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Artificial intelligence (Al) pipelines are complex, heavily parameterized, and expensive to
execute in terms of time and computational resources. Consequently, it is onerous to
run experiments with all possible parameter combinations to achieve an optimal
solution. However, these Al experiments can be optimized by recommending relevant
parameters to commence the experiments, reducing search space significantly, which
can be fine tuned further. The relevant parameters can be identified by observing the
metadata of pipelines executed in the past, and the relevant pipeline with relevant
parameters can be recommended to the user. Currently, there are various metadata
frameworks that automatically record the metadata of Al pipelines. Developing a
recommendation system requires understanding pipeline metadata components and
their interactions. There is a need to represent the metadata generated by these Al
pipelines that capture the relationship among these pipeline entities. This article
presents a knowledge-infused recommender that utilizes prior knowledge and metadata
of already executed pipelines represented using the proposed metadata schema to
recommend a relevant pipeline per user queries. Unlike black-box models, the use of
knowledge graphs makes recommendations explainable, improving transparency and
trustworthiness for the users.

rtificial intelligence (Al) pipelines are being
Aextensively used in various research areas, such
as autonomous driving! DNA sequencing?
healthcare,® climate change,* and weather forecasting.®
Various industries are also using them for real-time facial
recognition,® revenue forecasting” anomaly detection,®

and other tasks. The use and prevalence of Al models are
expected to increase in the upcoming decades (http://
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bitly.ws/xrpk). The major challenge with Al pipelines is
identifying the right combination of pipeline parameters,
such as data preprocessing techniques, models, and
hyperparameters, to execute a given task. lllustrating
with an example from Figure 1, a simple task of image
classification may require the following choices to be
made at the minimum: 1) choosing a model from a list of
image recognition models; 2) identifying the optimal com-
bination of data augmentations; 3) an optimizer with its
own set of parameters; and 4) appropriate learning rate
and its scheduling rate. In addition, there are generaliza-
tion and regularization techniques that increase the
search space. It is expensive in terms of time and compu-
tational resources to run all possible experiments to
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TASK - IMAGE CLASSIFICATION
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CenterCrop(size) AlexNet Adadelta
Colorlitter([brightness, contrast, ...]) ConvNeXt Adagrad

FiveCrop(size) DenseNet Adam
Grayscale([num_output_channels]) Efficient Net AdamW

Pad(padding], fill, padding_mode]) Efficient etV2 SparseAdam
RandomAffine(degrees|, translate, scale, ...]) GoogleNet Adamax
RandomApply(transforms|, p]) Inception V3 ASGD

RandomCrop(size[, padding, pad_if_needed, ...]) MNASNet LBFGS

RandomGrayscale([p]) MobileNet V2 Nadam
RandomHorizontalFlip([p]) MobileNet V3 Radam
RandomPerspective([distortion_scale, p, ...]) RegNet RMSprop
RandomResizedCrop(size[, scale, ratio, ...]) ResNet Rprop

Random Rotation(degrees|, interpolation, ...]) ResNeXt SGD

Rotate the image by angle. ShuffleNet V2

Random Vertical Flip([p]) SqueezeNet

Resize(size[, interpolation, max_size, ...]) SwinTransformer Besides learning rate, each
TenCrop(size[, vertical_flip]) VGG optimizers have their own set of
GaussianBlur(kernel_size[, sigma]) VisionTransformer parameters, each with a range of
Randomlnvert([p]) Wide ResNet values.

RandomPosterize(bits[, p])

RandomSolarize(threshold|, p])
RandomAdjustSharpness(sharpness_factor|, p])
RandomAutocontrast([p])

In case of multimodal representation learning, there are

various loss functions to choose from

FIGURE 1. Number of pipeline parameters and their possible values to execute an image classification task.

achieve an optimal solution. For this open-ended prob-
lem, an optimal solution can be very subjective. In some
cases, achieving the highest accuracy is the expected
optimal solution. In some cases, an efficient tradeoff
between accuracy and inference time can be consid-
ered an optimal solution. The machine and deep learn-
ing models are predicted to be prevalent in the
upcoming years.? Hence, it is essential to design and
implement a system that reduces the search space by
recommending optimal or potential sets of pipeline
parameters to commence the experiments.

The metadata collected from already executed Al
pipelines can aid in determining and recommending a
pipeline with relevant parameters to start the experi-
ments and fine tune it to achieve the desired solution
for a given task. Common metadata framework (CMF)
is a pipeline-centric metadata framework that can col-
lect metadata at various granular levels.® It automati-
cally records the metadata of the Al pipelines, such as
datasets, dataset transformations, models, hyperpara-
meters, and the interactions among these artifacts.

2[Online]. Available: http://bitly.ws/xrpk
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Using CMF, the metadata of Al pipelines can be
recorded during their execution.

However, determining and recommending rele-
vant pipeline parameters requires understanding
the concepts of pipeline components, their proper-
ties, and the relationship among components. For
example, suppose the user queries, “List all the food
image classification pipelines whose accuracy is
more than 90%.” In that case, it requires an under-
standing of the following: 1) the task names can be
image classification or food image classification; 2)
the dataset must be of images, and the type of class
labels must be food; 3) the accuracy is of type evalu-
ation metric which should be above 90%. There is
a need to represent the pipeline metadata in a
schema that captures the relationships among the
pipeline entities and the properties of those entities
to understand such queries.

To address the abovementioned challenges, we pro-
pose a new metadata schema, built on ML-Schema,’ to
represent and store the metadata recorded from Al
pipelines. Further, we propose and demonstrate a knowl-
edge-infused recommender with a use case that utilizes
the proposed metadata schema and prior knowledge to
understand, identify, and recommend relevant pipelines
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per the user-requested queries. While CMF can record
the metadata automatically, the metadata of already
executed pipelines are available from open sources,
such as papers-with-code and OpenML. Similarly, open
sources, such as Kaggle and HuggingFace, provide prop-
erties of pipeline entities, which comprises of both
semantic and statistical features. Some examples of
properties include the modality of the dataset (text,
image), class of models (CNN, GRU), type of class labels
of the dataset (food, vehicles, birds, or animals), number
of classes in the dataset, or categories of the task
(segmentation, classification). These properties consti-
tute prior knowledge about the instances of pipeline
entities, which are essential to identify relevant pipelines
with similar datasets, tasks, and models to that of user-
requested queries or specifications. Unlike black-box
models, as the features required to identify a relevant
pipeline are engineered using knowledge graphs, the
recommendations made by the recommender are
explainable.”

Could a system recommend a relevant Al pipeline
that will either suggest optimal parameters to train
the model or relevant parameters to reduce the
search space for the user to start their experiments
and fine tune further?

Existing neural architecture search-based appro-
aches focus on training a deep learning model to gen-
erate and recommend deep learning architectures.”
Several works' utilize the variations of Bayesian opti-
mization to search the hyperparameter space. By rec-
ommending pipelines with past execution history, our
proposed recommender differs from existing works by
having the ability to reproduce the pipeline execution
under a given parameter setting.

The proposed Al pipeline recommender consists of
three major components to understand the concepts
and their relationships in the metadata to compre-
hend complex queries. It consists of: 1) a knowledge
graph generated by populating the metadata schema
with executed Al pipeline metadata; 2) knowledge
enabled metadata collector, which extracts pipeline
metadata from open sources, such as papers-with-
code and OpenML; 3) a knowledge graph that consists
instances of metadata components connected based
on similarities of semantic and statistical properties.
For example, suppose the user intends to query, “List
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all the food image classification pipelines whose accu-
racy is more than 90%.” In that case, it requires an
understanding that pipelines with the task name
“image classification” and the task name “food image
classification” can be considered as the dataset is
about food to filter further based on accuracy. Sup-
pose a user queries “List all dataset and Convolutional
Neural Networks (CNN) combinations that achieved
above 70% accuracy in audio classification.” While
CNNs are commonly used for image classification, 1-D
CNNs are used for time series regressions. Such
queries require an understanding that the dataset
should be about audio, and CNNs are a class of
models that belong to the concept “model.”

Component-1: Knowledge Graphs From
Metadata Schema

In general, metadata has proven useful for personalized
recommendations in various domains.”*'* Currently, the
metadata of Al pipelines is commonly used to improve
the model-building process, experiment tracking, and
manage model workflows.> On the other hand, the
metadata of Al pipelines can be utilized to recommend a
relevant pipeline to give a head start on experiments for
a given task requested by the user. CMF, one of the
metadata logging frameworks, can automatically log
metadata of the Al pipelines, such as datasets, data
transformations, models, hyperparameters, and interac-
tions among these artifacts. In an overview, the compo-
nents of pipeline metadata recorded by CMF are as
follows: 1) task name; 2) datasets used; 3) model and its
architecture; 4) hyperparameters; 5) evaluation metrics;
and 6) results. To capture the relationships of these enti-
ties (components) in the pipeline and their properties,
we extend the ML Schema proposed by Publio et al,™
as shown in Figure 2.

The schema introduced by ML-Schema was built
based on OpenML pipelines, which are based on classical
machine learning algorithm based. We propose an
extended Al pipeline metadata schema adaptable to
machine and deep learning algorithms. The proposed
schema is designed to be pipeline centric rather than
model centric. Further, we extend the schema to include
specific statistical and semantic properties of pipeline
entities that can be either populated by the user or com-
puted from various sources based on the entity names
logged by the user. The properties are essential as ide-
ntifying relevant pipelines requires both statistical and
semantical properties of pipeline entities. We include
additional entities to our metadata schema, such as exe-
cution time, framework, and deployment parameters.

b[Online]. Available: http://bitly.ws/xrpp
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FIGURE 2. Proposed metadata schema for Al pipelines built on ML-Schema.™ It includes specific statistical and semantic char-

acteristics for all schema entities. Further, it is extended to include entities, such as deployment, data preprocessing, and frame-

work, along with its characteristics.

Component-2: Knowledge-enabled
Metadata Collection

The metadata recorded using CMF proved to be signifi-
cant in identifying the model and hyperparameter settings
for various experiments we conducted. It is well known
that generating several instances of Al pipeline metadata
with various machine and deep learning models demands
significant resources in terms of time and computation.
At the same time, open sources, such as papers-with-
code® and OpenML® have metadata of already exe-
cuted pipelines. Leveraging that, the metadata offered
by these open sources was collected. Notably, papers-
with-code is up-to-date with state-of-the-art models
and their experiments reported by several published
papers. OpenML consists of pipelines executed and their
metadata recorded by its users. Most of the pipeline meta-
data recorded by OpenML consists of machine learning
models compared to deep learning models.

Both the open sources expose the metadata of the
pipelines through their application programming interface
(API). Papers-with-code consists of 1 million pipelines in
the form of published papers. The unique entities include
3800 tasks, 11,800 datasets, 7875 evaluations, and result
tables. The details of the pipeline’s hyperparameters can
be accessed through their git repository and the pub-
lished paper manuscript, which is provided by papers-
with-code. OpenML consists of 10 million pipelines for
machine learning models recorded by various users.

°[Online]. Available: https://paperswithcode.com/
9[Online]. Available: https://www.openml.org/
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The nomenclature and data format provided by
both the open sources were different, and it posed a
challenge in integrating the data sources. First, the
data from both open sources are collected and stored.
Then the concepts from papers-with-code and OpenML
are mapped to the concepts in the metadata schema cre-
ated for CMF (see Figure 2). Through further analysis, we
found that of the one million papers, only around 18,000
papers have complete data available through the API.
Similarly, for OpenML, the hyperparameters are not
logged by some users. Further, most OpenML pipelines
are machine learning models, such as support vector
machines and logistic regression models. This poses a
problem of data incompleteness and lack of diversity.
Hence, we propose to build a parser that extracts meta-
data from published papers available from papers-with-
code and arxiv.

To extract the desired metadata pipeline entities
from the published papers, we build taxonomy of
vocabulary similar to SNOMED CT.”® We curate a
vocabulary for the following components: 1) dataset;
2) task; 3) model; 4) hyperparameters; 5) evaluations;
and 6) results. We utilize the pipeline metadata
recorded through CMF and pipeline metadata avail-
able through API from papers-with-code, OpenML,
and HuggingFace to collect datasets, tasks, model
names, evaluation metrics, and results. We use Kaggle
to collect datasets and deep learning libraries, such as
Pytorch, Tensorflow, and Keras, to collect and curate
hyperparameter taxonomy. The extracted data will
enrich the vocabulary iteratively, as shown in Figure 3.
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FIGURE 3. System architecture of the proposed knowledge-infused recommender system. The metadata KG is populated using

data from open sources through the metadata schema (see the “Component-1: Knowledge Graphs From Metadata Schema”

section). The semantic KG (see the “Component-3: Knowledge Graph for Semantics” section) is created by computing similarity

among the instances of various entities of the pipeline metadata using their statistical and semantic properties.

Component-3: Knowledge Graph

for Semantics

We gather the properties for all the instances of each
entity in the metadata pipeline to identify semantically
relevant pipelines and to provide an explanation for
the recommendation produced by the system. The
user can log the properties of each metadata entity,
such as task modality, task category, dataset modal-
ity, and so on. On the other hand, the value of such
properties can be computed using NLP techniques
and collected from other open sources. For example,
for a given data label cat, the superclass of the data
label can be identified as animal using the type of rela-
tion from ConceptNet. This is necessary to determine
what the dataset represents and recommend a similar
dataset as per the user's request (discussed in the
"Workflow" section). Furthermore, we curated a vocab-
ulary from available task names to identify task modal-
ity and task category for unseen task names. The open
sources Kaggle and OpenML provide statistical prop-
erties of a dataset through their API. Similarly, Hug-
gingFace, Pytorch, TensorFlow, and Keras can provide
properties of off-the-shelf models, such as model class
(CNN, transformer), model modality (image, text, mul-
timodal), the number of model parameters, and the
model architecture.

The proposed end-to-end system is a living pipeline
that collects data from open sources at regular inter-
vals, and dynamically updates our knowledge graphs
and data stores. To the best of our knowledge, this is

January/February 2023

the first Al pipeline recommender system with various
comprehensive knowledge graphs curated using data
from multiple sources.

We illustrate the proposed recommender system work-
flow with a sample case scenario as follows.

The proposed system can map the desired enti-
ties from the natural language query entered by the
user to the entities in the proposed metadata
schema. In this example, we demonstrate the ability
of our recommender to identify a similar dataset if
the dataset requested by the user is unavailable.
Further, the system can determine appropriate task
names (image classification and food image classifi-
cation) based on the superclass of dataset class
labels (food). The user has requested CNN to con-
duct the experiments. The system can identify this
as a property model class of the entity model and fil-
ter the image classification pipelines that use only
CNN models, such as ResNet, AlexNet, and VggNet.
The proposed recommender can support queries to
identify similar tasks, deployment parameters, or
data preprocessing techniques. Additional informa-
tion on the schema and workflow examples can
be found online.® The knowledge graphs used for

°[Online]. Available: https://hewlettpackard.github.io/cmf/
schema
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FIGURE 4. lllustration of a subset of knowledge graphs used for the recommendation. (a) lllustration of dataset similarity graph

with weighted edges where the similarity is calculated based on both statistical and semantic features. (b) lllustration of model

hierarchy tree that consists of a list of models under a given model class.

Query: “List all the image classification pipelines with Food-101 dataset, CNN models, and accuracy above 90%."

Step 1: Converting the query using
language models

Step 3: Sorting and filtering using knowledge graphs in Figure 4

Task: Image classification

Dataset: Food-101

Accuracy: 90%

Model: CNN

Step 2: Fetching properties using
components Tand 3

Task name: Image classification

Task modality: Image

Task category: Classification

Dataset name: Food-101

Dataset modality: Image

Dataset label list: Food

Image size: 100x100

Image color: RGB

Evaluation metric: Accuracy

Result: 90%

Model class: CNN

1) Fetch all pipelines with task name “Image Classification.”

2) Since the dataset label has only one quantity, also search for pipelines with the
name “Food Image Classification.”

3) Filter the pipelines with “Food-101" as the dataset name.

4) If the exact match of the dataset is not found, identify similar datasets as follows.

a) ldentify datasets with the label only as food.

b) Identify datasets with data modality as image.

c) ldentify datasets with similar statistical and semantic properties, such as
number of class labels, number of images per label, image size, image color,
and so on.

d) Based on these features, filter the pipelines further and rank them [see
Figure 4(a)l.

5) Filter the pipelines with model class name as CNN, which can be ResNet, AlexNet,
or VGGNet [see Figure 4(b)].

6) Filter the pipeline again based on evaluation metric as accuracy and result above
90%.

7) Rank the pipeline based on the feature matches.

8) Present the recommendation to the user with the list of ranked pipelines and
ranking their scores. Further, present the explanation by listing the features used
to identify the relevant.

relevant pipeline

recommendations capture the

name will not be sufficient. For example, using key-
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pipeline entities' relationship. The features used to
determine relevant pipelines are explicitly engi-
neered based on the properties of these pipeline
entities. Thus, the recommender can explain similar-
ity computation to identify relevant pipelines, and
the choice of relevant pipelines can be explained to
the user.

Feature engineering and explainability: Determining
relevant pipelines based on keyword match of entity

IEEE Internet Computing

word matches, we cannot identify other food image
classification datasets (FoodX-256) besides the user-
requested dataset, say Food-101. This will significantly
limit the capabilities and usage of the recommender.
The semantic and statistical features of each entity in
the pipeline metadata must be considered for mean-
ingful recommendation. Curating and computing val-
ues of these properties are challenging due to the lack
of structured data about pipeline metadata entities.
We propose to gather information from open sources
and knowledge graphs, such as Kaggle, HuggingFace,
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COMMON METADATA FRAMEWORK

t is well established that Al pipelines can benefit

from recording their metadata, which can be used for
experiment tracking, model tuning, and deployment.
Metadata tracking frameworks in the market broadly fall
under two categories. Frameworks like MLFLow' and
Weights and Biases? are experiment centric, and ML
Metadata® is developed based on a pipeline-centric
approach.

Common metadata framework (CMF)* is built on top
of ML Metadata and takes a pipeline-centric approach
while incorporating features from experiment-centric
frameworks. It can automatically record Al pipeline
metadata from different stages in the pipeline and offers
fine-grained experiment tracking like experiment-centric
frameworks. Different stages in an Al pipeline can be
spread across different sites, and each of these stages
may have different experiment variants. It is important
to track metadata for each experiment variant for
reproducibility, audit trail, and traceability. This lineage
metadata tracked for various artifacts in the pipeline
plays a crucial role in the recommendation.

Pytorch, Tensorflow, and ConceptNet, to compute the
values of these properties.

Integrating metadata from multiple sources: The
pipeline metadata open sources, such as papers-with-
code, OpenML, and HuggingFace, expose the metadata
of Al pipelines through their API with different nomen-
clature and schema. For example, models are named as
methods in papers-with-code and as flows in OpenML.
Mapping the entities provided by the open sources to
the concepts in metadata schema is challenging as we
plan to include more open sources. We aim to build a
vocabulary to map different nomenclature from multi-
ple sources to the concepts in the metadata schema.

Parsing and extracting metadata: As the open sour-
ces expose only limited or incomplete pipeline metadata
through their API, we propose to build a parser, as
described in the “Component-3: Knowledge Graph for
Semantics” section. This demands a curation of an
extensive vocabulary. For example, the authors of pub-
lished manuscripts might use the term Ir or LR or simply
learning rate to define the learning rate utilized in their
experiments. In addition, different conferences use dif-
ferent templates for their papers. It is necessary and
challenging to build a parser that can manage different
paper templates to extract the metadata of Al pipelines.

January/February 2023

Lineage tracked using CMF provides illuminating
insights into the artifacts. One such example is the
qualitative and statistical information about the dataset
used to train the model provides indicators to measure
the trustworthiness and biasedness of the model. This
enables recommendations based on the comprehensive
assessment of the quality of the model based on its
entire lifecycle and not just the final metrics.

1. “Machine learning flow tracking,” MLFlow, 2022. [Online].
Available: https://www.mlflow.org/docs/latest/tracking.
html

2. "Weights and biases,” WanDB, 2022. [Online]. Available:
https://wandb.ai/site/experiment-tracking

3. “Machine learning metadata,” TensorFlow, 2022. [Online].
Available: https://www.tensorflow.org/tfx/guide/mImd

4. A.Justine et al., “Self-learning data foundation for scien-
tific Al," in Proc. SMC, Springer, 2022.

Al pipelines are hard to train as they require the selection
of appropriate combination parameters from the large
search space. In this work, we demonstrated recommen-
dations of relevant Al pipelines with a use case to reduce
the search space of the parameters to commence the
experiments. This living framework, can dynamically
update the knowledge graph and the data store as new
data are generated. The recommendation is explainable
as the features used to identify a relevant pipeline are
explicitly engineered. Therefore, due to its transparency,
the recommender system is also trustworthy to its users.
In our future work, we aim to improve and prioritize the
recommendations based on user feedback through met-
alearning approaches. We also propose to enhance the
system to suggest knowledge-infusion techniques for the
recommended pipeline or suggest datasets that can be
used to train the models in the recommended pipeline
through semisupervised and unsupervised approaches.
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