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ABSTRACT

Glucose transporter GLUT is ubiquitously expressed in the human body from the red cells to the blood-
brain barrier to the skeletal muscles. It is physiologically relevant to understand how GLUT1 facilitates
diffusion of glucose across the cell membrane. It is also pathologically relevant because GLUT1
deficiency causes neurological disorders and anemia and because GLUT1 overexpression fuels the
abnormal growth of cancer cells. This article presents a quantitative investigation of GLUT1 based on all-
atom molecular-dynamics (MD) simulations of the transporter embedded in lipid bilayers of asymmetric
inner-and-outer-leaflet lipid compositions, subject to asymmetric intra-and-extra-cellular environments.
This is in contrast with the current literature of MD studies that have not considered both of the
aforementioned asymmetries of the cell membrane. The equilibrium (unbiased) dynamics of GLUT1
shows that it can facilitate glucose diffusion across the cell membrane without undergoing large-scale
conformational motions. The Gibbs free-energy profile, which is still lacking in the current literature of
GLUT]1, quantitatively characterizes the diffusion path of glucose from the periplasm, through an
extracellular gate of GLUTI, on to the binding site, and off to the cytoplasm. This transport mechanism is
validated by the experimental data that GLUT1 has low water-permeability, uptake-efflux symmetry, and

10 kcal/mol Arrhenius activation barrier around 37°C.



INTRODUCTION

Thirteen isoforms of glucose transporters (GLUTs)[1-4] are expressed throughout the human body to
facilitate a major form of energy metabolism[5-17]. Deficiency in or mutations of GLUTs were found
to cause severe health problems[5, 18-25]. In particular, GLUT1[26-29], encoded by SLC2A41, is richly
expressed in endothelial cells of the blood—brain barrier[7, 17, 30-32]. Deficiency in GLUT1 causes
neurological disorders, for example. GLUT1 is replete in erythrocytes[27, 29, 33] and, in fact, it
outnumbers water channel protein AQP1[34] that is also very richly expressed in human
erythrocytes[33] for hydrohomeostasis. Naturally, GLUT1 has been a subject of many investigations
due to its physiological and pathological relevance and due to its abundant availability from

erythrocytes.

The structure of GLUT1, like other transporters in the major facilitator superfamily (MFS), has been
shown to have a conserved core fold of 12 transmembrane (TM) segments organized into two discrete
domains, the amino- and carboxy-terminal (N- and C-) domains[29, 35-40]. And, recently, the crystal
structures of GLUT1 have been resolved to atomistic accuracy[39, 40]. In the rich literature of kinetics
experiments on GLUT1 (reviewed in, e.g., [41, 42]), it is unambiguous that glucose transport is
symmetric between uptake and efflux both of which are very rapid at near-physiological temperatures.
The Arrhenius activation barrier of glucose transport is approximately 10 kcal/mol (extracted from the
data points in Fig. 2 of Ref. [42] in the temperature range between 35°C and 47°C). It is also
unambiguous that GLUT1, even though outnumbering AQP1 (the dedicated water channel) by three

folds[33], does not contribute significantly to water transport across the erythrocyte membrane[43].

On the theoretical-computational side, the alternating access theory[1, 44] is generally accepted as
applicable for all MFS transporters including GLUT1 beyond the cellular specificities of the
membrane lipid-transporter protein interactions. However, it has long been known that the structure and
activities of GLUTs are sensitive to the membrane lipid compositions[45-49]. In particular, glucose
transport across erythrocyte membranes was found, long ago, to be reduced by 75% by exposure to
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phospholipase A2 which hydrolyzes fatty acyl groups from the sn-2 position of glycerophospholipids[47,
49]. In general, lipid-protein interactions are significant determinants of the membrane protein

functions[50-54]. Therefore, it is natural to ask: Do the specific cellular environments matter at all in how
(qualitatively, not just quantitatively) an MFS transporter operates to facilitate moving its substrate in and

out of the cell?

In light of all these, surveying the current literature of molecular dynamics (MD) simulations of
GLUTI, e.g., [46, 54-58], and some other GLUTs [55-61], one can see the need to further the current MD
studies by modelling a cell membrane with two asymmetries between the intracellular (IC) and the
extracellular (EC) sides of the membrane: (1) asymmetric lipid compositions of the inner and the outer
leaflets and (2) asymmetric saline compositions of the aqueous compartments on the IC and the EC
sides of the membrane. A recent MD study[46] included the asymmetry of the first type mimicking the
lipid compositions of human erythrocyte. This study showed that the dynamics of GLUT1 embedded
in a patch of lipid bilayer resembling the lipid compositions of human erythrocyte membrane[62, 63]
(noted as RBCm) is distinct from GLUT1 embedded in a patch of phosphatidylethanolamine lipid
bilayer (noted as POPE). During the unbiased equilibrium MD runs, GLUT1 in POPE patch remained
in the endofacial conformation, widely open to the IC side (glucose can easily access the binding site
deep inside the protein near its center) and totally occluded to the EC side at both human body
temperature (37°C) and subphysiological temperature (5°C). In contrast, at the human body
temperature, GLUT1 in RBCm patch presented no significant changes in its endofacial conformation
(still widely open to the IC side) but a fluctuating gate on the EC side can open up wide enough for
glucose to pass through. This EC gate provides a dynamic passageway for glucose diffusion from the
EC side into the binding site near the center of the protein from where glucose can dissociate and
move to the IC side, which points to a mechanism of glucose transport through GLUT1 by passive
diffusion without the large-scale conformational movements required by the alternating access theory.

To valid this EC-gating mechanism, quantitative characterization is needed for glucose diffusion along



the passageway connecting the EC saline through the EC gate to the binding site and to the IC saline.
Also, water transport through GLUT1 has to be quantified because the passageway for the highly
hydrophilic glucose must be favorable for water passage as well. If the EC gate were open most of the

time, water transport in human erythrocyte would be mostly by GLUT!1 instead of AQP1.

In this article, I present MD simulations of GLUT1 with full consideration of both types of the IC-EC
asymmetries (illustrated in Fig. 1 and in the supporting material (SM), Figs. S1-S2), aiming to
quantitatively characterize the EC-gating mechanism of GLUT1. In this model system mimicking the
human erythrocyte, the asymmetry is considered in lipid compositions of the inner and the outer leaflets
of the cell membrane. Also considered is the asymmetry in the IC saline consisting mostly of KCl and the
EC saline consisting mostly of NaCl. This latter IC-EC asymmetry is preserved in the MD runs with
periodic boundary conditions by employing two membrane patches separating the IC saline compartment
from the EC saline compartment. With this, the membrane potential can also be maintained and
controlled. In fact, the full electrostatics of the model system gave the membrane potential approximately
—40 mV which is reasonably close to the physiological conditions of human erythrocyte. From the
unbiased equilibrium MD run of GLUT1 in asymmetric IC-EC environments (and three replication runs),
GLUT1 was shown to provide a passageway for glucose diffusion across the cell membrane through a
fluctuating EC gate while remaining in the endofacial conformation, in qualitative agreement with Ref.
[46]. Computing the probability for the EC gate to be open, the contribution to water transport from 170K
GLUT1 copies[33] was estimated to be about 5% of that from the 58K AQP1 copies[33] in an
erythrocyte. From the steered MD simulations, the Gibbs free-energy profile of glucose transport was

computed in quantitative agreement with the experimental data.
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Fig. 1. (A) All-atom model system of eight GLUT1 proteins in asymmetric environments mimicking the

membrane of a human erythrocyte. The four copies of GLUT1 in the upper patch are numbered as

proteins 0, 2, 4, and 6 and the four copies of GLUT1 in the lower patch are numbered as proteins 1, 3, 5,
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and 7. The system consists of 1,163,104 atoms. The intracellular space is located at —40A < z < 40A and
the extracellular space at z < —95A and z > 95A. The water molecules are not shown for clearer views of
all the other constituents of the system. The intracellular salt (KCl) and the extracellular salt (NaCl) are
shown as spheres colored by atom names (CI’, cyan; K*, metallic; Na*, yellow). The lipids are represented
as licorices colored by lipid names (POPC, orange; POPE, tan; POPS, red; SSM, green; CHL, silver). The
proteins are presented as surfaces colored by residue types (hydrophilic, green; hydrophobic, white;
positively charged, blue; negatively charged, red). (B) The particle mesh Ewald-based electrostatic
potential[64, 65]. (C) to (E) The electrostatic potential along the z-axis. The membrane potential of this
model system is —40 mV (D), which will decrease to —94 mV (E) (increase to +8 mV (C)) when a single
cation is moved across the membrane along the IC-to-EC (EC-to-IC) direction.

METHODS

The parameters, the coordinates, and the scripts for setting up the model systems, running the simulations,
and analyzing the data are available in a dataset at Harvard Dataverse[66].

Model system setup and simulation parameters.

Following the well-tested steps in the literature, CHARMM-GUI[67-69] was employed to build an all-
atom model of a single-patch of erythrocyte membrane. CHARMM36 force field parameters[70-
73]were used for the intra- and inter-molecular interactions. NAMD[74] was employed as the MD
engine. With the exception for the initial equilibration steps of the single-patch system (see below), all
simulations were at constant temperature of 37°C and the constant pressure of 1 bar maintained
with the Langevin pistons. The timestep was 1.0 fs. The cutoff was set to 10.0 A with a switching
distance of 9.0 A. The Particle Mesh Ewald (PME) was implemented at a grid level for each

system with a grid spacing <1.0 A.

I took the high-resolution crystal structure of GLUT1 (PDB code: 4PYP)[39], mutated it back to wild
type, removed or replaced B-nonylglucoside with B-D-glucose, translated and rotated the protein complex
so that its center is located at the origin of the Cartesian coordinates and its orientation is such that the z-
axis points to the IC side, embedded the complex in a patch of lipid bilayer consisting of multiple types of
lipids (the IC leaflet consists of 20% cholesterol, 11% POPC, 38% POPE, 22% POPS, and 9% SSM
while the EC leaflet has 20% cholesterol, 35% POPC, 10% POPE, and 35% SSM),[62, 63] solvated the

sugar-protein-membrane complex with a cubic box of water, and then added sodium/potassium and
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chloride ions to neutralize the net charges of the system and to salinate the system with 150 mM
NaCl. I followed the standard literature (as prescribed by CHARMM-GUI[67-69] ) to equilibrate
the single-patch system so constructed. The PME was implemented on a grid level of 128x128x128
in this case. Then I replicated this single-patch system, inverted the replicate, placed it right next to
the original to form a two-patch system, and replaced the IC salt with KCI. Therefore, this all-atom
model system of GLUT1 in erythrocyte membrane has an intracellular saline of KCl separated by two
membrane patches from the extracellular saline of NaCl. The model membrane has the asymmetry in the
lipid compositions of the inner and the outer leaflets mimicking the human erythrocyte membrane. The
system so built (consisting of 290,726 atoms) is referred to as Sysl. Its dimensions are

108A x 108A x 2464 when fully equilibrated. Full details of SysI are shown in SM, Figs. SI and

S2.
Equilibrium unbiased MD runs of SysI and SysII.

After the initial stages of equilibration, I conducted 500 ns production run of unbiased,
equilibrium MD on SyslI to elucidate the GLUT1 dynamics in the erythrocyte membrane. The
PME was implemented on a grid level of 128x128%256 for full electrostatic interactions. SyslI
constituted with two GLUT1 copies in two patches of membrane suffices for proving the concept.
Furthermore, taking the coordinates from the last frame of the 500 ns MD run of Sysl, I replicated
Sysl three times. With appropriate translations of the four copies of Sysl, I formed SyslII illustrated in Fig.
1, a large system of two patches of membrane that consists of 1,163,104 atoms. In each patch of the
membrane, there are four GLUT1 proteins. Unbiased MD was run for 500 ns for this large SyslI with
identical parameters used for Sysl except that the PME was implemented on a grid level of 256x256x256.
The last 100 ns of the trajectories were used in the computation of the membrane potential (Fig. 1) and the
statistics of the EC-gating kinetics. It is noted here that no special care would be needed for the initial
equilibration of SyslI because the MD of Sysl was subject to periodic boundary conditions in all three

dimensions. SyslI is simply SysI replicated once in the x-direction and once in the y-direction. The MD of



SyslI was run with periodic boundary conditions whose periodic boundaries along the x- and the y-
directions were exactly twice those of Sysl, respectively. All that is needed is to wait for the small system

characters to be replaced with the large-system characters as the stochastic dynamics of SyslI progresses.

The large system Sysll is advantageous for a very simple reason that the statistics are better with more
copies of the transporter protein in a larger system. There are two additional advantages: First, the
membrane potential can be fine-tuned in large systems but not in small systems. For example, when a
single cation is moved from EC to IC, the membrane potential is altered by a greater amount in a small
system (Sysl in SM, Fig. S2) than in a large system (SyslI in Fig. 1). Second, SyslI has a significant
enhancement of the signal to noise ratio over Sysl because the intrinsic pressure fluctuation of a system is
inversely proportional to the volume of the system[75]. These two advantages, while not critical in this
study, may be needed in other studies where the biophysical processes are sensitive to the membrane

potential or the pressure fluctuations.

Steered MD for computing the free-energy profile.

For the free-energy profile of glucose diffusion through GLUT1, I used SysI with a glucose at the
binding site. I followed the multi-sectional approach of [76] to conduct 60 sets of SMD runs to
cover the entire diffusion path from the EC to the IC side for a total z-displacement of 60 A. Over
each 1 A section, the center-of-mass z-coordinate of glucose was pulled/steered at a velocity of 1
A/ns to sample a forward path and at a velocity of —1 A/ns to sample a reverse path. At the end of
each section, the system was equilibrated for 4 ns while fixing the center-of-mass z-coordinate of
glucose. With a total 744 ns SMD simulations, I sampled 4 forward and 4 reverse paths and
computed the PMF along the glucose diffusion path, i.e., the Gibbs free energy of the system
when the center-of-mass z-coordinate of glucose is fixed at a given value. The standard errors

were over the 4 sets of forward and reverse paths.

RESULTS AND DISCUSSION



IC-EC asymmetry and membrane potential

Fig. 1 and SM, Figs. S1-S2 show the model systems for which 500 ns equilibrium (unbiased) MD run was
conducted at the physiological temperature 37°C. In order to accurately compute the long-range
electrostatic interactions with the PME technique, periodic boundary conditions (PBC) are applied in all
three dimensions. The use of PBC leads to artifactitious mixing between the top side with the bottom side
of the model system (Fig. 1(A)). In this study, the model system, the unit cell under the PBC, consists of
two patches of GLUT1-embedded membranes (Fig. 1) that separate the IC space in between the two
patches from the EC space outside the two membranes. The artifactitious mixing is only between the EC
sides of the adjacent unit cells. The IC saline and the EC saline are not artifactitiously mixed by the PBC.
Any exchange of water or solutes between the IC and the EC can only happen via transport across the cell
membrane. Consequently, the IC-EC asymmetry is not lost in the PME-based simulations of this work.
The IC saline contains 150 mM KCI while the EC saline has 150 mM NaCl. Furthermore, the inner leaflet
of the membrane consists of 20% cholesterol, 11% POPC, 38% POPE, 22% POPS, and 9% SSM while
the outer leaflet has 20% cholesterol, 35% POPC, 10% POPE, and 35% SSM)[62, 63]. The eight GLUT1
proteins, four on each membrane patch, are oriented in the native orientation as in human erythrocyte.

To illustrate that this model “cell” system is a valid approximation to the human erythrocyte, the charge
distribution of the system was computed from the last 100 ns of the 500 ns MD run. The Poisson equation
for the electrostatic potential was integrated along the z-axis for the membrane potential shown in Fig. 1.
The mean value and the standard error were taken from the statistics over the last 100 ns of the 500 ns
MD simulation. The potential difference between the IC side and the EC side of the membrane is
approximately —40 mV which is a reasonable approximation for the human erythrocyte. This validates
the choice of lipids for the inner and the outer leaflets. Improvement upon this approximation can be
furthered with fine tuning the ion compositions of the model system, which is unnecessary in this present
study of transport of neutral solutes but will be necessary for any studies of ion transport.

EC gate fluctuates to open and close without alternating conformational motions
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Figs. 2 and 3 representatively show the long-time dynamics of GLUT1 subject to asymmetric IC-EC
environments. For both proteins embedded in the two membrane patches of Sysl, the dynamics is
represented by small fluctuations around the crystal structure. During 500 ns of equilibrium dynamics at
37°C, the protein conformational changes are small and both proteins remain in the endofacial
conformation observed in the crystal structure[39, 40] (Fig. 2). The deviations from the crystal structure
are mainly from the relatively large sidechain fluctuations and the small shifting of the transmembrane
helices. In fact, the deviation as a function of time stabilizes after the initial 100 ns and remains
fluctuating under 3 A (SM, Fig. S3). Interestingly, once the protein dynamics stabilizes at ~100 ns, a gate
on the EC side opens and fluctuates between the open and the closed states. When the EC gate is open,
the glucose binding site inside the protein is accessible from the EC side while it is invariably open to the
IC. The EC gate, shown in Fig. 3, consists of four groups of residues on four transmembrane helices: (1)
Gly31, Val32, Ile33, Asn34, Ala35, and Pro36 (green colored) are located from the EC end of
TM1 to the beginning of EC helix 1. (2) Vall65, Vall166, Gly167, lle168, Leul69, Ile170,
Alal71, GInl172, Vall73, and Phel74 (orange colored) on the EC end of TMS5. (3) Val290,
Phe291, Tyr292, Tyr293, Ser294, Thr295, Ser296, 11e297, Phe298, and Glu299 (violet colored)
on the EC end of TM7 and the EC helix connection to TM8. (4) GIn305, Pro306, Val307, Tyr308,
Ala309, Thr310, Ile311, Gly312, Ser313, Gly314, Ile315, Val316, and Asn317 (purple colored)
on the EC end of TMS8. The EC gate, when open, allows glucose to pass through from the EC
fluid to the binding site near the center of GLUT1 and vice versa. It also allows water permeation
through the protein between the EC and the IC sides of the membrane. When closed, the EC gate
occludes both glucose and water. Therefore, the probability of the EC gate being open can be
estimated from whether or not the EC body of water being connected to the IC body of water as

illustrated in Fig. 4.
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Fig. 3. Crystal structure vs. dynamic snapshot structure of GLUT1 showing EC-gate closed/open. The
EC-gate residues are shown in space-filling spheres colored by the TMs they are on (residues 30 to 38
colored in green, residues 165 to 177 colored in orange, residues 292 to 299 in violet, and residues 305 to
319 in purple) while the entire protein is shown in cartoons colored by residue types (polar, green;
hydrophobic, white; acidic, red; basic, blue). (A) and (B) show respectively the EC and the IC views of
the protein crystal structure with the EC gate being closed. (C) and (D) show respectively the EC and the
IC views of the protein with the EC gate being open (see the space surrounded by the four groups of the
gate residues).
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Fig. 4. GLUT1 in the EC-gate closed state (A) and in the EC-gate open state (B). The protein is shown in
ribbons colored in red except the EC-gate residues. The four groups of the EC-gate residues are colored in
blue, white, pink, and cyan respectively. Water molecules within 3.5 A of GLUT1 are shown in green
wireframe surfaces. In the closed state (A), the EC body of water (top) is separated from the IC body of
water (bottom). In the open state (B), the two bodies of water are connected (water molecules are within
3.1 A of each other). (C) The pore radius throughout GLUT1 when the EC gate is open and closed
computed with HOLE2[77].
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Statistics of EC gating and water permeability of GLUT1

To achieve reliable statistics of the EC gating mechanism, I conducted 500 ns equilibrium
unbiased MD run of SyslI that has four copies of GLUT1 (proteins 0, 2, 4, 6) on one patch of the
RBCm and four copies of GLUT1 (proteins 1, 3, 5, 7) on the other patch of RBCm as illustrated
in Fig. 1. The last 100 ns of the trajectory was used in the statistics of the GLUT1 EC-gating
kinetics. The RMSD curves of eight GLUT1 copies are shown in Fig. 5, which shows that none of
the eight proteins had large conformational changes during the 500 ns MD run. It should be noted
that SyslI was formed by replicating Sysl in the end of a 500 ns MD run. Additionally, I repeated
the simulation of SyslI three more times (The RMSD curves are shown in SM, Figs. S4 to S6).
Fig. 6 shows the statistical characteristics of the EC gating in each of the eight GLUT]1 proteins.
The statistical average over the four MD runs gave the probability of the EC gate being open as
0.017 £ 0.005. Assuming that GLUT1 in the EC-gate open state is similar to AQP1 which is
always open for water conduction, the 170 K GLUTI1 proteins on a human erythrocyte would give
a contribution to water transport at ~5% of the water conduction facilitated by the 58 K AQP1
proteins that are the dedicated water channels of an erythrocyte. Qualitatively, the GLUT1
dynamics simulated in Sysl or SyslI are similar to the case studied in Ref. [46] where GLUT1 was
embedded in a single membrane patch that had similar lipid compositions. Quantitatively, the
dynamics of GLUTT in the fully asymmetric EC-IC environments are substantially different from
Ref. [46] where only the asymmetry in lipid compositions was considered. In the larger and more
realistic model system of GLUT1 in RBCm studied here, the EC gate is open for ~1.7% of the
time whereas, in the small model system of a single-membrane patch, the EC gate was nearly
open all the time at 37°C[46]. If the latter were true, then the 170K GLUT1 copies would dominate

the 58K AQP1 copies in water transport across the erythrocyte membrane.
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Quantitative characteristics of glucose transport

Fig. 7 shows the Gibbs free energy along the path of glucose transport through GLUT]1. It is known that

GLUT]1 is a passive facilitator for glucose diffusion down the concentration gradient. The driving force
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for glucose transport is the Gibbs free-energy gradient along the diffusion path. Experimental data of
kinetics showed an Arrhenius activation barrier ~10 kcal/mol around 37°C.[42] This high barrier renders
it infeasible to compute the free-energy profile directly from equilibrium MD simulations. Shown in the

top panel of Fig. 7 are the results of 744 ns SMD runs detailed below:
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Fig. 7. Glucose transport path of diffusion facilitated by GLUT1. Top, PMF of glucose along the
diffusion path computed from SMD simulations. The PMF(z) represents the Gibbs free energy of the
system when the center-of-mass z-coordinate of glucose is at a given position. Bottom, glucose (space-
filling spheres), GLUT1 (thin cartoons), and residues within 5 A of glucose (licorices) shown in
representative frames along the transport path. The sugar is colored in red (O), cyan (C), and white (H) in
all frames but the protein is colored by the fame.
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Starting from the binding site (z = 0 A), the glucose molecule was pulled/steered forward and backward
over sections of 1 A each: 32 sections to the IC side and 28 sections to the EC side. In each section, the
center-of-mass z-coordinate of glucose was steered at a speed of 1 A/ns along the z-axis in the sampling
of a forward path and along the negative z-direction in the sampling of a reverse path. The pulling was
repeated 4 times to sample 4 forward and 4 reverse paths in each section. At the end of every section, the
system was equilibrated for 4 ns while the z-coordinate of glucose’s center of mass was fixed. The x- and
y-coordinates of the glucose center of mass were free to follow the stochastic dynamics of the system.
The work done to the system along the forward paths and that along the reverse paths both contain
irreversible dissipative work in addition to the reversible change in the Gibbs free energy. The use of the
Brownian dynamics fluctuation-dissipation theorem had those two parts cancelled to yield the reversible
potential of mean force (PMF) as a function of z shown in Fig. 7, namely, the Gibbs free energy of the
system when the center-of-mass z-coordinate of the glucose is fixed at a given value[76].

Going along the glucose diffusion path from the EC side (z~ — 30 &), through the EC gate, down to the
binding site (z~0 A) and from there up to the IC side (z~30 A), the free-energy difference between the IC
and the EC is approximately zero. The equal levels on the two sides are required for passive diffusion of
neutral solutes down the concentration gradient. Discrepancy from this equality indicates the inaccuracy
of a computational work. On the EC side, through the EC gate, the PMF curve exhibits minor dips and
bumps, which reflects that the EC gate constantly fluctuates between closed and open states. The EC-
gating residues are flexible to allow glucose passage without significant water flux through there. The
PMF at the binding site is approximately 10 kcal/mol below the EC or IC level. Each glucose transport
event, either uptake or efflux, consists of two parts: falling into the binding site with a PMF drop of 10
kcal/mol and climbing out of there with a PMF rise of 10 kcal/mol. This thermal activation nature of
glucose transport quantitatively agrees with the experimental data of 10 kcal/mol in Arrhenius activation
barrier around 37°C[42]. (Noting that the value of 10 kcal/mol can be obtained from the data points in the

temperature range of 35°C and above shown in Fig. 2 of Ref. [42].) The lack of significant barriers above
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the bulk level PMF on either the IC or the EC side corresponds well with the experimentally observed
symmetry between the glucose uptake into and efflux out of human erythrocytes.

It is interesting to note that a hypothetical PMF curve with a 10 kcal/mol barrier (rather than the 10
kcal/mol deep well shown in Fig. 7) would also be consistent with an Arrhenius activation energy of 10
kcal/mol. However, such a PMF curve would mean very low glucose-GLUT1 affinity. Even though the
complexity has long been known in the quantification of the glucose-GLUT]1 affinities[42, 78], it is clear
RSOSSN < strong rather than weak. The dissociation constant kj, is in the low mM range
considering various values of the Michaelis constant k,;. The PMF curve in Fig. 7 having a deep well
near the center of GLUT1 (while insufficient to determine k) agrees with the experimental fact of
glucose-GLUT]1 affinity.

It should also be emphasized that the initial state of the SMD sampling was the end of the 500 ns
equilibration of Sysl when the glucose molecule was in an equilibrium state at the binding site near the
center of GLUT1. The pulling/steering was only on one degree of freedom---the z-coordinate of the
glucose center-of-mass---while the glucose molecule was free to rotate around its center of mass and to
fluctuate in its center-of-mass x- and y-coordinates.

The residues along the glucose transport path: Phe26, Thr30, Gly31, Asn34, Ala35, GIn37, Lys38,
Thr137, Prol41, Argl53, Gly154, Gly157, His160, GInl161, Ile164, 11le168, GIn172, Leul76,
GIn282, GIn283, 11e287, Asn288, Phe291, Tyr292, Ser294, Thr295, Val307, Thr310, Glu329,
Arg333, Trp388, Phe389, Gly408, Asn411, and Asn415 (illustrated in Fig. 7). It is interesting to
note that 30 of these 35 residues are conserved between human GLUT1 and GLUT3. [46] The many
aromatic residues along the path provide affinity for glucose and hydrophobicity to disfavor water

passage. All these, in agreement with experimental findings, indicate validity of this research.

CONCLUSIONS
In three aspects, this in silico study (based on all-atom double-membrane models mimicking RBCm)

reached quantitative agreement with the available experimental data on glucose transport across the
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erythrocyte membrane: (1) GLUT1 does not contribute significantly to water movement across the
erythrocyte membrane. Even though GLUT1 outnumbers AQP1 (the water channel) in human
erythrocytes by more than two folds, its contribution to water transport is around a few percent of the total
water permeability. GLUT] is only in the EC-gate open state for less 2% of the time. (2) Glucose
transport at near physiological temperatures (~37°C) is approximately symmetric between the uptake and
the efflux directions. (3) The Arrhenius activation barrier of glucose transport around 37°C is
approximately 10 kcal/mol. All these aspects consistently and quantitatively point to a very simple
mechanism of glucose diffusion facilitated by GLUT1: This membrane protein is a channel with a

fluctuating gate.

Supporting material: Three videos and six additional figures that are discussed but not included in the

main text.
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