (a) =Re 0.1, (b) 0.4, (c) 0.8
and (d) 1.6. The velocity is normalized with the bulk velocity.
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simulations, except perhaps the case at high Bi and Re which slightly
deviates from the fitting.

It is worth noticing that the coefficients in Eq. (9) are valid only for
the specific set of parameters chosen in this study, as we do not consider
the dependency on the geometry and the Weissenberg number. As for
the fit proposed in Ref. [55] for pure yield-stress fluids, the pressure
drop increases with the yield stress, i.e., with the Bingham number,
although with the following differences. In fact, the experiments in Ref.
[55] deal with a creeping flow, i.e. zero Reynolds number, of a pure
yield stress fluid in a 3D configuration. The authors proposed a fit as-
suming a Herschel-Bulkley model plus an additional term, corre-
sponding to the minimum pressure drop required to start the flow. With
these hypotheses, they found a linear relation between the pressure
drop and the yield stress and obtained fitting coefficients from the ex-
perimental data. In the present study, we take into account both inertia
end elasticity, which leads to a different Darcy-type law. In particular,
we find the pressure drop to depend on the square root of the Bingham
number and to be inversely proportional to the Reynolds number.

We also note that other authors have shown a strong dependency of
the pressure drop on the geometry; indeed, De et al. [7] document a
significant difference between a symmetric and an asymmetric array of

cylinders in terms of pressure drop, whereas Rouestaei et al. [13] state
that the approximation error given by a Darcy-type law to compute the
pressure drop in fracture flows strongly increases for large heights of
the fracture.

It may be instructive to write Eq. (9) in a form similar to the one
proposed in Ref [55]:

⎜ ⎟= ⎛
⎝

⎞
⎠

+
p
L

C τ r
μU

μU
r

C
μU
r

Δ .
C

1
0

2 3 2

2

(10)

As already said before, the coefficients C1, C2 and C3 depend, in general,
on the geometry and the Weissenberg number. This result, along with
the recent study in Ref. [13], strongly suggests that it may not be
possible to derive a simple general law for non-Newtonian flow in
porous media.

Eq. (9) reduces to a form similar to Eq. (8) for =Bi 0, but with a
different pressure drop than for the Newtonian case (120/Re), due to
the elasticity effects. In particular, we find that the permeability in the
viscoelastic case is 25% higher than in the Newtonian case, in quali-
tative agreement with the results in [7]. Assuming a relation between
the pressure drop and the flow rate of the same form as in Eq. (7), we
can define an apparent permeability by computing the ratio of the
pressure gradients of the Newtonian and non-Newtonian fluids and

Fig. 13. Histogram of the flow topology parameter Q defined in Eq. (6): a)
results for =Re 0.1 and different Bi; b) contribution of the yield and unyielded
region to the histogram for =Re 0.1 and =Bi 0.1. The curves in (a) and the
curve showing the total distribution in (b) are normalized such that the un-
derlying area is equal to 1.

Fig. 14. Non-dimensional mean pressure gradient as a function of (a) the
Reynolds number and (b) of the Bingham number. The black lines in panel b
show the fit obtained with Eq. (9). Note that, the leftmost points in panel b
correspond to the purely viscoelastic case with =Bi 0.
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obtain the following relation

= =κ κ
κ

p
p

(Δ )
(Δ )

.app
EVP

N

N

EVP (11)

Fig. 15 shows the apparent permeability as a function of the Bingham
number for all the considered Reynolds numbers. At low Bingham, i.e.,
Bi<10, the elastic effects are dominant and the apparent permeability
is greater than 1, indicating a reduction of the pressure gradient re-
quired to drive the flow. On the contrary, for high Bingham numbers,
the apparent permeability decreases below 1, indicating higher pres-
sure drops. Indeed, at high Bingham numbers, a larger portion of the
fluid behave as a viscoelastic solid, hence the velocity is higher in the
unyielded regions, corresponding to higher shear rates and rotational
motions and thus to higher dissipation, as previously shown in Fig. 13a.
The effect of the Weissenberg number on the apparent viscosity for a
viscoelastic flow in porous media is discussed in Ref [7]. These authors
assume the permeability to be constant and relate the ratio of pressure
drop as in (11) to an effective viscosity. However, we believe that the
assumption of constant permeability may not ideal due to the flow
nonlinearity and therefore assume a constant viscosity and consider an
apparent permeability instead. Note that, by doing as described in Ref
[7]. for =Bi 0, we obtain an effective viscosity equal to 0.78, which is
close to the value reported by those authors (0.73) although for a dif-
ferent viscoelastic model (FENE-P).

4.3. Effect of elasticity

In this last section, we consider the effect of the elasticity and vary
the Weissenberg number for two different Bingham numbers, =Bi 0
and =Bi 10, and for a fixed value of the Reynolds number, =Re 1.6.
Since the adopted evolution equation for the stress tensor is based on
the Oldroyd-B model, the range of Weissenberg numbers considered
here is between 0 and 0.5, due to the stability limitation [1]. Fig. 16
shows the unyielded region distribution inside the porous medium for
three different values of the Weissenberg number. The volume of the
solid region, Vs, increases with the Weissenberg number, being 0.298
for =Wi 0.1, 0.306 for =Wi 0.25 and 0.320 for =Wi 0.5. Recalling the
sketch in Fig. 1, the Weissenberg number is proportional to the re-
laxation time λ which is inversely proportional to the spring stiffness κ.
Therefore, for higher Weissenberg numbers the elastic deformation in
the material is larger and the unyielded region located at the center of
the domain can stretch following the expansion and contraction of the
flow. Conversely, for low Weissenberg numbers the material is stiffer
and exhibits smaller deformation.

Finally, we analyze the effect of the elasticity on the overall pressure

gradient. Fig. 17 displays the non-dimensional mean pressure gradient
as a function of the Weissenberg number for the two different values of
the Bingham number examined. For the viscoelastic case, i.e. =Bi 0, we
find a trend similar to that reported in Ref. [7], with a minimum of the
pressure gradient between =Wi 0.2 and =Wi 0.3. The difference with
this previous work is small, below 5%, which can be a consequence of
the different model for the stress evolution equation.

As regards the correlation between pressure drop and flow rate in
Eq. (10), we have assumed the coefficients C1, C2 and C3 to be function
of the geometry and of the Weissenberg number. Since for =Bi 0 the
elastic effects must be included =C C Wi( )3 3 . If we vertically translate
the curve for =Bi 10 such that the point corresponding to =Wi 0.1
overlaps with the same point of the curve for =Bi 0, we can see that
there is a weak combined effect of the Bingham number and of the
Weissenberg number on the pressure drop, which makes C1 and C2, or
at least one of the two, also function of the Weissenberg number. Ad-
ditional studies are therefore needed to clarify this point.

5. Conclusion

We have performed numerical simulations of the elastoviscoplastic
flow through porous media modelled as an array of cylinders, and
considered a single periodic cell. The flow is described by the
Navier–Stokes equations, and the additional evolution equation for the
EVP stress tensor following the model proposed by Saramito [1].

We find the flow dynamics to be time-dependent, and have thus

Fig. 15. Apparent permeability κapp as a function of the Bingham number Bi for
different Reynolds numbers Re. Note that the leftmost points in the figure
correspond to the purely viscoelastic case with =Bi 0.

Fig. 16. Streamwise velocity contour and unyielded region (solid black) for
three different values of the Weissenberg number: a) =Wi 0.1; b) =Wi 0.25; c)

=Wi 0.5. For all configurations Bingham number is =Bi 10 and Reynolds
number is =Re 1.6.

Fig. 17. Non-dimensional mean pressure gradient as a function of the
Weissenberg number for two different values of the Bingham number: =Bi 0
(red dot) and =Bi 10 (blue square). The Reynold number is =Re 1.6. The
dotted curve is the same as =Bi 10 but translated vertically in order to overlap
with the curve for =Bi 0 corresponding to =Wi 0.1. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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presented both instantaneous configurations and time-averaged results.
The data show that the volume where the fluid is unyielded strongly
increases with the Bingham number, whereas it slowly decreases with
the Reynolds number. The unsteadiness of the flow is measured in terms
of the r.m.s of the volume of yielded fluid, which, in turn, produces
oscillations in the pressure gradient; this unsteadiness grows with the
Bingham number. Due to the unyielded fluid at the center of the do-
main, the maximum velocity at the centerline decreases and the velo-
city profile flattens. From the analysis of the flow topology, we show
that the flow is mainly a shear flow in the yielded region whereas it is
equally elongated and sheared in the unyielded part of the domain.

The analysis of the data allowed us to extract a relation between the
pressure drop across the domain and the Reynolds and Bingham num-
bers. For low Bingham numbers the elastoviscoplastic flow is char-
acterized by an apparent permeability higher than that of a Newtonian
flow, corresponding to a smaller pressure drop. On the contrary, the
apparent permeability is smaller than that of a Newtonian flow in a
porous media for high Bingham numbers, corresponding to higher
pressure drops. No generalization of Darcy law for non-Newtonian
flows that is generally valid in many different conditions is available in
literature. Results presented in our study and other recently proposed in
[13], seem to confirm that it is not possible to derive a general form of
the Darcy law to describe complex non-Newtonian flows through
porous media.

The analysis presented here considers a periodic cell of a porous
media made of a symmetric array of cylinders. Although this assump-
tion is widely adopted in literature, this configuration is not fully re-
presentative of real porous media. A possible extension of this work is
therefore the investigation of the flow in more complex geometries,
such as a random distribution of cylinders/spheres. Additionally, future
studies are needed to deeper investigate the combined effects of elas-
ticity and plasticity on the dynamics of the flow.
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