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Abstract

Large deviation behavior of the largest eigenvalue A of Wigner matrices including
those arising from an Erd6s-Rényi random graph G, , with i.i.d. random conduc-
tances on the edges has been the topic of considerable interest. However, despite
several recent advances, not much is known when the underlying graph is sparse i.e.,
p — 0, except the recent works (Bhattacharya et al., Ann Probab 49(4):1847-1885,
2021and Bhattacharya and Ganguly, SIAM J Discret Math, 2020) which consider the
simpler case of the graph without additional edge weights. Under sufficiently general
conditions on the conductance distribution, one expects the ‘dense’ behavior as long
as the average degree np is at least logarithmic in . In this article we focus on the case
of constant average degree i.e., p = % for some fixed d > 0 with standard Gaussian
weights. Results in Bandeira and Van Handel (Ann Probab 44(4):2479-2506, 2016)
about general non-homogeneous Gaussian matrices imply that in this regime A scales
like /Togn. We prove the following results towards a precise understanding of the
large deviation behavior in this setting.

1. (Upper tail probabilities and structure theorem): For § > 0, we pin down the exact
exponent ¥ (8) such that

P(r; > /2(1 4+ 8)logn) = n~V®+o),

Further, we show that conditioned on the upper tail event, with high probability,
a unique maximal clique emerges with a very precise § dependent size (takes
either one or two possible values) and the Gaussian weights are uniformly high
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in absolute value on the edges in the clique. Finally, we also prove an optimal

localization result for the leading eigenvector, showing that it allocates most of its

mass on the aforementioned clique which is spread uniformly across its vertices.
2. (Lower tail probabilities): The exact stretched exponential behavior

P(h < /2(1 — 8)logn) = exp (_nz<6)+o<1))

is also established.

As an immediate corollary, one obtains that A is typically (1+o0(1))+/2Togn, a result
which surprisingly appears to be new. A key ingredient in our proofs is an extremal
spectral theory for weighted graphs obtained by an ¢;—reduction of the standard
£ —variational formulation of the largest eigenvalue via the classical Motzkin-Straus
theorem [37], which could be of independent interest.

Mathematics Subject Classification 60F10 - 05C80 - 60B20 - 15A18
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1 Introduction

Spectral statistics arising from random matrices and their asymptotic properties have
been the subject of major investigations for several years. Fundamental observables of
interest include the empirical spectral measure as well as edge/extreme eigenvalues.
The study of such quantities began in the classical setting of the Gaussian unitary
and orthogonal ensembles (GUE and GOE) where the entries are complex or real
i.i.d. Gaussians up to symmetry constraints. These exactly solvable examples admit
complicated but explicit joint densities for the eigenvalues which can be analyzed,
albeit involving a lot of work, to pin down the precise behavior of several observables
of interest.

The central phenomenon driving this article is the atypical behavior of the largest
eigenvalue of a random matrix. This falls within the framework of large deviations
which has attracted immense interest over the past two decades.

Perhaps not surprisingly, this was first investigated in the above mentioned exactly
solvable cases [2, 3]. Subsequently, Bordenave and Caputo [17] considered empirical
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distributions in Wigner matrices with entries with heavier tails where the large devi-
ation is dictated by a relatively small number of large entries. This phenomenon was
shown for the largest eigenvalue as well in [4].

Another set of random matrix models arise from random graphs, particularly the
Erd6s-Rényi graph G, , on n vertices with edge probability p € (0, 1). The literature
on the study of such graphs is massive with a significant fraction devoted to the study
of spectral properties. A long series of works established universality results for the
bulk and edge of the spectrum in random graphs of average degree at least logarithmic
in the graph size drawing similarities to the Gaussian counterparts (cf. [27, 28] and
the references therein). For sparser graphs, however, including the case of constant
average degree which is the focus of this article, progress has been relatively limited.
Nonetheless, some notable accomplishments include the results in [1, 11, 12, 32]
about the edge of the spectrum, as well as the results of [19] and [18], which studied
continuity properties of the limiting spectral measure and a large deviation theory of
the related local limits, respectively.

While large deviations theory for linear functions of independent random variables
is by now classical (see [25]), recently a powerful theory of non-linear large deviations
has been put forth, developed over several articles (some of which are reviewed below),
which treats non-linear functions such as the spectral norm of a random matrix with
i.i.d. entries.

Among the recent explosion of results around this, a series of works investigated
spectral large deviations for G, ,, beginning with Chatterjee and Varadhan [23], where
the authors proved a large deviation principle for the entire spectrum of G, ,, at scale
np, building on their seminal work [22], in the case where p is fixed and does not
depend on n (dense case). However, the sparse case where p = p(n) — 0 was left
completely open until a major breakthrough was made by Chatterjee and Dembo [21].
This led to considerable progress in developing the theory of large deviations for
various functionals of interest for sparse random graphs [5, 7, 10, 26, 42].

Closest, in spirit, to the results of this paper are two recent works that we describe
next. Via a refined understanding of cycle counts in G, , which was obtained in [5,
9, 15, 22, 24, 31, 35, 36], one can deduce large deviation properties for eigenvalues
using the trace method and this was carried out in [14]. However such arguments only
extended to p going to zero at a rate slower than 1/.4/n, since cycle statistics fail to
encode information about the spectral norm for sparser graphs. Such sparser graphs
were treated more recently in [13], where the first named author along with Bhaswar
Bhattacharya and Sohom Bhattacharya analyzed the large deviations behavior for the
spectral edge for sparse G, ,, in the entire “localized regime” when

logn
logn > log(1/np) and np K |———, (1)
loglogn

where the extreme eigenvalues are governed by high degree vertices. This notably
includes the well studied example of constant average degree.

At the law of large numbers level, as established in [27, 28, 32], A; = (1 +
o(1)) max(d;, np) where d; denotes the maximum degree of the random graph. Con-
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logn

loglogn
begins to be governed by the largest degree. A similar phenomenon reflecting this
transition for large deviations was established across the papers [13, 14]. In the case
of Gaussian ensembles, although a precise result does not appear in the literature to
the best of the authors’ knowledge, it is expected that the dense behavior extends to
the case of the average degree being logarithmic in n (an analogous result for Wigner
matrices with bounded entries, which is more comparable to the setting of random
graphs, was established in [40]). Beyond this, as the graph becomes sparser, a different
behavior is expected to emerge.

This motivates the present work where we obtain a very precise understanding, of
the case of constant average degree, i.e., p = %, arguably the most interesting sparse
case because of its connections to various models of statistical mechanics.

Recently, [6, 30] have explored universality of large deviations behavior for the
largest eigenvalue for a Wigner matrix with i.i.d sub-Gaussian entries relying on
considering appropriate tilts of the original measures and analyzing the associated
spherical integrals. Interesting behavior is shown to emerge in [6] when the sub-
Gaussian tails are not sharp. Perhaps the most interesting examples in this class are
sparsified Gaussian matrices whose entries are obtained by multiplying a Gaussian
variable with an independent Bernoulli random variable with mean p. However, the
methods has been shown to work only in the ‘dense’ case of constant p where the
typical behavior is still the same as when p = 1, leaving the sparse regime p < 1
completely open, calling for new methods to treat sparser graphs.

Also relevant to this paper is a different line of research, which, motivated by
viewing a random matrix as a random linear operator, considers ‘non-homogeneous’
matrices. The most well studied example is a Gaussian matrix where the variance
varies from entry to entry. In this general setting, even the leading order behavior for
the spectral norm is far from obvious and requires a much more refined understand-
ing beyond the concentration of measure bounds obtained as a consequence of the
non-commutative Khintchine inequality. A beautiful conjecture posed by Latala [33]
related to an earlier result of Seginer [39] states that the expected spectral norm for such
non-homogeneous Gaussian matrices, is up to constants the expectation of the maxi-
mum ¢, norm of a row and a column, and after a series of impressive accomplishments
[8, 41], the conjecture was finally settled in the beautiful work [34].

Note that sparse Wigner matrices, quenching on the sparsity, falls in the above
framework where the variance of each entry is O or 1. It is worth mentioning that
while the dependence on # in the leading order behavior is pinned down in the above
mentioned works, the techniques are not sharp enough to unearth finer properties such
as the exact constant multiplicative pre-factor.

We now move on to the statements of the main theorems after setting up some basic
notations.

sequently A exhibits a transition at np = , where the largest eigenvalue

1.1 Setup and main results

We will denote by ¥, the set of all simple, undirected networks on n vertices labelled
[7] :={1,2,...,n}ie., simple graphs with a conductance value on each edge. For
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G € %,, denote by A(G) = (ajj)1<i,j<n, the adjacency matrix of G, that is a;;
is the conductance associated to the edge (i, j) if the latter is an edge in G, and 0
otherwise. Thus graphs are trivially encoded as networks where the entries of A are 0
or 1. For F € ¥, since A(F) is a self-adjoint matrix, denote by A;(F) > Ao(F) >

- > An(F) its eigenvalues in non-increasing order, and let || Fllop := [[A(F)lop =
max{|A1(F)|, |A,(F)|} be the operator norm of A. Throughout most of the paper we
will be concerned with A1 (F) and for notational brevity we will often drop the subscript
to denote the same.

In this paper we are interested in the sparse Erd6s-Rényi random graph G, ,,, where
p= % for some d > 0 which does not depend on n. We will denote by X the random
adjacency matrix associated to it. Thus forall 1 <i < j < n, X; ; is an independent
Bernoulli random variable with mean p, and X;; = O for all i. Let Y be a symmetric
matrix given by Y;; ~ N(0, 1) fori < j. The matrix of interest forusis Z = X O Y,
ie., Z;j = X;;Y;;. Note that since X;; = O for all 7, in this setup, the diagonal entries
of Y do not play any role.

Let A1 > Ap > --- > A, be eigenvalues of the matrix Z. As a consequence of the
already referred to work on the behavior of the spectral norm of general inhomogeneous
Gaussian matrices [8], it follows that

E() =~ {/logn. (2)

One also obtains concentration around E(A1) using standard Gaussian techniques,
see e.g. [8, Corollary 3.9]. However so far, the methods have not been able to obtain
a sharper understanding including the precise constant in front of v/logn which we
deduce as a simple corollary of our main theorems. We now move on to the exact
statements of the results in this paper.

Theorem 1.1 (Upper tail probabilities). For § > 0, define a function ¢35 : N> — R!
by

k(k—3) 146 k

O3(k) 1= = 3)

and ¥ (8) := mingen., @s (k). Then,

1
lim —
n—00 logn

logP(A; > /2(1 + 8) logn) = ¥ (). 4)

Remark 1.2 (Infinite phase transition in upper tail). The rate function given by (4)
is a continuous piecewise linear function with infinitely many pieces which we now

describe in detail. Since we will only be concerned about the arg min restricted to

integers larger than 1, we consider momentarily ¢s(x) = I

1 N will be used to denote the set of natural numbers, and N> to denote all the natural numbers bigger
equal to k.
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function of real numbers greater than one and notice that,

, . _§_1+8 1
B =x-3 - ®)

Thus ¢s(x) is a strictly convex function. Let M(8) = {argmin,., ¢s(k)} be the set
of minimizers of ¢s(-). By the strict convexity of ¢s(-), M(5) is at most of size 2
containing either a single element or two consecutive integers. Precisely, denoting by
x(8) > 1, the unique solution to ¢;5(x) = 0, any element in M () is either |x(8)]
or [x(8)]. Now the values of & for which M () is of size two forms a discrete set.
That is, there exists 0 = §; < §» < §3 < --- such that the following holds: for any
positive integer k > 2, (§x—1, 8x) is the collection of § such that M(8) = {k} and &
is the unique § such that M(8) = {k, k + 1}. To see this, since § > x(§) is strictly
increasing, it suffices to verify that the situation §; < &2, ¢s, (k + 1) < ¢, (k) and
¢s, (k) < ¢s, (k + 1) never occurs. Observe that the contrary implies

@5, (k + 1) < ¢35, (k) < ¢35, (k) < ¢s,(k + 1).

By (5), gbgl (x) > q&éz (x), which contradicts the above.
Hence, for § € [8;_1, O],

1+8 k  k(k—3)

YO = 2

which is a linear function in § € [§x—1, 6x] for any fixed k > 2. This implies that ¥ (§)
is a continuous piecewise linear function.
Also by a simple algebra, it follows from (5) that

1+68\'3 1+8\'3 3
<—+) +1<x(8)<<—;) + —.

2 2
Since
14+6\1/3 1 3
¢>3((T) ) =28+ 25782/3 + 03,
we obtain
1 3 2/3 1/3
w(8)=58+ﬁ8 +0(@7°) as § — oo, (6)

where O(8'/3) is a quantity bounded by C8'/3 for some absolute constant C > 0.
Plugging this into (4), one thus obtains the following asymptotic behavior of the upper
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tail probabilities”

(L4 3 _2/3 1/3
PG > V2(1+8)logn) = n”~ T35 0T for large 5 > 0, and,  (7)
P(h; > /2(1 +8)logn) = n%%°W for small § > 0. (3)

Remark 1.3 (Comparison with maximum of i.i.d. Gaussians). As the reader possibly
already notices, for small 8, the behavior in (8) is the same as that for the maximum
of n many standard Gaussian variables. The reason for this will be discussed in the
idea of proofs section.

Having established the sharp order of the tail probabilities, we now investigate the
structural behavior conditioned on the upper tail event s := {A1 > \/2(1 + §) logn}.
It is worth emphasizing that though in large deviations one often has a guess for the
dominant mechanism guiding rare events, a precise theorem verifying the same is sel-
dom obtained, usually since the latter typically relies on refined probability estimates
which are usually difficult to establish.

However, fortunately, this is a rare occasion where the arguments do permit us to
prove three results which provide a rather complete and precise understanding of the
underlying structural effect of large deviations.

The first result shows the existence of a clique of a very precise § dependent size
establishing a sharp concentration for the maximal clique size conditioned on . For
any graph G € G,,, let kg be the size of a maximal clique K in G. Recall the definition
of M(8) and let 4 (8) be the smallest element of M (§). By Remark 1.2,

1487173
+) —1‘52. ©)

- (4

Theorem 1.4 (Structure theorem). For any § with h(8) > 4, i.e., § > 83 (recall the
definition of 8y from Remark 1.2),

nan;oP(kX e M(8) |u5) 1. (10)

Furthermore, with conditional probability tending to one, K x is unique and any clique
of size at least 4 is a subset of K.

Note that the above statement in particular implies that the largest clique outside
Ky is a triangle whose occurrence has constant probability. Thus the above result
proves a two point concentration for the maximal clique size and for values of § such
that M (8) only contains /(§), it implies a one point concentration.

Remark 1.5 Although the statement only accounts for § > §3, with a bit more work,
albeit somewhat technical, one may also prove (10) for § > §> (owing to the technical

2 Throughout the paper, o(1) will be used to denote functions of n that tend to O as n tends to infinity.
However we will also need to deal with quantities that go to zero as § converges to infinity, which would
be denoted by os(1).

@ Springer



620 S.Ganguly, K. Nam

nature of the argument we refrain from stating and proving a formal statement). On
the other hand, when § < §3 (i.e. h(8) < 3), the uniqueness part of the maximal clique
Kx in Theorem 1.4 becomes false since with only constant additional probability
cost, G, 4 possesses O (1) many additional triangles.

In the case § < &> (i.e., the minimum element in M (§) is 2), it is not hard to see
that even the statement in (10) is false. To see this, note that while the large deviations
in this case is dictated by a large weight on a single edge, the graph typically possesses
O (1) many triangles which should continue to persist even in the large deviations
regime.

Now, this would have been immediate if the largest eigenvalue and the underlying
graph X were positively correlated. While that is not quite the case (since the edge
weights can take negative values), one can indeed show a weakly positive correlation,
i.e., conditioned on U5, X stochastically dominates G, 4 (where the edge density is
half of the original density). This can be obtained by observmg that the conditional
probability of an edge being present conditional on s, the remainder of the graph
and the associated edge weights, is at least %. The desired claim now follows from
the fact that the probability that gn’ 4 contains a triangle is uniformly bounded from

below by a positive number.

Our next result asserts that most of the contribution to the spectral norm comes
from Ky, with the Gaussians along the edges of the latter being uniformly high in
absolute value.

Theorem 1.6 (Uniformly high Gaussian values). There exists ¢ = (k) > 0 with
lim,—0¢ = 0 such that the following holds. For k > 0, for § large enough, with
probability (conditional on Us) going to 1, there exists T C Kx such that |T| >
(1 —«)h(8) and

1
— |Zijl —
2 J
h(d) itfT ‘ h(8)

2 +9) logn‘ = _ 20+ 8logn. (1)

- h(8)

Even though in the statement § is chosen large enough as a function of «, the proof
will in fact give a quantitative, albeit technical, bound for all large § and small ¥ which
can then be simplified into the form of the statement of the theorem by choosing §
dependent on «.

Since the maximal clique K x has size () or h(8) + 1 with probability going to 1
(conditional on Ufs), the above theorem shows that the Gaussian values Z;; on Kx are
uniformly high in absolute value and close to ﬁ‘ﬂ(l + &) logn in the £; sense.

Our final structural result is an optimal localization statement about the leading
eigenvector.

Theorem 1.7 (Optimal localization of eigenvector). Let v = (vy, - -+ , v,) be the top
eigenvector with ||v|, = 1 and consider the unique maximal clique Kx and its size
kx from Theorem 1.4. For k > 0, define the events

Al:z{Zvizzl—K}

ieKyx
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and

Then, for sufficiently large § > 0,
lim P(A;NAy | Us) = 1. (12)
n— o0

Thus the above theorem says, for any k > 0, for all large enough 7, conditioned on
Us, the leading eigenvector distributes at least 1 — ¥ mass on K x almost uniformly.

Note that the last two theorems do not claim anything about the sign of the entries
of the eigenvector or the Gaussian values. This is since switching the signs of the
entries of the largest eigenvector arbitrarily and accordingly changing the signs of the
Gaussians yields the same quadratic form.

Having stated our results concerning upper tail deviations, the next result pins down
the lower tail large deviation probability.

Theorem 1.8 (Lower tail probabilities). For any 0 < § < 1,

lim

1 1
<log log )
n—oo logn P(A < /2(1 — §)logn)

As an immediate corollary of Theorems 1.1 and 1.8, one obtains the following ‘law
of large numbers’ behavior which we were surprised to not be able to locate in the
literature.

=3. (13)

Corollary 1.9 We have

. Al
lim =
n— 00 /log n

in probability.

We conclude this discussion by remarking that although in principle our techniques
may be used to analyze a wider subset of the parameter space, we have, for concreteness
and aesthetic considerations, chosen to simply focus on the case of constant average
degree.

1.2 Organization of the article

In Sect. 2 we provide a detailed account of the keys ideas driving the proofs. In Sect. 3,
we state and prove the key Proposition 3.1 obtaining a bound on the spectral norm in
terms of the Frobenius norm for weighted graphs. The rest of the paper focuses on the
proofs of Theorem 1.1 (Sects.4, 5), Theorem 1.4 in Sect.6, Theorem 1.7 in Sect.7,
Theorem 1.6 in Sect. 8 and Theorem 1.8 in Sect. 9 respectively. Certain straightforward
but technical estimates are proved in the “Appendix”.
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2 Key ideas of the proofs

In this section, we provide a sketch of the arguments in the proofs of our main results
and end with a brief comparison of the approach in this paper to related existing work
in the literature.

Upper tail lower bound: This is straightforward. The strategy is to plant a clique of
an appropriate size (arg max;, ¢s(k)) and have high valued Gaussians on all the clique

edges, i.e., at least —‘z(lzrf)llog(n). The probability of a clique of size k > 3 appearing

is up to constants ) (the proof follows by a second moment argument) while the
probability of having high Gaussians is

V2(14+8)1 C s (K
IP’(Y,',- > W’ Vi<i<j< k) > («/1_n (k—1)2>(2),
— ogn

where the right hand side follows from standard Gaussian tail bounds (see (24) later).
148

o k
Thus the total cost at the polynomial scale is nk=Q)p " %12 (2). Observe that the

exponent is precisely —¢s(k). When k = 2, one should view it slightly differently

k
however, since k — (g) = 1 > 0. Namely, there are order =@ =g many edges

and hence the probability that there exists a Gaussian of value at \/2(1 4 §) logn is
nn~ 1+ = =8 = =% Finally, optimizing over k yields the bound n=¥®,

It is worth noticing the contrasting behavior in the absence of the Gaussian variables,
where in [13] it was shown that large deviations for the largest eigenvalue is guided
by the large deviations for the maximum degree and not by appearance of a clique.
Upper tail upper bound: This is the most difficult among the four bounds and a signif-
icant part of the work goes into proving this. The first step is to make the underlying
graph sparser by only focusing on the Gaussians with a large enough value. This is
a trick that has appeared in some form in previous works (see e.g. [13, 17]) and the
most delicate part of our arguments goes into analyzing the sparser graph obtained by
this method.

Broadly speaking, the reason for the sparsification is two-fold. a) It is much harder
for the graph restricted to small Gaussian values to have a high spectral norm, and
so for our purposes we will treat that component as spectrally negligible. This relies
on recent results from [13]. b) The graph restricted to high Gaussian values is much
sparser and hence admits greater shattering into smaller components whose sizes we
can control; since eigenvalues of different components do not interact with each other,
this will be particularly convenient, albeit modulo a refined analysis of the connectivity
structure of the latter.

Proceeding to implement this strategy, decompose the Gaussian random variables
Yi; as

(1) (2)
Y1]=Y,] +YU s
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(€9) s (2
where Yij = Yij]l|Yi_/|>«/W and 51m11arly Yt/ = Yij]l|Yij|SW' ThllS, we
can write the matrix Z as Z(" + Z® with

) _ (D 2) 2)
Zij _XlJYzj ’ Z _X’/Ylj ’ 14)

and similarly X = X + X@ je,, X(l) = Xijljy, |- /eToglogn- We next prove an

upper bound on the probability that Z®? has high spectral norm which is much smaller
than that for Z which implies that the spectral behavior of Z even under large deviations
is dictated by that of Z(). The choice of the truncation threshold is governed by the

fact that the typical spectral norm of gn,% is of order /lolgol% which in itself is a

consequence of the fact that the maximum degree is of order j Olglgo"n Sharp large
deviations behavior for eigenvalues of sparse random graphs was recently established
in the already mentioned work [13] which we use to make this step precise.

This allows one to focus simply on Z! or the underlying graph XV, conditioning
on which makes the spectral behavior of the individual connected components inde-
pendent. Further note that the edge weights are independent Gaussian variables each
of which is conditioned to be at least  /g+/loglogn.

Let Cy, - - -, Ci be the connected components of X M At this point, denoting the
network Z restricted to C; by Z¢, we relate || Z¢|lop to its Frobenius norm || Z¢|| F.
The trivial bound || Z¢llop < || Z¢ || F is easy to see. The next idea which is the key one
in this paper relies on the following sharp improvement over the above. Namely, we
show that if k; is the size of the maximal clique in Z;, then

1Zell3 (15)

op—

The proof of the above relies on reducing the standard ¢, variational problem for the
spectral norm to an £; version, which allows us to use the classical work of Motzkin
and Straus [37]. This leads to a bound of the form

ke
IP’(IIZZII?)p >2(1+68)logn) < IP’(Ilzzll%r > = +6) 10gn>- (16)

Now quenching the graph X, the random variable || Z, ||% can be viewed at first
glance as a chi-squared random variable with degrees of freedom given by the compo-
nent size |E(Cy)|. Now as long as |E(Cy)| is o(log n), the degree of freedom does not
affect the latter probability in its leading order behavior and it behaves as the square of
a single Gaussian. This is what justifies the sparsification step mentioned at the outset

which ensures that |C¢| = O (1557507 Olglgo'g’n) which along with the tree like behavior of C,
implies |E(Cy)| = Os(loloﬁfgln) as well (Here O, (-) is the standard notation denoting

that the implicit constant is a function of ¢.)

However there is one crucial subtlety that we have overlooked so far. Namely,
||Zg||%: is not simply a chi-squared random variable but instead is a sum of squares
of independent Gaussian variables each conditioned to have an absolute value at least
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J/€loglogn. This makes the tail heavier by the exact amount which on interacting
with the ¢ dependence in the size of Cy begins to affect the leading order probability.
Thus, unfortunately, the above strategy ends up not quite working.

To address this we further rely on the fact that Cy is almost tree-like and has a
bounded number of ‘tree-excess edges’ with high probability and revise our strategy in
the following way. Consider the eigenvector v corresponding to the largest eigenvalue
A(€) := A1(Cp). Thus we know v Zyv = A(0).

The key idea now is to split the vertices of Cy, according to high and low values
of v. We first show that it is much more costly for the Frobenius norm to be high on
the subgraph induced by the low values of v. This is where the tree like property is
crucially used as well.

Thus we focus only on the O(1) vertices supporting high v values and since the
maximum degree is O (5 Olgolgo'; --) (without an ¢ dependence in the constant), the strategy
originally outlined can be made to work for the subgraph induced by these vertices.

While the next three proofs are rather technically involved, here we simply review
the high level strategies involved.

Emergence of a unique maximal clique: The above proofs imply that the graph X (1
under U5 contains a clique K y1) whose size is sharply concentrated on M (8) (where
the latter appearing in the statement of Theorem 1.4 denotes the set of minimizers of
¢s(-)). It also follows that K () is unique. We then show that on account of sparsity,
superimposing X on X1 does not alter this. Particularly convenient is the fact
that conditional on X1, the spectral behavior of Z(1) and the random graph X are
independent. However making this precise is delicate and is one of the most technical
parts of the paper, relying on a rather refined understanding of the graph X! under
the large deviation behavior of A(Z 1) Such understanding also allows us to show that
there does not exist any other clique in X of size at least 4 which is not contained in
Kx.

Localization of the leading eigenvector: The proof of this is reliant on the fact that (15)
is sharp only when the leading eigenvector is supported on the maximal clique K.
We prove a quantitative version of this fact showing that significant mass away from
the clique results in a deteriorated form of (15) which then makes {5 much more costly
than the already proven lower bound for its probability. Further a similar approach is
used to prove the desired flatness of the vector on K.

Flatness of the Gaussian values on the maximal clique. Using the previous structural
result about the leading eigenvector v = (vy, va, ..., v,), we consider the set 7 C Ky
such that |v;| ~ i for all i € T (we don’t make the meaning of =~ precise) The
previous results guarantee that, conditional on U, |T| > (1 —x)kx and |kx —h(8)| <
1. Firstly showing that the spectral contribution from the edges incident on 7€ is
negligible, it follows that the quadratic form v Zv ~ U;l: Zrvr where vy and Z7 are
the restrictions to the subgraph induced on 7. Now owing to the flatness of v on T
(and this is why we work with T and not K x), it follows that

(1+05(1)
vf Zrvr <2 S Zr .
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where the £, norm Zr is defined by

1/p
1zl = Y 1zyr) "

i<j.ijeT

Using this and the fact that |kx — (8)| < 1 with high probability, we obtain the bound
1
IZ7l1 =~ Eh(S) 2(1+8") logn.

In fact the above argument only implies a lower bound, while the upper bound follows
from the following sharp bound on the £, norm which is a consequence of previous
arguments (e.g. (16)).

1Z713 ~ (1 + 05(1))(1 + 8) logn.

Using the above two bounds, one can conclude the statement of the theorem in a
straightforward fashion.

Lower tail: The upper bound can be obtained simply by a comparison with the maxi-
mum of O (n) many independent Gaussians.

For the lower bound, Z® can still be considered spectrally negligible, while for
ZM | conditioning on XV being ‘nice’, with none of the components being too large
while also having at most bounded tree excess we use the results about the upper
tail to upper bound the probability that for any connected component Cy, A(£) >
Vv2(1 —8)logn or in other words lower bound P(A(¢) < ,/2(1 — &) logn) where
A(l) := A1(Cp). Since A1(Z) = max¢(A(£)) and, conditioning on the graph makes
A(€) across different values of ¢ independent, the result follows in a straightforward
fashion.

2.1 Comparison to past works

We end with a brief discussion on past results on large deviation of spectral statistics
for various examples of random matrices to contrast them with the statements and the
proof method in this paper.

As mentioned in the introduction, the earliest results for Gaussian ensembles [2, 3]
relied on the exact form of the joint density that the eigenvalues admit. In [17] empirical
distributions of Wigner matrices with entries with heavier tails than Gaussians were
considered. The authors used a thresholding argument (which, recall, is also the first
step in our approach) to decompose the matrix as a sum of a typical matrix and a
sparse matrix of large entries, thereby expressing the limiting spectral measure as a
free convolution of the semi-circle law (from the typical part) and the spectral measure
of a Sofic measure on random networks (from the sparse part). A similar strategy
was carried out later for the largest eigenvalue in [4]. Recently, [6, 30] have explored
universality of large deviations behavior for the largest eigenvalue for a Wigner matrix
with i.i.d sub-Gaussian entries relying on considering appropriate tilts of the original
measures and analyzing the associated spherical integrals.
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More closer in spirit to our present work is the work on the spectral norm of the
Erd&s-Rényi graph G, , when p — 0. Using connection to cycle statistics, [14] proved
large deviation behavior for the largest eigenvalue as long as p is going to zero at a rate
slower than 1/./n. For sparser graphs including the case of constant average degree,
in absence of any edge weights, [13] showed that the large deviation behavior of the
extreme eigenvalues are governed by high degree vertices by decomposing the graph
into a low degree part and a disjoint union of high degree vertices.

As we see in the present work, addition of Gaussian weights has a drastic effect
on the nature of large deviations, with cliques with high Gaussian values leading to
large spectral norm in place of high degree vertices. Our analysis is also significantly
different and complicated compared to [13] where in the latter, the decomposition
simply involved picking out the high degree vertices while in the present work, one
has to analyze, to a rather refined detail, the various connected components of the
sparse graph obtained as a result of the thresholding step in (40).

Finally, it is worth reiterating that the structure theorems obtained in this paper
stand sharply in contrast to past results of a similar flavor due to the unusual degree
of their precision.

3 Spectral theory of weighted graphs

As outlined in Sect. 2, a key ingredient in our proofs is a new deterministic bound on
the spectral norm in terms of the Frobenius norm by an £, — £ reduction allowing us
to use the classical Motzkin-Strauss theorem. Though this is independently interesting,

the proofs are somewhat technical and the reader only interested in the large deviations
aspect, at first read can simply treat this result as an input in the proof of Theorem 1.1.

3.1 Spectral norm and Frobenius norm

For a Hermitian matrix A of size n x n, let Ay > --- > X, be the eigenvalues in a
non-increasing order. Then, we have

tr(AFy =2k 4. 4k,
which immediately implies that for any even positive integer k,
A < tr(Ak) < nak. (17)

We denote by || Al g, the Frobenius norm of the matrix A:

Al = )= (Y @)

1<i,j<n
Then, taking k = 2 above, we record the following trivial bound

AT < A% (18)
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3.2 Refined bound on spectral norms for weighted graphs

We now move on to a sharp bound on the spectral norm in terms of the Frobenius
bound for networks improving the above.

Before stating the result let us discuss a situation where one already obtains an
improvement over (18), namely for bipartite graphs. This is because of the underlying
symmetry in the spectrum, as a consequence of which we get A; = —A,, and hence

1
1A < S AI%

The main result of this section is a new and sharp generalization of this inequality.

Proposition 3.1 Let k be the maximum size of clique contained in G. Then, for any
conductance a : E — R, we have

k—1
M(A)? = ——NIAlIE (19)

Remark 3.2 For G a clique of size k, with adjacency matrix A, it is straightforward to
see that

k=1 0
M(A)” = ——llAllE. (20)

This follows from the fact that a k x k matrix whose off-diagonal entries are 1 and
on-diagonal entries are 0 has the largest eigenvalue k — 1 and the Frobenius norm

vk — k.

The proof of the proposition will rely crucially on the following bound which goes
back to the seminal work of Motzkin and Straus [37] whose proof we include for
completeness.

Lemma 3.3 Suppose that k is the maximum size of clique contained in the graph G
with vertex set [n). Let f = (fi,--- , f) be a vector with >_¢_, fi = s and f; > 0.
Then,

k—1
Z fifi = T 52, (21)

i<ji~j
We first provide the proof of the proposition before proving the above lemma.

Proof of Proposition 3.1 By the variational characterization of the largest eigenvalue,

M(A) = sup Y aififj.

lfl=1 i~j
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Thus, for any conductance a : E — R,

M@)o 2 i~ Gij fi S
IAllF I £ll,=1 Al g
25\1/2 2 £2\1/2
_ (Xi~jai}) / Qi ST /
< sup
Il fll,=1 Al g
172 12
= (D2 = (Sw)™
17l=1 (= lwli=Lw=0 1

where the second line follows by Cauchy-Schwarz inequality and the final equality
witnesses the £, — £1 reduction. By Lemma 3.3, we have

(o) = ()"

which finishes the proof. O

Hw||1—1 wz>0

We now provide the proof of Lemma 3.3.

Proof of Lemma 3.3 The proof is based on a ‘mass transportation” argument. By homo-
geneity, it suffices to assume s = 1. We first verify (21) when G is itself a clique of
size m. In other words, we claim that if Y 1" | fi = 1 and f; > 0, then

-1
Yo osf=t (22)

— 2m
I<i<j<m

This follows from the simple equation 23, . fi f; = (3, f)? =Y f7? and that
Y= % (by Cauchy-Schwarz inequality).

We now prove (21) for the general graphs G. Assuming that G is not a clique of
size k, one can choose two vertices v; and vy such that v = vy. Without loss of
generality, we assume ), iz ijz fj- This allows us to transport mass from
vy to vy without decreasing the objective function. Namely, since

Y hfi= ()t (T H)fat X A

i~ J~v2 i, j#v1,v2,0~ ]
is linear in f;, and f,,, f does not decrease when f = (-, fo,, -, fuog, o+, )18
replaced by f) = (-- S+ fos s --). After removing the zero at vy, we

obtain a new vector f (1) on the new graph G1 obtained by deletion of the vertex v
and the edges incident on it.

We repeat this procedure to get a series of vectors f(), ... f(© and graphs
G1, -, Gy such that G4 is obtained by deletion of some vertex w; ] and edges
incident on w; 41 in the graph G;. This procedure is finished once every pair of vertices

@ Springer



Largest eigenvalue of sparse Gaussian networks... 629

in G, are connected, i.e. Gy is a clique of size m < k. This along with (22) finishes
the proof. O

We end this section with a related short technical lemma which we will need later.
The reader can choose to ignore this for the moment and only come back to it when
it is later used.

Lemma 3.4 Suppose that G is a tree with a vertex set [n] and s, n are positive numbers.
Letv = (v, --- , vy,) be a vector with Zi vi =sand 0 < v; <n. Then,

Z wivj < s s < 2n, 23)
. T nG—n) s=2n.

Proof Let p = arg max; v;. Now think of the tree as rooted at p and orient every edge
towards p. Thus ZRNN/ vivj < Z#p VoV = V,(s — vp). Now since the function
x(s — x) is monotonically increasing in x for x < s/2 and since v, < 1, (23) follows.

m}

4 Upper tail large deviations: lower bound

To begin with, we state a well known estimate for the tail behavior of the maximum of
Gaussian random variables which is a straightforward consequence of the following
classical bound (We provide the proofs in the appendix.): For the standard Gaussian
random variable X, for any r > O,

1 t 2 1 1 _p
—12)2 —t7/2
— e <PX>t)< —-¢ (24)
S2r 2 +1 2t

(see [20, Equation (A.1)]).

Lemma4.1 Let X1, ---, X, be i.i.d. standard Gaussian random variables and m >
cn for some constant ¢ > 0. Then, there exists a constant ¢’ = c'(c) > 0, such that
forany § > 0,

/

1
PC rlnax Xi >/2(1+6)logn) > ¢ = (25)
i=l,,m

logn n

:

and

J i’l6

P(_max X; < V2(1 = 8)logn) < e © Vioen (26)
i=1,--,m

As indicated in Sect.2, we first show that the number of non-zero elements of the
matrix Z is at least of order n with high probability. Recall that for us p = % ingG, p,
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throughout the article and the number of non-zero elements in X is twice the same as
the number of edges in the underlying random graph G. Let us define an event

d
Eo ::{|{1§i<j§n:Xij#0}|>En}. 27)

Lemma 4.2 There exists a constant ¢ > 0 such that for sufficiently large n,
P(EG) < e .
This follows from standard large deviation estimates and we include the proof in the

appendix for completeness.

Proof of Theorem 1.1: lower bound As indicated in Sect. 2, there is a slight distinction
between k = 2, and k > 3, i.e. the lower bound is governed by two related but distinct
events, a large value realized on an edge, or existence of a clique of size at least 3 with
the Gaussians uniformly large on the edges in the clique.

Single large value: We first deal with the former case and prove

logP(L; > /2(1 + 8)logn) < 6. (28)

1
lim sup —
n—00 log n

Since the matrix Z is Hermitian,

Al > max Zjj. (29)

1<i<j<n

Thus,
P(A1 = 2(1 +8)logn) > P( max Z;; > /2(1 + §)logn)
I<i<j<n
>E <[P’( max Zj; > +/2(1+8)logn | X)]IEO> . (30)

l<i<j<n

By Lemma 4.1, on the event E,
1 1

P Zij > /2(1 + )1 X)=C —. 31
(1§Iin<ajxfn i = vl +o)logn | X) = JIogn n? ©1)

Thus, by (30), (31) and Lemma 4.2, we obtain (28).

Clique construction: We now move on to the clique construction. To this end, fix

a positive integer m and let G be a network on the clique of size m, K,,, whose

conductances {Y;; : 1 <i < j < mj}areii.d. standard Gaussians. We denote by A(Y)

the largest eigenvalue of the adjacency/conductance matrix ¥ = (¥;;) of the network.
By (24), for some constant C = C () > 0,

1

PA(Y) > /2(1 +6)logn) > IP’(Y,-j > —1\/2(1 +48)logn, V1 <i < j < k)

k —
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k
c s \®
> \/1_n (k=12 ) (32)
ogn

Next, we need an estimate of the probability that a graph contains a clique of size k.
This is provided in the next lemma which along with (32) imply that for any k > 3,

145 \ ()
P > 2(1 + 8)logn) > Cn~ O+ (Ln‘wsﬂ) ’

Jlogn
k
C G k(k=3) 145 &
-C T T T = g%t (33
(vlogn> " " &)
Since ¢5(2) = §, putting (28) and (33) together, we are done. O

Lemma4.3 Let k > 3 be a positive integer. Then, there exists a constant C =
C(k,d) > O such that the probability that G, a contains a clique of size k is bounded

by

C

. 34
n(g)fk ( )

Proof Note that the expected number of cliques is indeed up to constants ﬁ which
.
implies the upper bound. Thus to lower bound the probability of existence of at least

one clique we use the familiar second moment method. However as has been used
several times in the probabilistic combinatorics literature (see e.g., [29, Theorem 2.3]),
to control the second moment, it will be useful to work with the number of cliques
which are also their respective connected components. To this end, let us denote their
number by Ni. Then,

k=140 ke k dk(n—k) 1
(", O _ - o €A KNk d
R N ()

Kk+3 n n n(’;) —k

> ! 35)

N n(g)_k .

where above we use Stirling’s formula to approximate k! and we use the bound n!/(n —
k)! > (n — k)X. Further,

—k
EN; =N + <Z> (n k )pz@a — pF =2 < By 4 (1= p) K (BN
(36)

Note that

EN = E[NiIy=11 < (ENDPP(Ng = 1)1/2,
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Thus, for sufficiently large n,

(ENy)? 1 1
2 z i2 z k .
EN? (EN)~L+ 1 = p)— cn®—*k 42

P(Ne = 1) = (37

5 Upper tail large deviations: upper bound

A significant fraction of the novel ideas in the paper can be found in this section which
aims to implement the high level strategy outlined in Sect.2. Before beginning, we
include a short roadmap to indicate what the different subsections achieve. In Sect. 5.1
we record tail estimates for sums of squares of Gaussian variables conditioned to be
large. In Sect. 5.2 we show that with high probability the network Z® from Sect.2
is spectrally negligible. We then move on to analyzing the connectivity structure of
the graph X () underlying the network Z(1, including its maximum degree, size of its
connected components and the number of tree excess edges they contain, in Sect. 5.3.
In Sect. 5.4 we prove a key proposition (Proposition 5.7) establishing tails for the
largest eigenvalue for tree like networks in terms of the largest clique. Finally in
Sect. 5.5, we prove the upper bound in Theorem 1.1.

5.1 Chi-square tail estimates

We record the following estimate that will be crucial in our applications whose proof
is provided in the appendix.

Lemma 5.1 Let Y be a standard Gaussian conditioned on Y| > Je loglogn and
Y1,---, Y, beindependent copies of Y. Then, there exists a universal constant C > 0
such that for any L > m and ¢ > 0,

P 4o 13 2 L) = Cemdhetn ()" phembozioen (38)
m
In particular, for any a,b,c > 0, let m < blol;ﬁ)gn + cand L = alogn. Then, for
any y > 0, for sufficiently large n,
P(F2+ .-+ 72 > alogn) <n $+717, (39)

Recall from Sect. 2, the decompositions

(1) (2)
Y1]=Y,] +YU s
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(€9) s (2
where Yij = Yij]l|Yi_/|>«/W and 51m11arly Yt/ = Yij]l|Yij|SW' ThllS, we
can write the matrix Z as Z(" + Z® with

D _y yO 0 _ g y®
7 =xyv . 27 =X,y (40)

5.2 Spectrally negligible component

We next prove an upper bound on the probability that Z® has high spectral norm.

Lemmab5.2 Foré$ > 0,

. —logP(A(Z?) > \/e(1 + 8)/Togn)
lim inf

> 28+ 8%
n—00 logn

Proof The proof relies on the results of the previously mentioned recent work [13].
By [13, Theorem 1.1],

—logP(A1(X) > (14 9) 102)1%:;11)

lim =25+ 8.
n—o00 logn

Since |Zl.(f)| < X;j«/€loglogn, we have A1(Z(2)) < JJ/eloglogn - A1(X) which
concludes the proof. O

5.3 Connectivity structure of highly sub-critical Erdos-Rényi graphs

We will now shift our focus to Z(D. Recall that Xf;) = X[j]llyijl>m. By the
tail bound for Gaussian stated in (24), for large n, X M §s distributed as Gn,q With

d 1 d 1
e —

e—%aloglogn _
n 27 n (logn)e/2’

(41)

where d’ = —4—

NGTS
For any graph G, we denote by d;(G), the largest degree of G. It is proved in [32]

(see also [13, Proposition 1.3]) that the typical value of d1(Gy,r) is 1575 logn

gn—log(nr)’
when e
logn
logn > log(1/nr) and nr K [ ——.
loglogn

Furthermore, the following large deviation result is a consequence of [13, Proposition
1.3].
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Lemma 5.3 For 8§ > 0, let D5, be an event defined by

Dy, [dl(X“)) <1+ )—Og” ] (42)
oglogn
Then,
—log P(D
lim infﬁ >3
n— 00 logn

Proof The statement, where the inequality above is replaced with an equality, for the
caser = % is obtained in [13, Proposition 1.3], by plugging in r = % in the latter and
noting that in this case

logn _ logn

loglogn — log(nr)  loglogn —logd’

The above result then follows by observing that G, 4 stochastically dominates G, ,
and d;(G) is an increasing function of the graph. O

We next move on to a refined analysis of the connectivity structure of the graph
XM Towards this, let C 1, Cn be its connected components. The next lemma
establishes a bound of the order of on the size of the largest component in

log log n
contrast to the bounds of @ (log n), © (n*/3), or O (n), that one has for g, d depending

onifd < 1,d = 1 ord > 1. This sub-logarithmic bound will be crucml in our
application and justifies our sparsification step.

Lemma 5.4 For &y > 0, let Cs, be the following event.

2468 1
o logn w}. (43)

= C:| < s
2 {| il = e loglogn
Then,

“logP(CS) 5
liminf ——2 02 5 %2
n—00 logn 2

Proof The proof implements the standard first moment argument, (see e.g., [16, Chap-
ter 5,6]). Throughout the proof, the value of the constant C may change from line to
line. Let Ny _; be the number of connected subgraphs having k vertices and k — 1
edges, in other words the number of trees of size k. Using (41) and Stirling’s formula,
and the fact that the number of labelled spanning trees on k vertices is k2, for some
large constant ¢y > 0,

_ d/ 1 k—1
EN, . < kk+2 -
&=l = (k) (n (1ogn)s/2)
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- Cekﬁkk—i-Z (d/)k—l —cn eka(d/)k—l
- kK nk—1(logn)3*=1 (logn)z*=1
co k
< Cn(logn)£/2<(l o =) (44)

Hence, denoting Ny by the number of connected components with k vertices, picking
a spanning tree from each connected component, one obtains

_ o \k
EN; < ENe_; < Cn(logn)s/z((l o /2) .

_ 248, logn
e loglogn’

at least m vertices. Then,

Define m :=

and let N be the number of connected components having

co (logcp)(2+67) 7572
EN =E Z Ni < Cn(log n)s/z(w) < C(logn)®/?n" choeloen” =7,
k=m
Since P(N > 1) < E(N), the proof is complete. O

For our applications, we will also need to bound the number of subgraphs having
k vertices and k 4 ¢ edges without the subgraph necessarily being connected. This
estimate will be crucially used later to prove the structure theorem conditioned on ;.

Lemma5.5 For £ > 0, let Ny ¢ be the number of subgraphs in XV having k vertices
and k + £ edges. Then, for 0 < £ < (g) —k,

e < cmin(5) (qote ) ™).

Proof Denote by Cy ¢ the number of labelled graphs with & vertices and k + ¢ edges.
Then, for any —k < £ < (g) — k, using Stirling’s formula we have

k 2 2\k+e 2(k+0)
k k k
Cre = G) < < &) <t - . (45)
: k+¢ k+¢) = (k+o) (k + O)k+¢

Then, for0 < ¢ < (g) —k,

@1 ko p2k+0) (d/ 1 )k-HZ

n n
EN, < C k+¢ <'C 2k+€7" “
k= (k) L= RO i ket 0\ (logn)e2

<<() (agmre)
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where in the first inequality we use Stirling’s formula again to bound k!. In particular,
since k < n,

d'e? k+e
ENge < C(w) , 47
and since d’e? < (log n)¢/2 for sufficiently large n,
K\t
ENe, < C(;) . (48)
O

Having bounded the maximum component size, we next proceed to estimating how
close the components are to trees by bounding the number of tree excess edges, i.c.,
how many edges need to be removed from such a component to obtain a tree.

Lemma 5.6 For 83> O, let Es, be the event defined by

Esy = {IE(C))| < |[V(C)| + 83, Vi}. (49)
Then,
—logP(ES
lim inf 2l > (50)
n— 00 ]()gn

In addition, define the event T by
T :={lEC)I=IV(C)I|—1, Vi}.

In other words, T is the event that all the connected components of XV are trees.
Then,

C
(logn)e”

P(T*) =< 61y

Proof For ¢ > 0, recall the notation Nj ¢ from Lemma 5.5. Since the occurrence
of the event Egg N Cas, demands the existence of a connected component C; with

Cil = | 228 08 | =t and |E(C))| 2 |G| + 831, by the first moment bound,

k
m (2) —k (48)

P(ES,NCuy) <Y Y ENpy <

m
ko 1837 [831+1
<y (-) Yo 52
n
k=3 (=[83] k=3

nr‘SS]

Therefore, by (52) and Lemma 5.4 (with §, = 2§3), we obtain (50).
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Next, we prove (51). Let Neycle be the number of cycles in X (M. Then,

n n

n\ k-1, nk odl 1 k C

ENeyele = =25\ = '
cycle Z <k> ) 7 = ]; 2k ( n (log n)8/2) = (logn)®

k=3

Since the occurrence of 7¢ implies the existence of cycle, by the first moment bound,
we obtain (51). O

5.4 Spectral tail for tree like networks

We have so far defined the events Dy, Cy, &, 7, and in the previous series of lem-
mas, having established that each connected component is of size O (; Oloﬁ)" —) and the
number of excess edges is bounded with high probability, in the followmg key propo-
sition, we control the spectral norm of such a connected component. This will be a

particularly important ingredient in the proof of Theorem 1.1.

Proposition 5.7 Consider a connected network G = (V, E, A) (where A = (a;j) is
the matrix of conductances) satisfying the following properties:

logn
L. dl(G) =l loglgogn

logn
2.Vl = Czloglogn

3. 1El = |V]+c3

Suppose that the conductance matrix A is given by i.i.d. Gaussians associated to each
element of E, conditioned on having absolute value greater than /¢ loglogn. Let k
be a maximum size of clique in G and ) be the largest eigenvalue of A. Then, for any
g,a,y,n>0withny < %,for sufficiently large n,

LlF

2+V

£cp 2
PO. = /aalogn) < n” 32t 27 4y w0 et (53)

where 0 == (212 + 2n*c3) /4.

The expression on the right hand side is technical but the constants &, n, y will
. . o) L+
be suitably chosen sufficiently close to zero so that n "0 TN and 022 are

negligible and the dominant behavior will be n— e .

From now on, for any graph H, we denote by E(H ) and E(—H)) the sets of undirected
and directed edges in H respectively. Recall that E denotes the set of edges in G, and
let E be its directed version.

Proof The proof proceeds by analyzing the leading eigenvector (A priori, there may
be several such eigenvectors and in this case, we choose any one of them arbitrarily.
However, in fact, owing to the continuity of the Gaussian distribution, one can show
that almost surely, every non-zero eigenvalue is simple. See Remark 5.8 for further
elaboration). Let V = [£] and f = (f1,---, f¢) be the unit (random) eigenvector
associated with the largest eigenvalue A := A{(G). Thus by definition, . = fTAf.
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One would have liked to use Proposition 3.1 and the tail estimate (39). However
the application of the latter is useful only when the parameter b in the upper bound

of m is small enough compared to % On the other hand, in Lemma 5.4, the bound

on |C;| which would be m in the application is O(élog’ﬁ);n) rendering the above

straightforward strategy useless. To address this, the first step is to argue that entries
of f that are small in absolute value do not contribute much to the above quadratic
form. This allows us to focus on only the large entries, of which there are not too many
and hence allows an application of the above outlined strategy with a reduced value
of m. Towards this, for 0 < n < 1/2, define the collection of vertices

[:={iell]: f?<n?.

1

Let B; be the collection of (directed) edges defined by
%
By :={(,j)e E :i,jel}

and let B, := E \ B| where again each edge is considered twice (this is done simply
as a matter of convention) Now since f is a unit vector, by Markov’s inequality,
|[1¢] < nlz In addition, by the upper bound on the max-degree in condition (1), we
obtain

c1 logn

1
1Bl = (54)

n?loglogn’

We write

A= Z aijfifj = Z aij fi fj + Z aij fi fj = S1 + Sa.

(. )eE (i.))€B1 (i.j)eBs
Recall 8 = (212 + 2n%¢3) /4, we have

P(A > y/2alogn) < P(S; > 04/ 2alogn) +P(S2 > (1 —0)y/2alogn).  (55)

Of course, the above inequality holds for any 6 and the particular choice we make is
guided by our subsequent estimates of S| and S>. First, we show that

Yo FAfF =2+ 2t = 0%, (56)
@i,j)eB)

We will rely on Lemma 3.4. Choose a spanning tree 7 of G, and define a set of
— —_
(directed) edges E' := 75>\E (T). Then, by condition (3) on the number of excess
%
edges, %|E’| < c¢3 + 1. Now the graph with edge set Bj\ E’ is necessarily a forest.

Since adding more edges can only increase ) (. )eBNE fl.2 f j2 we can in fact assume
L] 1
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—
that the graph with edge set B\ E’ is a tree. Now applying Lemma 3.4 with s = 1,
and since 2772 < 1, we conclude that

Yoo A =ara -, (57)

-
(i,))eBI\E’

Hence,

SRt = Y R+ Y. A smPA—nd) + 2+ D
(i,j)eB) G = . =
i,j)eBI\E (i,j)eBINE

(58)

where for the second term, we simply use the fact that the total number of summands is
at most 2(c3 + 1) with each being at most 174. This proves (56). Hence by the definition
of S, by Cauchy—Schwarz inequality, we immediately have

s<( Y @) (X ) =¥ @) (T )

(i,j)eBy (i, ))eB (i,))eBy (i,))eE

12

Thus, for any y > 0, for sufficiently large n,

P(S1 = 9\/@) = IP)( Z 2] > %logn) <n 292+ 2+V7 (59)

et 0
i<j,(i,J)EE

where the last inequality follows by a direct application of (39) in Lemma 5.1, with
L= Zlognandm = czlol;% + c3.

Next, we estimate S,. Since, by hypothesis, the maximum size of clique in the
subgraph induced by edges in B; is no larger than k, by Lemma 3.3,

52§< Z af,.)l/Z( Z fizsz)l/2§<%)1/z< Z af,)1/2~ ©0)

(i,j)eBy (i,j)eBs (i,j)eBy

Note that the event ) > t implies the existence of a random subset

2
i<jl.j)eB, %j
J € [n] with |J| < L J such that Z aizj > t. Hence, for any y > 0, for
iorjedi<j,i~j
sufficiently large n,

(60) k
P(S> > (1 — 6)/2alogn) < ]P( > a Zk—l(l—e)zotlogn)

i<j.(i.j)eB
1 2 ‘-15 Y 2 ‘1€
- |V|L7J — i (1-0) 2+ 154 T i (1-0) 0+ acd

(61)
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The second inequality is obtained by a simple first moment bound, in conjunction
with (39) in Lemma 5.1 with L = £ (1 —6)2wlogn andm < % 222 (see (54)).

n? loglogn
In the last inequality, we used condition (2) i.e., |V| < c2 I 02)1%)';”, to bound the term
1
V| anJ by n"/? for sufficiently large n.
Thus, by (55), (59) and (61), for sufficiently large n,
_a_ &g kK _(1-0)2q+ 45

PO > 2alogn) <n w7t 21 4 men (70 ety ty (62)

which finishes the proof. O

Remark 5.8 (Simplicity of the non-zero spectrum). One can prove that the conductance
matrix (denoted by A) of any network with i.i.d. Gaussian edge weights on a graph
G = (V, E) has no non-zero multiple eigenvalues almost surely. Since weights are
continuous random variables, itis natural to expect that, almost surely, every eigenvalue
is simple. However, one needs to be careful since networks having several isolated
vertices possess multiple zero-eigenvalues and hence what turns out to be true is the
simplicity of every non-zero eigenvalue. We provide a brief outline below on how to
formalize this.

As an intermediate step, using induction on the number of edges, we first show that
for any fixed A # 0, almost surely

det(A —AI) #0 (63)

(it is obvious that the base case, all graphs without any edges, satisfies this property).
Take any edge e = (v, w) and let X be the Gaussian weight on it. Conditioned on the
weights on all the other edges, det(A — AI) is (at most) a quadratic function in X.
Denoting by A a conductance matrix induced by V\{v, w}, the coefficient of X? in
det(A — AT) is given by —det(A — A1), which is non-zero by the induction hypothesis.
Since for any a, b, c € R witha # 0, P@aX? 4+ bX + ¢ = 0) = 0, we obtain (63).

Equipped with (63), using again an induction on the number of edges, we now
prove that every non-zero eigenvalue of A is simple (the base case, a graph without any
edges, has no non-zero eigenvalue). Decompose the underlying graph G into connected
components. By (63) and the independence of weights, non-zero eigenvalues coming
from different components are distinct almost surely. Hence, without loss of generality,
one can assume that G is connected.

For a vertex v € V, let A, be the conductance matrix on the network induced
by V\{v}. Suppose that A has a non-simple eigenvalue A. Then, by the interlacing
property of eigenvalues, for any v € V, A is also an eigenvalue of A,.

To carry out the argument, we will rely on the claim that there exists x € V with
r—eigenvector £ of A, which does not all vanish on the neighbors of x. Taking any
v € V, if A—eigenvector f @) of A, vanishes on the neighbors of v, then take vertices
x,y # v with x ~ y such that f® (x) = 0 and f® (y) # 0 (this is possible since
the underlying graph is connected). One can check that the vector f*) defined by
) = f@(z) forz € V\{x, v} and f¥)(z) := 0 for z = v is an eigenvector of
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A, corresponding to the same eigenvalue A. Since ) (y) = f®(y) # 0andx ~ y,
£ satisfies the desired property.

Now, for each A-eigenvector g of A, and any x such as above, write g = (gx, &+),
where g, and g, denote the V'\{x} and x-coordinates of g respectively. We consider
the following two possible cases and analyze each case.

1. gx = 0 for all A-eigenvectors g of A.

2. There exists a A-eigenvector g of A such that g, # 0.

First case: We use the simple fact that if a A-eigenvector g of A satisfies g, = 0, then
gx 1s a A-eigenvector of A,. This implies that in the first case, multiplicity property of
the eigenvalue A of the network A is passed on to the (strictly) smaller network A, .
Hence, we are done by the induction hypothesis.

Ax WX

a=(wr ')
where W, denotes the column vector induced by weights on the edges having x as
an endpoint. Using the eigenvalue equation, it is not hard to see that if there is a
L—eigenvector g of A with g, # 0, then any A—eigenvector of A, is orthogonal
to W,. Recall that there exists a A—eigenvector f @) of A, which does not vanish
on all the neighbors of x. Since edge weights are continuous random variables and
independent, for such ™), P(f®) . W, = 0) = 0 (by conditioning on the weights in
A,). Since x is random, a simple union bound over all possible choices of x concludes
the proof.

Second case: Write

With all this preparation, we are now ready to prove the upper bound in Theorem 1.1.

5.5 Proof of Theorem 1.1: upper bound

Recall the matrices from (40) as well as the matrix X M from 41). LetCy,---,Cp,
be the connected components of XV, and define A1 (C;) to be the largest eigenvalue
of the matrix Z") restricted to C;. Let Few — cycles be the event defined by

Few — cycles := {|{i : C; not tree}| < logn}.

By Lemma 5.6 (51), the probability of existence of some cycle is (logLn)g. Since
the occurrence of the event Few — cycles® demands the disjoint occurrence of log n

many cycles, by the above fact and Van-den Berg-Kesten (BK) inequality [38],

C

C) = (10gn)510gn/2' (64)

P(Few — cycles

Also, since 11(Z) < 2 (ZW) 4+ 11(Z2@),

P(A1(Z) = /2(1 4 8) logn)
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<P (ZzM) = V2(1 + 8) logn) + P (ZP) = Ja(1 + 8)/logn),
(65)

where 8’ > 0 is defined by

V2(1+8) = 2(1 + 8) — J/e(1 +6). (66)

Note that from this (by rearranging and multiplying both sides by +/2(1 +§) +
V2(1 4 8")), we have

§—2e(1+8)73% <8 <. (67)

Using the result in Sect. 5.2, the second term in (65) will be negligible, so we focus
on estimating the first one. Recalling X 1(11 )= X i J']l\Yij|> JeToglogn» let us estimate the

conditional probability P(x1(Z™") > /2(1 + §’) logn|XV) on the high probability
event Dyg N Caqsr N E45 N Few — cycles. By definition, on this event, we have

1
di(XD) < (1 445" —2" (68)
loglogn
2448 1
Ve < T By, (69)
e loglogn
|E(C)| < [V(C)|+48", i=1,---,m, and, (70)
{i =1, ---,m: C;not tree}| < logn. 71

From now on we will denote by Zl.(l), the matrix Z(D restricted to C;, and by k;
the size of the largest clique in C;. By (68)—(70) and Proposition 5.7 with

2+ 48
c1=1+48, o= + ,e3=48, a=1+68n=c"andy =¢,
€

setting & = (2¢!/2 4 8¢8")!/4, on the event Dy N Css N Euy, sufficiently small
e >0,

K _ )2 o 1448 172
POz ") > V2 + &) logn | XD) < cp~ T IO IHOEETRre g5,

by observing that for & small enough, the first term in (53) is negligible compared
to the second term and can be absorbed in the constant C. More precisely, using the
bound (67), one can take sufficiently small ¢ such that

1+68 =22 +88)/2(1 48 + (1 +28)). (73)

Then, for k > 2, % —(1+428)>1468 > 2(,{"—71)(1 — £)%(1 + &), which implies
that the first term in (53) decays faster than the second term.
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Define

I ={i=1,---,m:k; >3}, J:={i=1,---,m:k; =2}, and,

k:=max{ky, -, k). (74)

Then, since kle is decreasing in k, by (72), under the event D4y N Cysr N 45, for any
iel,

__k a2 o 1448 (172
PO (Z") > 21+ 8 logn | XD) < cp~ 2 1T IRDETRATE g5

and foranyi € J,

P (ZM) > V20 + &) logn | XDy < Ca= (=974 585 0e (56

Also, by Lemmas 5.3, 5.4, 5.6 and (64), defining the event

Fo := Dyay N Casr N E45 N Few — cycles, (77)
we have
C
P(F) < —=. 78

Using (41), by the first moment bound, for k > 3,

1) . . . n (k) (d/)(é)
P(X"" contains a clique of size k) < q¥ < ——. (79)
k n(z) —k
Also, since any connected component C; which is a tree has k; = 2, on the event

Few — cycles, we have |I| < logn. Thus, using (79) and the fact rzMy =
max;=1,....m M(Zl-(l)),

P(r (2D > /2(1 + &) logn)
n
<) E [P(max{h(zi(l))} > /2(1+8)logn | x<‘>>ﬂfoﬂzzk}
= iel
+E [P(xyeajx{mzi“h} > /2(1+ &) logn | X(l))]lD48,mC45,m845,:| +P(Fo)

- /
< Clogn Z(d/)(é)n*(’é)ﬂcfﬁ(l4)%1%%#81/2“
k=3
I L N (80)
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where (75) and (76) are used to bound the first and second terms respectively. The
multiplicative factors of logn and n appear as a result of a union bound over the
components contributing to the index sets 7 and J respectively. Recalling & = (2¢!/%+
8¢8”)!/4 and &' from (66), note that lim,_.0 8 = & and lim,_.¢ & = 0. Furthermore,
recall from (3) that ¥ (8) = ming>» ¢ (8) where ¢ (8) = X420 4 L8k

Hence, by bounding the term log n by n?, there exists n; = m (&) w1th 11m8_>0 n =
0 such that the first term of RHS in (80) is bounded by

n /
E (d’)(é)n—(g)%—iz(kk_.)(1—5)2(1+6/)+%31/2+2s &1
k=3
n
k k(k=3)
<Y @) T et ®2)
k=3

(k) k(k 3) 1+6kk +n71

< Clogm4(a)(™¥ v @ 4
k=(logn)!/*
< CnVO+m, (83)

1/4 is not special and any

As the reader perhaps already notices, the cutoff (logn)
poly-log cutoff (logn)” with 0 < r < 1/2 works.

For further apphcatlons later, we provide a quantitative bound for ;. Using (67)
and the fact that 2(k 0 < 1 for k > 2, one can estimate the difference between the

two exponents of n in (81) and (82):

_k __k 4 1+48 1)
0 s R e 2

< +8) —(1-26)(1+8 —vV2e(1+8)%) + +T4581/2 +2e

e'/? 4+ 2e =tr5(e), (84)

1448
< 4(e"B £ 54N 1 4 8) + V2e(1 4+ 8)32 + —

where we used & = (2e!/2 + 8¢8")1/4 < 2¢1/8 4 281/4g1/4 in the last inequality. In
addition, for any constant 17 > 0, the inequality (83) holds for sufficiently large n.
Hence, n; > 0 can be chosen as

n = 2rs(e), (85)

which obviously converges to 0 as ¢ — 0.
Similarly, for some 17 = n2(¢) such that limg._.9 72 = 0,

n- n_(1—§)2(1+3,)+1+2745/51/2+8 < n—8+7]2 < n—l/f(8)+7]2. (86)
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Hence, applying (83) and (86) to (80), using the bound for §" in (67), for sufficiently
small ¢,

P (ZD) > 201+ 8') logn) < Cn~ ¥ @ Fmaxtnm), &7)

Recall by Lemma 5.2, for all large n,
P(1(Z?) 2 Ve (1 +8)/logn) < n~ 2780 < y=dtolD) < =V @+o),

Since ¢ > 0 is arbitrary small, by (65) and the above two displays, we are done. O

6 Structure conditioned on U5

We prove Theorem 1.4 in this section. We begin by stating some facts about ¢s. Recall
that M () is the set of of minimizers of ¢s (-), and by the strict convexity of ¢s (), M (3)
is at most of size 2 containing either a single element or two consecutive numbers. In
addition, since § > &>, we have ¥ (8) < ¢s(2) = 5. From this, one can deduce that
there exists a constant ¢(6) € (0, min(§ — ¥ (), 1)) such that

k & M(8) = ¢s(k) — ¥ (8) = c(3) (88)

(recall that ¥ (8) = ming>2 ¢s(k)). In fact, let us define, in the case when M(§) =
{h(8)} is a singleton, by the strict convexity of ¢s(-),

1 1
¢(8) = min <¢3(h(5) = 1) = 65(1(5)). $s(h(8) + 1) — ¢5(1(8)), 7(6 = ¥ (8)), 5),

and when M (8) = {h(5), h(5) + 1} (recall that 2 (5) is the minimal element of M (3)),

1 1
¢(8) = min (¢5(h(5) — D) = 65(2(8). $5(h(8) +2) = ¢s(h(8) + 1), (6 — ¥ (9)), 5).

The minimum with 1/2 and (§ — ¥ (8))/2 is taken for technical reasons since in later
applications we will need c(§) to be small enough, while (88) holds even without it.
Note that the quantity c¢(§) can be arbitrary close to 0. In fact, for any §p such that
[IM(80)| = 2, c(d) is close to 0 if § is close to Jy.

Recall the notation k from (74). Now by the same chain of reasoning as in (80),
setting § = (281/2 + 888/)1/4, we obtain that for some 71y, g with lim,_,on; =
limg 012 =0,

P(k ¢ M), 1(2V) = /2(1 + 8 logn)
<Clogn Y (@)D Qw2 aa gl (g
kg M(8)
4 Cn o p— =P+ e | o 28
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< Cn~ V@ —c@d+m + Cn*f”’)z7 (90)

where the bound on the first term is obtained as follows. By (84), for each k ¢ M(3),
the exponent of n in (89) is bounded by

k k 1+46'
- k— 1-86)2(1+8)+ ——el/?
(2)+ s e e

k k (88)
< —<2> +k— m(l +8) +rs(e) = —¢s(k) +rs(e) < —¥(8) —c(d) +rs(e).
Hence, by the argument (81)—(83), the term (89) can be bounded by n =¥ (9)—¢(®)+2rs(e)
and since lim;_,ors(¢) = 0, we obtain (90). Therefore, using the fact that ¥ (§) +
c(8) < &, for sufficiently small ¢ > 0,

Pk ¢ M(5), 11(ZV) > /2(1 +8)logn) < Cn~ VO —c@+m, 91)

Since the statement of the theorem is about the entire graph X and not just X1,
we will now show that superimposing X ®) on the latter does not alter the size of the
maximal clique with high probability owing to the sparsity of X ®). Recall that we use
kx to denote the size of the maximal clique in X. Since ky > k (recall that k is the
maximal clique size in X My, 91) implies

Plkxy < h(8) — 1, \(Z1) = /2(1 + 8" logn) < Cn~ VO =c@+m (92)

To treat the non-trivial direction, i.e., superimposing X ® does not make ky larger
than &, define the event |, measurable with respect to X M, by

F o= {lE(H)| . (i) < |V(H)| —k : any subgraph H in XV such that |V (H)| < 2h(8) +2}.
(93)

In words, under Fi, the subgraph induced on any subset of vertices of size bigger
than k, has significantly smaller number of edges than the clique induced on the same
subset.

Note that, in particular, if k > 4, then on the event 1,

XD has a unique maximal clique K := Ky, of size k. (94)

This follows from the definition of F; applied to the subgraph induced on K U K’
where K’ is another set of k vertices.

We will show first show that Fj is likely, and on it, for X to have a larger clique,
X® must fill in the ‘substantially many’ edges absent in X! which will then be
shown to be unlikely.
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Showing F is likely. Towards this, observe that

2h(8)+2

4
Pk = k)N F) = ¢ Z <canE +2)®O+2_1 (g5

() —k+1

) (2)

Hence, recalling the event Fy in (77), using the above and the argument of (80) again,
there is 1} with lim,_,o 7} = 0 such that for § > 85,

P(k € M(8), F{, m(ZW) > /2(1 + ) logn)
= > |:]P’(max iz = V20 + 8 logn | X 1g Ll k}

ke M(6)
+E [P(‘}E‘}‘{“ z")} = 2(1 + 8 logn | X(l))]lD45/mC4ymg45,:| + P(F)

< Clogmn™ Y (@h(5) + 2Oty Ok (-4l e
ke M(8)

+Cn- p— (=52 (+8)+ 155612 +cn Y

< Cn—ll/(5)—1+ﬂﬁ’ (96)

where the extra n~! factor in the first term comes from (95). Note that the condition
5 > &3 implies that elements in M(§) are greater than or equal to 4, and hence the
condition £ > 3 in the summation throughout the argument in (80) is already implied
by k € M(8). Putting the above together, letting

={ke M©®)}NFy, 97)
by (91) and (96), for large §,

P(FS, 1 (ZW) > /2(1 + 8") logn) < n~ V@ =c@+m (98)

(recall that ¢(8) € (0, 1)). By Lemma 5.2, this in particular implies

P(F5, AM(Z) = +/2(1 + 8) logn)
< P(F5, m(ZV) = 2(1 + 8 logn) + P(h1(Z) = /2(1 + 8) logn, 11 (Z))
<21+ &) logn)
< Cn—llf(é)—c(5)+711 + P(kl(z(z)) > \/E(l + 3)\/@) < CI’Z_W((S)_C((S)_H“.
(99)

Combining this with (4), since lim,_,o 1 = 0, there exists &g = &9(6) > 0 such that
for any & < &g (recall that & implicitly appears in the definition of X 1),

lim P(F5 | Us) = 0. (100)
n—o0
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Since the minimum element in M (8) is greater than or equal to 4 under the condition
8 > &3, the event J implies k > 4 (see (97)). Hence, recalling 7, C F; and the fact
that 7 along with k > 4 implies the uniqueness of maximal clique K in X M (see

(94)),

lim P(there is a unique maximal clique K in xM | Us) = 1. (101)

n—oo

For convenience, let us denote the above event by Unigue. We now proceed to showing
that the unique maximal clique K of X1 continues to be so on superimposing X ®
to obtain X.

We first define some notations. For two subsets of vertices A and B, define the set
of undirected edges

Edge(A,B):={e=(i,j):i <j,i,je B\AJUle=(i,j):i € B\A, j € AN B}.

Note that

BN\ (AN B]
|Edge<A,B>|=<2>—( A ) (102)

Then, define the random subset of edges, measurable with respect to X1, by
XD (A, B) = Edge(A, ByN E(X1V).

We first verify that under the event 7, = {k € M(8)} N Fy, any clique K’ of size
£ < k satisfies

XK, K <€~ |KNK'| (103)
where as mentioned above K is the unique maximal clique in X (V. Since

EKUK’>k xW(k, K’
[E( )|_2+|(,)|,

applying (93)to H = KUK’ (note that under the eventk € M(8), wehave |[KUK'| <
2k <2h(5) +2),

k k _
(2) + XMk, K| — (2> <|KUK'|—k=¢—|KNK/l],

which implies (103).
Note that conditioning on X1, the entries of X are independent and satisfy

2d
P(X;; = 1|Xl-(;) =0) < — for large n,
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P(X;j = 1|X(1) H=1.
In fact, using the fact that P(X;; =0) =1 — % % for large n,

P(|Y;;| < /eloglogn, X;; = 1) IP’(X,] = 1)
P(X{ =0) = P(x; ij = =0) -

P(X;j = 1|X(1) =0) =

and the second identity is obvious.

We will now define two events By and 131, which will be shown to be very likely on
Us and together would imply that K is the unique maximal clique in X and moreover,
the largest clique not fully contained in K is a triangle.

We begin with By which is measurable with respect to the sigma algebra generated
by XM and X.

= (Unique N {there is a clique of size 4 in X which is edge-disjoint from K })°.
(104)

In other words, B demands a disjoint occurrence of the clique K and a clique of size 4
(in the graph X). Recalhng that K is of size k, by BK inequality and using Lemma 4.3

1\ ("9)=h®) /14 (5)—4 1\ (") -h®)+2
PN (ke MO = () ()" =c(3) . (103)
where C > ( is a constant depending only on §. We write

P (85 31(2 ) = /2(1 + 8 logn)

<E []P’(M(Z“)) > /21 + 8) logn| XD, X)]lfon,;eM(a)nBS]

P ((]—'0 Nk e M) 1z0) > V20 +6) logn) . (106)

Since 11(ZM) and X are conditionally independent given X M, by (75) and (76), there
is 13 = n3(e) with limg_, 9 n3 = 0 such that for sufficiently small ¢ > 0,

P (zD) > 21+8) logn| XV, X)L Lrc i)

< C(logn)n s (=02 (1+8)+ 152 '/2+8+Cn,n—(1—5>2(1+5’)+1+7“’51/2+8

h(®)+1
< Cn 20— ,)(1+5)+m+8 < Cn~ 5 (+8)+n3+e

3

where the second and last inequalities follow by observing %(1 +6) < ¢s (k) <

¢s(2) =6 (sincelz >3and$ > 8)andk < h(8)+1 respectively. Hence, applying this
and (105) to (106), using (78) and (98) to bound the last term in (106), for sufficiently
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small ¢ > 0,

P (85 31(2 ") = /2(1 +8) Togn)

h()+1

< Cn” 2@ THOTTERBe A (ke M(8))) + Cn 2 4 VO @ Fm
1\ (") —r(5)+2
~) +

g 7"52{$1(1+8)+n3+8( Cn 4 VO —c@m

Cn
n

< Cn VO Vnte | =2 4 VOOt < 0 b @O—c®tm (107)

(recall that ¢(8) € (0, 1)), where the third inequality follows from the fact

h(s) + 1 (8) B h(s) h(8)(h(8) —3)
ey (1+8) + < 5 ) —h(§) = (—Z(h(S) — 1)(1 O+ )

1
 2h(8)(h(8) — 1)
>y (8) — 1,

where the last inequality follows from the observation that the term in the parentheses
is exactly ¥ (8). Let us define the another event, again measurable with respect to the
sigma algebra generated by XV and X,

= (Unique N {there is a clique K’ of size 4 in X such that2 < |K N K'| < 3})“.
(108)

Thus, in words, the event Bf demands the existence of a clique of size 4 which is not
edge disjoint from K but also is not contained in the latter.

Note that by (102) and (103), under the event 5, the number of missing edges (of
XMYin Edge(K, K') is

Ny v (1) / |K'| |K NK'| / /
|[Edge(K, K'\X"(K,K")| > 5 )~ 5 —(K'| - |KNK').
Hence,
PB§ | X1 g,
3
< Z Z P(X;; = 1 for all edges e
m=2|KNK'|l=m
= (i, j) € Edge(K, K'N\XD(K, K') | X1 £

3y 2d\ )= (3)~-m) 3G 2—(-2m) 1
2::" ()" Cﬂ;(;) 2 Co=c

(109)
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Hence, observing that, X and A1(Z") are conditionally independent given X1,
by (87) and (98),

P (Bf, a(ZzWy > /201 + 8) log n)
<E []P(Bﬂ)((l), M(z<1>))]1f2]1mz(]))2\/m] +P(F5, (2

> /2(1 + 8') logn)

< CnV@O—c®)rtm (110)

Combining with (91) and (107),

P ((30 NBi Nk e MO, 2 (ZzDV) > /2(1+8) 10gn> < Cn~V®O—c®+m

(111)
Proceeding as in (99)—(101), there exists &1 > 0 such that for any ¢ < €1,
lim P(By N By N ke M)} | Us) = 1. (112)

Recall that conditionally on Us, the event Unique happens with high probability
(see (101)). Hence, by (112) and recalling the definition of 5y and B, we have the
following conclusion: With high probability conditionally on U, there is a unique
maximal clique K in X M and furthermore,
there is no clique of size 4 in X edge-disjoint from K
and
there is no clique K’ of size 4in X with2 < |[K N K'| < 3.

This implies the statements in Theorem 1.4 and in particular

lim P(there is a unique maximal clique Ky in X and is equal to K | Us) = 1.
n—oo

(113)
m}

7 Optimal localization of leading eigenvector
We prove Theorem 1.7 in this section. Recall v = (v, - - - , v,) is the unit eigenvector

associated with the largest eigenvalue A; = A;(Z) and let Kx be the unique maxi-
mal clique (recall that Theorem 1.4 ensures uniqueness conditioned on s with high
probability). Then,
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1 2
)\.1: Z Z,-jvivjz Z Zl.(j)v,-vj+ Z Zl.(j)vivj. (114)

1<i,j<n 1<i,j<n 1<i,j<n

The proof has two parts. In the first, we prove that the eigenvector allocates most of
its mass on Ky, while in the second part we further show that the mass is uniformly
distributed.

Mass concentration. Let us recall r5(¢) and c(§) defined in (84) and (88) respectively.
We choose a parameter ¢ sufficiently small so that

2rs(e) < c(8), (115)
e < %, (116)
& < min(gg, €1) (117)

(0 and ¢ are positive constant depending on § such that (101) and (113) are satisfied
for ¢ < ¢g and ¢ < ¢ respectively). Recall that by (101) and (113), conditionally
on Us, with probability tending to 1, the following is true: the maximal cliques K y()
and Ky are unique and equal which will be often denoted by K for brevity. Hence,
throughout the proof, we assume the occurrence of this event.

Recall

A ::{Zv?zl—x}, (118)

iek
where k > 0 is the parameter in the statement of the theorem. Since

1
Pl 3 22w = Ve +8)/iogn 51@<A1(X(2>)z(1+8>‘/%>

1<i,j<n

< n—(26+52)+0(1)’

by (65), for any event .A,

P(A, A1 = V2(1+8)logn) <P(A, Y ij?)viv,-

I<i,j<n

> /2(1 + 8 log n) + n~@5+8)+o)) (119)

where §’ > 0 as before is defined to be

V2(1+8) = V2(1 +8) — Ve(1 + 8). (120)
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Note that since ¢ < 5%, using the bound for 8’ in (67), we have
8 =8+0s(1) as &§— oo. (121)

We will now bound the first term on the RHS of (119) with A = A; using Proposi-
tion 3.1 and the fact that on the high probability event F; defined in (93), the largest
clique outside K is at most a triangle (the reason will be explained shortly in (129)
and the discussion following it) which would make it suboptimal in a large deviation
theoretic sense for the eigenvector to allocate mass off of K. We now proceed to make
this precise. The arguments will bear similarities with those appearing in the proof of
Proposition 5.7.

LetCy, - , Cy, be connected components of X1, and let without loss of generality

C contain the clique K of size k. Let k; be the maximum clique size in C;.

We will now work with the high probability event F( from (77). As in the proof of
Proposition 5.7, define B; to be the collection of (directed) edges defined by

et N S T2 2 22
By :={e=(,j) € E(C) :vj,v; <77} (122)

(recall that for any graph H, E(H) denotes the set of directed edges in H), where the
parameter 7 is chosen to be

7=el/4 (123)

De“]le t] 1€ set ()' (dl] eCted) edges BZ = 1; 13 . :;l 1CE l. ) ” = ll]l(le]
(C )\ { i >_ } | <_ 772 >
the event ‘: 0> usulg the deﬁnltlon Of I 46875

1+48 logn
72 loglogn’

1
1Bl = (124)

by the same reasoning as preceding (54). We write

1 1 1
Z Zi(j)vivj = Z Z,.(j)vl-vj—l— Z Zl.(j)vivj =851+ 5. (125)
(i,j)eE(—)C1) (i,j)eB; (i,j)eBs

By the same reasoning as in (58), and following the same notation as in the latter, for
2% < 1, under the event F,

D vy <271 = i) + 248" + Dt =: 6 (126)
(i,j)eB)

Note that since 77 = ¢!/* < % (see (116)), by (121), we have

1
6 = 0<317) as & — oo. (127)
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By Cauchy—Schwarz inequality and (126),

s=( 3 ) (X ape) (X ape)t am

(i,j)eB: @i,))eB) (i,j)€E(CY)

Next, we estimate S>. Define x := ) ;¢ vi2 and y = ch\K vl.2. Recalling the
definition of event F; in (93), on the latter,

the maximum size of clique in K€ is at most 3. (129)

To see this, note that if K¢ contains a clique K’ of size 4, then |E(K UK')| > (g) +6
and |[V(K UK')| = k + 4, which contradicts (93). Hence, under the event Fi,

2.2 2.2 2.2 2.2
doovvis )L vvis Y wii+2 Y vy

(isj)EBZ (l,j)EE(Cl) l#],l,]GK iEK,jECI\K

2.2
+ > Vi v}

i#j, (i, ))€E(CI\K)

k—1 , 2
<o e+ 0Y). (130)

S2§( Z Uizv12>1/2( Z (Zi(}))z)l/Z

@i,j)eB @i,j)eB
k-1, 2 N\12 oo\ 12
5( —x +2xy+§y) ( 3 (Z,.j.)) . (131)

(i,j)eBa

Note that using the fact

n m
1=Zv?=x+y+z<2v?),
i=1

=2 ieCy

we have

m
1 1
E Zi(j)vivj =5+ 5+ E E Zl-(j)vivj

I=i,j=n =2 (i, j)eE(C))
m
=Si+8+> 2z (Y ) =5+
=2 ieCy
+(1—x—y max AZD"). (132)
0=2,---.m
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We now estimate the following conditional probability

IP’(x <1—w. Y ZPvv; = V2(1+8)logn | x“))nfomfz

I<i.j<n
= IP’(x <l—k,y> g, Z Zl.(})v,-vj > 214+ 8)logn | X(l))]lfom]-‘z
1<i,j<n
+]P(x <l—ky< g > zPviv; = 21+ ) logn | X(l))]lfomfz
1<i.j<n
=: R+ R». (133)

We next bound R and R in turn.

Bounding R;. By (132),

Ry <P(S; > 0/2(1+8)logn | X1 x5z
+P(x <l-ky> g Sp= (x+y—0)y/2(148)logn | X(l))ﬂfom]-'z

+P(, max 2z = V2T + 80 logn | X)Lz,
g

=:Ri1+ Ri2+ Ri3. (134)

By (128) and (39) in Lemma 5.1 with y = ¢, L = 9%(1 + 8)logn and m <

2+T4’3/ lolgol% + 458’ (see (69) and (70)), for sufficiently large 7,

! 1 (as

N U L TSR N
i<, )eECr)

(135)

To bound R; >, we first need the following technical bound. There exi_sts a constant
A= Ak) € (0, ﬁ) such that for sufficiently large §, under the event k € M(§), for
x<l—x,y> %,
k—1 2 k—1

P x2+2xy+§y2< (T—A>(x+y—0)2. (136)

In fact, rearranging, this inequality holds if

a4 2(% —i—k)xy + z(kk;1 - A)G(x +y) < (kk;l - %)yz.

Recall that by (9), k € M(8) implies

1+ 68\1/3 D NV
(%) —15k§(%) 43 (137)
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Hence, there is . = A(k) > Osuch thatforx < 1 —«,y > % and sufficiently large 3§,

under the event k € M(8),

It < g2, 2(i +2)¥y < Ly 2(@ = 3)00x +y) <20 < Ly
10 k 10 k 10

(see (127) for the bound of #). If X is small enough, say A € (0, ﬁ), then for

sufficiently large 8, under the event ke M), 13—0 < % —A— 2, and thus we obtain
(136). ) )
Thus, by (131) and (136), using the fact (’%1 —0 > ﬁ + A,

k
Riz<B( Y @z (= +2) A+ )10en | XO)1rnm. (138
i<j,(i,j)eBy

Note that theevent ) ; _; i cp,(Z 1(11 ))2 > ¢ implies the existence of a random subset
J e V(Cy) with |J] < L;—ZJ such that Z (Zl.(}))2 > t. Hence, by the union

i<j,orjeld,i~j

bound and (39) in Lemma 5.1 with

1+48 logn
7?2 loglogn

k
y=e L= <ﬁ+x)(1+3’)logn, m <

(see (124)), recalling 77 = £'/4, for large enough 8, for sufficiently large n,

—3 AN+ e L (148) - LA 48+ S (144006 2426

1
Rip» < |V(C1)|La2Jn P
(139)

1
Here, we used the fact |V (Cy)| < (1 +48") lolgoﬁ);’n to bound the term |V (Cy)| L’zzJ by
né.
Recall from (129) that the size of maximal clique in C¢, £ = 2, --- , m, is at most

3 under the event F, = {IE € M(8)} N Fi. Hence, by Proposition 5.7 with

2+ 48
a=1+48, k<3, y=e n=ec" ci=1448, c» = + , 3 =48,
&

setting £ := (21 + 8n*8")!/4, for sufficiently large §,

148" /
— -+ (1+28)+e _3(1—£)2 Nl Nel/2
R1,3 <n(n 262 n 7 (I=8)*(1+8")+5 (1+48")e +8)

E C”l_%(l_§)2(1+8/)+%(1+48,)81/2+£+1. (140)
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Here, we used the following comparison between exponents: as § — 00,

146
25
E 2 n_ Z Nel/2 o E
Z(1 =81 +8) - 2(1+48 Yell2 — g = (4+05(1))8.

—(1428)—e=Q(%),

This follows from ¢ < 5% and the fact

£ = 0(#) as 8 — oo, (141)

which is a consequence of £ = Q2n? 4+ 8n*8"HV/* = (212 4+ 8e8)1/4 e < 4 and the
bound for &’ in (121).

Thus, applying the above bounds for Ry 1, R1 2 and R 3 (see (135), (139) and (140)
respectively) to (134), for sufficiently large 4,

lL _1 1/2
Ry < Cn 27F- (148 =20 (1+8")+1 (1448 +25 (142)

This follows from the fact that for sufficiently large §, under the event k e M($),
RHS of (139) is the slowest decaying term among itself, (135) and (140). In fact,
using ¢ < ai‘* and the bound for 0, k and & in (127), (137) and (141) respectively, we
have

1+8
292

—(1428)—e=Q(?, (143)
1k 12 o (1FA
ST+ + A(1+a>——<1+4s>e 2e = (= +os(D))s.
(144)
E(1 -2 +8) — l(1 +48)el? —e—1= (E + 05(1))3 (145)
4 2 4 :
Since A € (0, llm), for large §, (144) is smaller than the other two terms.

Bounding R;. For v > 0 to be chosen later, we write

Ry < P(S) = 0y/2(1 + &) logn| X)L 0z,
k
+ }P’(Sz > 1+ U)(x n ]ngy)\/Z(l o) 1ogn|x(‘>)1lfomf2

K ()
+P(x <l-wy <z (—x—ymaxnz)

> (1 — 1+ u)(x + k%y) - 9)‘/2(1 o) logn|X(1))]l]:0m]:2

=R+ Ry»+ Ry3. (146)
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We take v > 0 such that for sufficiently large § > 0 and small ¥ > 0, under the event
ke M(8),forany x <1 —kandy < 7,
k I+v

k
1—(1+U)<x+]€T1y)—921—(1+U)(x+y)—m/c—6

9
> l—x =, (147)

Here, the last inequality follows from the bound x + y < 1 — % and the bound for 6
in (127).
By (135), for sufficiently large n,

Ryy < n—%—&-(l—ﬂé/)—t—a

(148)

Note that for sufficiently large &, under the event k € M($), by the bound for k in
(137), we have 2(ux2 +xy + 33%) < &L (e + £ y)% Thus, by (131),

= (1) o ) 5 )

(i,j)eBy

Hence, by the same arguments as in (138) and (139) (apply (39) in Lemma 5.1 with

y=¢ L= %(1 +v)2(1+8) lognand m < lfl_—éwlog)lgorén), for large enough 8, for

sufficiently large n,

k
Ro<P( Y @)= T (I + v+ logn | XO) 1z,
i<j,(i,j)eBy
< |V(C1)IL Jn L 02148+ L (1448062 e
<n — 1 A8 v+ (1+48)e!2 420 (149)

Next, by (147),

9
Ras < IP( max 2 (Z") > —/2(1+ ) logn | X<‘>)]1f0m;2.
’ 0=2,---,m 10

Since the size of maximal clique in C¢, £ = 2, --- , m, is at most 3 under the event
JF2, by the same argument as in (140) (apply Proposition 5.7 with @ = (19—0)2(1 + 8,
k<3,n= /4 and y = ¢), for sufficiently large 8,

/
— ()2 (1428 )+ 309921454 ) nel/2
Ry3 <n(n ' 2% + n~3(0) (484314480 /ey

S Cn_%(%)2(14‘5/)"‘%(1+48l)81/2+8+1. (150)
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Thus, applying (148), (149) and (150) to (146), for large enough 4§, for sufficiently
large n,

Lk qysn— 4L Nel/2
R, < Cn 3 17 48D —v(148)+ 7 (1+48")e +25. (151)

This follows from the fact that for sufficiently large 8, under the event k € M($),
RHS of (149) is the slowest decaying term among itself, (148) and (150). This can be
verified by the similar argument as in (142), combined with the fact that

1k 1 1
S+ v +8) — S0+ 45")e!/? — 2 = (E tut 05(1))3
and% < %(%)2.

Therefore, using the bounds in (142) and (151) in (133) we get that

IF’(x<l—K, > ZPv; = 2(1+5’)1ogn|x<1>)11f0mf2

1<i,j<n

1k 172
<Cn It 1(1+5) min(3h,0)(148)+ 1 (14+48)e +26.

(152)

Finishing the proof. Recall that under the event Fg, the number of non-tree compo-
nents is less than log n. Hence, by (75) and (76),

IP’( 3 Zl.(;)v,'vjZ\/2(1+8/)10gn|X(1)>]l]:0

I<i,j<n
=P(, max 2z = V20 +3)logn | X V)15,

< C(logn)n 20— 1)(1 —&)2 (148 )+ (14482 4¢ +Cn- n*(l*§)2(1+5/)+%(1+45/)61/2+8

(153)
(recall that & = (281/2 + 8&8 )1/4) Using the bound for £ in (141) and ¢ < 84, in the
case k > 3, for large &, for sufficiently large n, (153) is bounded by
Cn 7= 1)(1 —)2(1+8)+1 (1+48 )sl/2+2a’ (154)
and for k = 2, (153) is bounded by
Cn— (1= (1+8)+5(1+48)e e+l (155)

Recalling F> = {k € M(8)} N Fy, we write

IP’(x <1-w Y zPwv; =20 +5/)10gn)

I<i,j=n
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= Y E[P(r<1-k Y 7z v =20+ ) logn | XV) i 1515 |
ke M(8) 1<i,j<n

+ Y IE[JP’( 3 zi(_}>viv,-z\/2(1+3’)10gn|X“))n,;:knf()nf]c]
ke M(8) 1<i,j<n

+ Y JE[]P( 3 Zf;)vivjz\/2(1+8’)logn|X(]))Il,;:kﬂj:o]—}—lf”(fé)‘ (156)
kg M(8) 1<i,j<n

Recalling ¢ < L by (79) and (152), the first term in (156) is bounded by

5%
k
— Lk (148 —min(3 A, 0)(1+8")+ 1 (1+48")e1 /2426 (d/)(z)
C Z N 2R 24 2 —_ (157)
keM($) n()k

We use the argument in (81)—(83) to bound this quantity. The exponent in n above is
less than

_(k __k R PN B s ARV (L /
[ ()+k s (L~ + e +2g] mln(zk,u)(l—i-a).

2

Comparing this with the exponentin (8 1), we notice the additional term min(%k ,u)(1+
8’). Hence, recalling i1 in (83) can be chosen as i1 = 2rs(¢) (see (85)), (157) can be
bounded by

Cp—V®-min(3A.0)(14+8)+2rs(e) (158)

Similarly, using (95) and (154), the second term in (156) is bounded by

cy n—ﬁ<1—s)2<1+s’>+%(1+45’>s‘/2+2s<2h(5)+2 < CnVO-142r5(0).

n

)(g)—k+l
keM(3)
(159)

This follows from the fact that there is an additional n~! term arising from
k

(2OE2)G)=k+1 1n addition, by (79), (154) and (155), the third term in (156) is

bounded by

k ’ 1 7 4 (k) ’ 7
c Y o3 (OR85! 2420 (“éki 2k 4 (820484 514480 2 4e
n\2)—

< Cn VO —c®)+2se) (160)

k>3, k¢ M(8)

Here, the additional term ¢(§) comes from the fact that in the first term, the summation
is taken only over k € M(8)¢ and ¢5(k) > ¥ (5) + ¢(§) for k € M(8)€ (see (90) for
details). The second term can be absorbed in the constant C since 1 (8) = (% +05(1))8

(see (0)).
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Finally, by (78), the last term in (156) is bounded by n=2% Hence, applying the
above bounds to (156), for sufficiently large § > 0,

P(x <l—w. Y ZPvv; = 20+ 8) logn) < Cn~V®=c®+250)  (161)

I<i,j<n

Above, we used the fact that for large enough 6, c(8) < 1 < min(%)», v)(1+8"), which
follows from the bound for 8’ in (121). Since 2rs(¢) < ¢(8) (see (115)), applying (119)
and then Theorem 1.1, for sufficiently large §,

lim P(x < 1 —« | Us) = O. (162)

n— o0

Therefore, for sufficiently large &,
lim P(A; | Us) = 1. (163)
n— o0

]

Uniformity of eigenvector. We will aim to show }; _ ;¢ (v} —v?)? is small from

which the form of uniformity appearing in the theorem statement follows immediately.
We first recall the parameter 6 defined in (126). By (132), setting p := 16k,

2y2
i)

Plrz1-x Y @=vhP>p Y 7wy = V20 +8)logn | XV)1xnz,

i<j,i,jek 1<i,j<n

<P(S; > 02(1 +8)logn | XL x5z
+P(rzl-k Y 0P 0 Sz Gy —0V20+ ) logn | XV )iz,

i<ji.jek

+P(, max az") = V20 +8)logn | XV )Lz, (164)

Since the first and third terms were already estimated during the analysis in the first
part, we now estimate the second term. Using the identity

k—1 2 1
() = X =g 3 et

iekK i<j,i,jeK i<j.i,jeK

under the event F|, we have an improvement of (130):

Z v[zvjz-f Z vl»zvjz—l—2 Z vizvjz»—l— Z vizv?

(i,j)EB2 i#j,i,jeK ieK,jeCi\K i;ﬁj,(i.j)ef(cl—\ﬁ
k—1 1 1
<2< _x2+x +72)—: V2 —v?)?
=\ yh3’) g 2 i)
i<j,i,jekK

@ Springer



662 S.Ganguly, K. Nam

where we used the above identity to bound the first term on the RHS. Thus, under the
event Ziq’i’je,{(vi2 — v;)2 > p,using x < 1, we obtain the analog of (131):

S5 < ((% . %)x +oxy + iy )1/2( 3 (zf}))z)l/z. (165)

(i,))€B2
To bound the above, we need the following technical inequality. For sufficiently large
8, under the event k € M(§), forx > 1 — «,
k—1 p) 2 k—1 0 ’
— D)2y + = <<?—T)x+ —6)~. 166
(% y+ 3 < (F g )aty o) (166)
In fact, by rearranging, (166) holds for sufficiently large § if

23+ g2 - Fowan = £ (1on

since using (137) we know the coefficient of y? on the RHS is at least that on the LHS.
For x > 1 — k, we have y < « and thus 2( + )xy < 4k 2 holds for small

enough k > 0 (recall p = 16«k). Also, by the bounds for 6 and k in (127) and (137)

respectively, under the event k € M (8), we have 2(X<=1 — £2)9(x +y) <260 < %xz.
The previous two inequalities imply (167) and thus (166) i
Hence, by (165) and (166), and further using ( = — —) L + £ | the second

2k’
term in (164) is bounded by

k P
]P( 3 (zf;))zz(ﬁ 2—>(l+8)logn|X(l))]l_7:om_7:2 (168)
i<j.()eBs

Asbefore, by theunionbound and Lemma 5.1 withy = ¢,L = (%+%)(I+S/) logn

1+48" _logn
and m < 7?2 loglogn’

the above, and thus the second term in (164), is bounded by

|V(C1)|\‘LZJn_%(%+%)(1+8l)+%(1+43/)81/2+£

lL nN_P~ Nl Nel/2
<n 2k (1+6") 4£(1+8)+2(1+48)8 +25'

(169)

Since the first and last terms in (164) are bounded by (135) and (140) respectively,
one can deduce that

Plrzi—x 3 0F=P=p Y 2z wv; = 20+ ) logalX V) 1xr,

i<j,i,jekK 1<i,j<n

_1 k. L. 1/2
<Cn 2 1(H—S) (1+8)+ (1+48")e +2€ (170)
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Similarly as (156), we write

]P’(x >1—«k, Z (vi2 — 1)124)2 > p, Z Zl.(;)v,-vj >/2(1 48 logn)

i<j,ijek 1<i,j<n

< Z E[P(le—x, Z (vl-z—vjz-)2>,o, Z Zi(;)vivj

ke M(5) i<j,i,jekK I<i,j=n

= 2+ ) logn | XV) 115,15
+ 3 ]E[IP’( 3 zf})viv,-z\/2(1+5/)1ogn|x<1))]1,;:k]1f0]1ff]

ke M(8) 1<i,j<n
+ ¥ IE[]P’( 3 Zi(})v,-vj21/2(1+8’)10gn|X(l)>]l,;=k]lj:0]+]P’(.7:5).
kg M(8) 1<i,j<n

171

Using (137) and (170), there exist a constant ¢ > 0 such that the first term in (171) is
bounded by

_ k
c Z n—%]zkj(1+5/)—ﬁ(1+5/)+%(1+48/)81/2+28(d/)(z) < Cn—V®—cpsP+2r5(0)
n(g)_k N
ke M(5)
(172)

Other three terms in (171) can be bounded using (159), (160) and (78) respectively.
Hence, combining these together, using the fact that ¢(8) < 1 < cpd*/? for large 8,
we have

IP’(le—K, Z (viz—vjz-)2>p, Z Zi(})v,-vj

i<jijek 1<i j<n

> /2(1+ ) logn n) < Cn VO —c®+2rse),

Since 2rs(¢) < c(8), applying (119) and then Theorem 1.1,

: 2 2\2
nll)ngoﬂl’(le—/c, Z (v; —vj) >,0|Z43>=0,
i<ji,jek
and thus by (162),

. 2 252
nlgrgOP(le—K, Z (vj —v5) 5,0|L{3)=1.
i<j,i,jek
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It is now straightforward to obtain the uniformity statement in the theorem from

the smallness of Y_; _; ; ;cx (v} — v?)z. To see this, note that setting S := Y, _x v7,

2 _ 4_L 2
;(” - S) =2 - |1<|Z I $=2 0 g
1
|K|((K—1)Zv -2 Y j)zﬁ > v

ieK i<j,i,jek i<j,i,jekK
(173)
Hence, recalling p = 16«, for sufficiently large §,
1 N2 16k
ngngop(x>1—KZ(v TP v-) _|—K||u5) . (174)
ieK
Using the inequality (a + b)? < 2(a? + b?), under the event
1 2 16k
2> }ﬂ{ <.2—— 2) <
(Lt 0 e ) = i)
we have
1 \2 1 2
2_ ") <2 ( 2 _ .2) 2|K ( )
ZK<U |K|) - 21; PR . ZK K|
32/{ 22 40/( Ko
(175)

S— 4 — = =: .
=& "Ik T K TR

Recalling that Kx = K, the proof is complete.

8 Uniform largeness of Gaussian weights

We prove Theorem 1.6 in this section. The proof essentially proceeds by comparing the
£1 and ¢> norms of the Gaussian variables on the edges of the clique Ky by obtaining
sharp estimates on each of them. The final statement then can be deduced from a
quantitative version of the Cauchy—Schwarz inequality. However, as the statement of
the theorem indicates, we will end up working with a set T slightly smaller than Kx.
Implementing the strategy involves a few steps and in particular relies on Theorem 1.7
which is the reason we proved the latter first.

Sum of squares of the Gaussian weights. We use the same notations as in Sect. 7.
Also, as in the beginning of the proof of Theorem 1.7, we assume that the maximal
cliques K := Ky and Kx are unique and equal.
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Setting p := 16k, similarly as (166), for sufficiently large 8, under the event k €
M), forx > 1 —«,

k

-1 2 k—1
_ x2+2xy+§y2§ <T @)(x+y 0)2. (176)
Using the above and (131),

s (P B +y-o( X @) am

k (i,j)€By

where S7 and S were defined in (125). We now define an event guaranteeing a sharp
behavior of the £, norm of the Gaussian variables on the edges in B, where the latter
was defined below (122),

Az = {Z(L—*)(l+5)logn< Z (Z(l)) < (_L+£>(1+5/)logn}.
(i.j)eBs k=1 k

(178)

Thus we have

P(ASx =1 - 3 2wy = V20 + ) logn | X )1z0m

1<i,j<n

<P(S1 > 6/2(1+8)logn | X1 rnz
+IP’< x>1—k 8> x+y—0)y2(1+6)logn | X! ))11; o7

+ P(ergf}xm wzMy = 2(1 + ) logn | X“))nfomfz, (179)

Since the first and last terms above can be bounded using (135) and (140) respectively,
we only bound the second term.

-Bounding the second term: Using (Ek;l + %)*1 >

IP’( Cx>1—k8>@+y—02(0+08)logn | x“))]lfomfz

(177) k
( > @)= 2( — Q)(l +8)logn | X“))]lfomfz
(i,j)€Bs -k

k
< ]P( Y @)r= (k— + %)(1 +8)logn | X“))nfonfz, (180)
i<j.(i,))€B> -1

where the last inequality follows from the deﬁnition of A3. As before, by union bound

and (39)inLemmaS5.1 withy = ¢, L = ( + )(1—}—8 )lognandm < 1';‘2‘5/ lolgoﬁ)zn
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(using the bound on |B>| in (124)), for sufficiently large n, the above, and thus the
second term in (179), is bounded by

e LTy HE DO e e

_1 k. N L NIt Nal/2
< g F U= R4+ (140 P2

(181)

-Combining altogether: As mentioned above, the first and last terms in (179) can be
bounded using (135) and (140) respectively. Hence, combining these together,

PASx 21—k > 2Py = 20+ ) logn | XD )1z,

I<i,j<n

_1 k. N L N Nel/2
< Cn =R 480+ (1440): 2420

(182)

This follows from the fact that for sufficiently large &, under the event Fo N F>, (181)
is the slowest decaying term among itself, (135) and (1f10). This follows from (143)
and (145) and observing that ¢ < ai“ and the bound for & in (137) together, under the

event k € M(8), implies

1 & 0 1 1
e (148 + =1 +8)— (1 +48)e'? =26 = (= 1)s.
() (1 +8) = (48 e=(5+0D)

Similarly as in (156), we write

]P’(.Ag,x >1—«k, Z Zi(;)vivj > /2(1 +8/)logn>

I<i,j<n
< Y E[P(ASxz1-k Y 2Py = V200 logn | X)L 1s 1 ]
ke M) l<ij<n
+ Y E[P( Y 7wy = Va0 ) logn | XP) 1l 1y |
ke M(3) I<ij<n
+ 3 ]E[]P’( 3 Zl.(jl)v,'v_,'z‘/2(1+8’)10gn\X(l))IL,;:kILJ:(,]—i—IP’(]:S). (183)
k¢ M(5) I<i,j<n

First, as in (157), one can bound the first term above using (182). In fact, using the

bound for 8’ and k in (121) and (137) respectively, under k € M), %(1 + 8 >
¢82/3 for some ¢ > 0. Thus, for large 8, the first term in (183) can be bounded by
Cn=V®=5"" for some ¢’ < c. Combining this with the bounds for other three
terms, previously obtained in (159), (160) and (78) respectively, using the fact that
c(8) < 1 < ¢'8%/3 for large 8, (183) is bounded by Cn =V ®—c@+255(e) - Hence, using
(119), for large 4§,

P(AS, x > 1 —k, A1 > /2(1 + 8) logn) < Cn~VO=c@F25(), (184)
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Since 2rs(¢) < c(8), combined with Theorem 1.1 and (162), for sufficiently large &,
lim P(Ag |u5) — 1. (185)
n—oo

Sum of absolute values of Gaussian weights. We now estimate the sum of absolute
values of Zl(]1 ), Defining

1\2 ko
/. 2 _ o
A —{Z(v ];) < ];} (186)
iekK
(recall kg = 40k, see (175)), since k = |K|, by (174) and (175),

lim IF’(A’ | ua) —1. (187)

n—oo

Recalling that K = Ky with probability going to one conditionally on s, the events
Ay (from the statement of the theorem) and A’ are essentially the same.
We now define the set of vertices T appearing in the statement of the theorem,

1 K
Ti={iek | ‘ ol

Then, by (137), for sufficiently large 8, under the event |k — h(8)| < 1,

i#j,i jeT implies (i, )€ B,. (188)

.. . 2 1/4 1 (137
This is because for i € T and large 6, vy > (1 — )Z > £

the final inequality is by our choice of 7 in (123). We now writ

1 1 1
=3 Zjww= 3 Zjw+ o 3 Zjuy

(i,j)eBs i or jET,(i,j)eBy i,jeT,i,j)EB,
=: 81+ S» (189)

D >

(see (125) for the definition of Sy). By Cauchy—Schwarz inequality, under the event
A,

3 ’vf — E‘ <) (190)
iekK
Thus, under the event A,
TSN K| <k)*k,  |T] = (1 —ky/Hi. (191)
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Note that (190) implies ZU2> 1! /4)(1)1,2 — %) < Ké/ 2, and thus under the event A’,
= 0

1 - 1 -
Y= X X s (w ) e e 2

1/4
)

[ 4 1/4
ier vz g V<l

1
k

Hence, under the event A,

> s L) () s g =t a9
ior jeTe,(i,j)eBs ieTe jeC
and thus

5 < ( Z (ZE}))2>1/2< Z v?vf)l/z

ior jeTC,(i,j)eB, ior jeTC,(i,j)eB,

(Y @)” (193)

ior jETC,(i,j)EBy
In addition, using the fact that vi2 < %(1 + Ké/4) fori eT,

1 1/4 1 1 1/4 1
ol = 2 +™ 30 1z =204k 30 1ZPL a9
i,jeT. (i, j)eBs i#ji.jeT
Now, we define the following event analogous to .43, but for the £; norm,
Ay = {12(1 —3 20+ logn < Y 1201 < k(4362011 8 logn}.

isj.i,jeT
(195)

Now using the decomposition in (132) and further using (189),
@D, RV (1
Y ZP v < Si+ S+ Sn+(1—x—y) max A(Z)),
1<i,j<n o
we write

PAG A x 21—k Y. Z{Puy = V20 + ) logn | XD )z,

I<i,j<n

<P(S; = 0y/2(1 + 8) logn| X)Lz nz, + P(A, S
> Vi’ 20+ 8)logn | X £z,

+1P’( Gx=1—k Sn=(x+y—0—vik)/2(1+8)logn | X(1)>]l]:0m:2
~|—IP<€ max Az > 21+ ) logn | X“))]lfonfz (196)
= ’”-’m
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(recall that «” is defined in (192)). Since we already have estimates for the first and
last terms above, we only focus on the second and third terms.

-Bounding the second term: By (193),
P(A, S21 > Vi'y/2(1 + 8 logn | X)L rnz,

1
< ]P’(A’, > (Zi)? = s + 8" logn | X“))]lfomfz. (197)

i<j,iorjeTe,(i,j)eB
Note that by (39) in Lemma 5.1 with

! / 1/47 ,, logn
y=¢ L=—0+8)]logn, m <4« "k(1+48)————
K’ loglogn

(see (68)), for sufficiently large n, the quantity (197), and thus the second term in
(196), is bounded by

1/47 _ 1 Nala 1/47 ! _ 1 / 1/41 /
|V(C1)|L4x k] =30 (148)+ 34 k(1+46)s+s§n 50 (1+8)+2 Ak (14488 + 26 (198)

The above inequality follows from the bound for |V (C1)| in (69) and observing that

2+48 logn |4'/*k] (127) 2+48 logn \e'” _
( e loglogn) ( e loglogn>

for large n (¢ > 0 is a constant depending on «). The first factor in (198), as several
times before, appears due to a union bound over all possible choices of 7¢ N K.
-Bounding the third term: Note that for sufficiently small « > 0, for large enough §
and x > 1 —«,

x+y—0-—vk

1+Ké/4

1—3l/* < (199)

(recall ko = 40kc). Tn fact, (199) holds if (1 — 3k !/4)(1 + k)/*) < 1 —k —6 — Vi’
for sufficiently large é and small ¥ > 0, which follows from the bound for 6 in (127).

Hence, using (194) and (199), recalling the definition of A4 in (195), the third term
in (196) can be controlled by

IP( Cx>1—kSn>@+y—0—k)/2(+8)logn | X“))]lfomfz
<P(A Y 121 2 k0 =320+ 8)logn | XD ),

i#£ji,jeT
51[»( 3 |Zl.(j1)|>l€(1+3l€1/4)~/2(1+8’)10gn|X(1))]l}-00}-2
i#j,i,jeT
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< IP( > @y s 3421+ 8) logn | X<‘>)]1f0m;2.
i<ji,jeT

(200)

The second inequality follows from the definition of A4, (similar to (180)), while
in the third inequality above, we used the Cauchy—Schwarz inequality and the fact
|T| < k. Hence, by the union bound and (39) in Lemma 5.1 with y = ¢, L =
ﬁ 1+ 3K U4)2(1 468" logn and m < k2, for sufficiently large n, the quantity (200),
and thus the third term in (196), is bounded by

174y2 lL 1/4y2
|V(C1)|kn zk 1(1+3K )= (14+8")+¢ P (143K )(1+5)+28 201)

Here, we llsed the bound for |V (C1)] in (69) and the upper bound for k in (137) under
the event k € M(3).

-Combining altogether: As mentioned already, the first and the last terms in (196) can
be bounded by (135) and (140) respectively. Thus, combining these with (198) and
(201), for sufficiently small ¥ > 0 and large &, for large enough 7,

( Axzl-w Y ZP v = 20+ 8) logn | X“))]lfoﬂfz

1<i,j<n

_1 k. 1/4y2 ’ _1 k. N3 /4g
<Cn 7 g (I3 2 (148 +2¢ <Cn 7 o (148) =3 8+25'
(202)

This follows from the fact that for sufficiently small k > 0 and large &, under the event
FoNF, (201) i 1s the slowest decaying term among itself, (135), (140) and (198). In
fact, using ¢ < and the bound for k in (137), under the event k € M (8),

1 1
5o +8) = 2 R(1 4488 =26 = (7 +05(1))

1 k
st 3421 4+ 8') — 26 = (5(1 342 4 05(1))5.

Hence, recalling the definition of ¥’ in (192), for small ¥ > 0 and large §, the quantity
(201) slowly decays than (198). Also, by comparing the above asymptotic with (143)
and (145), one can deduce that the quantity (201) slowly decays than (135) and (140)
for small x and large §.

Thus, by proceeding as in (156), for sufficiently large 8,

P(AS A = 1=k D2 Z vy = V20 +8)logn) = n=VO=e@2150),

1<i,j<n

In fact, one can bound this quantity by the sum of four quantities via the argument of
(156). Using (202) and the bound for k in (137), for large §, the corresponding first
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term in (156) can be bounded by Cn=¥®= for some ¢ > 0, and other three terms
can be bounded by (159), (160) and (78) respectively. Combining these together, using
the fact that c¢(§) < 1 < ¢4 for large §, we obtain the above inequality. Applying
(119) and then Theorem 1.1,

lim IP’(AZ,A/,x >1—x |u5) —0.

n—o0

Hence, by (162) and (187),
lim IP(A4 | u(;) —1. (203)
n—o0

Finishing the proof. Finally, using (185) and (203), we finish the proof. Define the
event

As := {k € M(5)}.
By (100), recalling A5 C F>,
Tim_ IP(A5 |u5) —1. (204)
Now, define the event
Ag = A NA3N Ay N As.

Since A’, A3z, A4 and As are typical events conditioned on Us (see (187), (185), (203)
and (204) respectively),

lim IP’(A6 |u5) —1. (205)
n—oo
We next verify that the event .Ag implies the desired uniformity of Gaussians claimed
in the statement of the theorem. As indicated earlier, the proof involves technical

manipulations involving the Cauchy—Schwarz inequality to relate the £1 and £, norms.
For the ease of reading, let us recall the events

Ay = {2(L _ B)(l +8)logn < Z (ZI.(;))2 < 2(% + %)(1 ) logn},

k=1 k (i.))eBs
Ay = {12(1 =3 NV2+ 8 logn < > 1211 < k(1 + 364201+ 8) 1ogn].
i#j.i.jeT

Note that using the fact p = 16« and (188), for sufficiently large &, the event
A3z N A4 N As implies that

1
1 1) 2
3 > 121 =12 5D

i#j.i'#j )0 j €T
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=imar-n( Y @) -( X )

i#j,i,jeT i#j.i,jeT

k
<2IT|(T| - 1)(—l + = )(1 +8)logn — 2k2(1 — 3% (1 4 8") logn
< (32(k — Dk + 1242 (1 + 8') logn < Ck'*k>(1 + 8" logn,

where we used |T'| < kand k < k'/* in the second and the last inequality respectively.

From this, using the argument in (173), setting S’ = Zi, jer |Zl.(;) |, one can deduce
that

1 2
3 (|z§;)|—ms’) < V41 + 8 logn. (206)
i#jijel

We check that under the event A’ N A4 N As, there exists ¢ (k) with lim, .ot = 0 such
that

1

7 C 1 -
GEDS h(a)m( = (L<K> + —)—/m

h(8)/ h(s)
(207)

In fact, first note that by (191), |T| > (1 — «y/*)k under the event A'. Also, k > h(3)
under As and we have the upper bound for S’ under A4. Hence, combining these
ingredients together, under the event A’ N A4 N As,

1 ;1434 1

s < § J2(1 + &) logn
TIATT=1" = Tk — ™ — 1 ¢
|
< (14 10«4 e V2(1 48 logn
h()(1 — )—1
1
<+ 10x1/4)(1 + 21 + %>m\/2(1 +8') logn

(recall kg = 40k, see (175)), and the similar lower bound holds. This gives (207).
Hence, (206) and (207) imply that for some ¢'(«x) with lim,—.¢ = 0, under the
event Ag (recall that Ag = A’ N A3 N A4 N As),

3 (| z| - 1A +8/)logn)2 < ( () + —)(1 +8) logn.

itfieT h(5) h(5)

By Cauchy—Schwarz inequality, using the fact that | 7| < k, under the event As,

> ‘ (I)I——m‘<ﬂl(8)\/( (K)+—)(1+3/)10gn

i#ji.jeT h() h(3)
(208)
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Note that under the event As,

> 1zyl= 21zl = 3 121 < e loglogn

i#j,i,jeT i,jeT i,jeT
< Ch(8)*\/eloglogn. (209)

Hence, by the above two inequalities, under the event A, for sufficiently large n,

1 - C /
iﬁ;g ‘|Zij| NI )1ogn( < Ch(S)\/( () + W)(l + 8" logn.
(210)

By (120) and recalling ¢ < for large enough 8, the above implies

5_45

> |1zl -
i#j,i,jeT h(3)

2019 logn( < Ch(a)\/( () + %)(1 +8)logn.

@211)

In fact, by the triangle inequality, the difference between LHS of (210) and (211) is
bounded by

Vel +8)Jlogn 1 «/log ) C
k) 9 ) < Ch(&)\/( (K)+%)(l+5)logn.

Since kg = 40k, by (191), under the event Ag, we have |T| > (1 — ck/*)k. In
addition, since h(8) > ¢8Y/3, one can simplify the term ¢/ (k) + % to ¢(k) with
lim, .0 ¢ (k) = 0 if § is chosen large enough depending on «. Dividing both sides by
h(8)% and using (205) completes the proof.

Remark 8.1 Note that (211) gives a bound depending on both § and « and only on
taking § large enough depending on « yields the theorem. Further, even though we
provided sharp bounds for both £ and £, norms, in fact, a lower bound for the former
and an upper bound for the latter suffices.

9 Lower tail large deviations

We end with the short argument establishing the large deviation probability of the
lower tail, Theorem 1.8.

Proof of Theorem 1.8 The upper bound is an easy consequence of the inequality (29).
In fact, by Lemma 4.1, 4.2 and (29),

P(h1(Z) < /2(1 =) logn) < P(max Z;j < /2(1 — 3)logn)
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<E (P(max Zij < V21— 8)logn | X)]lEO) +P(ES)

— nd

<e Vien 4 7

We now prove a matching lower bound. Define an event S5, measurable with respect
to X, by

logn }

S = {/\1(X) <(1+8)
loglogn

Notice that P(Ss) — 1 by Lemma 5.2. Since 1M(Z@) < Jeloglogn - A1(X),
conditionally on X, under the event Sj, it holds that

2(ZP) < el + 8)y/logn.
Since A1(Z) < A1(ZD) 4+ 1, (2@,
P(h1(Z) < v/2(1 = 8)logn) = P( (V) < 2(1 = 8" logn, 11(Z?)
< Ve(1 +8)/logn),
where §” > 0 is defined by /2(1 —§7) = /2(1 — §) — /e(1 + 8). Recalling the

definition of Fy = Dyy N Cay N E45 N Few — cycles from (77), analogously we
define F3 := Dygr N Casr N Egsr N Few — cycles N Sg, we have

P(L1(Z) < 2(1 = 8)logn) > E [IP’(M(Z(”) < /20— ") logn | X, X<1>)11f3] .

212)

Above we use that F3 is measurable with respect to the sigma algebra generated by
(XM X}. We now estimate P(A(Z1V) < /2(1 —8")logn | X, XD) under the
event F3 and finally we will use that 73 is likely. We will crucially use throughout the
proof that given X, Z() and X are conditionally independent.

Let Cy, -+, Cp be XD’s connected components and denote by k; the size of
maximal clique in C;. Let

I ={i=1-- m:k>3}, J={i=1,---,m:ki =2}

and define & := (2¢!/% + 8¢8”)!/*. By Proposition 5.7 with y = ¢ and = ¢!/#, for
sufficiently small ¢ > 0, under the event F3, fori € I,

PO (Z") > V2T — 87 logn | X, XD) < p=31-02 =005 e (3,

using the fact that k%] > 1, and fori € J,

POa(ZD) > V201 = 8" logn | X, XV) < = (-20=804 557 Phe (91
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Since |I| < logn under the event Few — Cycles, by (213) and (214),

PG (Z") < 21 = 8)logn, Vi | X, XD)

~(1- n—(l—g)Z(l—s“)Jr—“;‘S"51/2+s)n(1 _ n—%(l—S)z(l—E”)+7'+§5”gl/2+5)logn

. %exp(—n‘*("5)2“*3")+71+36”8”2+8). 215)

Since P(F3) > % and ¢ > 0is arbitrary small, by (212) and (215), proof is concluded.
O
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Appendix A. Key estimates

In this appendix, we include the outstanding proofs of basic properties about Gaussian
random variables. as well as the proof of Lemma 4.2 involving a straightforward
application of Chernoff’s bound.

Proof of Lemma 4.1 Recalling the basic tail bounds from (24), for some constant ¢; >
0,

P max X, = y2(1+8)logn) =1 = (1 = P(X1 = y/2(1 +8) logn))"
i=1,--,m
1
1n5«/10gn'

v

c

Similarly, for some constant ¢, > 0,

nd
P(_max X; < V2 =8)logn) = (1 —P(X; > /2(1 — 8)logn))" < e *loen .
i=l,---,m
O
Proof of Lemma 4.2 'We use the Chernoff’s bound for Bernoulli variables for ¢ > p:
P(Bin(m, p) > mq) < e "0, (216)

where I, (x) := x log % + (1 —x)log L;; is the relative entropy function. Thus,

n(n

P(Bin('l("z—_l), - 51) > @(1 - %)) T
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Using log(1 + x) > 5 for small positive x,

d d\ 3d d 1 ¢ G
I 1-_>><1——)— L log- > &2 218
1—%( an) = )3 —d) T 1T —d w2 218)

Hence, by (217) and (218), there exists a constant ¢ > 0 such that for sufficiently large
n,

R () e
This implies that
P(Bin(*5 2 ) < M) <

which concludes the proof. O

Proof of Lemma 5.1 Recall that we are aiming to show

PP o 1 2 L) = O et (=) phembozioen,

. . . logn
and in particular, for any a, b, c > 0, if m < bloglogn

any y > 0, for sufficiently large n,

+ c and L = alogn, then, for

P(F2 + -+ V2 > alogn) < n~3+3+7, (219)
By exponential Chebyshev’s bound, for any ¢ > 0,
P(F2+ -+ 72 > L) < e ' L(Ee! Ty, (220)

Using the lower bound for the tail (24), the probability density function of Y, denoted
by f(x) for |x| > /e loglogn, satisfies

~ C
T = (Veloglogn)~! —1510glogne_%xz = CVEIOgIOgne%SIOglogné’_%xz~
eloglogn)~te™2

Hence, using the upper bound for the tail (24), by making a change of variable x =
1

T2
~ oo
Ee'li < C\/eloglogne%“oglog"/ ¥ e 17 dx
Jeloglogn
1 1 o0 1.2
= C\/eloglognei“"glog"—/ e 2V dy
V1 =2t Jyi=21 /eToglogn
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1 1
V1 =2t /1 -2t /eloglogn

ef%(172t)510g logn

< C\/sloglogne%“"glog"

=C 1 P loglogn

1 —2¢

Applying this to (220),

We take t = %(1 — %) < % (recall that L > m) in order to balance two terms e~

_ . 1
B(E 4 7 2 1) = CeTt b etmoeioen,

tL
1

and . We conclude the proof of (38).

a—=zom
We now show (219). We first check that for any L > 0, a function x — (%)x is

increasing on (0, %). This is because the derivative of x log(%), which is given by

log(%) — 1, is positive for x € (0, %). Hence, for any y > 0, for sufficiently large n,
the LHS of (219) is bounded by

. _logn
Here, we used the fact that for large 7, (c1 loglog n)loglogn < p

logn
b b ra biogiogn T¢ ch
Cbloglogn+Cn_%+%n210glogn (E IOgIOgVZ) loglogn < n_%"_%'ﬂ/.

logn
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