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Abstract
Developing affordable and customizable cyber-physical production system and Digital Twin (DT) implementations infuses
new vitality for current Industry 4.0 and Smart Manufacturing initiatives. The ability to precisely address material handling
processes for manufacturability analysis further connects the physical and cyber components of today’s smart manufacturing
systems. In this work, we propose a product-centered signature mapping approach to automated digital twinning featuring a
hybrid implementation of smart sensing, signature-based feature extractor, and knowledge taxonomy. First, we integrate 3D
scanning and surface reconstruction at to implement shape retrieval from both the virtual environment (from Computer-Aided
Engineering data) and the real-world production environment (from scanned point cloud frames). Second, Shape Terra, an
algorithm for intrinsic curvatures, simulates Persistent Heat Values for fast signature extraction from retrieved shape files.
Finally, a systematic integration of the proposed shape analysis based on knowledge taxonomy is prototypically implemented.
The objective of this testbed is to illustrate a proof-of-concept DT-aided process autonomy fed by rapid 3D surface signatures.
As a result, by hybridizing smart sensing and simulative approaches, we exploit shape signatures as manufacturing knowledge
by integrating domain knowledge and data-driven decision-makings. Moreover, human–machine interoperability enabling
system-level intelligent controls becomes feasible in complex material handling, shape forming, measuring, and inspection
processes.

Keywords Smart manufacturing systems · Semantic interoperability · Feature extraction · Digital twin · Manufacturability
analysis

Introduction

Rapid advances in collaborative computing entities that
tightly connect physical world and its ongoing processes,
have inspired networked devices to sense, monitor and
actuate physical elements. Such system-embedded devices
are considered the root of cyber-physical systems (CPS)
(Monostori et al., 2016). Industrial cyber-physical produc-
tion systems (CPPSs) connect manufacturing physical and
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cyber components at system-level and thus facilitate simul-
taneous process optimization and efficient human–machine
interoperability to further exploit manufacturing science and
technologies beyond computing, information and communi-
cation benefiting from CPS architectures. Advancing CPPSs
towards standardized and generally acceptable manufactur-
ing paradigms is at the heart of current smart manufacturing
innovations leading to Industry 4.0 (Monostori et al., 2016).
To that end, real-time sensing and information fusion are
expected to couple digital tools with physical manufactur-
ing assets, including entities, processes, assets, and products.
Identifying which process data should be captured, anal-
ysed, and shared is essential for manufacturers to maximize
their products’ add-on values. Hence, enabling customizable
knowledge streams for cyber-physical production systems
(CPPS) and Digital Twins (DTs) implementations infuses
new vitality for current Industry 4.0 and Smart Manufactur-
ing initiatives.
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Conceptually similar to 3C (Computation–Communica-
tion–Control) components of CPSs, cognitive DTs have
developed various manufacturing applications by exploit-
ing implicit knowledge from legacy production systems. For
examples, standardization of data schema in cloud-based
digital manufacturing systems (Park et al., 2020), enabling
automated dataflowmodels to reflect real-time progressmea-
surements (Ebel et al., 2021), building reference architectures
to exchange information between connected entities (Redel-
inghuys et al., 2020), advancing information extraction
techniques such as query-based graph learning (Mortlock
et al., 2021), connecting and interoperating between product
twins, process twins, and operations twins for closed-loop,
real-time interactions (Bao et al., 2019), applying a D-M-
S (Data, Model, and Service) framework to conventional
IoT systems to realize collaborative framework between the
edge and cloud (Jiang et al., 2021). Compared to CPS’s core
topics on system components, DT focuses on acquired data
and their model’s capability to manage physical production
entities (Tao et al., 2019). One challenge for manufacturers
is to develop adaptive process planning using reliable and
affordable knowledge systems. For instance, inherent and
recallable information used to identify product features, or
other genetically intelligent properties (Denkena et al., 2010),
such as geometry and topology, can be stored as static data
and reflect product inherent properties. It can be envisioned
that geometrical and topological studies of product struc-
tures in production are nonnegligible modelling approach to
increase understandings of processes involvingmaterial han-
dling, shape forming, measurement and quality inspection.
DTs to retrieve run-time 3D information in point clouds and
meshes is a yet-to-accomplished task for most legacy manu-
facturing systems.

Feature-based technologies have been extend to smart
design/engineering in DT systems (Schleich et al., 2017),
adaptive process control (Adamson et al., 2017), aug-
mented reality (Lai et al., 2020), Artificial Intelligence (AI)
enabled process planning (Marchetta & Forradellas, 2010),
etc. Shape-critical patterns are extracted from topological
and geometrical data and form representational schemes
of manufacturing features. Extracted feature representation
are widely used for the downstream process planning and
optimization applications. For instance, in Computer-Aided
Manufacturing (CAM), the algorithms to identify product
shape features have significantly contributed to the auto-
mated planning for material handling processes, typically
shape-forming or material-removing procedures such as
CNC. To name a few, processes involving the configura-
tion of work piece holding (Rameshbabu & Shunmugam,
2009), choice of machines and cutting tools (Zhang et al.,
2014), or planning of the machining operations (Geng et al.,
2016). Usage of data mining, machine learning, or AI for
shape feature recognition have been rapidly evolving, given

the well-developed computation technologies to handle large
volumes of complex, noisy, high-dimensional, and unor-
ganized datasets, such as point cloud and surface meshes.
However, they usually require abundant training datasets
with meaningful and balanced distribution of features, which
can be expensive to collect in many industrial settings.

Several recent applications of smart sensing have been
discussed to enhance legacy production processes, such as
using visual inputs to in-situ automated inspection (Davta-
lab et al. 2020) (Li et al., 2021). Manual 3D modelling
and measurement are aided by in-situ visual sensing and
3D reconstruction (Zhang et al., 2013). Visual sensing has
been tailored to production use cases, such as automated
inspection and cutting tool monitoring. However, precision
of reconstruction, measurement, and defect detection using
images can be compromised without adequate data utiliza-
tion. Moreover, there have been few studies on 3D surface
quality based on point cloud data or surface retrieval (Zhao
et al., 2021) given the difficulty of runtime data to gener-
ate high resolution intelligence to physical shop floors as
value-adding production processes. The real-time require-
ment of critical tasks such as in-situ product visual inspection
will not be ready without systematic reliability in current
Smart Manufacturing Systems (SMSs). As new visual-depth
sensors becoming more and more integrated into produc-
tion, rapid non-contact technologies are to be developed to
handle these temporal, high dimensional, noisy, and expen-
sive inputs. For instance, Non-uniform rational basis spline
(NURBS) surface input to conventional Statistical Process
Control (SPC) was evaluated in (Wells et al., 2013) (Wells
et al., 2021) by converting complex surfaces into linear pro-
files. This work monitors deviation from expected nominals
and failure modes as benchmark and extract control vari-
ables. (Zhao et al., 2021) applies surface segmentation and
classification using machine/deep learning. This approach
introduces explicit steps to utilize Principle Component
Analysis (PCA) for dimensional reduction, and then learns to
segment and classify classified regions. Similar data-driven
techniques need to be carefully designed to utilize high-
fidelity raw stream without losing local information. Such
learning-based methods also require abundancy, balancing,
and quality of training datasets, which may be expensive
for many part inspection and measurement tasks. Learning-
based methods could further induce model complexity and
require expert knowledge for proper usage, such as manual
definition of regions numbers, which are demanding knowl-
edges for industrial practitioners. Assisting by CAD data,
on-machine tool path generation based on point cloud reg-
istration is explored in (Huang et al., 2021). This work is
demonstrated to generate accurate path by hybrid modelling.
Accurate alignment betweenCADand point cloud is through
knowledges such as calibrated transformation matrix, which
can be changeable, expensive, or unavailable. In summary,
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reliable 3D shape retrieval tasks enabled by technologies
such as multi-modal learning (Nie et al., 2020) has not
demonstrated their readiness in today’s production systems.
Data correlation and consistency evaluation approaches need
to be developed for comparison among industry applicable
datasets (Zhang et al., 2020).

In thiswork,wepropose a shape signature-based approach
to digital twinning that addresses the problem of precisely
sensing material handling processes for manufacturability
analysis. This paper first investigates the approach of extract-
ing shape signatures and its pattern recognition method,
namely the heat kernel signatures. To fill the current knowl-
edge gaps between CAD shapes and scanned shapes, as well
as expand the usage of feature recognition, the authors then
propose to utilize simulative geometrical analysis coupled
with 3D sensing. This combination facilitates rapid detec-
tion process of structural variances with perturbation from
environmental changes and production activities. Finally, a
signature mapping mechanism with a shape search enabled
by comparison is outlined to demonstrate in-situ shape
knowledge retrieval for automated manufacturing use cases.

The remainder of this paper is structured as follows:
Related Work introduces the scientific background of the
heat-based signature models.Methods and ResearchMateri-
als proposes a D-M-S procedure for system implementation
of digital twinning. Results and Discussion presents the
results with respect to the persistence clustering, multiscale
filtering, shape mapping, and signature pool establishment,
and knowledge integration. Conclusion and Outlook con-
cludes the paper, briefly highlights the contribution and
summary of the presented research, finally provides an out-
look on future work.

Related work

Knowledge-based engineering (KBE) applications facili-
tate various information streams, information structures and
knowledge modelling templates for CAD/CAE (Pokojski
et al., 2021). Sharing of knowledge demonstrates its impor-
tance in today’s multi-process, multi-intersection, and multi-
operator subsystems towards collaborative efforts between
designing, manufacturing, and supply chains (Zhang &
Ming, 2020). By utilizing an improved representation model
of user requirement, the details of production can be fur-
ther improved in the forms of reduced production time,
cost, process accuracy, and finally the delivery committed
rate (Xia et al., 2021a, 2021b). However, the up-to-date
reference architecture models are found to be lack of com-
patibility and interoperability while the communication and
information technologies are ready for such standardization
(Yli-Ojanperä et al., 2019).

Manufacturing features have been widely used for man-
ufacturability analysis and downstream process planning
activities such as the configuration of work piece holdings,
choice of manufacturing machines and cutting tools, and
planning of the machining operations. For instance, auto-
mated machining process planning using CAPP software is
started by classifying CAD geometrical features using his-
torical databases, followed by identifying feasible machine
sequences (Liu et al., 2015) (Nonaka et al., Generating alter-
native process plans for complex parts, 2013). Staring from
model features and available resources, shop-floor opera-
tion optimization can be further achieved by looking into
alternative plans with a minimization of setup and opera-
tional time and perform adaptive scheduling (Nonaka et al.,
2012). Depending on the applications and input models,
feature recognition techniques using representations such
as face adjacency graphs, convex hull, volumes, and cells
have been successfully developed (Shi et al., 2020a, 2020b).
These majority of these feature representations based on
CAD and/or CAM data which are created with well-defined
topological and geometrical elements. In more challeng-
ing cases, freeform surfaces with arbitrary face interactions
or curvatures (Sundararajan & Wright, 2004) require addi-
tional assumptions (Dong & Vijayan, 1997), recognition
rules (Sunil&Pande, 2008),mathematicalmodelling (Belkin
et al., 2008), segmentation or classification methods (Cai
et al., 2018).

This work intends to implement a novel approach to the
geometrical analysis of rapidly 3D scanned surfaces. The
feature extraction is performed based on Shape Terra (Harik
et al., 2017). Shape Terra has been successfully applied
to provide accurate manufacturability analysis (Shi et al.,
2018) and feature recognition by an convolution neural net-
work approach (Shi, Zhang, & Harik, Manufacturing feature
recognition with a 2D convolutional neural network, 2020)
on CAD datasets. This section will explain the novelty of
heat-based shape signatures used in 3D scan data.

To quantify freeform surfaces, natural geometric proper-
ties (such as intrinsic curvatures) in Euclidean domains and
Riemannian manifolds were mathematically estimated using
heat kernels and the eigenfunctions of Laplacian (Jones et al.,
2008). Constraining the heat kernels on a temporal domain
further defines the pointwise Heat Kernel Signatures (HKS)
by (Sun et al., 2009). HKS propose a shape signature that
is invariant to isometric transformation, which enables the
geometrical comparison of different shapes and meshes. In
addition, HKS has proven to be informative, multi-scale, sta-
ble under perturbation, and commensurable. One unresolved
problem of HKS is the sensitivity to shape scaling, which
can be solved by applying a Fourier transformation (Bron-
stein &Kokkinos, 2010). This is inspired by scale invariance
on images (Kokkinos & Yuille, 2008). Based on multi-scale
property of HKS, a multi-resolution approach as faster shape
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manipulation algorithm (fast HKS) is proposed (Vaxman
et al., 2010) by restricting to different resolution level. This
overcomes the limitation of computational complexity and
modestmesh resolutions.A concept of PersistentHeat Signa-
ture (Dey et al., 2010) is proposed to solve the pose-oblivious
matching of incomplete models from partial scanning. Per-
sistent Heat Signature extracts a feature vector composed
of the HKS maxima and uses it to search for most similar
complete, partial, or incomplete models in a database. Cou-
pled with PCA and clustering, Heat Kernels have also been
successfully applied to characterizing the topological struc-
ture of individual graph in large collections of graphs (Bai
et al., 2005). Heat Kernel embedding is furtherly developed
as a representation of differential geometries and graph struc-
tures by mapping of the nodes of a graph into a vector-space
(ElGhawalby & Hancock, 2015).

The use of heat kernels is also expanded to the problem of
nonrigid shape retrieval in large databases (Bronstein et al.,
2011) by using multiscale diffusion heat kernels as “geomet-
ric words” and creating spatially sensitive bags of features
with better discriminative power within big datasets. This
work also shows that shapes can be efficiently represented
as binary codes to ensure a machine-readable and searchable
format.

Shape Terra (Harik et al., 2017) proposed an approach to
address CAD shape recognition problems by simulating the
effect of the shape characteristics to its heat retention time.
Using this approach, a unique shape signature is created for
each point, which inherits the properties of HKS (Sun et al.,
2009). Through the calculation of heat losses, the persistence
of a point to retain heat and its resistance to heat loss can be
used to calculate retention levels and values. Similar persis-
tence values can then be clustered, and these are filtered to
segment clusters containingmanufacturing features. The fea-
tures can then be compared with isolated features to further
classify. As a use case scenario, features obtained from the
3D scans can be numerically compared with ones extracted
from a CAD mesh file.

Inherited from HKS property of multiscale matching and
invariance under isometric transformation, heat persistence
can be used as the shape recognizer to differentiate pose-
oblivious shapes by comparing their signatures (Dey et al.,
2010). This enables the identification of intrinsic geometries
from different structures, to quantitively distinguish surface
dimensions, quality, and surface defects.

Methods and researchmaterials

This section will introduce the acquisition of the shape
data within a virtual-physical production system via two
pipelines: CAD shape data that is retrieved from virtual
environment; and surface shapes retrieved from 3D scan-
ning device in a real-word manufacturing cell. Data is

collected from a highly automated robot assembly cell
enabled by CPS infrastructure featuring AI (Xia et al., 2020)
and smart sensing (Saidy et al., 2020). The roadmap to
integrate signature-based knowledge into legacy production
system by Data-Model-Service (D-M-S) approach is sum-
marized. The research activities are then conducted in a
Data-Model-Service (D-M-S): approach: (1) Data collec-
tion and preprocessing. At this stage, shape mesh files are
acquired structures from virtual models, point cloud, or
reverse engineering by structural reconstruction, etc., and
data scrubbing to formulate consistent inputs for Shape
Terra. (2) SimulateShapeTerra onmanufactured products on
denoised surfaces with significant feature patterns for extrac-
tion. Depending on the specific datasets and needs, feature
recognition can be performed by both rule-based systems and
statistical methods such as machine learning. (3) Knowledge
deployment. At the final stage, knowledge derived semanti-
cally from Shape Terra is integrated into CAE platform and
control systems.

D-M-S to digital twinning

Figure 1 shows systematic approach to proposed product-
centered, signature(feature)-basedDigital Twin using aData-
Model-Service (D-M-S) framework. System development
using a D-M-S approach to Digital Twinning, integrates 3
steps for a product-centered manufacturing digital twin:

• Data (D): Automated region segmentation and feature
extraction from raw data in forms of 3D scans or CAD
files at the first step. Heat Signatures and clustering are
calculated and matched for semantic features for file indi-
viduals.

• Model (M): Depending on the manufacturing processes,
engineering knowledge will be input to generate feature-
level insights during the design andmanufacturing phases.
Meanwhile, feedback extracted from the rawdatawill con-
tinuously improve design/manufacturing entities.

• Service (S): To increase the efficiency, adaptiveness and
agility of designers, manufacturers, and supply chains,
information flow and feedback from different phrases (rule
or requirement-based engineering, production processes,
supply or demand, etc.) will be input towards such as a
make or buy decision recommended by manufacturability
analysis.

Values from high-dimensional and temporal production
data are added to current digital twin system with the
potential to provide closed-loop improvement to design-
ers, manufacturers, supply chains, and decision makers.
Compared to recent DT and knowledge-based engineering
implementations (Mortlock et al., 2021) (Jiang et al., 2021)
(Redelinghuys et al., 2020) (Pokojski et al., 2021), this work
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Fig. 1 Data-model-service
framework to proposed
product-centered,
signature(feature)-based digital
twin

intends to prepare for run-time high-resolution data value
added to legacyproduction systems. Frame-wise depth image
with depth can be semantically segmented, extracted, and
mapped to manufacturing features using heat signature cal-
culation deployable to computing devices. Based on specific
use cases, human–machine interoperability can be designed
by either manually querying established knowledge base or
automated applications such as machine learning. By which
means, collaborativemanufacture is further enhancedbycon-
nected entities with increased agility enhanced by digital
twinning at higher resolution.

Data acquisition

The experimental factory setup is demonstrated in Fig. 2.
Cameras with depth sensors are mounted along the conveyor
and on the robot end effect to monitor the process, product,
and material flow. In this work, we use Intel® RealSense™
LIDAR L515 RGB-D cameras to scan 3D printing parts.
Incomingparts are scannedwithin a rawmanufacturing scene
with registered depth information. Process control decisions
can be made based on the inference results of proposed
system-level digital twin (Xia et al., 2020). RGB images
machine visual recognition using deep learning approach has
been designed to monitor the process including the interac-
tions or relative position among the equipment, parts, and
markers (Xia et al., 2021a, 2021b). State-of-art point cloud
processing and recognition algorithms in machine learning

field can solve tasks of object classification, detection and
semantic segmentation, such as VoxelNet (Zhou & Tuzel,
2018) and PointNet (Charles et al., 2017). Learning-based
system for real-time mapping in in-door scenes scanned by
depth camera is achieved at large scales (Newcombe et al.,
2011). Object detection through trained machine vision net-
work on RGB frames (Xia et al., 2021a, 2021b) can also
automatically crop RGBD frames. Proposed digital twin
system framework is shown in Fig. 2. When deploying
data streaming in a manufacturing shopfloor as nowadays
numerous industrial control data layers are built by Ethernet
communication, which accommodates the signal exchanges
among PLCs, robots, distributed IOs, etc.

Processing rawpoint cloud data needs surface filtering and
smoothing, which solved by Statistical Outlier Removal and
MLS. A Voxel Grid filter can also be applied to down sample
mesh points using a K-D Tree Search on a surface space.
Down-sampled points are regularly distributed and hence
easier to be simulated by Shape Terra. Triangular meshes
also needs to be cleaned if any outlier vertex is removed.
The cleaning process on meshed surfaces first remove the
triangular meshes which refer to detected outliers. Then,
clustering on the meshes is performed based on their con-
nectivity, and only the biggest cluster representing the actual
part shape is kept. At this point, smoothed surfaces cleaned
from detectable outliers and noises is prepared for Shape
Terra model. In cases where scanning using multiple cam-
eras or multiple scanning poses, there are some available
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Fig. 2 Vision-aided robotic
manufacturing processes
automated with digital twinning:
a process monitoring using
computer vision system;
b product state monitoring by
shape retrieval; c material
tracking and recording with bar
code; d In-situ inspection with
on-robot cameras

Fig. 3 Scanned 3D surface
processing using a Moving Least
Square and b Voxel Grid filtering

methods for surface reconstruction, such as Poisson Sur-
face Reconstruction (Kazhdan et al., 2006) and Ball Pivoting
(Bernardini et al., 1999). 3D point cloud and 2.5D triangu-
lation are directly retrieved from the cameras. A regulated
scanning shape is shown in Fig. 3.

The shape Terramodel

Given the rationale of HKS (Sun et al., 2009) as a heat diffu-
sion equation caused by surface conductivity in a spatial R3
domain shown in Eq. (1), the numericalmodel derived by this
approach can be similarly applied to 3D mesh files assuming
heat retention properties of a structure explicitly imply the
Gaussian curvature of the underlined surfaces. The relation-
ship between HKS and Gaussian curvature is defined as in
Eq. (1)-(7).

�Mu(x , t) +
∂u(x , t)

∂t
� 0 (1)

where u(x , t) can be seen as the heat located at vertex x and
time step t.�M is the Laplace–Beltrami operator ofmanifold
M . Therefore, the heat kernel between point x and y at time
step t is defined as amount of heat transferred from x to y
in time t, given a unit heat is applied at y. The heat kernel
kt (x , y) from x to y is constraint by heat operator Ht that

exponentiates �M :

Ht f (x) �
∫

M
kt (x , y) f (y)dy (2)

where Ht � e−t�M , heat operator Ht maps the initial heat
distribution f to the corresponding heat distribution at time t .
Thus, the heat kernel kt (x , y) satisfies Eq. (2) is correlative to
theweighted average over all the heat transfer paths from x to
y. It can be defined by a Gaussian function in d-dimensional
Euclidean space R

d:

kt (x , y) � (4π t)−
d
2 e− ||x−y||2

4t (3)

In a general Riemannianmanifold, ameshLaplacian oper-
ator L has been used to calculate the discretized curvature
on surfaces. Based on which, Mesh Laplacian operator Lc

by cotangent formula (Belkin et al., 2008) generates a n × n
matrix that stores the connectivity information between all
the n vertices.HKS proposes to constrain this curvature infor-
mation to a temporal domain:

Lcut � −∂ut
∂t

(4)
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This can be solved by:

ut � e−Lct u0 (5)

If needed, Dirichlet boundary condition u(x , t) � u(x , 0)
can be applied for all vertices x on the boundary of manifold
M (all x ∈ ∂M) at all t .

Matrix exponential e−Lct can be solved by a general eigen
decomposition. Lc, as a n × n real symmetric matrix, can be
decomposed by Lc � ∅�∅

T , where ∅ is an orthogonal
matrix whose columns are the eigenvectors of Lc, and �

is a diagonal matrix whose entries are the eigenvalues of
Lc. Given the power series definition of matrix exponential,
implementation of heat operator becomes:

e−Lct � ∅e−�t
∅

T A (6)

HKS is defined to measure how much heat remains at
vertex x if unit amount of heat is applied at t � 0:

kt (x , x) �
∞∑
i�0

e−λi tφi (x)
2 (7)

φi and λi represent the i-th eigenvector and eigenvalue of Lc

matrix at the vertices, which are stored in matrix ∅ and �.
Surface Mesh generates six connectivity for each non-

boundary vertices, hence we detect boundaries by finding all
the vertices that do not satisfy this. Then, a Dirichlet (first-
type) boundary condition is applied on a discretized meshes
of raw surface. Namely, Dirichlet Boundary Condition spec-
ifies a fixed value of heat at manifold boundaryx ∈ ∂M.
NeumannBoundaryCondition (second type) specifies afixed
derivative over all x ∈ ∂M, by which means alters the intrin-
sic geometries. Thus, feature curvatures reside at boundaries
are altered. Hence, a Dirichlet Boundary Condition can be
formulated as:

u(x , t) � u0 for ∀x ∈ ∂M and ∀t (8)

Hence there is: ∂u(x , t)
∂t � 0. Recall Eq. (5) heat ut �

e−Lct u0, one can obtain:

Lc(x) � 0 for ∀x ∈ ∂M (9)

A unique signature, Persistent Heat Signature Rv , is gen-
erated at each vertex. Recall kt (x , y) quantifies all the heat
transfer paths from a vertex y to x . Assume a vertex x records
its own heat retention, which integrates all the heat transfer to
y over manifold M . If there is a unit heat applied to the vertex
x , which has an initial heat distribution f (x). The retained

heat value Rx is described as:

Rx (t) � f (x) − Ht f (x) � f (x) −
∫

M
kt (x , y) f (y)dy

(10)

Persistent Heat Value (PHV) Rv is defined to be the inte-
gration of retained heat Rx over a designated amount of time
tm , given an initial heat distribution f . We define tm as the
time when maxima of HKS is reached since t � 0 when a
unit heat is applied. Rv is able to compare different points on
the normalized time domain.

Rv(x) �
∫ tm

0
Rx (t)dt (11)

PHV calculation on some typical mechanical features are
shown in Fig. 4. with the ti as 1000 discrete time steps with
a step interval of 0.001 s. Rv generated at each point is
stored for pattern recognition such as identify, differentiate,
or matching salient features on the shape, which is used as a
unique feature recognizer by Shape Terra.

The virtual thread accommodated in Process Simulate
can detect process anomalies by simulation, such as robot
reachability or objects collisions in designed paths. Shape
Terra is further to simulate and numerically monitor inher-
ent curvatures if any on-going structural deviation. It is
envisioned to detect geometrical differences from continu-
ous product scanning, which derives human-level knowledge
by comparing signatures with corresponding CAD and scan
files. By mapping Persistent Heat Signatures with pointwise
intrinsic curvatures, minor geometrical differences will lead
to differently distributed PHVs. Using a Laplace operator
for Laplace–Beltrami operator calculation to implement this
simulation, which facilitates Shape Terra a promising candi-
date to process 3D meshes.

DiscretizedLaplacian operator Lc is calculated as amatrix
where each element at boundary vertices is constraint to be
0. As a result, we can observe a temporal HKS distribution
constraint by the Dirichlet boundary condition in Fig. 5.
Figure 5a–e plot the heat dissipation process given an in
initial heat at the freeform surface. Figure 5f plots the heat
retention value; this is referred as the PHS in this work. The
detected boundaries have a constant heat value over the time
and varied locations, which is the same value at the uniformly
applied heat distribution when t � 0. The heat kernel sig-
natures at boundary vertices remain same as the initial heat
distribution, which is a unit heat applied at these locations.

Towards a product-driven digital twin system enabling
rapid shape inference and adaptive process control, live prod-
uct status shall be acquired by cameras or sensors. For
example, shape-critical object detection for a machine visual
inspection can be used by both additive and subtractive man-
ufacturing, assuming the defect types are recognizable in
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Fig. 4 Shape Terra calculation on 9 CADmesh files of typical mechanical features: dome, cone, blind hole, protrusion, pyramid, step, boss, pocket,
slot

detected shapes.Developing suchmanufacturing intelligence
is explored in this work to for rapid in-process assessment
using 3D scanning.

Deployment to CAE platforms and control systems

System integration of HKS-based Shape Terra was firstly
built on a Computer-Aided Engineering (CAE) platform,
Siemens Tecnomatix Process Simulate. The authors have
been utilizing this platform for virtual commissioning, pro-
cess prediction, and control verification by constructing a
CAE-based digital twin aligned with physical counterparts

(Xia et al., 2019, 2020). To expand the usage of such CAE-
based digital twin implementation, feature extraction on
shape data is further explored in this work. Shape features
are extracted from the virtual environment, with vertices and
mesh information stored inside CAD files. Computer aided
platforms are usually composed of library with virtual object
instances, object-oriented databases, and engines that per-
form required computing. Virtual objects defined by general
acceptedCADformats, such as stl, step, and jt, can be directly
accessed and used to retrieve mesh information. A Shape
Terra Graphic User Interface (GUI) is implemented in this
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Fig. 5 Temporal HKS distribution at a partial surface scan constraint by the Dirichlet boundary condition. Subplot (a–e) present the HKS at 1st,
11th, 51st, 300th, and 800th time step. The cumulative Persistent Heat Value is shown in subplot (f)

work using application programming interface, which con-
trols the defined functions and exchanges data with external
platforms, see Fig. 6.

GUI designed for Shape Terra has three major functions:
(1) connect to external environments to perform model cal-
culations. In this work, Shape Terra calculations rely on
large-scale eigensolvers. The user can easily perform these
calculations while staying in the Process Simulate front end.
(2) auto-generate large volume of shapemeshes. Part features
can be generated with random or user-specified locations
and dimensions on a surface. This function builds large
datasets to train pattern recognition algorithm using Con-
volutional Neural Networks (Shi et al., 2020a, 2020b). (3)
calculates HKS within the simulation process. This GUI
enables users can select parts and calculate to extract shape
signatures in the CAE environment. Some results can be seen
in Fig. 6. (4) It interacts with the CAE environment with
shape information derived by Shape Terra. The ability of
this GUI enables streaming data and combining the simula-
tion engine with an simulated scheduler. Using this method,
previouswork implements reinforcement learning agent (Xia
et al., 2020) to train the autonomy of robots. Coupled with
Shape Terra, higher resolution of such control agent tailored
for manufacturing features can be trained by an intelligent
computer-aided process planning application, namely a dig-
ital engine (Xia et al., 2019).

Integrating Shape Terra with Computer-Aided interac-
tive platforms enables a high-resolution process planning
application. In a CAE-based environment, in-situ shapeman-
ufacturability analysis can be performed by an interaction

with Shape Terra engine.Queried part shape is retrieved from
back-end database and as an input to the Shape Terra algo-
rithm. Then, extracted geometrical features along with its
location information can be used for the robots to plan the
assembly process, e.g. which surface to grip orwhere to place
the parts. An example process planning on a virtual fuselage
assembly line is shown in Fig. 7. This software deployment
of Shape Terra enhances the virtual counterpart of physical
processes.

Intelligence integration from simulation, models, or other
digital solutions into a physical manufacturing control sys-
tem can be achieved by Software-in-the-loop or Hardware-
in-the-loop (Lee & Park, 2014). To register detected surface
feature and its PHS as machine-readable signals within the
PLC control loop, this work utilized a machine-to-machine
communication for industrial automation, Open Platform
CommunicationUnifiedArchitecture (OPCUA).The system
architecture and implementation of Software-in-the-loop and
Hardware-in-the-loop simulations were presented in (Xia
et al., 2020). Shape knowledges are connected as a client
to a OPC UA server, which stores all the process control sig-
nals. Meanwhile, deploying Shape Terra further generates
another signal pathway from CAE environment and pro-
cess virtual commissioning, where virtual features can be
mappedwith.Hence, registered signals canbe subscribed and
accessed by physical PLC (Hardware-in-the-loop), virtual
PLC (Software-in-the-loop) and OPC clients (simulations,
models, and digital solutions). With such system infras-
tructure (Fig. 8) established, the physical and virtual PLC
(PLCSIM) are both able to automate the manufacturing
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Fig. 6 An interactive GUI for Shape Terra hosted by Siemens Tecnomatix Process Simulate. Users select CAD using navigation tools to acquire
desired shape files from the backend database for manufacturability analysis
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Fig. 7 Software deployment of Shape Terra to a Computer-Aided Process Planning (CAPP) application

Fig. 8 A system model enabled
by OPC UA machine to machine
communication protocol and
digital twin of Shape Terra, 3D
scanning, and virtual
commissioning
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actions based on digital solutions such as Shape Terra, PS,
and other platforms. Real-time semantic knowledges such as
the product manufacturable features extracted from the sur-
faces can be explicitly translated by a similarity search in an
established database. Moreover, in-situ process information
such as tool center, gripping point location, can be com-
municated by manufacturing feature knowledges. Similarity
searchdoes not require a large-scale database to detect feature
knowledges. CAD files from a simulation environment can
also provide comparable values to feature signatures. There-
fore, knowledge taxonomy can be accomplished by querying
scanned signatures with established signatures.

Results and discussion

In this section,we present our shape signatures acquired from
3D scans for Computer-Aided Engineering (CAE) applica-
tions using the methods and materials above. First, we use
multiscale filtering and clustering to extract feature clusters
based on PersistentHeat Signatures (PHS). Second, a scoring
function is introduced to map the shapes with tolerance of
noise and irregularity. Third, signaturemapping is performed
on a dataset level to compare between shape files.

Multiscale filtering and feature clustering

An observation made in Fig. 9 is that PHS method is robust
with different mesh triangulations and resolutions. PHS for
both raw meshes and regulated meshes have similar distri-
bution, due to the property of its intrinsic curvatures. This
enables us to compare PHS in different scales and meshing
methods. Since PHS calculation are expensive; one should
have the option to down-sample large mesh files while pre-
serving salient features in the mean time.

We then cluster the meshes using Persistent Heat Val-
ues (PHVs) similarities among connected vertices. On a
manifold, positive Gaussian curvatures lead to larger HKS.
Thus, by varying similarities, vertices can be classified by
clustering into different neighbourhoods,which hint the com-
position of protrusion, corners, or holes. Using a clustering
method, one can also filter out the unwanted boundaries in
HKS matrixes. It can be observed in Fig. 10., as reducing
similarities from 0.9, 0.8, to 0.75, less clusters are found,
and hence cluster regions can be narrowed down for further
signature extraction. In particular, Fig. 10c, f show that at a
similarity of 0.9, there are isolated mesh clusters with local
minima and maxima PHVs can be identified respectively as
freeform and salient features to hint the existence of manu-
facturable features. By which means, some manufacturable
feature regions extracted by Shape Terra are presented in
Fig. 11.

Feature engineering

Extracted feature regions are further treated as shape file
semantics. To compare heterogenous shape files, feature
engineering will be essential to automate the process. Based
on extracted features, spectral clustering is first experi-
mented by inspecting a pool of 42 shape scans. In Fig. 12,
feature distances by ‖ f1 − f2‖1 and ‖ 1

f1
− 1

f2
‖
1
are experi-

mented to compare the shape scan files. Figure 12. left using
‖ f1 − f2‖1 demonstrates clustering results while Fig. 12
left using ‖ 1

f1
− 1

f2
‖
1
demonstrates discriminative results

between salient features, as the first 28 files are composed
with different salient features, such as protrusions, holes,
steps, and edges. The last 14 files include free-form and
curved surfaces.

The distance function d between two manifolds F1 and
F2 is determined by the features f1 and f2, extracted by the
according PHV maxima and minima. Hence for each sur-
face scan file, we define PHS as comparable feature cluster
regions f representing the maxima and minima PHV clus-
ters. Note that minima and maxima PHV clusters caused by
noise from varied scanning quality or surface boundaries can
be extracted as features.

Feature vector distance function is calculated to enable
signature matching between shape files. This stage consists
of two steps: (1) Feature vector extraction from HPV clus-
ters; (2) Shape matching by feature vector scoring with a
predefined distance function. We build the shape dataset
based on scanned shape files of products with variable geo-
metrical characteristics. Despite the filters and multi-scale
clustering applied to denoise the surfaces, there are edges
and boundaries interfering with salient feature recognition
results. When identifying features, there are outliers both at
the boundaries and among the surfaces are identified as PHV
maxima and minima along with salient features. These are
respectively caused by the irregular boundaries and scanning
noises on surfaces. Hence, we propose a scoring function
to estimate the distance between shape features that is also
robust to these outstanding challenges. To compare the fea-
ture groups between two files with the consideration of these
occasions, a cross-comparison (Dey et al., 2010) is adopted
tomatch two shapes by summarizing their closest feature dis-
tances between ∀ f1 ∈ F1 and ∀ f 2 ∈ F2, as in Eq. (12). We
performed feature engineering on selected PHV beforehand
instead of directly subtract them to down-weight the compar-
ison of outliers from noises and surface boundaries, which
are simulated to surpass a value k. Meanwhile, the distances
of salient features, whose PHV are expected to be smaller
than k, can be compared with larger weight. It is observed
that in scanned files, k � 1 can be pre-set for capturing most
salient features. Instead of the scoring function in (Dey et al.,
2010), we use inversed cluster PHV values to measure the
distance between shapes:
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Fig. 9 PHS value distribution in
b and d remain same from
different meshing methods in
a and c: same scan meshed by
5783 vertices and 11,393
triangular faces in a, b; and
11,982 vertices and 23,730
triangular faces 299 k triangular
faces in c, d

(12)

d(F1, F2) � d(F2, F1) �
∑
f1∈F1

min f2∈F2‖ f1
− 1

k − f2
− 1

k ‖1

+
∑
f2∈F2

min f1∈F1
∥∥∥ f1

− 1
k − f2

− 1
k

∥∥∥
1

Expanding the signature pool, a PHShistogramof 613 fea-
ture clusters in 76 different shape scans is shown in Fig. 13.
A grid search of k is performed before an ideal feature trans-
formation factor k � 3 is identified, which approximates
the pool to a normal distribution. Using feature transforma-
tion, shapes files can be clustered by PHV of their signatures
from salient features, free-form surfaces, surface edges or
tips. When comparing shapes in a big dataset with a large
volume of features, by implementing a statistical weighting,
selectively compares shape files by up-weighting features
with less occurrence (more unique features) in the dataset.
Therefore, these features can be encoded as binary or textual
codes to facilitate an interactive search engine among the
signature pool. At a database level, Term Frequency Inverse-
Document Frequency (TF-IDF) is used to autonomously

weigh the importance of signatures by comparing their occur-
rence across the established dataset, whichwill be introduced
in the following section.

Signature mapping

From Fig. 14, surface mapping results are shown by compar-
ing similarity of extracted feature vectors { f1, f2, . . . fn}.
The left figures are the query shape files with extracted sig-
natures, and the right figures are the output shapes with the
most similarities to the query files, which aremeasured by the
least distance d(F1, F2). Despite the scan noise, query by sim-
ilarities can generate robust results to compare shapes with
different scanning qualities. This due to the pose-oblivious
nature of heat-based signatures and noise treatment by the
clustering and scoring function.

Therefore, a signatures-based search engine can be estab-
lished by cross-comparison over selected features. Figure 15
shows the query results of themost similar shapefiles (middle
and right, sorted by similarities) when inputting the original
shape file (left). The matching is conducted across extracted
salient features, freeform surfaces, and signature counts.
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Fig. 10 PHV clustering of two shape files (left and right) by neighbourhood similarities of 0.75 in a, d, 0.8 in b, e, 0.9 in c, f

To autonomously weigh the importance of signatures, this
work calculates the Term Frequency Inverse-Document Fre-
quency (TF-IDF) for each signature by comparing its occur-
rence across a given shape dataset. TF-IDF is a currently
approach to text-based recommender systems inNatural Lan-
guages Processing problems by quantifying importance of
texts in a corpus (Beel et al., 2016), here we utilize the
same approach for shape file signatures as syntaxes. Using
transformed HPV as numerical inputs to TF-IDF equation
(Eq. 13), one can filter out the less unique signatures and
compare scanned shape files by most unique features.

Wi , j � t f i , j × log(
N

d f i
) (13)

where t f i , j is the number of occurrences of signature i in
shape file j . d f i is number of shape files containing signature
i . N is the total number of shape files in the signature pool.
Using TF-IDF, the uniqueness of signature i can be easily
quantified by its occurrence in the established signature pool.
And we can autonomously extract most comparable features
to semantically describe shape files. For each shape file F ,
an automated selection of the subset in shape file feature vec-
tor

{
f0, f 1, f2, . . . fn

}
is accomplished and compared with

other shape files by extracting the identical subsets. The fea-
ture vectors superset consist of normalized signature counts
f0 and signature values { f1, f2, . . . fn}. The results are pre-
sented in Fig. 16.
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Fig. 11 Persistent Heat Signatures (PHS) extraction as manufacturable features (right) using maxima and minima PHV clusters (left) by a neigh-
bourhood similarity of 0.9
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Fig. 12 Spectral clustering of 42 shape files on Persistent Heat Signatures by feature transformation functions (left: ‖ f1 − f2‖1; right: ‖ 1
f1

− 1
f2

‖
1
)

Fig. 13 Histograms of PHS pool (Left: original PHS f ; Right: transformed PHS by f − 1
k with k � 3)

Conclusion and outlook

This work aims to address challenges posted towards cog-
nitive digital twinning featuring in-situ shape-critical man-
ufacturing intelligence. It is enabled by the system-level
automation of geometrical and topological learning for prod-
uct features. A product-centered Digital Twin implementa-
tion is described focusing on the following contributions:

(1) Data (D): Heat-based signatures, traditionally applied
to extract semantics from CAD meshes, are calculated
in this work to take a novel signature-based approach to
intrinsic knowledges from runtime product data stream.
This adds extra values to legacy production process data

by automatingmanufacturing feature extraction and uti-
lizing frame-wise visual scenes.

(2) Model(M): Increasing shape data utilization by iden-
tifying unique manufacturing features and comparing
extracted signatures. Point-wise signatures propose a
high-resolution method to facilitate semantic segmenta-
tion on raw meshes. The proposed semantic extraction
reduces local information loss from all mesh connectiv-
ity storedover high-dimensionalmanifolds.Meanwhile,
mapping heat-based signatures reduces dependency on
scan device positioning and input mesh styles, given the
pose-oblivious and shape-critical signatures generated
by Shape Terra. In addition, such simulative methods
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Fig. 14 Feature vectors mapping: (left) shape files highlighting extracted feature clusters; (right) output shapes with the most similarities to the
query files

can generate knowledge without requiring voluminous,
quality, and balanced training data.

(3) Service(S): Contributing in-situ structural sensing to
Human–Machine interoperable manufacturing automa-
tion enabled by feature-level information system. A
novel smart manufacturing system built on point-wise,
pose-oblivious signatures reduces human supervision
for in-situ product quality assessment, which leads to
highly autonomous visual monitoring for surface form-
ing and material handling processes. Human interoper-
able communication with functions of shape selection,
query, and knowledge search in historical signature pool
that can be built on top of the extracted semantic layer.

As a result, the proposed research creates a novel dig-
ital twin implementation featuring geometrical modelling
and signature searching during shape-forming productions.
It is intended to timely detect human-level knowledges of

process risks such as structural variations, which might be
unavailable to practitioners immediately in many manufac-
turing scenarios. Heat Kernel-based approach increases the
understandingof information residing in investigatedproduct
structures, as well as its potential influences by thermal and
mechanical behaviours. Structural predictions can be made
and continuously modelled following empirical methodolo-
gies with a variety of what-if analysis, which facilitates a
highly automated control of product conditions.

In future work, a 3D scanned manufacturing feature
query system will be established towards a highly auto-
mated robotic shape retrievalmechanism and hence to enable
human–machine interoperable decision-makings such as
in robotic inspection. Shape signature pool has only lim-
ited volumes in this work, reflecting the expensiveness of
manufacturing process data. This limitation is also com-
mon when deriving data-driven manufacturing intelligence

123



Journal of Intelligent Manufacturing

Fig. 15 A shape file search engine with input original features (left) and
output most similar feature lists (the remaining features sorted by their
similarity): a mapping by salient features (local maximas); b mapping

on freeform surfaces (local minima); c mapping by signature counts;
d mapping across multiple salient feature vectors { f1, f2, . . . fn}
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Fig. 16 Shape file matching by selection criteria over TF-IDF values of feature vector
{
f0, f 1, f2, . . . fn

}
: a { f1, f2, . . . fn} only; b { f0} only;

c { f1, f2, . . . fn} and { f 0}
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Fig. 16 continued

using machine learning models, which shows the advan-
tages of simulative models such as Shape Terra. Compared
with machine learning approaches, proposed model is less
affected by the abundance and the quality of datasets.We per-
formsimple distance clusteringover a small sample of PHS to
obtain semantic significance fromscanned shapes,while sim-
ilar feature extraction on 3D data by machine learning often
require training large neural networks. Less dependency on
data abundance provides our approach more applicability to
industrial manufacturing use cases. Future emphasis will be
put on a hybrid approaches to the humanknowledges of shape
data by utilizing data-driven learning systems. By developing
a large dataset and intelligent manufacturing shape knowl-
edge query system, we will seek to overcome the limitations
and establish a platform for real-world structural knowledge
reuse and shape annotation. Registered structural images,
CAD models, heat-based signatures and other data will be
stored and reused as domain assets for rapid manufacturing
feature mapping.
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