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This study focuses on the interaction of two small freely-moving spheres in a linear flow field of yield stress
fluids. We perform a series of experiments over a range of shear rates and different shear histories using an
original apparatus and with the aid of conventional rheometry, Particle Image Velocimetry (PIV) and Particle
Tracking Velocimetry (PTV). We investigate the flow field around a single sphere as well as two spheres in a
simple-shear flow. The flow is Stokesian and the Bingham number is in the range of 0 < B < 2. To explore the
limit of zero Bingham number, we use both Newtonian and shear thinning suspending fluids. We use guar gum
solutions and Carbopol gels as shear thinning and yield stress test fluids, respectively. We show that the presence
of a slight elasticity, which is unavoidable when dealing with polymer solutions, plays an important role in
establishing the flow field, e.g., disturbance velocities and stream lines around a single sphere as well as particle
trajectories. Therefore, ideal yield stress fluid models cannot provide a full description of flow problems in-
volving particles in practical yield stress fluids. The flow field around a single sphere can be used to understand
the two particle interactions. We show how particle-particle contact and non-Newtonian behaviors result in
relative trajectories with fore-aft asymmetry. Particularly, the fore-aft asymmetry depends on the Deborah
number, Bingham number, shear history, initial offset and roughness of the particles. Finally, we discuss how the
relative particle trajectories may affect the microstructure of complex suspensions and consequently the bulk
rheology.

1. Introduction Green [1] who then used the knowledge of two particle trajectories and

stresslets to scale up the results and provide a closure for the bulk shear

The flows of non-Newtonian slurries, often suspensions of non-
colloidal particles in yield stress fluids, are ubiquitous in many natural
phenomena (e.g. flows of slurries, debris and lava) and industrial pro-
cesses (e.g. waste disposal, concrete, drilling muds and cuttings trans-
port, food processing). Studying the rheological and flow behaviors of
non-Newtonian slurries is therefore of high interest. The bulk rheology
and macroscopic properties of noncolloidal suspensions are related to
the underlying microstructure, i.e., the arrangement of the particles.
Therefore, investigating the interactions of particles immersed in vis-
cous fluids is key to understanding the microstructure, and conse-
quently, to refine the governing constitutive laws of noncolloidal sus-
pensions. Here, we study experimentally the interaction of two particles
in shear flows of yield stress fluids.

There exists an extensive body of research on hydrodynamic inter-
actions of two particles in shear flows of Newtonian fluids. One of the
most influential studies on this subject is performed by Batchelor and
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stress in a dilute noncolloidal suspension to the second order of solid
volume fraction, ¢ [2]. Moreover, they showed that due to the fore-aft
symmetry of the particle trajectories, Stokesian noncolloidal suspen-
sions do not exhibit any normal stress difference.

The work of Batchelor and Green was followed by subsequent at-
tempts [3-6] to develop accurate functions describing the hydro-
dynamic interactions between two particles, which built a foundation
for further analytical studies [7-9] and powerful simulation methods
such as Stokesian Dynamics [10]. A large body of theoretical and nu-
merical studies has been done to solve the relative motion of two
spherical particles in order to obtain the quantities required for the
calculation of the bulk parameters, such as mean stress and viscosity in
suspensions with a wide range of solid fractions (dilute to semi-dilute)
[1,11-14].

The Stokes regime without any irreversible forces leads to sym-
metric particle trajectories, and consequently, a symmetric Pair
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Distribution Function (PDF), i.e., the probability of finding a particle at
a certain position in space with respect to a reference particle. These
result in a Newtonian bulk behavior without any development of
normal stress differences in shear flows. However, even in Stokesian
suspensions the PDF is not symmetric [8,15-18] and the loss of sym-
metry can be related to contact, due to roughness [19-22] or other
irreversible surface forces (e.g., repulsive force leads to an asymmetric
PDF in a similar fashion to how a finite amount of Brownian motion
does [8]).

The microstructure affects the macroscopic properties of non-
colloidal suspensions leading to non-Newtonian effects (i.e., normal
stress differences) and phenomena such as shear induced migration of
particles [23-26]. Thus, the development of accurate constitutive
equations requires considering the connection between the micro-
structure and macroscopic properties either explicitly [27-29] or im-
plicitly through the particle phase stress [23,30-33].

A yield stress fluid deforms and flows when it is subjected to a shear
stress larger than its yield stress. In ideal yield stress models, such as the
Bingham or Herschel-Bulkley models [34], the state of stress is un-
determined when the shear stress is below the yield stress and the shear
rate vanishes. In the absence of inertia, the solutions to flows of ideal
yield stress fluids have the following features: (i) uniqueness (ii) non-
linearity of the equations (iii) symmetries of the domain geometry,
coupled methodologically with reversibility and reflection of solutions
[35]. Therefore, flows around obstacles, such as spheres, should lead to
symmetric unyielded regions and to symmetric flow lines in the yielded
regions, as observed in simulations [36-40].

However, recent studies report on phenomena such as loss of fore-
aft symmetry under creeping condition and formation of negative wake
behind particles, which cannot be explained with the assumption of
ideal yield stress fluid [41,42]. While these behaviors have been at-
tributed to the thixotropy of the material previously [43], recent si-
mulations show similar behaviors for nonthixtropic materials when
elastic effects are considered [44,45]. Therefore, elastoviscoplastic
(EVP) models are proposed which consider the contribution of elastic,
plastic and viscous effects simultaneously in order to analyze the ma-
terial behavior more accurately [46-48].

The field of inclusions (i.e. solid particles, fluid droplets and air
bubbles) in yield stress fluids is not as advanced as that of Newtonian
fluids. The main challenges are due to the nonlinearity of the con-
stitutive laws of yield stress fluids and resolving the structure of un-
yielded regions, where the stress is below the yield stress (for more
details see [49]). To locate the yield surfaces that separate unyielded
from yielded regions, two basic computational methods are used: reg-
ularization and the Augmented Lagrangian (AL) approach [37]. On the
experimental front, techniques such as PIV [41-43,50-52], PTV
[42,51], Nuclear Magnetic Resonance (NMR) [53,54], X-ray [55,56],
Magnetic Resonance Imaging (MRI) [57] are used to study the flow
field inside the yielded region as well as determining the yield surface.

Generally speaking, studies of single and multiple inclusions (i.e.,
rigid particles and deformable bubbles and droplets) in yield stress
fluids are abundant. These studies mainly focus on resolving important
physical features when dealing with yield stress suspending fluids, e.g.
buoyant inclusions can be held rigidly in suspensions [58-66]; multiple
inclusions appear not to influence each other beyond a certain proxi-
mity range [61]; flows may stop in finite time [66]; etc. Other studies
exist which address the drag closures, the shape of yielded region, the
role of slip at the particle surface and its effect on the hydrodynamic
interactions [40,42,44,67].

Progressing beyond a single sphere and tackling the dynamics of
multiple particles in a Lagrangian fashion is a much more difficult task.
Therefore, another alternative is to address yield stress suspensions
from a continuum-level closure perspective. The fundamental objective
is then to characterize the rheological properties as a function of the
solid volume fraction (¢) and properties of the suspending yield stress
fluid. Recent studies show that adding particles to a yield-stress fluid
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usually induces an enhancement of both yield stress and effective
viscosity while leaving the power-law index intact [54,68-73].

Unlike the case of settling of particles in yield stress fluids, no at-
tention has been payed to the study of pair interactions of particles in
simple flows of yield stress fluids. Our knowledge about this funda-
mental problem is essential to form a basis for further studies regarding
the suspensions of non-Brownian particles in yield stress fluids. To this
end, we present an experimental study on the interaction of two small
freely-moving spheres in a Couette flow of a yield stress fluid. Our main
objective is to understand how the nonlinearity of the suspending fluid
affects the particle trajectories, and consequently, the bulk rheology.
This paper is organized as follows. Section 2 describes the experimental
methods, materials and particles used in this study along with the
rheology of our test fluids. In Section 3, we present our results on es-
tablishing a linear shear flow in the absence of particles, flow around
one particle and the interaction of particle pairs in different fluids in-
cluding Newtonian, yield stress and shear thinning. Finally, we discuss
our conclusions and suggestions for future works in Section 4.

2. Experimental methods and materials

In this section we describe the methodology and materials used in
this study.

2.1. Experimental set-up

The schematic of the experimental set-up is shown in Fig. 1. It is
designed to produce a uniform shear flow within the fluid enclosed by a
transparent belt. The belt is tightened between two shafts one of which
is coupled with a precision rotation stage (M-061.PD from PI Piezo-
Nano Positioning) with high angular resolution (3 x 10~ rad) while the
other shaft rotates freely. The rotation generated by the precision ro-
tation stage drives the belt around the shafts and hence, applies shear to
the fluid maintained in between. In order to have the maximum optical
clarity along with the mechanical strength to afford the tension, Mylar
sheets (polyethylene terephthalate films from Goodfellow Corporation)
of 0.25 mm thickness are used to make the belt. The set-up is designed
to reach large enough strains (y=~45) to ensure the steady-state con-
dition. The design is inspired by Rampall et al. [22] and the Couette
apparatus is the same as that used by Metzger and Butler in [74].

The flow field is visualized in the plane of shear (xy plane) located
in the mid-plane between the free surface and bottom of the cell. A
fraction of the whole flow domain is illuminated by a laser sheet, which
is formed by a line generator mounted on a diode laser (2W, 532 pm).
Fluid is already seeded homogeneously with fluorescently labeled
tracer particles, which reflect the incident light (see Section 2.2). Tracer
particles should be small enough to follow the flow field without any
disturbance and large enough to reflect enough light needed for image
recording. The thickness of the laser sheet is tuned to be around its
minimum in the observation window with a plano-convex cylindrical
lens. Images are recorded from the top view via a high quality magni-
fication lens (Sigma APO-Macro-180 mm-F3.5-DG) mounted on a high-
resolution digital camera (Basler Ace acA2000-165 pm, CMOS sensor,
2048 x 1080 pixel?, 8 bit). The reflected light is filtered with a high-
pass filter (590 nm) through which the direct reflection (from the
particle surface) is eliminated. A transparent window made of acrylic is
carefully placed on the free surface of the fluid in order to eliminate the
deformation of the fluid surface and by this, the quality of images is
improved significantly. The imaging system is illustrated schematically
in Fig. 1.

2.2. Particles
Particles used in this study are transparent and made of PMMA

(polymethyl methacrylate, Engineering Laboratories Inc.) with radius
of a=1 mm, density of 1.188 gr/cm® and refractive index of 1.492 at
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Fig. 1. Schematic of the planar Couette-cell and the imaging system: the left shaft is driven by a precision rotation stage while the right shaft rotates freely. Walls are made from
transparent acrylic, which allows laser to illuminate the flow field (styled after Fig. 1 of [74]).

20 °C. They are dyed with Rhodamine 6G (Sigma-Aldrich) which en-
ables us to preform PTV and PIV at the same time. In order to dye
particles the procedure proposed by Metzger and Butler in [74] is fol-
lowed; PMMA particles are soaked for 30 min in a mixture of 50 wt%
water and 50% ethanol with a small amount of Rhodamine 6G main-
tained at 40 °C. They are rinsed with an excess amount of water after-
wards to assure there is no extra fluorescent dye on their surface and
the coat is stable. The surface of the particles from the same batch have
been previously observed by Pham [21,75] and Souzy [76] using
Atomic Force Microscope (AFM) and Scanning Electron Microscope
(SEM). The root mean square and peak values of the roughness are
measured to be 0.064 = 0.03 um and 0.6 * 0.3 pm, respectively,
after investigating an area of 400 um? [21]. Moreover, in order to
perform PIV, the fluid is seeded with melamine resin particles dyed
with Rhodamine B with a diameter of 3.87 um, provided by Micro-
particle GmbH.

2.3. Fluids

In this study, three different fluids have been used including
Newtonian, yield stress and shear thinning fluid; each of the fluids is
described in the following sections:

2.3.1. Newtonian fluid

The Newtonian fluid is designed to have the density and refractive
index (RI) matched with that of the PMMA particles. Any RI mismatch
could lead to refraction of the laser light when it passes the particle—-
fluid interface which decreases the quality of the images and makes the
post processing very difficult or even impossible. However, we only
have one or two particles in our experiments and therefore, a slight
refractive index mismatch does not result in a poor quality image. The
fluid consists of 76.20 wt% Triton X-100, 14.35 wt% of zinc chloride,
9.31 wt% of water and 0.14 wt% of hydrochloric acid [77] with the
viscosity of 4.64 Pas and refractive index of 1.491 + 1073 at room
temperature. A small amount of hydrochloride acid prevents the
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formation of zinc hyperchlorite and thus enhances the transparency of
the solution. Water is first added to zinc chloride gradually and the
solution is stirred until all solid particles dissolve in the water. Since the
process is exothermal we let the solution cool down to reach room
temperature. After adding hydrochloride acid to the cooled solution,
Triton X-100 is added and mixed until the final solution is homo-
geneous.

2.3.2. Yield stress fluid

Here we limit our study to non-thixotropic yield-stress materials
with identical static and dynamic yield-stress independent of the flow
history [78,79]. To this end, we chose Carbopol 980 which is a cross-
linked polyacrylic acid with high molecular weight and is widely used
in the industry as a thickening agent. Most of the experimental works
studying the flow characteristics of the simple yield-stress fluids utilize
Carbopol since it is highly transparent and the thixotropy can be ne-
glected. Carbopol 980 is available in a form of anhydrous solid powder
with micrometer sized grains. When mixed with water, polymer chains
hydrate, uncoil and swell forming an acidic solution with pH ~ 3 — 4.
When neutralized with a suitable basic agent such as sodium hydroxide,
microgels swell up to 1000 times of their initial size (10 times bigger
radius) and jam (depending on the concentration) forming a structure
which exhibits yield-stress and elastic behavior [80,81]. Rheological
properties of Carbopol gels are dependent of both concentration and
pH. At intermediate concentrations, both yield-stress and elastic mod-
ulus increase with pH until they reach their peak values around the
neutral point, where they are least sensitive to pH. A comprehensive
study on the microstruture and properties of Carbopol gel is provided
by Piau in [82].

In order to make Carbopol gel with a density matched with that of
PMMA particles mentioned in Section 2.2, first, a solution of deionized
water 27.83 wt% and glycerol 72.17 wt% (provided by ChemWorld) is
prepared, which has the same density as the PMMA particles. Then,
depending on the concentration needed for the experiment (varies in
the range of 0.07-0.2 wt% in this study), the corresponding amount of
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Carbopol 980 (provided by Lubrizol Corporation) is added to the so-
lution while it is being mixed by a mixer. The dispersion is let to be
mixed for hours until all Carbopol particles hydrate and the dispersion
is homogeneous. A small amount of sodium hydroxide (provided by
Sigma-Aldrich) is then added in order to neutralize the dispersion. It is
suggested to add all of the neutralizer at once, or at least in a short
amount of time since as pH increases the viscosity increases drastically

Table 1
Composition, pH and rheological properties of the test fluids used in this study: NWT

(Newtonian fluid), YS1-2 (yield stress fluids) & ST (shear thinning fluid). Dynamic
moduli, G’ and G” are measured at w = 1 rads™!, 3, = 0.25%.

Test fluids
Materials (wt%) ST YS1 YS2 NWT
Water 71.764 71.969 75.004 9.31
Glycerol 27.707 27.876 24.766 -
Carbopol 980 - 0.116 0.170 -
Jaguar HP-105 0.529 - - -
Sodium hydroxide - 0.039 0.060 -
Triton X-100 - - - 76.20
Zinc chloride - - - 14.35
Hydrochloric acid - - - 0.14
pH - 7.40 7.44 -
7, (Pa) 0 3.3 46.6 0
K (Pas™) 6.7 4.6 18.7 4.6
n 0.46 0.50 0.30 1
G’ (Pa) 3.5 17.9 213.5 -
G” (Pa) 3.5 3.3 18.9 -
1r e a- EV% 0By B B Pl Oy B By By 8987 99 87 -7
;jl R v
075 /7
g
&
~ i
& 050 v
y
0.25( ¢
6 2.5 A5 7.5

(a)

which would increase mixing time. The solution becomes more trans-
parent as it reaches neutral pH. The refractive index of the Carbopol
gels used in this study varies in the range of 1.370 + 5 X 1073, By in-
vestigating the rheological properties of the gel at different pHs, we
found pH = 7.4 to be a stable point with highest yield-stress and elastic
modulus. The solution is then covered and mixed for more than eight
hours. The final solution is transparent, homogeneous with no visible
aggregates. Also, the rheometry results of all samples taken from dif-
ferent parts of the solution batch collapse. The compositions of all
Carbopol gels used in this study are described in Table 1.

2.3.3. Shear thinning fluid
In order to investigate the effect of yield-stress and shear thinning

individually, it is required to study the problem with a shear thinning
fluid with no yield stress. Therefore, we chose Hydroproxypyl Guar
which is a derivative of the guar gum, a polysaccharide made from
seeds of guar beans. Jaguar HP-105 (provided by Solvay Inc.) is used in
this study which is widely used in cosmetics and personal care products
[83]. It is transparent when mixed with water and exhibits negligible
yield stress in low to moderate concentrations. The refractive index of
the guar gum solutions used in this study varies in the range of
1.368 + 5 x 1072,

In order to make a solution of Jaguar HP-105 with the same density
as the particles, we follow the same scheme mentioned earlier for
Carbopol gel in Section 2.3.2. First, a solution of deionized water
27.83 wt% and glycerol 72.17 wt% (provided by ChemWorld) is pre-
pared. While being mixed by a mixer, depending on the desirable
concentration (in this study varies from 0.3 — 0.6 wt%), corresponding
amount of Jaguar HP-105 is added gradually to the solution. The dis-
persion is covered and mixed for 24 h until a homogeneous solution is
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Fig. 3. Normalized stress versus strain for samples of yield stress and shear thinning test fluids under a constant shear rate with different shear histories: (a) YS1 at y = 0.129 s~!

(B, De) = (2.0, 0.09), (b) ST at y = 0.26 s~! De = 1.03. Triangle markers represent negative pre-shear while square markers indicate positive preshear.
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achieved. Homogeneity is tested by comparing rheometry results per-
formed on samples taken from different spots in the container. The
compositions of the guar gum solutions used in this study are described
in Table 1.
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2.4. Rheometry

Unlike Newtonian fluids, the effective viscosity of the non-
Newtonian fluids depends on the shear rate and flow history. Here, we
explain the rheological tests performed to characterize the non-
Newtonian behaviors. For each test the procedure is described followed
by the results and the interpretation. All measurements shown in this
section are carried out using serrated parallel plates with a stress-con-
trolled DHR-3 rheometer (provided by TA Instruments) on samples of
Carbopol gels and guar gum solutions referred to as “YS1-2” and “ST”,
respectively. The rheological properties of all test fluids used in this
study are described in Table. 1.

A logarithmic shear rate ramp with y € [0.001, 10] s! is applied on
samples of test fluids for a duration of 105 s in order to find the relation
between shear rate and shear stress, 7 = f(y) (see Fig. 2). During the
increasing shear ramp, the material is sheared from rest. The behavior
of the yield stress material is hence similar to a Hookean solid until the
stress reaches the yield stress. Beyond the yield stress, the material
starts to flow like a shear thinning liquid. On the contrary, during the
decreasing shear ramp, the yield stress material is already in flow
condition and the stress asymptotes to the yield stress at low shear rates
(see Fig. 2a). The value of yield stress during both increasing and de-
creasing ramps are identical. This is the typical behavior of non-thix-
otropic yield-stress materials (more information can be found in
[84,85]). The measurements of increasing and decreasing ramps
overlap beyond yield stress and show no sign of hysteresis. The rheo-
logical behavior of Carbopol gel is described well by the Herschel--
Bulkley (see Eq. (1)) model as shown in Fig. 2:
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Fig. 5. Dynamic moduli, G’ (left column) and G” (right column) for samples of YS1 (first row) and ST (second row) during frequency sweep from 0.1 to 100 rad/s. Different markers

correspond to different strain amplitudes, y, = 1%, 5%, 20%, 50%, 100%.
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Fig. 6. (a) Velocity profiles averaged along the x-direction for the Newtonian fluid when subjected to different shear rates of y = 0.18, 0.26, 0.35, 0.4, 0.52, 0.61, 0.70, 0.79 s~L. (b)

Normalized velocity profiles across the gap.

Where 7, is the yield stress, K is the consistency and n is the power
index. These values are calculated for YS1-2 in range of
y € [0.01, 10] s~! in Table. 1.

Fig. 2b shows the rheology of the guar gum solution, ST in the plane
of shear stress versus shear rate. The Carreau-Yasuda model has gen-
erally been adopted to explain the rheological behavior of guar gum
solutions [86,87]. The inset of Fig. 2b shows the viscosity of the guar
gum solution versus shear rate following the Carreau-Yasuda model.
We see that the viscosity presents a plateau, 5o = 12.2 Pas, in the limit
of small shear rates, y < 0.1 s7!. At y > 0.1 s™! viscosity decreases with
shear rate until it reaches another plateau at higher shear rates. Here,
we adopt a power-law model which properly describes the rheological
behavior of the material in the range of shear rate in our experiments.
The values of consistency and power-law index are reported in Table 1.

Practical yield-stress fluids exhibit viscoelastic behavior as well.
Therefore, it is expected that the shear history has an impact on the
behavior of the material. We have adopted two experimental proce-
dures to evaluate the effect of shear history. In the first procedure, we
shear the material ensuring that the strain is sufficient to break the
micro-structure of gel and reach a steady state. Then, we rest the ma-
terial for one minute (zero stress) and apply the shear in the same di-
rection as the pre-shear (hereafter called positive pre-shear). In the
second procedure, we reverse the direction of the applied shear after
imposing a pre-shear on the material (hereafter called negative pre-

shear) and a rest period. Fig. 3b shows that under a constant applied
shear stress the yield stress material reaches its steady state after a
larger strain when negative pre-shear is applied. However, the shear
history does not affect the behavior of the guar gum solution as shown
in Fig. 3b. These procedures helped us design the experimental protocol
for our Couette flow experiments (see Section 3.3.2). One can conclude
that a preshear in the same direction as the shear imposed subsequently
in the experiments is appropriate for having a behavior close to that of
ideal visco-plastic behavior.

In order to characterize the viscoelasticity of the test fluids further,
the shear storage modulus, G’ and the shear loss modulus, G” (re-
presenting the elastic and viscous behavior of the material, respec-
tively) are measured during oscillatory tests. Dynamic moduli of YS1
and ST are shown in Fig. 4 as a function of strain amplitude,
% € [107%, 10%]% while frequency is constant, w = 1 rads™!. We observe
that the behavior is linear up to yo = 1% in YS1 while it remains linear
at larger strain amplitudes, yo = 10% in ST. Elastic effects are dominant
(i.e. G’ > G”) at strain amplitudes lower than vy = 100% in the yield
stress material, YS1 (see Fig. 4a). At yo > 100%, the shear loss modulus
becomes larger than the shear storage modulus in YS1 indicating that
the viscous effects take over. On the other hand, elastic and viscous
effects are equally important in ST in the linear viscoelastic regime as
the shear loss and shear storage moduli have identical values under
Yo = 100% (see Fig. 4b). At larger strain amplitudes however, the shear
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Fig. 7. (a) Normalized velocity profiles across the gap when YS2 undergoes shear flows at different Bingham numbers: (B, De) = (4.6, 0.05) (@), (B, De) = (3.2, 0.07) (W),
(B, De) = (2.3, 0.10) (*), (B, De) = (2.2, 0.10) (A), (B, De) = (2.0, 0.11) (¢) compared to that of the Newtonian fluid, NWT (m). (b) The corresponding dimensionless shear rate profiles and

(c) stress profiles.
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Fig. 8. (a) Normalized velocity field obtained via theoretical solution for a Newtonian fluid. (b) Normalized velocity field for the Newtonian fluid NWT measured via PIV at y = 0.27 s~1.
(c) Schematic of the particle and locations where velocity profiles are compared with the theory. (d—e) Comparison between velocity profiles obtained from theory (*) and experimental

measurements (W) at different locations.

loss modulus becomes larger implying larger viscous effects. The values
of G and G” reported in Table 1 are measured at w =1 rads™},
% = 0.25%. In Fig. 5 the variation of dynamic moduli is given as a
function of frequency for the Carbopol gel, YS1 and the guar gum so-
lution, ST. Different curves correspond to different strain amplitudes (yo
= 1%, 5%, 20%, 50%, 100%).

2.5. Post-processing

The PMMA particles are tracked during their motion via Particle
Tracking Velocimetry (PTV) to extract the trajectories. Images are re-
corded at strain increments of y,.. = 0.6% to ensure high temporal re-
solution. In each image, the center and radius of each particle is

25

detected via the Circular Hough Transform [88,89]. Due to the small
strain difference between two respective images and consequently small
displacement of PMMA particles, same particles are identified and la-
beled in two images. Applying this methodology to all images we obtain
trajectories of particles.

Particle Image Velocimetry (PIV) is employed to measure the local
velocity field from successive images recorded from the flow field. It is
worth mentioning that in this method we calculate the two dimensional
projection of the velocity field in the plane of shear (xy plane).

We have used the MatPIV routine with minor modifications in order
to analyze PIV image pairs [90]. Each image is divided into multiple
overlapping sub-images, also known as interrogation windows. The PIV
algorithm goes through three iterations of FFT-based cross-correlation
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(c)

(d)

Fig. 9. Normalized disturbance velocity fields around one particle in the shear flow of different fluids: (a) theoretical solution for a Newtonian fluid, (b) experimental results for a
Newtonian fluid at y = 0.27 s, (c) experimental results for the Carbopol gel, YS1 at y = 0.34 s~! (B, De) = (1.23, 0.15), (d) experimental results for the guar gum solution, ST at

y =0.26 s7! De = 1.03.

between corresponding interrogation widows in two successive images
in order to calculate the local velocity field. The velocity field measured
in each iteration is used to improve the accuracy during the next
iteration where the interrogation size is reduced to one half. Window
sizes of 64 X 64, 32 x 32 and 16 x 16 pixels ( ~ a/9) with the overlap
of 50% are selected respectively during the first, second and third
iterations. Following each iteration, spurious vectors are identified by
different filters such as signal-to-noise ratio, global histogram and local
median filters. Spurious vectors are then replaced via linear interpola-
tion between surrounding vectors. Since less than 3.1% of our data is
affected we do not expect a significant error due to the interpolation
process. The measured velocity is ignored if the interrogation window
overlaps with the particle surface (detected earlier via PTV algorithm).
The size independence of the velocity measurements is verified by
comparing the results with that obtained when we increase the inter-
rogation widow size to 32 x 32 pixels ( ~ a/4.5).

3. Experimental results
3.1. Establishing a linear shear flow in the absence of particles

The first step is to establish a linear shear flow field within the
experimental set-up. Any deviation from the linear velocity profile
across the gap of the Couette-cell affects the flow field around one
particle, or the interaction of two particles. Our Couette-cell has a finite
dimension bounded with a wall from the bottom, an acrylic window
from the top and two rotating cylinders from the sides (see Fig. 1). It is
essential to show that a linear shear flow is achievable in the middle of
the set-up and not affected by the boundaries. Reynolds number is
defined as:

26

_ % (QU/H)a?
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Re

which is of the order O(107°) in our experiments, implying that the
inertial effects are negligible. Here a and H are the particle radius and
gap width, respectively, U is the maximum velocity across the gap, p is
the density and p is the viscosity of the fluid. Moreover, according to
the aspect ratio of the Couette-cell (50 cm long versus 2 cm wide), the
central region where measurements are made is far from the shafts. In
the absence of inertia and boundary effects the solution to the mo-
mentum equations would give us a linear velocity profile in our con-
figuration, independent of the rheology of the test fluids. In this section,
we present our experimental results showing how a linear shear flow
field is established within the Couette-cell when we have different
suspending fluids including Newtonian fluids, yield stress fluids and
shear thinning fluids.

In the case of the Newtonian fluid, Fig 6a shows the velocity profile
across the gap for different shear rates imposed at the belt. The velocity
field is averaged along the x-direction (flow direction). We normalize
the velocity with the maximum velocity across the PIV window, u., and
show that all velocity profiles collapse to a master curve (see Fig. 6b). A
linear shear flow is achieved consequently with the Newtonian fluid.

When we deal with a yield stress test fluid, there exist more di-
mensionless numbers in addition to the bulk Reynolds number in-
cluding Bingham number (B) which is the ratio of yield stress (zy) to the
viscous stress (Ky") in the flow:

Ty

B=—L

Ky" 3

Another important dimensionless number is Deborah number which is
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Fig. 10. Normalized shear rate fields around one particle in the shear flow of different fluids: (a) theoretical solution for a Newtonian fluid, (b) experimental results for a Newtonian fluid
aty = 0.27 s71, (c) experimental results for the Carbopol gel, YS1 at 7 = 0.34 s~ (B, De) = (1.23, 0.15), (d) experimental results for the guar gum solution, ST at y = 0.26 s~! De = 1.03. (For

interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

the ratio of the material time scale to the flow time scale. For elasto-
viscoplastic materials, the relaxation time A, the elastic modulus G’, and
the apparent plastic viscosity 7, are related via 7, = AG" where the so-
called plastic viscosity is defined as follows [44]:

T—Ty

=Ty @

Comparing Eq. (4) with (1), we conclude N, = Ky"~1. Therefore, the
Deborah number is:

Ky"
De= 1y = g[

%)

Velocity fields obtained via PIV measurements are averaged along
the flow direction. Fig. 7a shows the measured velocity profiles across
the gap when normalized by the maximum velocity across the PIV
window, u,.. Next, shear rate profiles are calculated from the averaged
velocity profiles according to Eq. (6) and are used to calculate the shear
stress profiles via the Herschel-Bulkley model (shown in Fig. 7b and b,
respectively). Shear rate profiles are normalized by the average shear
rate across the gap 7,, while stress profiles are normalized by the
average stress across the gap z..

ox

2 2
oo = Jz(%) oo 2] (e
Ox Ay ay

It is evident that as we increase the Bingham number, the velocity
profile deviates from a linear shape, and consequently, the shear rate is
not constant. This is quite a unique observation for a yield stress fluid,
and the rheology of the fluid can explain this puzzle. Let us take a closer
look at the variation of stress with respect to the shear rate shown in
Fig. 2for the yield stress test fluids used in the experiments. We can see
that at low shear rates (i.e. high Bingham numbers), such as
0.01 < y < 0.1s71, a small variation in the shear stress projects to a large

(6)
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variation in the shear rate. On the contrary, at higher shear rates
y > 1 s7! (i.e. low Bingham numbers) the same amount of stress var-
iation corresponds to a significantly smaller variation in the shear rate.
Fig. 7b shows the variation of stress across the gap is of the same order
for all Bingham numbers while the resulting shear rate profiles are
significantly different in terms of inhomogeneity. This implies that a
small stress inhomogeneity due to any imperfection of the set-up and
the test fluid (finite dimension of the set-up, slight inhomogeneity in the
test fluid or etc.) projects into a larger shear rate inhomogeneity as we
increase the Bingham number. This stress inhomogeneity is estimated
from Fig. 7b to be = 2% in our set-up.

Both the characteristic length of the inhomogeneity and its ampli-
tude increase as the Bingham number increases. Our results show that
for B < 2, the shear rate inhomogeneity is minimal (comparable to that
of the Newtonian test fluid), and we can establish a linear velocity
profile in the set-up for the case of a yield stress fluid. Therefore, all the
experiments in this work are performed for B < 2.

3.2. One particle in a linear shear flow

This section is aimed at studying a linear shear flow around one
particle in the limit of zero Re when we have different types of fluids
including Newtonian, yield stress and shear thinning. A theoretical
solution is available for a particle in a Newtonian fluid subjected to a
linear shear flow field. We use the theoretical solution to validate our
experimental results. The effect of a non-Newtonian fluid on the flow
field around one particle is then investigated experimentally. Studying
the disturbance fields around one particle is key to understanding the
hydrodynamic interaction of two particles, and consequently, the bulk
behavior of suspensions of noncolloidal particles in non-Newtonian
fluids.
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Fig. 11. Variation of disturbance velocity at fixed distances ((a) r/a = 1.8, (b) r/a = 2.3)
around one particle in different test fluids: NWT at y = 0.27 s™1, YS1 at y = 0.34 s~!
(B, De) = (1.23, 0.15), and ST at y = 0.26 s~! De = 1.03. Variation of disturbance velocity
along different directions in different test fluids: (c) 6 = 45°, (d) 6 = 135°.

3.2.1. Stokes flow around one particle in a linear shear flow of a Newtonian
fluid: comparison of theory and experiment

First, we compare our PIV measurements with the available theo-
retical solution for the Stokes flow around one particle in a linear shear
flow of a Newtonian fluid [91]. The normalized velocity field obtained
via a theoretical solution is illustrated in Fig. 8a along with the
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Fig. 12. A schematic of two particles subjected to a shear flow and the general shapes of
their trajectory: a) trajectory when two particles pass each other with no collision. b)
trajectory when two particles collide.

measured velocity field via PIV in Fig. 8b, which is normalized by the
velocity at the belt. A quantitative comparison is given in Fig. 8d-f
where dimensionless velocity profiles are compared at cross sections
located at different distances from the particle center,
x/a = =2.5, =1, 0. It is noteworthy to mention that the PIV measure-
ments are available at distances r/a > 1 + ¢, where r is the distance
from the particle center and € ~ 0.1 is given by the resolution of the PIV
interrogation window. The close agreement between our velocity
measurements with that predicted by the theory allows us to employ
our method for the case yield stress fluids, where the theoretical solu-
tion is unavailable. Our experimental data can be used as a benchmark
for these fluids.

3.2.2. Creeping flow around one particle in a linear shear flow: Newtonian
and non-Newtonian suspending fluids

We present our PIV measurements of creeping flows around one
particle in linear shear flows of Newtonian, shear thinning (guar gum
solution) and yield stress (Carbopol gel) suspending fluids. About 100
PIV measurements (i.e., 100 PIV image pairs) are averaged afterwards
to reduce the noise. The origin of the coordinate system, (x, y, 2), is
fixed on the center of the particle and translates with it (non-rotating).
We subtract the far field velocity profile from the experimentally-
measured velocity field in order to calculate the disturbance velocity
field around one particle:

)

ug = (Ug, Vi) = U — Uy

Where uy and v4 are components of the disturbance velocity vector
along the flow direction and gradient direction, respectively. The dis-
turbance velocity field is then normalized by the maximum disturbance
velocity in the PIV window.

Fig. 9 shows the normalized disturbance velocity field around one
particle in linear shear flows of a Newtonian fluid (theory: Fig. 9a and
experiment: Fig. 9b), a yield stress fluid (experiment of Carbopol gel:
Fig. 9¢) and a shear thinning fluid (experiment of guar gum solution:
Fig. 9d). The shear flow is established as u = (yy, 0, 0) where y > 0. The
disturbance velocity field is normalized by the maximum disturbance
velocity in the field. Although the theoretical solution for the case of a
single rigid sphere in a simple-shear flow of a Newtonian fluid exists,
there is no theoretical solution in the case of a yield stress fluid.
Therefore, our experimental measurements shown in Fig. 9c serves as
the first set of information about simple-shear flows around a spherical
particle.

Fig. 10 shows the colormaps of shear rate around one particle in
linear shear flows of a Newtonian fluid (theory: Fig. 10a and experi-
ment: Fig. 10b), a yield stress fluid (experiment of Carbopol gel:
Fig. 10c) and a shear thinning fluid (experiment of guar gum solution:
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Fig. 13. (a) Relative trajectory map calculated via Da Cunha’s model [20], ¢ = 5.5 X 107*. (b) Relative trajectories obtained from the theoretical solution compared with those measured
from the experiment (dashed colored lines) with the same initial offsets (y/a wit x < 0). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 14. Trajectory map of two particles in a linear shear flow of the Newtonian fluid. The
reference particle is located at the origin and the second particle is initially at x/a < 0.

Fig. 10d). The magnitude of local shear rates are calculated by taking
the spatial derivative of the disturbance velocity fields based on Eq. (6).
Although taking the derivative of experimental data (i.e., PIV mea-
surements of the velocity field) amplifies the noise, averaging over
more than 100 PIV measurements reduces the noise and allows us to see
the qualitative features.

For the Newtonian fluid, our experimental results shown in Fig. 9b
are in a very close agreement with the theoretical solution illustrated in
Fig. 9a. we can see that the disturbance velocity has fore-aft symmetry
and decays as we move away from the particle surface. Unlike the
Newtonian fluid, fore-aft symmetry is broken for our non-Newtonian
test fluids (see Fig. 9c and d). The fore-aft asymmetry is significantly
larger for the Carbopol gel (in Fig. 9¢). As mentioned in Section 1, the
loss of fore-aft symmetry is not predicted for the flow field around one
particle if we use ideal visco-plastic constitutive models; e.g. Her-
sche-Bulkley and Bingham models [36-39]. However, practically
speaking, both the guar gum solution and Carbopol gel are polymer
based solutions with slight elasticity, and consequently, these are not
ideal visco-plastic fluids. Elastic effects are thus responsible for the fore-
aft asymmetry observed in Fig. 9¢ and d. For viscoelastic fluid flows,
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uniqueness and nonlinearity are present but the symmetry and rever-
sibility are missing. We should mention that by adopting an appropriate
pre-shear procedure in our experiments (described in Section 2.4), we
eliminated the possible effects due to the shear history.

Despite the loss of fore-aft symmetry which is evident in Fig. 9c and
d, we note that the velocity disturbance field is symmetric with respect
to the center of the particle (symmetric with respect to a point). This is
indeed expected. Assume two fluid elements are moving towards the
particle and located at the top left and bottom right of the flow field,
but at the same vertical distance from the particle. Both fluid elements
experience the same shear history during their motion (e.g., compres-
sion, extension, rotation) resulting in a symmetric flow field with re-
spect to the center of the particle. The Deborah number is calculated
based on the values of shear storage moduli measured at the frequency
w = 1rads™ with low strain amplitudes, y, = 0.25% (see Table 1). In the
experiment with the Carbopol gel, YS1 (Fig. 9¢c) the Deborah number is
De = 0.15 while it is De = 1.03 in the case of guar gum solution,
ST(Fig. 9d). Although the Deborah number is relatively small in our
experiments, it clearly affects the flow field around the particles. This is
consistent with the results of Fraggedakis et al. [44] where they ob-
served the effect of slight elasticity in a yield stress fluid to be sig-
nificant in establishing the flow field around a single particle settling in
a stationary column of a yield stress fluid. Despite the smaller value of
the De number for the case of Carbopol gel compared to the guar gum
solution, we see that the fore-aft asymmetry is larger. It can be due the
interplay between plastic and elastic effects in the Carbopol gel which is
an elasoviscoplastic material. Further investigation is required to reveal
the role of plastic and elastic effects individually and mutually in es-
tablishing the flow field in a wide range of Bingham and Deborah
numbers. This can be explored via a computational study since practical
limitations exist in tackling this problem experimentally. For example,
it is not possible to change the Deborah number in our experiments
independent of other parameters such as Bingham number. Also, it is
not feasible to increase the Deborah number significantly with the aid
of conventional yield stress fluids such as Carbopol gels.
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Fig. 15. (a) Trajectory line of two particles in the Newtonian fluid subjected to a shear rate of 7 = 0.27 s~1. (b-k) Left column is the velocity fields at different points marked along the
trajectory line (A-E) while the right column is the corresponding normalized shear rate fields. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)
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Fig. 16. Trajectory map of two particles in a shear flow of the Carbopol gel YS1
y = 0.34 s71 (B, De) = (1.23, 0.15).
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Fig. 17. Relative trajectories of two particles in the Carbopol gel YS1 with similar initial
offsets at two different Bingham numbers. Dashed line corresponds to y = 1.70 s—!
(B, De) = (0.55, 0.36) while the solid line represents y = 0.21 s~! (B, De) = (1.57, 0.12).

Variation of disturbance velocity around one particle at fixed dis-
tances from the particle center (r fixed) is illustrated in Fig. 11a and b. It
shows more clearly the fore-aft asymmetry in the Carbopol gel com-
pared to that of the Newtonian fluid. Velocity is normalized with its
maximum value at each distance, u,, , in Fig. 11a and b.

The disturbance field shows how regions around a particle are af-
fected by the presence of a particle. When disturbance velocity is zero
or very small at a region it means this region lies outside of the zone
influenced by the particle. Studying the disturbance fields around one
particle is thus essential to predict the interaction of two particles, and
consequently, the bulk behavior of dilute suspensions. The extent of
disturbance is better seen on the velocity profiles. Fig. 11c and d show
the variation of disturbance velocity around one particle along different
directions (6 fixed) normalized with the maximum disturbance velocity
along each direction, u, ¢. It is evident that the disturbance velocity
decays more rapidly in the case of the yield stress fluid and shear
thinning fluid. The maximum decay occurs in the flow of Carbopol gel
around one particle. This means two particles will feel each other at a
farther distance in a Newtonian fluid than in a generalized Newtonian
fluid.

3.3. Interaction of two particles in a linear shear flow

In this section we study experimentally the interaction of two
spherical PMMA particles in a linear shear flow of Newtonian, yield
stress and shear thinning fluids. First, we compare our experimental
results for the case of a Newtonain suspending fluid with the existing
models [20] and analytical solutions [1] describing the relative motion
of two particles in a linear shear flow without the inertia. We proceed
afterwards to study the non-Newtonian effects on the interaction of
particles in a linear shear flow.
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3.3.1. Interaction of two particles in a linear shear flow of a Newtonian
fluid: theory and experiment

Fig. 12 shows the schematic of a particle trajectory around a re-
ference particle in a linear shear flow. Depending on the initial offset,
Yo/a, the particles follow different trajectories. If the initial offset is
small enough, two particles collide and separate further apart on the
recession zone (symmetry is broken). However, if the initial offset is
large enough that they do not make contact, the corresponding trajec-
tory is expected to be symmetric due to the symmetry of the Stokes
equations. It is noteworthy to mention that in the case of smooth par-
ticles with no surface roughness, a contact is not possible due to di-
vergence of lubrication forces. However, practical contact occurs due to
unavoidable roughness at the surface of particles. For more details see
theoretical [1,20] and experimental works [15,19,22,92].

The interaction of two particles could be described at different
ranges of separation by accurate hydrodynamics functions based on
works by Batchelor and Green [1] and Da Cunha and Hinch [20]. It is
assumed that inertial and Brownian effects are negligible, particles are
neutrally buoyant and spherical. The appropriate set of hydrodynamic
functions must be chosen according to the separation of two particles, r
and the roughness, €. Using the aforementioned hydrodynamic func-
tions we calculated the relative trajectories of two particles via 4th-
order Runge—Kutta to march in time. The results are plotted in Fig. 13a.
The trajectories fall into two categories of asymmetric and symmetric
whether or not a contact occurs respectively.

Here, we present our experimental results for two particles sus-
pended in a linear shear flow of a Newtonian fluid. The experimental
trajectory map of two particles is shown in Fig. 14. In addition, we have
compared the experimental trajectory map with those calculated from
theoretical solutions in Fig. 13b. The best match is achieved by
manually setting the roughness to €, = 5.5 X 107 in the model which
is close to the peak value of roughness, €., = 6 + 3 x 10~* reported by
Pham in [21] for particles from the same batch. We see a great agree-
ment between the theoretical and experimental trajectory map. The
relative trajectories are symmetric with respect to y axis between the
approach and the recession side if two particles do not contact. How-
ever, at lower initial offsets, when particles come into contact due to an
unavoidable roughness at the particles surfaces, two particles separate
further apart on their recession. Consequently, the particle trajectories
are fore-aft asymmetric. It is evident that all trajectories along which
the particles come into a contact will collapse on each other at the
downstream after separation.

Particles are tracked via PTV and the flow field is investigated via
PIV simultaneously. Therefore, we can link the particle trajectories to
the information obtained from the flow field. Fig. 15 illustrates a typical
example of a trajectory line with its corresponding velocity and local
shear rate colormaps at different points along the trajectory line for two
particles in a linear shear flow of a Newtonian fluid. The second particle
approaches the reference particle from x/a < 0. When particles are far
from each other, the distribution of shear rate around them resembles
that of a single particle, i.e., the particles do not see each other. The
particles interact as they approach, and the shear rate distribution and
velocity field around them change correspondingly. After they come
into contact, they seem to get locked together and rotate like a single
body (between points B and D in Fig. 15) then separate from each other.
Shear rate fields are normalized by the far-field shear rate.

3.3.2. Interaction of two particles in a linear shear flow of a yield stress
fluid: experiment

In this section we present our experimental results on the interac-
tion of two PMMA spherical particles in a linear shear flow of Carbopol
gel, which is a yield stress fluid (see Sections 2.3.2 and 2.4). In such
case, a theoretical solution does not exist due to the nonlinearity of the
governing equations of motion, even in the absence of inertia. While the
majority of the experimental works and simulations focused on the
settling of particles in yield stress fluids, there are no simulation or
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Fig. 18. (a) Trajectory line of two particles in the Carbopol gel, YS1 at 7 = 0.34 s~! (B, De) = (1.23, 0.15). (b-k) Left column is the velocity fields at different points marked on the
trajectory line (A-E) while the right column is the corresponding normalized shear rate fields. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)
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Fig. 19. Trajectory map of two particles subjected to a shear flow of ST at (y, De)=(0.26 s~1, 1.03).

experimental work on the interaction of two particles in a linear shear
flow of a yield stress fluid in the literature. However, a paper relating a
numerical 2D study of the interaction of pairs of particles in an ideal
Bingham fluid is under review at the same time as our paper; our ex-
perimental results will be qualitatively compared to the simulation
results when relevant [93].

In the absence of inertia, the knowledge of roughness and initial
offset are sufficient to predict the interaction, and consequently, the
relative trajectory of two particles when we are dealing with Newtonian
fluids. However, there are more parameters influencing the interactions
of two particles in a yield stress fluid. We expect that the value of
Bingham number should strongly affect the relative motion of two
particles.

Moreover, viscoelastic effects are not always negligible when
dealing with non-ideal yield stress fluids and their contribution must be
evaluated (see [44,45]). According to the range of Deborah number in
our experiments, De € [0.04, 1.3] we believe that viscoelastic effects
can play an important role, which is consistent with [44].

In addition, shear history is another parameter which affects the
interaction of two particles due to the strain hardening in the non-ideal
yield stress test fluids. As discussed earlier in Section 2.4, for a sample
of Carbopol gel, the material undergoes different transient flow states
depending on the applied shear history. Our results show that when the
material is pre-sheared in a negative direction, the trajectories experi-
ence a relatively longer transient regime (results not included). This is
consistent with our results in Fig. 3 which suggest that the material
reaches a steady state at larger strains under negative pre-shear. In the
course of this study, we apply the same shear history in all of the ex-
periments via adopting the positive pre-shear procedure in order to
avoid strain hardening and to be as close as possible to a model plastic
behavior. However, we should mention that the dimension of our
Couette-cell is large enough to allow us to apply sufficient amounts of
pre-strain to reach steady state condition, regardless of the shear his-
tory.

While shearing the material we study the interaction of particles
and the flow field via performing PTV and PIV, respectively. Fig. 16
shows the trajectory map of particles in a Carbopol gel at y = 0.34 s71,
B =1.23 and De = 0.15. Two features are evident. First, the fore-aft
asymmetries exist for all the trajectories including those with no colli-
sions of particles. When the initial offset is large enough that there is no
contact, particles experience a negative drift along the y-direction after
passing each other (i.e. y; —y, < 0). We think that this pattern can be
attributed to the elasticity of the test fluid since no such behavior is
observed in simulations when the fluid is considered ideal visco-plastic
(e.g. Bingham model) [93]. Second, for trajectories with small initial
offsets, the second particle moves downward along the velocity gra-
dient direction on the approach side while it moves upward on the
recession side. The same pattern is observed in the simulations by Fahs
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et al. in [93] for yield stress fluids as well as Newtonian fluids. These
local minima in trajectories disappeared in their results for the New-
tonian fluid when the domain size is increased from 24a x 12a to
96a X 48a. However, this pattern for the yield stress fluid (with B = 10)
disappeared at a larger domain size, 192a X 96a. Hence, we can con-
clude that this might be due to the interplay of wall effects and non-
Newtonian behavior.

Fig. 17 shows trajectories of two particles in a Carbopol gel at two
different Bingham numbers, starting from approximately equal initial
offsets. As expected, the particle trajectories strongly depend on the
Bingham number. As we increase the Bingham number the second
particle approaches the reference particle to a close distance and se-
parates with a larger upward drift. This can be related to the stronger
decay of the disturbance velocity at larger Bingham values around a
single particle (see Section 3.2). This feature, which has been also ob-
served in simulations of Fahs et al. [93], implies larger asymmetry in
the PDF, and consequently, larger normal stress differences in the yield
stress suspensions as we increase the Bingham number.

Fig. 18 shows a typical example of a trajectory line with its corre-
sponding velocity and local shear rate colormaps at different points
along the trajectory line for two particles in a linear shear flow of a
yield stress fluid. Shear rate fields are normalized with the applied
shear rate at the belt. The second particle approaches the reference
particle from x/a < 0. We see that particles interact as they approach
and the shear rate distribution and velocity field around them change
(see colormpas associated with point A, Fig. 18b and c). After they come
into contact they seem to get locked together and rotate like a single
body (between points B and C in Fig. 18). They separate from each
other afterwards on their recession.

3.3.3. Interaction of two particles in a linear shear flow of a shear thinning
fluid: experiment

A Carbopol gel exhibits both yield stress and shear thinning effects.
In order to investigate the effect of each non-Newtonian behavior in-
dividually, we perform similar experiments with a shear thinning test
fluid without a yield stress. We use a Hydroproxypyl Guar solution
which is transparent with negligible thixotropy at low concentrations
(see Sections 2.3 and 2.4).

A map of the relative trajectory map of two particles in a linear
shear flow of the guar gum solution, ST, is illustrated in Fig. 19. Unlike
yield stress suspending fluids, trajectories do not exhibit downward and
upward motions at the approach and recession zone, respectively. A
slight asymmetry exists when particles do not come into a contact, but
this is much smaller than that of yield stress suspending fluids. When a
contact occurs, the trajectories are all asymmetric.

Fig. 20 illustrates a sample trajectory with its corresponding velo-
city and shear rate fields at different points along the trajectory line for
two particles in the guar gum solution ST (see Table 1). The second
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Fig. 20. (a) Trajectory line of two particles in the guar gum solution, ST at y = 0.26 s~! De = 1.03. (b-k) Left column is the velocity fields at different points marked on the trajectory line
(A-E) while the right column is the corresponding normalized shear rate fields. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)
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Fig. 21. Two-particle trajectories (solid lines) compared with the streamlines around one particle (dashed lines) in shear flows of different fluids: (a) NWT at y = 0.27 s™1, (b) YS1 at

y = 0.34 s~ (B, De) = (1.23, 0.15) and (c) ST at y = 0.26 s~! De = 1.03.

particle approaches the reference particle from x/a < 0. Shear rate
fields are normalized with the applied shear rate at the belt.

3.3.4. Particle trajectories versus streamlines

As mentioned earlier in Section 3.2.2, the disturbance velocity de-
cays more rapidly in the non-Newtonian fluids considered in this study.
In other words, the influence zone around a single particle is smaller
when dealing with yield stress and shear thinning fluids compared to
the Newtonian fluid. In Fig. 21 we compared the trajectories of two
particles subjected to a shear flow with the streamlines around a single
particle (experimental velocity field). We can see that they overlap up
to closer distances in the Carbopol gel and guar gum solution.

The streamlines around one particle can be viewed as the limiting
form of when two particles are far away or when one particle is much
smaller than the other one. The discrepancy between the fluid element
streamlines and trajectories is related to the lubrication and contact of
the particles. Fig. 21 shows that this discrepancy is minimal when the
initial offset is large, meaning the pairwise interaction does not occur.
Further computational and theoretical investigations are needed to
build up trajectory maps of particle pairs in complex fluids from the
flow field around a single particle in shear flows of complex fluids.
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4. Discussion and conclusions

In this work, we have developed an accurate experimental tech-
nique to study the interaction of two spherical particles in linear shear
flows of Newtonian, yield stress and shear thinning fluids. We have
made use of PIV and PTV techniques to measure the velocity fields and
particle trajectories respectively. Rheometry is employed in order to
characterize the behavior of our test fluids.

We showed in Section 3.1 that we can establish a linear velocity
profile in our Newtonian and non-Newtonian test fluids. In addition, for
yield stress fluids, we observed that stress inhomogeneity (naturally
present due to any imperfection in the set-up or the test fluid) could
project to a larger amount of shear rate inhomogeneity as we increase
the Bingham number. By restricting the range of Bingham number to
B < 2, we managed to eliminate this effect and achieve a linear shear
flow in Couette device.

Next, we studied the flow around one particle when it is subjected to
a linear shear flow. Our results are in a very close agreement with the
theoretical solution for a Newtonian suspending fluid. Also the length
scale of variation of the disturbance velocity is significantly smaller in
yield stress fluids compared to that of Newtonian fluids. This affects the
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Fig. 22. (a-d) Relative trajectories of two particles in shear flows of different test fluids with similar initial offsets: y,/a= 0.63 (a), 0.75 (b), 1.05 (c), 2.12 (d). Test fluids include NWT at

y =027 s7L, YS1 at y = 0.34 s~! (B, De) = (1.23, 0.15) and ST at y = 0.26 s~! De = 1.03.

interaction of two particles, and consequently, the bulk rheology of
suspensions of noncolloidal particles in shear thinning and yield stress
fluids.

We provided the first direct experimental measurement of the flow
disturbance around a sphere in a yield stress fluid. This can serve as a
benchmark for simulations when dealing with suspensions of non-
colloidal particles in yield stress fluids. Our study shows that Carbopol
gel exhibits significant viscoelastic behavior which affects the particle
interactions. We observed that even the disturbance field around a
single particle in a shear flow cannot be explained without considering
the viscoelastic effects. Hence, employing elastoviscoplastic (EVP)
constitutive models [46,47] are necessary when accurate simulations
are considered [44]. Due to the experimental limits, further theoretical
and computational studies are required to characterize the contribution
of elastic and plastic effects in establishing the flow field around a
single particle.

In the next step, we studied the interaction of a pair of neutrally
buoyant particles in linear shear flows of Newtonian, yield stress and
shear thinning fluids. In the case of Newtonian suspending fluids, we
observed a very close agreement between our measurements and the
available theoretical solution, which shows the merit of our experi-
mental method. Subsequently, the same method has been employed to
study the problem with yield stress and shear thinning suspending
fluids which we have no theoretical solutions available for. As it is
evident in Fig. 22, fore-aft asymmetry is enhanced for trajectories of
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particles in yield stress fluids (also observed in simulations of Fahs et al.
[93]) and shear thinning fluids. Even a slight asymmetry has been
observed in trajectories with no collision. These observations imply
greater asymmetry in the PDF and stronger normal stress differences in
the yield stress suspensions.

It is noteworthy to mention that for yield stress suspending fluids, in
the absence of inertia, the interaction of particles depend on various
parameters such as Bingham number, Deborah number, shear history,
initial offset and roughness. Hence, obtaining the entire trajectory space
is not feasible experimentally for yield-stress fluids. However, overall
trends and patterns could be understood by investigating a limited
number of systematic measurements. The effect of different parameters
on the interaction of particles is investigated in this study.

As mentioned in Section 3.2.2, in the guar gum solution and Car-
bopol gel, variations along the trajectory lines are confined in a closer
neighborhood of the particle. We can link this observation to the var-
iation of the disturbance velocity field around one particle in yield
stress fluids where the length scale of the decay is smaller than that in
Newtonian suspending fluids (see Figs. 9 and 11 c, d). This feature has
been observed in the numerical simulations of Fahs et al. [93]. It means
that two particles feel each other’s presence at closer distances, and
when they do, the interactions are more severe. One can conclude that
the short-range interactions are more important when dealing with
yield stress suspending fluids. Due to the limited resolution of the ex-
perimental measurements close to the particles, especially when they
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are touching or very close (separations of the order the size of the in-
terrogation window), accurate simulations with realistic constitutive
models are required to understand and characterize the short-range
hydrodynamic interactions, particularly the lubrication forces.

Another distinct feature observed during the motion of two particles
in a yield stress fluid is the downward and upward motion of the second
particle along the velocity gradient direction during approach and re-
cession. This phenomenon could affect the microstructure, and conse-
quently, the PDF of yield stress suspensions. This pattern has been
observed experimentally for shear thinning suspending fluids in [94].
Also, similar behavior is observed for both Newtonian and yield stress
fluids in the simulations of Fahs et al. [93]. By increasing the gap size,
w/a, the downward and upward motion disappeared in their results for
Newtonian fluid. However, for yield stress fluid, such behavior dis-
appeared at larger gap sizes. We have not observed this feature during
the motion of two particles in the shear thinning fluid in the course of
this project, but it is perhaps due to the fact that this behavior is present
only at i'nitial offsets smaller than the range covered in our experi-
ments. The confinement effects might be responsible for this behavior.
The extent of such effects could be amplified in the presence of yield
stress fluids. Further investigations are needed to understand the un-
derlying mechanisms properly.

Acknowledgments

This research was supported by National Science Foundation (Grant
no. CBET-1554044-CAREER) via the research award (S.H.).

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.jnnfm.2018.03.006.

References

[1] G. Batchelor, J.-T. Green, The hydrodynamic interaction of two small freely-moving
spheres in a linear flow field, Journal of Fluid Mechanics 56 (02) (1972) 375-400.
G. Batchelor, J. Green, The determination of the bulk stress in a suspension of
spherical particles to order c2, Journal of Fluid Mechanics 56 (03) (1972) 401-427.
D. Jeffrey, Y. Onishi, Calculation of the resistance and mobility functions for two
unequal rigid spheres in low-Reynolds-number flow, Journal of Fluid Mechanics
139 (1984) 261-290.

S. Kim, R.T. Mifflin, The resistance and mobility functions of two equal spheres in
low-reynolds-number flow, The Physics of fluids 28 (7) (1985) 2033-2045.

D. Jeffrey, The calculation of the low reynolds number resistance functions for two
unequal spheres, Physics of Fluids A: Fluid Dynamics 4 (1) (1992) 16-29.

S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications,
Courier Corporation, 2013.

G. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of
spherical particles, Journal of Fluid Mechanics 83 (01) (1977) 97-117.

J.F. Brady, J.F. Morris, Microstructure of strongly sheared suspensions and its im-
pact on rheology and diffusion, Journal of Fluid Mechanics 348 (1997) 103-139.
LE. Zarraga, D.T. Leighton Jr, Normal stress and diffusion in a dilute suspension of
hard spheres undergoing simple shear, Physics of Fluids 13 (3) (2001) 565-577.
J.F. Brady, G. Bossis, Stokesian dynamics, Annual Review of Fluid Mechanics 20 (1)
(1988) 111-157.

H. Brenner, M.E. O’Neill, On the stokes resistance of multiparticle systems in a
linear shear field, Chemical Engineering Science 27 (7) (1972) 1421-1439.

S. Wakiya, C. Darabaner, S. Mason, Particle motions in sheared suspensions xxi:
interactions of rigid spheres (theoretical), Rheologica Acta 6 (3) (1967) 264-273.
C. Lin, K. Lee, N. Sather, Slow motion of two spheres in a shear field, Journal of
Fluid Mechanics 43 (01) (1970) 35-47.

E. Guazzelli, J.F. Morris, A Physical Introduction to Suspension Dynamics, 45
Cambridge University Press, 2011.

F. Blanc, F. Peters, E. Lemaire, Experimental signature of the pair trajectories of
rough spheres in the shear-induced microstructure in noncolloidal suspensions,
Physical Review Letters 107 (20) (2011) 208302.

F. Blanc, E. Lemaire, A. Meunier, F. Peters, Microstructure in sheared non-brownian
concentrated suspensions, Journal of Rheology 57 (1) (2013) 273-292.

F. Parsi, F. Gadala-Maria, Fore-and-aft asymmetry in a concentrated suspension of
solid spheres, Journal of Rheology 31 (8) (1987) 725-732.

C. Gao, S. Kulkarni, J. Morris, J. Gilchrist, Direct investigation of anisotropic sus-
pension structure in pressure-driven flow, Physical Review E 81 (4) (2010) 041403.
F. Blanc, F. Peters, E. Lemaire, Kinetics of fowing dispersions. 9. Doublets of rigid
spheres (experimental), Journal of Colloid Interface Science 61 (1977) 44.

[2]

[3]

[4]
[5]
(61
71
(8]
[91
[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]

[19]

37

[20]
[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Journal of Non-Newtonian Fluid Mechanics 255 (2018) 19-38

F. Da Cunha, E. Hinch, Shear-induced dispersion in a dilute suspension of rough
spheres, Journal of Fluid Mechanics 309 (1996) 211-223.

P. Pham, B. Metzger, J.E. Butler, Particle dispersion in sheared suspensions: crucial
role of solid-solid contacts, Physics of Fluids 27 (5) (2015) 051701.

I. Rampall, J.R. Smart, D.T. Leighton, The influence of surface roughness on the
particle-pair distribution function of dilute suspensions of non-colloidal spheres in
simple shear flow, Journal of Fluid Mechanics 339 (1997) 1-24.

J.F. Morris, A review of microstructure in concentrated suspensions and its im-
plications for rheology and bulk flow, Rheologica Acta 48 (8) (2009) 909-923.

A. Singh, P.R. Nott, Normal stresses and microstructure in bounded sheared sus-
pensions via stokesian dynamics simulations, Journal of Fluid Mechanics 412
(2000) 279-301.

A. Sierou, J. Brady, Rheology and microstructure in concentrated noncolloidal
suspensions, Journal of Rheology 46 (5) (2002) 1031-1056.

J.J. Stickel, R.L. Powell, Fluid mechanics and rheology of dense suspensions,
Annual Review of Fluid Mechanics 37 (2005) 129-149.

N. Phan-Thien, X.-J. Fan, B.C. Khoo, A new constitutive model for monodispersed
suspensions of spheres at high concentrations, Rheologica Acta 38 (4) (1999)
297-304.

J.J. Stickel, R.J. Phillips, R.L. Powell, A constitutive model for microstructure and
total stress in particulate suspensions, Journal of Rheology 50 (4) (2006) 379-413.
J.J. Stickel, R.J. Phillips, R.L. Powell, Application of a constitutive model for par-
ticulate suspensions: time-dependent viscometric flows, Journal of Rheology 51 (6)
(2007) 1271-1302.

R.M. Miller, J.P. Singh, J.F. Morris, Suspension flow modeling for general geome-
tries, Chemical Engineering Science 64 (22) (2009) 4597-4610.

J.F. Morris, F. Boulay, Curvilinear flows of noncolloidal suspensions: the role of
normal stresses, Journal of Rheology 43 (5) (1999) 1213-1237.

J. Morris, J. Brady, Pressure-driven flow of a suspension: buoyancy effects,
International Journal of Multiphase Flow 24 (1) (1998) 105-130.

P.R. Nott, J.F. Brady, Pressure-driven flow of suspensions: simulation and theory,
Journal of Fluid Mechanics 275 (1994) 157-199.

R.R. Huilgol, N. Phan-Thien, Fluid Mechanics of viscoplasticity, Springer, 2015.
A. Putz, I. Frigaard, Creeping flow around particles in a bingham fluid, Journal of
Non-Newtonian Fluid Mechanics 165 (5) (2010) 263-280.

A. Beris, J. Tsamopoulos, R. Armstrong, R. Brown, Creeping motion of a sphere
through a bingham plastic, Journal of Fluid Mechanics 158 (1985) 219-244.

B.T. Liu, S.J. Muller, M.M. Denn, Convergence of a regularization method for
creeping flow of a bingham material about a rigid sphere, Journal of Non-
Newtonian Fluid Mechanics 102 (2) (2002) 179-191.

J. Blackery, E. Mitsoulis, Creeping motion of a sphere in tubes filled with a bingham
plastic material, Journal of Non-Newtonian Fluid Mechanics 70 (1) (1997) 59-77.
M. Beaulne, E. Mitsoulis, Creeping motion of a sphere in tubes filled with her-
schel-bulkley fluids, Journal of Non-Newtonian Fluid Mechanics 72 (1) (1997)
55-71.

B. Deglo de Besses, A. Magnin, P. Jay, Sphere drag in a viscoplastic fluid, AIChE
Journal 50 (10) (2004) 2627-2629.

A. Putz, T. Burghelea, I. Frigaard, D. Martinez, Settling of an isolated spherical
particle in a yield stress shear thinning fluid, Physics of Fluids 20 (3) (2008)
033102.

Y. Holenberg, O. Lavrenteva, A. Liberzon, U. Shavit, A. Nir, Ptv and piv study of the
motion of viscous drops in yield stress material, Journal of Non-Newtonian Fluid
Mechanics 193 (2013) 129-143.

B. Gueslin, L. Talini, B. Herzhaft, Y. Peysson, C. Allain, Flow induced by a sphere
settling in an aging yield-stress fluid, Physics of Fluids 18 (10) (2006) 103101.

D. Fraggedakis, Y. Dimakopoulos, J. Tsamopoulos, Yielding the yield-stress ana-
lysis: a study focused on the effects of elasticity on the settling of a single spherical
particle in simple yield-stress fluids, Soft Matter 12 (24) (2016) 5378-5401.

D. Fraggedakis, Y. Dimakopoulos, J. Tsamopoulos, Yielding the yield stress analysis:
a thorough comparison of recently proposed elasto-visco-plastic (evp) fluid models,
Journal of Non-Newtonian Fluid Mechanics 238 (2016) 170-188.

P. Saramito, A new constitutive equation for elastoviscoplastic fluid flows, Journal
of Non-Newtonian Fluid Mechanics 145 (1) (2007) 1-14.

P. Saramito, A new elastoviscoplastic model based on the Herschel-Bulkley visco-
plastic model, Journal of Non-Newtonian Fluid Mechanics 158 (1) (2009) 154-161.
C.J. Dimitriou, R.H. Ewoldt, G.H. McKinley, Describing and prescribing the con-
stitutive response of yield stress fluids using large amplitude oscillatory shear stress
(laostress), Journal of Rheology 57 (1) (2013) 27-70.

S. Hormozi, G. Dunbrack, I. Frigaard, Visco-plastic sculpting, Physics of Fluids 26
(9) (2014) 093101.

B. Gueslin, L. Talini, Y. Peysson, Sphere settling in an aging yield stress fluid: link
between the induced flows and the rheological behavior, Rheologica Acta 48 (9)
(2009) 961.

Y. Holenberg, O.M. Lavrenteva, U. Shavit, A. Nir, Particle tracking velocimetry and
particle image velocimetry study of the slow motion of rough and smooth solid
spheres in a yield-stress fluid, Physical Review E 86 (6) (2012) 066301.

F. Ahonguio, L. Jossic, A. Magnin, Influence of surface properties on the flow of a
yield stress fluid around spheres, Journal of Non-Newtonian Fluid Mechanics 206
(2014) 57-70.

A. Van Dinther, C. Schroén, F. Vergeldt, R. Van der Sman, R. Boom, Suspension flow
in microfluidic devicesa review of experimental techniques focussing on con-
centration and velocity gradients, Advances in Colloid and Interface Science 173
(2012) 23-34.

G. Ovarlez, F. Mahaut, S. Deboeuf, N. Lenoir, S. Hormozi, X. Chateau, Flows of
suspensions of particles in yield stress fluids, Journal of Rheology 59 (6) (2015)
1449-1486.


https://doi.org/10.1016/j.jnnfm.2018.03.006
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0001
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0001
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0002
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0002
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0003
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0003
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0003
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0004
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0004
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0005
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0005
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0006
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0006
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0007
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0007
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0008
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0008
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0009
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0009
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0010
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0010
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0011
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0011
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0012
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0012
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0013
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0013
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0014
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0014
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0015
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0015
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0015
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0016
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0016
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0017
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0017
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0018
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0018
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0019
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0019
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0020
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0020
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0021
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0021
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0022
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0022
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0022
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0023
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0023
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0024
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0024
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0024
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0025
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0025
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0026
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0026
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0027
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0027
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0027
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0028
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0028
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0029
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0029
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0029
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0030
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0030
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0031
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0031
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0032
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0032
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0033
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0033
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0034
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0035
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0035
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0036
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0036
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0037
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0037
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0037
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0038
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0038
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0039
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0039
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0039
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0040
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0040
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0041
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0041
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0041
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0042
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0042
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0042
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0043
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0043
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0044
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0044
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0044
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0045
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0045
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0045
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0046
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0046
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0047
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0047
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0048
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0048
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0048
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0049
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0049
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0050
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0050
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0050
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0051
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0051
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0051
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0052
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0052
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0052
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0053
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0053
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0053
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0053
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0054
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0054
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0054

M. Firouznia et al.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]
[65]
[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

T.J. Heindel, A review of x-ray flow visualization with applications to multiphase
flows, Journal of Fluids Engineering 133 (7) (2011) 074001.

M. Gholami, A. Rashedi, N. Lenoir, D. Hautemayou, G. Ovarlez, S. Hormozi, Time-
resolved 2d concentration maps in flowing suspensions using x-ray, Journal of
Rheology (2018). (Under review)

R.L. Powell, Experimental techniques for multiphase flows, Physics of Fluids 20 (4)
(2008) 040605.

S. Bhavaraju, R. Mashelkar, H. Blanch, Bubble motion and mass transfer in non-
newtonian fluids. Part I. Single bubble in power law and bingham fluids, AIChE
Journal 24 (6) (1978) 1063-1070.

A. Potapov, R. Spivak, O.M. Lavrenteva, A. Nir, Motion and deformation of drops in
bingham fluid, Industrial & Engineering Chemistry Research 45 (21) (2006)
6985-6995.

J. Tsamopoulos, Y. Dimakopoulos, N. Chatzidai, G. Karapetsas, M. Pavlidis, Steady
bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for
bubble entrapment, Journal of Fluid Mechanics 601 (2008) 123-164.

J.P. Singh, M.M. Denn, Interacting two-dimensional bubbles and droplets in a yield-
stress fluid, Physics of Fluids 20 (4) (2008) 040901.

Y. Dimakopoulos, M. Pavlidis, J. Tsamopoulos, Steady bubble rise in
Herschel-Bulkley fluids and comparison of predictions via the augmented
Lagrangian method with those via the papanastasiou model, Journal of Non-
Newtonian Fluid Mechanics 200 (2013) 34-51.

O.M. Lavrenteva, Y. Holenberg, A. Nir, Motion of viscous drops in tubes filled with
yield stress fluid, Chemical Engineering Science 64 (22) (2009) 4772-4786.

Y. Holenberg, O.M. Lavrenteva, A. Nir, Interaction of viscous drops in a yield stress
material, Rheologica Acta 50 (4) (2011) 375-387.

A. Maleki, S. Hormozi, A. Roustaei, 1. Frigaard, Macro-size drop encapsulation,
Journal of Fluid Mechanics 769 (2015) 482-521.

E. Chaparian, L.A. Frigaard, Yield limit analysis of particle motion in a yield-stress
fluid, Journal of Fluid Mechanics 819 (2017) 311-351.

L. Jossic, A. Magnin, Drag and stability of objects in a yield stress fluid, AIChE
Journal 47 (12) (2001) 2666-2672.

X. Chateau, G. Ovarlez, K.L. Trung, Homogenization approach to the behavior of
suspensions of noncolloidal particles in yield stress fluids, Journal of Rheology 52
(2) (2008) 489-506.

F. Mahaut, X. Chateau, P. Coussot, G. Ovarlez, Yield stress and elastic modulus of
suspensions of noncolloidal particles in yield stress fluids, Journal of Rheology 52
(1) (2008) 287-313.

G. Ovarlez, F. Bertrand, P. Coussot, X. Chateau, Shear-induced sedimentation in
yield stress fluids, Journal of Non-Newtonian Fluid Mechanics 177 (2012) 19-28.
G. Ovarlez, N. Roussel, A physical model for the prediction of lateral stress exerted
by self-compacting concrete on formwork, Materials and Structures 39 (2) (2006)
269-279.

T.-S. Vu, G. Ovarlez, X. Chateau, Macroscopic behavior of bidisperse suspensions of
noncolloidal particles in yield stress fluids, Journal of Rheology 54 (4) (2010)
815-833.

S. Dagois-Bohy, S. Hormozi, E. Guazzelli, O. Pouliquen, Rheology of dense sus-
pensions of non-colloidal spheres in yield-stress fluids, Journal of Fluid Mechanics
776 (2015) R2-1-11.

B. Metzger, J.E. Butler, Clouds of particles in a periodic shear flow, Physics of Fluids

38

[75]
[76]
[77]

[78]

[79]

[80]

[81]

[82]

[83]
[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]
[92]
[93]

[94]

Journal of Non-Newtonian Fluid Mechanics 255 (2018) 19-38

24 (2) (2012) 021703.

P. Pham, Origin of Shear-induced Diffusion in Particulate Suspensions: Crucial Role
of Solid Contacts Between Particles, Ph.D. thesis, University of Florida, 2016.

M. Souzy, Mélange dans les Suspensions de Particules Cisaillées a bas Nombre de
Reynolds, Ph.D. thesis, Aix Marseille Université, 2016.

M. Souzy, H. Lhuissier, E. Villermaux, B. Metzger, Stretching and mixing in sheared
particulate suspensions, Journal of Fluid Mechanics 812 (2017) 611-635.

N.J. Balmforth, I.A. Frigaard, G. Ovarlez, Yielding to stress: recent developments in
viscoplastic fluid mechanics, Annual Review of Fluid Mechanics 46 (2014)
121-146.

G. Ovarlez, S. Cohen-Addad, K. Krishan, J. Goyon, P. Coussot, On the existence of a
simple yield stress fluid behavior, Journal of Non-Newtonian Fluid Mechanics 193
(2013) 68-79.

I.A. Gutowski, D. Lee, J.R. de Bruyn, B.J. Frisken, Scaling and mesostructure of
carbopol dispersions, Rheologica Acta 51 (5) (2012) 441-450.

D. Lee, I.A. Gutowski, A.E. Bailey, L. Rubatat, J.R. de Bruyn, B.J. Frisken,
Investigating the microstructure of a yield-stress fluid by light scattering, Physical
Review E 83 (3) (2011) 031401.

J. Piau, Carbopol gels: Elastoviscoplastic and slippery glasses made of individual
swollen sponges: Meso-and macroscopic properties, constitutive equations and
scaling laws, Journal of Non-Newtonian Fluid Mechanics 144 (1) (2007) 1-29.

S. Inc, Jaguar, Product Guide for Personal Care Solutions, 2015.

P. Uhlherr, J. Guo, C. Tiu, X.-M. Zhang, J.-Q. Zhou, T.-N. Fang, The shear-induced
solid-liquid transition in yield stress materials with chemically different structures,
Journal of Non-Newtonian Fluid Mechanics 125 (2-3) (2005) 101-119.

P. Coussot, Rheometry of Pastes, Suspensions, and Granular Materials: Applications
in Industry and Environment, John Wiley & Sons, 2005.

D. Risica, A. Barbetta, L. Vischetti, C. Cametti, M. Dentini, Rheological properties of
guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in
semidilute and concentrated aqueous solutions, Polymer 51 (9) (2010) 1972-1982.
D. Szopinski, W.-M. Kulicke, G.A. Luinstra, Structure—property relationships of
carboxymethyl hydroxypropyl guar gum in water and a hyperentanglement para-
meter, Carbohydrate Polymers 119 (2015) 159-166.

T. Peng, Detect Circles with Various Radii in Grayscale Image via Hough Transform,
2007, https://www.mathworks.com/matlabcentral/fileexchange/9168-detect-
circles-with-various-radii-in-grayscale-image-via-hough-transform.

R.O. Duda, P.E. Hart, Use of the hough transformation to detect lines and curves in
pictures, Communications of the ACM 15 (1) (1972) 11-15.

J.K. Sveen, An introduction to matpiv v. 1.6. 1, Mechanics and Applied
Mathematics Preprint series, (2004) 7-25. https://www.duo.uio.no/handle/
10852/10196.

L.G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective
Transport Processes, Cambridge University Press, 2007.

C. Darabaner, S. Mason, Particle motions in sheared suspensions xxii: interactions of
rigid spheres (experimental), Rheologica Acta 6 (3) (1967) 273-284.

H. Fahs, G. Ovarlez, X. Chateau, Pair-particle trajectories in a shear flow of a
Bingham fluid. Journal of Non-Newtonian Fluid Mechanics (Under review).

F. Snijkers, R. Pasquino, J. Vermant, Hydrodynamic interactions between two
equally sized spheres in viscoelastic fluids in shear flow, Langmuir 29 (19) (2013)
5701-5713.


http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0055
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0055
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0056
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0056
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0056
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0057
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0057
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0058
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0058
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0058
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0059
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0059
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0059
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0060
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0060
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0060
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0061
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0061
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0062
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0062
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0062
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0062
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0063
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0063
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0064
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0064
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0065
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0065
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0066
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0066
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0067
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0067
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0068
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0068
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0068
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0069
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0069
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0069
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0070
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0070
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0071
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0071
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0071
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0072
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0072
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0072
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0073
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0073
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0073
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0074
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0074
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0075
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0075
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0076
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0076
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0077
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0077
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0078
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0078
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0078
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0079
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0079
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0079
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0080
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0080
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0081
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0081
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0081
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0082
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0082
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0082
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0083
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0083
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0083
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0084
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0084
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0085
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0085
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0085
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0086
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0086
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0086
https://www.mathworks.com/matlabcentral/fileexchange/9168-detect-circles-with-various-radii-in-grayscale-image-via-hough-transform
https://www.mathworks.com/matlabcentral/fileexchange/9168-detect-circles-with-various-radii-in-grayscale-image-via-hough-transform
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0087
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0087
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0088
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0088
https://www.duo.uio.no/handle/10852/10196
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0089
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0089
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0090
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0090
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0092
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0092
http://refhub.elsevier.com/S0377-0257(17)30454-8/sbref0092

	The interaction of two spherical particles in simple-shear flows of yield stress fluids
	Introduction
	Experimental methods and materials
	Experimental set-up
	Particles
	Fluids
	Newtonian fluid
	Yield stress fluid
	Shear thinning fluid

	Rheometry
	Post-processing

	Experimental results
	Establishing a linear shear flow in the absence of particles
	One particle in a linear shear flow
	Stokes flow around one particle in a linear shear flow of a Newtonian fluid: comparison of theory and experiment
	Creeping flow around one particle in a linear shear flow: Newtonian and non-Newtonian suspending fluids

	Interaction of two particles in a linear shear flow
	Interaction of two particles in a linear shear flow of a Newtonian fluid: theory and experiment
	Interaction of two particles in a linear shear flow of a yield stress fluid: experiment
	Interaction of two particles in a linear shear flow of a shear thinning fluid: experiment
	Particle trajectories versus streamlines


	Discussion and conclusions
	Acknowledgments
	Supplementary material
	References




