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Abstract
Large deviation behavior of the largest eigenvalue λ1 of Wigner matrices including
those arising from an Erdős-Rényi random graph Gn,p with i.i.d. random conduc-
tances on the edges has been the topic of considerable interest. However, despite
several recent advances, not much is known when the underlying graph is sparse i.e.,
p → 0, except the recent works (Bhattacharya et al., Ann Probab 49(4):1847–1885,
2021and Bhattacharya and Ganguly, SIAM J Discret Math, 2020) which consider the
simpler case of the graph without additional edge weights. Under sufficiently general
conditions on the conductance distribution, one expects the ‘dense’ behavior as long
as the average degree np is at least logarithmic in n. In this article we focus on the case
of constant average degree i.e., p = d

n for some fixed d > 0 with standard Gaussian
weights. Results in Bandeira and Van Handel (Ann Probab 44(4):2479–2506, 2016)
about general non-homogeneous Gaussian matrices imply that in this regime λ1 scales
like

√
log n. We prove the following results towards a precise understanding of the

large deviation behavior in this setting.

1. (Upper tail probabilities and structure theorem): For δ > 0,we pin down the exact
exponent ψ(δ) such that

P(λ1 ≥ √
2(1 + δ) log n) = n−ψ(δ)+o(1).

Further, we show that conditioned on the upper tail event, with high probability,
a unique maximal clique emerges with a very precise δ dependent size (takes
either one or two possible values) and the Gaussian weights are uniformly high
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in absolute value on the edges in the clique. Finally, we also prove an optimal
localization result for the leading eigenvector, showing that it allocates most of its
mass on the aforementioned clique which is spread uniformly across its vertices.

2. (Lower tail probabilities): The exact stretched exponential behavior

P(λ1 ≤ √
2(1 − δ) log n) = exp

(
−n�(δ)+o(1)

)

is also established.

As an immediate corollary, one obtains that λ1 is typically (1+o(1))
√
2 log n, a result

which surprisingly appears to be new. A key ingredient in our proofs is an extremal
spectral theory for weighted graphs obtained by an �1−reduction of the standard
�2−variational formulation of the largest eigenvalue via the classical Motzkin-Straus
theorem [37], which could be of independent interest.

Mathematics Subject Classification 60F10 · 05C80 · 60B20 · 15A18
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1 Introduction

Spectral statistics arising from random matrices and their asymptotic properties have
been the subject of major investigations for several years. Fundamental observables of
interest include the empirical spectral measure as well as edge/extreme eigenvalues.
The study of such quantities began in the classical setting of the Gaussian unitary
and orthogonal ensembles (GUE and GOE) where the entries are complex or real
i.i.d. Gaussians up to symmetry constraints. These exactly solvable examples admit
complicated but explicit joint densities for the eigenvalues which can be analyzed,
albeit involving a lot of work, to pin down the precise behavior of several observables
of interest.

The central phenomenon driving this article is the atypical behavior of the largest
eigenvalue of a random matrix. This falls within the framework of large deviations
which has attracted immense interest over the past two decades.

Perhaps not surprisingly, this was first investigated in the above mentioned exactly
solvable cases [2, 3]. Subsequently, Bordenave and Caputo [17] considered empirical
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distributions in Wigner matrices with entries with heavier tails where the large devi-
ation is dictated by a relatively small number of large entries. This phenomenon was
shown for the largest eigenvalue as well in [4].

Another set of random matrix models arise from random graphs, particularly the
Erdős-Rényi graph Gn,p on n vertices with edge probability p ∈ (0, 1). The literature
on the study of such graphs is massive with a significant fraction devoted to the study
of spectral properties. A long series of works established universality results for the
bulk and edge of the spectrum in random graphs of average degree at least logarithmic
in the graph size drawing similarities to the Gaussian counterparts (cf. [27, 28] and
the references therein). For sparser graphs, however, including the case of constant
average degree which is the focus of this article, progress has been relatively limited.
Nonetheless, some notable accomplishments include the results in [1, 11, 12, 32]
about the edge of the spectrum, as well as the results of [19] and [18], which studied
continuity properties of the limiting spectral measure and a large deviation theory of
the related local limits, respectively.

While large deviations theory for linear functions of independent random variables
is by now classical (see [25]), recently a powerful theory of non-linear large deviations
has been put forth, developed over several articles (some ofwhich are reviewed below),
which treats non-linear functions such as the spectral norm of a random matrix with
i.i.d. entries.

Among the recent explosion of results around this, a series of works investigated
spectral large deviations for Gn,p, beginning with Chatterjee and Varadhan [23], where
the authors proved a large deviation principle for the entire spectrum of Gn,p at scale
np, building on their seminal work [22], in the case where p is fixed and does not
depend on n (dense case). However, the sparse case where p = p(n) → 0 was left
completely open until a major breakthrough was made by Chatterjee and Dembo [21].
This led to considerable progress in developing the theory of large deviations for
various functionals of interest for sparse random graphs [5, 7, 10, 26, 42].

Closest, in spirit, to the results of this paper are two recent works that we describe
next. Via a refined understanding of cycle counts in Gn,p which was obtained in [5,
9, 15, 22, 24, 31, 35, 36], one can deduce large deviation properties for eigenvalues
using the trace method and this was carried out in [14]. However such arguments only
extended to p going to zero at a rate slower than 1/

√
n, since cycle statistics fail to

encode information about the spectral norm for sparser graphs. Such sparser graphs
were treated more recently in [13], where the first named author along with Bhaswar
Bhattacharya and Sohom Bhattacharya analyzed the large deviations behavior for the
spectral edge for sparse Gn,p in the entire “localized regime” when

log n � log(1/np) and np �
√

log n

log log n
, (1)

where the extreme eigenvalues are governed by high degree vertices. This notably
includes the well studied example of constant average degree.

At the law of large numbers level, as established in [27, 28, 32], λ1 = (1 +
o(1))max(d1, np) where d1 denotes the maximum degree of the random graph. Con-
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sequently λ1 exhibits a transition at np =
√

log n
log log n , where the largest eigenvalue

begins to be governed by the largest degree. A similar phenomenon reflecting this
transition for large deviations was established across the papers [13, 14]. In the case
of Gaussian ensembles, although a precise result does not appear in the literature to
the best of the authors’ knowledge, it is expected that the dense behavior extends to
the case of the average degree being logarithmic in n (an analogous result for Wigner
matrices with bounded entries, which is more comparable to the setting of random
graphs, was established in [40]). Beyond this, as the graph becomes sparser, a different
behavior is expected to emerge.

This motivates the present work where we obtain a very precise understanding, of
the case of constant average degree, i.e., p = d

n , arguably the most interesting sparse
case because of its connections to various models of statistical mechanics.

Recently, [6, 30] have explored universality of large deviations behavior for the
largest eigenvalue for a Wigner matrix with i.i.d sub-Gaussian entries relying on
considering appropriate tilts of the original measures and analyzing the associated
spherical integrals. Interesting behavior is shown to emerge in [6] when the sub-
Gaussian tails are not sharp. Perhaps the most interesting examples in this class are
sparsified Gaussian matrices whose entries are obtained by multiplying a Gaussian
variable with an independent Bernoulli random variable with mean p. However, the
methods has been shown to work only in the ‘dense’ case of constant p where the
typical behavior is still the same as when p = 1, leaving the sparse regime p � 1
completely open, calling for new methods to treat sparser graphs.

Also relevant to this paper is a different line of research, which, motivated by
viewing a random matrix as a random linear operator, considers ‘non-homogeneous’
matrices. The most well studied example is a Gaussian matrix where the variance
varies from entry to entry. In this general setting, even the leading order behavior for
the spectral norm is far from obvious and requires a much more refined understand-
ing beyond the concentration of measure bounds obtained as a consequence of the
non-commutative Khintchine inequality. A beautiful conjecture posed by Latala [33]
related to an earlier result of Seginer [39] states that the expected spectral norm for such
non-homogeneous Gaussian matrices, is up to constants the expectation of the maxi-
mum �2 norm of a row and a column, and after a series of impressive accomplishments
[8, 41], the conjecture was finally settled in the beautiful work [34].

Note that sparse Wigner matrices, quenching on the sparsity, falls in the above
framework where the variance of each entry is 0 or 1. It is worth mentioning that
while the dependence on n in the leading order behavior is pinned down in the above
mentioned works, the techniques are not sharp enough to unearth finer properties such
as the exact constant multiplicative pre-factor.

We nowmove on to the statements of the main theorems after setting up some basic
notations.

1.1 Setup andmain results

We will denote by Gn the set of all simple, undirected networks on n vertices labelled
[n] := {1, 2, . . . , n} i.e., simple graphs with a conductance value on each edge. For
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G ∈ Gn, denote by A(G) = (ai j )1≤i, j≤n, the adjacency matrix of G, that is ai j
is the conductance associated to the edge (i, j) if the latter is an edge in G, and 0
otherwise. Thus graphs are trivially encoded as networks where the entries of A are 0
or 1. For F ∈ Gn , since A(F) is a self-adjoint matrix, denote by λ1(F) ≥ λ2(F) ≥
· · · ≥ λn(F) its eigenvalues in non-increasing order, and let ‖F‖op := ‖A(F)‖op =
max{|λ1(F)|, |λn(F)|} be the operator norm of A. Throughout most of the paper we
will be concernedwithλ1(F) and for notational brevitywewill often drop the subscript
to denote the same.

In this paper we are interested in the sparse Erdős-Rényi random graph Gn,p, where
p = d

n for some d > 0 which does not depend on n. We will denote by X the random
adjacency matrix associated to it. Thus for all 1 ≤ i < j ≤ n, Xi, j is an independent
Bernoulli random variable with mean p, and Xii = 0 for all i . Let Y be a symmetric
matrix given by Yi j ∼ N (0, 1) for i ≤ j . The matrix of interest for us is Z = X � Y ,

i.e., Zi j = Xi jYi j . Note that since Xii = 0 for all i , in this setup, the diagonal entries
of Y do not play any role.

Let λ1 ≥ λ2 ≥ · · · ≥ λn be eigenvalues of the matrix Z . As a consequence of the
already referred toworkon thebehavior of the spectral normof general inhomogeneous
Gaussian matrices [8], it follows that

E(λ1) ≈ √
log n. (2)

One also obtains concentration around E(λ1) using standard Gaussian techniques,
see e.g. [8, Corollary 3.9]. However so far, the methods have not been able to obtain
a sharper understanding including the precise constant in front of

√
log n which we

deduce as a simple corollary of our main theorems. We now move on to the exact
statements of the results in this paper.

Theorem 1.1 (Upper tail probabilities). For δ > 0, define a function φδ : N≥2 → R
1

by

φδ(k) := k(k − 3)

2
+ 1 + δ

2

k

k − 1
(3)

and ψ(δ) := mink∈N≥2 φδ(k). Then,

lim
n→∞ − 1

log n
logP(λ1 ≥ √

2(1 + δ) log n) = ψ(δ). (4)

Remark 1.2 (Infinite phase transition in upper tail). The rate function given by (4)
is a continuous piecewise linear function with infinitely many pieces which we now
describe in detail. Since we will only be concerned about the argmin restricted to

integers larger than 1, we consider momentarily φδ(x) = x(x−3)
2 + 1+δ

2
x

x−1 as a

1
N will be used to denote the set of natural numbers, and N≥k to denote all the natural numbers bigger

equal to k.
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function of real numbers greater than one and notice that,

φ′
δ(x) = x − 3

2
− 1 + δ

2

1

(x − 1)2
. (5)

Thus φδ(x) is a strictly convex function. Let M(δ) = {argmink≥2 φδ(k)} be the set
of minimizers of φδ(·). By the strict convexity of φδ(·), M(δ) is at most of size 2
containing either a single element or two consecutive integers. Precisely, denoting by
x(δ) > 1, the unique solution to φ′

δ(x) = 0, any element in M(δ) is either �x(δ)�
or �x(δ)�. Now the values of δ for which M(δ) is of size two forms a discrete set.
That is, there exists 0 = δ1 < δ2 < δ3 < · · · such that the following holds: for any
positive integer k ≥ 2, (δk−1, δk) is the collection of δ such that M(δ) = {k} and δk
is the unique δ such that M(δ) = {k, k + 1}. To see this, since δ �→ x(δ) is strictly
increasing, it suffices to verify that the situation δ1 < δ2, φδ1(k + 1) ≤ φδ1(k) and
φδ2(k) ≤ φδ2(k + 1) never occurs. Observe that the contrary implies

φδ1(k + 1) ≤ φδ1(k) ≤ φδ2(k) ≤ φδ2(k + 1).

By (5), φ′
δ1

(x) > φ′
δ2

(x), which contradicts the above.
Hence, for δ ∈ [δk−1, δk],

ψ(δ) = 1 + δ

2

k

k − 1
+ k(k − 3)

2
,

which is a linear function in δ ∈ [δk−1, δk] for any fixed k ≥ 2. This implies that ψ(δ)

is a continuous piecewise linear function.
Also by a simple algebra, it follows from (5) that

(
1 + δ

2

)1/3

+ 1 < x(δ) <

(
1 + δ

2

)1/3

+ 3

2
.

Since

φδ

((1 + δ

2

)1/3) = 1

2
δ + 3

25/3
δ2/3 + O(δ1/3),

we obtain

ψ(δ) = 1

2
δ + 3

25/3
δ2/3 + O(δ1/3) as δ → ∞, (6)

where O(δ1/3) is a quantity bounded by Cδ1/3 for some absolute constant C > 0.
Plugging this into (4), one thus obtains the following asymptotic behavior of the upper
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tail probabilities2

P(λ1 ≥ √
2(1 + δ) log n) = n

−( 12 δ+ 3
25/3

δ2/3+O(δ1/3))
for large δ > 0, and, (7)

P(λ1 ≥ √
2(1 + δ) log n) = n−δ+o(1) for small δ > 0. (8)

Remark 1.3 (Comparison with maximum of i.i.d. Gaussians). As the reader possibly
already notices, for small δ, the behavior in (8) is the same as that for the maximum
of n many standard Gaussian variables. The reason for this will be discussed in the
idea of proofs section.

Having established the sharp order of the tail probabilities, we now investigate the
structural behavior conditioned on the upper tail event Uδ := {λ1 ≥ √

2(1 + δ) log n}.
It is worth emphasizing that though in large deviations one often has a guess for the
dominant mechanism guiding rare events, a precise theorem verifying the same is sel-
dom obtained, usually since the latter typically relies on refined probability estimates
which are usually difficult to establish.

However, fortunately, this is a rare occasion where the arguments do permit us to
prove three results which provide a rather complete and precise understanding of the
underlying structural effect of large deviations.

The first result shows the existence of a clique of a very precise δ dependent size
establishing a sharp concentration for the maximal clique size conditioned on Uδ . For
any graphG ∈ Gn, let kG be the size of amaximal clique KG inG. Recall the definition
of M(δ) and let h(δ) be the smallest element of M(δ). By Remark 1.2,

∣∣∣h(δ) −
(1 + δ

2

)1/3 − 1
∣∣∣ ≤ 2. (9)

Theorem 1.4 (Structure theorem). For any δ with h(δ) ≥ 4, i.e., δ > δ3 (recall the
definition of δk from Remark 1.2),

lim
n→∞ P

(
kX ∈ M(δ) | Uδ

)
= 1. (10)

Furthermore, with conditional probability tending to one, KX is unique and any clique
of size at least 4 is a subset of KX .

Note that the above statement in particular implies that the largest clique outside
KX is a triangle whose occurrence has constant probability. Thus the above result
proves a two point concentration for the maximal clique size and for values of δ such
that M(δ) only contains h(δ), it implies a one point concentration.

Remark 1.5 Although the statement only accounts for δ > δ3, with a bit more work,
albeit somewhat technical, one may also prove (10) for δ > δ2 (owing to the technical

2 Throughout the paper, o(1) will be used to denote functions of n that tend to 0 as n tends to infinity.
However we will also need to deal with quantities that go to zero as δ converges to infinity, which would
be denoted by oδ(1).
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620 S. Ganguly, K. Nam

nature of the argument we refrain from stating and proving a formal statement). On
the other hand, when δ ≤ δ3 (i.e. h(δ) ≤ 3), the uniqueness part of the maximal clique
KX in Theorem 1.4 becomes false since with only constant additional probability
cost, Gn, dn

possesses O(1) many additional triangles.

In the case δ ≤ δ2 (i.e., the minimum element in M(δ) is 2), it is not hard to see
that even the statement in (10) is false. To see this, note that while the large deviations
in this case is dictated by a large weight on a single edge, the graph typically possesses
O(1) many triangles which should continue to persist even in the large deviations
regime.

Now, this would have been immediate if the largest eigenvalue and the underlying
graph X were positively correlated. While that is not quite the case (since the edge
weights can take negative values), one can indeed show a weakly positive correlation,
i.e., conditioned on Uδ , X stochastically dominates Gn, d

2n
(where the edge density is

half of the original density). This can be obtained by observing that the conditional
probability of an edge being present conditional on Uδ , the remainder of the graph
and the associated edge weights, is at least d

2n . The desired claim now follows from
the fact that the probability that Gn, d

2n
contains a triangle is uniformly bounded from

below by a positive number.

Our next result asserts that most of the contribution to the spectral norm comes
from KX , with the Gaussians along the edges of the latter being uniformly high in
absolute value.

Theorem 1.6 (Uniformly high Gaussian values). There exists ζ = ζ(κ) > 0 with
limκ→0 ζ = 0 such that the following holds. For κ > 0, for δ large enough, with
probability (conditional on Uδ) going to 1, there exists T ⊂ KX such that |T | ≥
(1 − κ)h(δ) and

1

h(δ)2

∑

i �= j,i, j∈T

∣∣∣|Zi j | − 1

h(δ)

√
2(1 + δ) log n

∣∣∣ ≤ ζ

h(δ)

√
2(1 + δ) log n. (11)

Even though in the statement δ is chosen large enough as a function of κ, the proof
will in fact give a quantitative, albeit technical, bound for all large δ and small κ which
can then be simplified into the form of the statement of the theorem by choosing δ

dependent on κ.

Since the maximal clique KX has size h(δ) or h(δ) + 1 with probability going to 1
(conditional on Uδ), the above theorem shows that the Gaussian values Zi j on KX are
uniformly high in absolute value and close to 1

h(δ)

√
2(1 + δ) log n in the �1 sense.

Our final structural result is an optimal localization statement about the leading
eigenvector.

Theorem 1.7 (Optimal localization of eigenvector). Let v = (v1, · · · , vn) be the top
eigenvector with ‖v‖2 = 1 and consider the unique maximal clique KX and its size
kX from Theorem 1.4. For κ > 0, define the events

A1 :=
{ ∑

i∈KX

v2i ≥ 1 − κ
}
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and

A2 =
{ 1

kX

∑

i∈KX

(
v2i − 1

kX

)2 ≤ 40κ

k2X

}
.

Then, for sufficiently large δ > 0,

lim
n→∞ P(A1 ∩ A2 | Uδ) = 1. (12)

Thus the above theorem says, for any κ > 0, for all large enough n, conditioned on
Uδ, the leading eigenvector distributes at least 1 − κ mass on KX almost uniformly.

Note that the last two theorems do not claim anything about the sign of the entries
of the eigenvector or the Gaussian values. This is since switching the signs of the
entries of the largest eigenvector arbitrarily and accordingly changing the signs of the
Gaussians yields the same quadratic form.

Having stated our results concerning upper tail deviations, the next result pins down
the lower tail large deviation probability.

Theorem 1.8 (Lower tail probabilities). For any 0 < δ < 1,

lim
n→∞

1

log n

(
log log

1

P(λ1 ≤ √
2(1 − δ) log n)

)
= δ. (13)

As an immediate corollary of Theorems 1.1 and 1.8, one obtains the following ‘law
of large numbers’ behavior which we were surprised to not be able to locate in the
literature.

Corollary 1.9 We have

lim
n→∞

λ1√
log n

= √
2

in probability.

We conclude this discussion by remarking that although in principle our techniques
maybe used to analyze awider subset of the parameter space,we have, for concreteness
and aesthetic considerations, chosen to simply focus on the case of constant average
degree.

1.2 Organization of the article

In Sect. 2 we provide a detailed account of the keys ideas driving the proofs. In Sect. 3,
we state and prove the key Proposition 3.1 obtaining a bound on the spectral norm in
terms of the Frobenius norm for weighted graphs. The rest of the paper focuses on the
proofs of Theorem 1.1 (Sects. 4, 5), Theorem 1.4 in Sect. 6, Theorem 1.7 in Sect. 7,
Theorem 1.6 in Sect. 8 and Theorem 1.8 in Sect. 9 respectively. Certain straightforward
but technical estimates are proved in the “Appendix”.
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2 Key ideas of the proofs

In this section, we provide a sketch of the arguments in the proofs of our main results
and end with a brief comparison of the approach in this paper to related existing work
in the literature.
Upper tail lower bound: This is straightforward. The strategy is to plant a clique of
an appropriate size (argmaxk φδ(k)) and have high valued Gaussians on all the clique

edges, i.e., at least
√

2(1+δ) log(n)

k−1 . The probability of a clique of size k ≥ 3 appearing

is up to constants nk−(k2) (the proof follows by a second moment argument) while the
probability of having high Gaussians is

P

(
Yi j ≥

√
2(1 + δ) log(n)

k − 1
, ∀ 1 ≤ i < j ≤ k

)
≥

( C√
log n

n
− 1+δ

(k−1)2
)(k2)

,

where the right hand side follows from standard Gaussian tail bounds (see (24) later).

Thus the total cost at the polynomial scale is nk−(k2)n
− 1+δ

(k−1)2
(k2). Observe that the

exponent is precisely −φδ(k). When k = 2, one should view it slightly differently

however, since k − (k
2

) = 1 > 0. Namely, there are order nk−(k2) = n many edges
and hence the probability that there exists a Gaussian of value at

√
2(1 + δ) log n is

nn−(1+δ) = n−δ = n−φδ(2). Finally, optimizing over k yields the bound n−ψ(δ).

It isworth noticing the contrasting behavior in the absence of theGaussian variables,
where in [13] it was shown that large deviations for the largest eigenvalue is guided
by the large deviations for the maximum degree and not by appearance of a clique.
Upper tail upper bound: This is the most difficult among the four bounds and a signif-
icant part of the work goes into proving this. The first step is to make the underlying
graph sparser by only focusing on the Gaussians with a large enough value. This is
a trick that has appeared in some form in previous works (see e.g. [13, 17]) and the
most delicate part of our arguments goes into analyzing the sparser graph obtained by
this method.

Broadly speaking, the reason for the sparsification is two-fold. a) It is much harder
for the graph restricted to small Gaussian values to have a high spectral norm, and
so for our purposes we will treat that component as spectrally negligible. This relies
on recent results from [13]. b) The graph restricted to high Gaussian values is much
sparser and hence admits greater shattering into smaller components whose sizes we
can control; since eigenvalues of different components do not interact with each other,
this will be particularly convenient, albeit modulo a refined analysis of the connectivity
structure of the latter.

Proceeding to implement this strategy, decompose the Gaussian random variables
Yi j as

Yi j = Y (1)
i j + Y (2)

i j ,
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where Y (1)
i j = Yi j1|Yi j |>√

ε log log n and similarly Y (2)
i j = Yi j1|Yi j |≤√

ε log log n . Thus, we

can write the matrix Z as Z (1) + Z (2) with

Z (1)
i j = Xi jY

(1)
i j , Z (2)

i j = Xi jY
(2)
i j , (14)

and similarly X = X (1) + X (2) i.e., X (1)
i j = Xi j1|Yi j |>√

ε log log n . We next prove an

upper bound on the probability that Z (2) has high spectral normwhich is much smaller
than that for Z which implies that the spectral behavior of Z even under large deviations
is dictated by that of Z (1). The choice of the truncation threshold is governed by the

fact that the typical spectral norm of Gn, dn
is of order

√
log n

log log n which in itself is a

consequence of the fact that the maximum degree is of order log n
log log n . Sharp large

deviations behavior for eigenvalues of sparse random graphs was recently established
in the already mentioned work [13] which we use to make this step precise.

This allows one to focus simply on Z (1) or the underlying graph X (1), conditioning
on which makes the spectral behavior of the individual connected components inde-
pendent. Further note that the edge weights are independent Gaussian variables each
of which is conditioned to be at least

√
ε
√
log log n.

Let C1, · · · ,Ck be the connected components of X (1). At this point, denoting the
network Z restricted to C� by Z�, we relate ‖Z�‖op to its Frobenius norm ‖Z�‖F .
The trivial bound ‖Z�‖op ≤ ‖Z�‖F is easy to see. The next idea which is the key one
in this paper relies on the following sharp improvement over the above. Namely, we
show that if k� is the size of the maximal clique in Z�, then

‖Z�‖2op ≤ k� − 1

k�

‖Z�‖2F . (15)

The proof of the above relies on reducing the standard �2 variational problem for the
spectral norm to an �1 version, which allows us to use the classical work of Motzkin
and Straus [37]. This leads to a bound of the form

P(‖Z�‖2op ≥ 2(1 + δ) log n) ≤ P

(
‖Z�‖2F ≥ k�

k� − 1
2(1 + δ) log n

)
. (16)

Now quenching the graph X , the random variable ‖Z�‖2F can be viewed at first
glance as a chi-squared random variable with degrees of freedom given by the compo-
nent size |E(C�)|. Now as long as |E(C�)| is o(log n), the degree of freedom does not
affect the latter probability in its leading order behavior and it behaves as the square of
a single Gaussian. This is what justifies the sparsification step mentioned at the outset
which ensures that |C�| = Oε(

log n
log log n ) which along with the tree like behavior of C�

implies |E(C�)| = Oε(
log n

log log n ) as well (Here Oε(·) is the standard notation denoting
that the implicit constant is a function of ε.)

However there is one crucial subtlety that we have overlooked so far. Namely,
‖Z�‖2F is not simply a chi-squared random variable but instead is a sum of squares
of independent Gaussian variables each conditioned to have an absolute value at least
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√
ε log log n. This makes the tail heavier by the exact amount which on interacting

with the ε dependence in the size of C� begins to affect the leading order probability.
Thus, unfortunately, the above strategy ends up not quite working.

To address this we further rely on the fact that C� is almost tree-like and has a
bounded number of ‘tree-excess edges’ with high probability and revise our strategy in
the following way. Consider the eigenvector v corresponding to the largest eigenvalue
λ(�) := λ1(C�). Thus we know v�Z�v = λ(�).

The key idea now is to split the vertices of C�, according to high and low values
of v. We first show that it is much more costly for the Frobenius norm to be high on
the subgraph induced by the low values of v. This is where the tree like property is
crucially used as well.

Thus we focus only on the O(1) vertices supporting high v values and since the
maximum degree is O(

log n
log log n ) (without an ε dependence in the constant), the strategy

originally outlined can be made to work for the subgraph induced by these vertices.
While the next three proofs are rather technically involved, here we simply review

the high level strategies involved.
Emergence of a unique maximal clique: The above proofs imply that the graph X (1)

under Uδ contains a clique KX (1) whose size is sharply concentrated onM(δ) (where
the latter appearing in the statement of Theorem 1.4 denotes the set of minimizers of
φδ(·)). It also follows that KX (1) is unique. We then show that on account of sparsity,
superimposing X (2) on X (1) does not alter this. Particularly convenient is the fact
that conditional on X (1), the spectral behavior of Z (1) and the random graph X (2) are
independent. However making this precise is delicate and is one of the most technical
parts of the paper, relying on a rather refined understanding of the graph X (1) under
the large deviation behavior of λ(Z (1)) Such understanding also allows us to show that
there does not exist any other clique in X of size at least 4 which is not contained in
KX .
Localization of the leading eigenvector: The proof of this is reliant on the fact that (15)
is sharp only when the leading eigenvector is supported on the maximal clique KX .
We prove a quantitative version of this fact showing that significant mass away from
the clique results in a deteriorated form of (15) which thenmakesUδ muchmore costly
than the already proven lower bound for its probability. Further a similar approach is
used to prove the desired flatness of the vector on KX .

Flatness of the Gaussian values on the maximal clique. Using the previous structural
result about the leading eigenvector v = (v1, v2, . . . , vn), we consider the set T ⊂ KX

such that |vi | ≈ 1
kX

for all i ∈ T (we don’t make the meaning of ≈ precise) The
previous results guarantee that, conditional on Uδ, |T | ≥ (1−κ)kX and |kX −h(δ)| ≤
1. Firstly showing that the spectral contribution from the edges incident on T c is
negligible, it follows that the quadratic form v�Zv ≈ v�

T ZT vT where vT and ZT are
the restrictions to the subgraph induced on T . Now owing to the flatness of v on T
(and this is why we work with T and not KX ), it follows that

v�
T ZT vT ≤ 2

(1 + oδ(1))

h(δ)
‖ZT ‖1,
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where the �p norm ZT is defined by

‖ZT ‖p :=
( ∑

i< j,i, j∈T
|Zi j |p

)1/p
.

Using this and the fact that |kX −h(δ)| ≤ 1 with high probability, we obtain the bound

‖ZT ‖1 ≈ 1

2
h(δ)

√
2(1 + δ′) log n.

In fact the above argument only implies a lower bound, while the upper bound follows
from the following sharp bound on the �2 norm which is a consequence of previous
arguments (e.g. (16)).

‖ZT ‖22 ≈ (1 + oδ(1))(1 + δ) log n.

Using the above two bounds, one can conclude the statement of the theorem in a
straightforward fashion.
Lower tail: The upper bound can be obtained simply by a comparison with the maxi-
mum of O(n) many independent Gaussians.

For the lower bound, Z (2) can still be considered spectrally negligible, while for
Z (1), conditioning on X (1) being ‘nice’, with none of the components being too large
while also having at most bounded tree excess we use the results about the upper
tail to upper bound the probability that for any connected component C�, λ(�) ≥√
2(1 − δ) log n or in other words lower bound P(λ(�) ≤ √

2(1 − δ) log n) where
λ(�) := λ1(C�). Since λ1(Z) = max�(λ(�)) and, conditioning on the graph makes
λ(�) across different values of � independent, the result follows in a straightforward
fashion.

2.1 Comparison to past works

We end with a brief discussion on past results on large deviation of spectral statistics
for various examples of random matrices to contrast them with the statements and the
proof method in this paper.

As mentioned in the introduction, the earliest results for Gaussian ensembles [2, 3]
relied on the exact formof the joint density that the eigenvalues admit. In [17] empirical
distributions of Wigner matrices with entries with heavier tails than Gaussians were
considered. The authors used a thresholding argument (which, recall, is also the first
step in our approach) to decompose the matrix as a sum of a typical matrix and a
sparse matrix of large entries, thereby expressing the limiting spectral measure as a
free convolution of the semi-circle law (from the typical part) and the spectral measure
of a Sofic measure on random networks (from the sparse part). A similar strategy
was carried out later for the largest eigenvalue in [4]. Recently, [6, 30] have explored
universality of large deviations behavior for the largest eigenvalue for aWigner matrix
with i.i.d sub-Gaussian entries relying on considering appropriate tilts of the original
measures and analyzing the associated spherical integrals.

123



626 S. Ganguly, K. Nam

More closer in spirit to our present work is the work on the spectral norm of the
Erdős-Rényi graphGn,p when p → 0.Using connection to cycle statistics, [14] proved
large deviation behavior for the largest eigenvalue as long as p is going to zero at a rate
slower than 1/

√
n. For sparser graphs including the case of constant average degree,

in absence of any edge weights, [13] showed that the large deviation behavior of the
extreme eigenvalues are governed by high degree vertices by decomposing the graph
into a low degree part and a disjoint union of high degree vertices.

As we see in the present work, addition of Gaussian weights has a drastic effect
on the nature of large deviations, with cliques with high Gaussian values leading to
large spectral norm in place of high degree vertices. Our analysis is also significantly
different and complicated compared to [13] where in the latter, the decomposition
simply involved picking out the high degree vertices while in the present work, one
has to analyze, to a rather refined detail, the various connected components of the
sparse graph obtained as a result of the thresholding step in (40).

Finally, it is worth reiterating that the structure theorems obtained in this paper
stand sharply in contrast to past results of a similar flavor due to the unusual degree
of their precision.

3 Spectral theory of weighted graphs

As outlined in Sect. 2, a key ingredient in our proofs is a new deterministic bound on
the spectral norm in terms of the Frobenius norm by an �2 → �1 reduction allowing us
to use the classicalMotzkin-Strauss theorem. Though this is independently interesting,
the proofs are somewhat technical and the reader only interested in the large deviations
aspect, at first read can simply treat this result as an input in the proof of Theorem 1.1.

3.1 Spectral norm and Frobenius norm

For a Hermitian matrix A of size n × n, let λ1 ≥ · · · ≥ λn be the eigenvalues in a
non-increasing order. Then, we have

tr(Ak) = λk1 + · · · + λkn,

which immediately implies that for any even positive integer k,

λk1 ≤ tr(Ak) ≤ nλk1. (17)

We denote by ‖A‖F , the Frobenius norm of the matrix A:

‖A‖F := (tr(A2))1/2 =
( ∑

1≤i, j≤n

a2i j

)1/2
,

Then, taking k = 2 above, we record the following trivial bound

λ21 ≤ ‖A‖2F . (18)
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3.2 Refined bound on spectral norms for weighted graphs

We now move on to a sharp bound on the spectral norm in terms of the Frobenius
bound for networks improving the above.

Before stating the result let us discuss a situation where one already obtains an
improvement over (18), namely for bipartite graphs. This is because of the underlying
symmetry in the spectrum, as a consequence of which we get λ1 = −λn and hence

λ1(A)2 ≤ 1

2
‖A‖2F .

The main result of this section is a new and sharp generalization of this inequality.

Proposition 3.1 Let k be the maximum size of clique contained in G. Then, for any
conductance a : E → R, we have

λ1(A)2 ≤ k − 1

k
‖A‖2F (19)

Remark 3.2 For G a clique of size k, with adjacency matrix A, it is straightforward to
see that

λ1(A)2 = k − 1

k
‖A‖2F . (20)

This follows from the fact that a k × k matrix whose off-diagonal entries are 1 and
on-diagonal entries are 0 has the largest eigenvalue k − 1 and the Frobenius norm√
k2 − k.

The proof of the proposition will rely crucially on the following bound which goes
back to the seminal work of Motzkin and Straus [37] whose proof we include for
completeness.

Lemma 3.3 Suppose that k is the maximum size of clique contained in the graph G
with vertex set [n]. Let f = ( f1, · · · , fn) be a vector with

∑n
i=1 fi = s and fi ≥ 0.

Then,

∑

i< j,i∼ j

fi f j ≤ k − 1

2k
s2. (21)

We first provide the proof of the proposition before proving the above lemma.

Proof of Proposition 3.1 By the variational characterization of the largest eigenvalue,

λ1(A) = sup
‖ f ‖2=1

∑

i∼ j

ai j fi f j .
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Thus, for any conductance a : E → R,

λ1(A)

‖A‖F = sup
‖ f ‖2=1

∑
i∼ j ai j fi f j

‖A‖F

≤ sup
‖ f ‖2=1

(
∑

i∼ j a
2
i j )

1/2(
∑

i∼ j f 2i f 2j )
1/2

‖A‖F
= sup

‖ f ‖2=1

( ∑

i∼ j

f 2i f 2j

)1/2 = sup
‖w‖1=1,wi≥0

( ∑

i∼ j

wiw j

)1/2
,

where the second line follows by Cauchy-Schwarz inequality and the final equality
witnesses the �2 → �1 reduction. By Lemma 3.3, we have

sup
‖w‖1=1,wi≥0

( ∑

i∼ j

wiw j

)1/2 ≤
(k − 1

k

)1/2
,

which finishes the proof. ��
We now provide the proof of Lemma 3.3.

Proof of Lemma 3.3 The proof is based on a ‘mass transportation’ argument. By homo-
geneity, it suffices to assume s = 1. We first verify (21) when G is itself a clique of
size m. In other words, we claim that if

∑m
i=1 fi = 1 and fi ≥ 0, then

∑

1≤i< j≤m

fi f j ≤ m − 1

2m
. (22)

This follows from the simple equation 2
∑

i< j fi f j = (
∑

i fi )2 − ∑
f 2i and that

∑
i f

2
i ≥ 1

m (by Cauchy-Schwarz inequality).
We now prove (21) for the general graphs G. Assuming that G is not a clique of

size k, one can choose two vertices v1 and v2 such that v1 � v2. Without loss of
generality, we assume

∑
i∼v1

fi ≥ ∑
j∼v2

f j . This allows us to transport mass from
v2 to v1 without decreasing the objective function. Namely, since

∑
fi f j =

( ∑

i∼v1

fi
)
fv1 +

( ∑

j∼v2

f j
)
fv2 +

∑

i, j �=v1,v2,i∼ j

fi f j

is linear in fv1 and fv2 , f does not decrease when f = (· · · , fv1 , · · · , fv2 , · · · , ) is
replaced by f (1) = (· · · , fv1 + fv2 , · · · , 0, · · · ). After removing the zero at v2, we
obtain a new vector f̃ (1) on the new graph G1 obtained by deletion of the vertex v2
and the edges incident on it.

We repeat this procedure to get a series of vectors f̃ (1), · · · , f̃ (�) and graphs
G1, · · · ,G� such that Gi+1 is obtained by deletion of some vertex wi+1 and edges
incident onwi+1 in the graphGi . This procedure is finished once every pair of vertices
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in G� are connected, i.e. G� is a clique of size m ≤ k. This along with (22) finishes
the proof. ��

We end this section with a related short technical lemma which we will need later.
The reader can choose to ignore this for the moment and only come back to it when
it is later used.

Lemma 3.4 Suppose that G is a tree with a vertex set [n] and s, η are positive numbers.
Let v = (v1, · · · , vn) be a vector with

∑
i vi = s and 0 ≤ vi ≤ η. Then,

∑

i< j,i∼ j

viv j ≤
{

1
4 s

2 s < 2η,

η(s − η) s ≥ 2η.
(23)

Proof Let ρ = argmaxi vi . Now think of the tree as rooted at ρ and orient every edge
towards ρ. Thus

∑
i< j,i∼ j viv j ≤ ∑

i �=ρ vρvi = vρ(s − vρ). Now since the function
x(s− x) is monotonically increasing in x for x ≤ s/2 and since vρ ≤ η, (23) follows.

��

4 Upper tail large deviations: lower bound

To begin with, we state a well known estimate for the tail behavior of the maximum of
Gaussian random variables which is a straightforward consequence of the following
classical bound (We provide the proofs in the appendix.): For the standard Gaussian
random variable X , for any t > 0,

1√
2π

t

t2 + 1
e−t2/2 ≤ P(X > t) ≤ 1√

2π

1

t
e−t2/2 (24)

(see [20, Equation (A.1)]).

Lemma 4.1 Let X1, · · · , Xm be i.i.d. standard Gaussian random variables and m ≥
cn for some constant c > 0. Then, there exists a constant c′ = c′(c) > 0, such that
for any δ > 0,

P( max
i=1,··· ,m Xi ≥ √

2(1 + δ) log n) ≥ c′
√
log n

1

nδ
(25)

and

P( max
i=1,··· ,m Xi ≤ √

2(1 − δ) log n) ≤ e
−c′ nδ√

log n . (26)

As indicated in Sect. 2, we first show that the number of non-zero elements of the
matrix Z is at least of order n with high probability. Recall that for us p = d

n in Gn,p
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throughout the article and the number of non-zero elements in X is twice the same as
the number of edges in the underlying random graph G. Let us define an event

E0 :=
{
|{1 ≤ i < j ≤ n : Xi j �= 0}| >

d

16
n
}
. (27)

Lemma 4.2 There exists a constant c > 0 such that for sufficiently large n,

P(Ec
0) ≤ e−cn .

This follows from standard large deviation estimates and we include the proof in the
appendix for completeness.

Proof of Theorem 1.1: lower bound As indicated in Sect. 2, there is a slight distinction
between k = 2, and k ≥ 3, i.e. the lower bound is governed by two related but distinct
events, a large value realized on an edge, or existence of a clique of size at least 3 with
the Gaussians uniformly large on the edges in the clique.

Single large value: We first deal with the former case and prove

lim sup
n→∞

− 1

log n
logP(λ1 ≥ √

2(1 + δ) log n) ≤ δ. (28)

Since the matrix Z is Hermitian,

λ1 ≥ max
1≤i< j≤n

Zi j . (29)

Thus,

P(λ1 ≥ √
2(1 + δ) log n) ≥ P( max

1≤i< j≤n
Zi j ≥ √

2(1 + δ) log n)

≥ E

(
P( max

1≤i< j≤n
Zi j ≥ √

2(1 + δ) log n | X)1E0

)
. (30)

By Lemma 4.1, on the event E0,

P( max
1≤i< j≤n

Zi j ≥ √
2(1 + δ) log n | X) ≥ C

1√
log n

1

nδ
. (31)

Thus, by (30), (31) and Lemma 4.2, we obtain (28).

Clique construction: We now move on to the clique construction. To this end, fix
a positive integer m and let G be a network on the clique of size m, Km , whose
conductances {Yi j : 1 ≤ i < j ≤ m} are i.i.d. standard Gaussians. We denote by λ(Y )

the largest eigenvalue of the adjacency/conductance matrix Y = (Yi j ) of the network.
By (24), for some constant C = C(δ) > 0,

P(λ(Y ) ≥ √
2(1 + δ) log n) ≥ P

(
Yi j ≥ 1

k − 1

√
2(1 + δ) log n, ∀1 ≤ i < j ≤ k

)
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≥
(

C√
log n

n
− 1+δ

(k−1)2

)(k2)
. (32)

Next, we need an estimate of the probability that a graph contains a clique of size k.
This is provided in the next lemma which along with (32) imply that for any k ≥ 3,

P(λ1 ≥ √
2(1 + δ) log n) ≥ Cn−(k2)+k

(
C√
log n

n
− 1+δ

(k−1)2

)(k2)

= C

(
C√
log n

)(k2)
n− k(k−3)

2 − 1+δ
2

k
k−1 = n−φδ(k)+o(1). (33)

Since φδ(2) = δ, putting (28) and (33) together, we are done. ��
Lemma 4.3 Let k ≥ 3 be a positive integer. Then, there exists a constant C =
C(k, d) > 0 such that the probability that Gn, dn

contains a clique of size k is bounded

by

C

n(k2)−k
. (34)

Proof Note that the expected number of cliques is indeed up to constants 1

n(k2)−k
.which

implies the upper bound. Thus to lower bound the probability of existence of at least
one clique we use the familiar second moment method. However as has been used
several times in the probabilistic combinatorics literature (see e.g., [29, Theorem 2.3]),
to control the second moment, it will be useful to work with the number of cliques
which are also their respective connected components. To this end, let us denote their
number by Nk . Then,

ENk =
(
n

k

)
p(

k
2)(1 − p)k(n−k) ≥ ek−1d(k2)

kk+ 1
2

(
1 − k

n

)k(
1 − d

n

)k(n−k) 1

n(k2)−k

≥ C
1

n(k2)−k
. (35)

where abovewe use Stirling’s formula to approximate k! andwe use the bound n!/(n−
k)! ≥ (n − k)k . Further,

EN 2
k = ENk +

(
n

k

)(
n − k

k

)
p2(

k
2)(1 − p)k

2+2k(n−2k) ≤ ENk + (1 − p)−k2(ENk)
2.

(36)

Note that

ENk = E[Nk1Nk≥1] ≤ (EN 2
k )1/2P(Nk ≥ 1)1/2.
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Thus, for sufficiently large n,

P(Nk ≥ 1) ≥ (ENk)
2

EN 2
k

≥ 1

(ENk)−1 + (1 − p)−k2
≥ 1

Cn(k2)−k + 2
. (37)

��

5 Upper tail large deviations: upper bound

A significant fraction of the novel ideas in the paper can be found in this section which
aims to implement the high level strategy outlined in Sect. 2. Before beginning, we
include a short roadmap to indicate what the different subsections achieve. In Sect. 5.1
we record tail estimates for sums of squares of Gaussian variables conditioned to be
large. In Sect. 5.2 we show that with high probability the network Z (2) from Sect. 2
is spectrally negligible. We then move on to analyzing the connectivity structure of
the graph X (1) underlying the network Z (1), including its maximum degree, size of its
connected components and the number of tree excess edges they contain, in Sect. 5.3.
In Sect. 5.4 we prove a key proposition (Proposition 5.7) establishing tails for the
largest eigenvalue for tree like networks in terms of the largest clique. Finally in
Sect. 5.5, we prove the upper bound in Theorem 1.1.

5.1 Chi-square tail estimates

We record the following estimate that will be crucial in our applications whose proof
is provided in the appendix.

Lemma 5.1 Let Ỹ be a standard Gaussian conditioned on |Ỹ | >
√

ε log log n and
Ỹ1, · · · , Ỹm be independent copies of Ỹ . Then, there exists a universal constant C > 0
such that for any L > m and ε > 0,

P(Ỹ 2
1 + · · · + Ỹ 2

m ≥ L) ≤ Cme− 1
2 Le

1
2m

( L

m

)m
e
1
2 εm log log n . (38)

In particular, for any a, b, c > 0, let m ≤ b log n
log log n + c and L = a log n. Then, for

any γ > 0, for sufficiently large n,

P(Ỹ 2
1 + · · · + Ỹ 2

m ≥ a log n) ≤ n− a
2+ εb

2 +γ . (39)

Recall from Sect. 2, the decompositions

Yi j = Y (1)
i j + Y (2)

i j ,

123



Largest eigenvalue of sparse Gaussian networks... 633

where Y (1)
i j = Yi j1|Yi j |>√

ε log log n and similarly Y (2)
i j = Yi j1|Yi j |≤√

ε log log n . Thus, we

can write the matrix Z as Z (1) + Z (2) with

Z (1)
i j = Xi jY

(1)
i j , Z (2)

i j = Xi jY
(2)
i j . (40)

5.2 Spectrally negligible component

We next prove an upper bound on the probability that Z (2) has high spectral norm.

Lemma 5.2 For δ > 0,

lim inf
n→∞

− logP(λ1(Z (2)) ≥ √
ε(1 + δ)

√
log n)

log n
≥ 2δ + δ2.

Proof The proof relies on the results of the previously mentioned recent work [13].
By [13, Theorem 1.1],

lim
n→∞

− logP(λ1(X) ≥ (1 + δ)

√
log n

log log n )

log n
= 2δ + δ2.

Since |Z (2)
i j | ≤ Xi j

√
ε log log n, we have λ1(Z (2)) ≤ √

ε log log n · λ1(X) which
concludes the proof. ��

5.3 Connectivity structure of highly sub-critical Erdos-Rényi graphs

We will now shift our focus to Z (1). Recall that X (1)
i j = Xi j1|Yi j |>√

ε log log n . By the

tail bound for Gaussian stated in (24), for large n, X (1) is distributed as Gn,q with

q ≤ d

n

1√
2π

e− 1
2 ε log log n = d ′

n

1

(log n)ε/2
, (41)

where d ′ = d√
2π

.

For any graph G, we denote by d1(G), the largest degree of G. It is proved in [32]
(see also [13, Proposition 1.3]) that the typical value of d1(Gn,r ) is log n

log log n−log(nr) ,
when

log n � log(1/nr) and nr �
√

log n

log log n
.

Furthermore, the following large deviation result is a consequence of [13, Proposition
1.3].
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Lemma 5.3 For δ1 > 0, let Dδ1 be an event defined by

Dδ1 :=
{
d1(X

(1)) ≤ (1 + δ1)
log n

log log n

}
. (42)

Then,

lim inf
n→∞

− logP(Dc
δ1

)

log n
≥ δ1.

Proof The statement, where the inequality above is replaced with an equality, for the
case r = d

n is obtained in [13, Proposition 1.3], by plugging in r = d
n in the latter and

noting that in this case

log n

log log n − log(nr)
= log n

log log n − log d
.

The above result then follows by observing that Gn, dn
stochastically dominates Gn,q

and d1(G) is an increasing function of the graph. ��
We next move on to a refined analysis of the connectivity structure of the graph

X (1). Towards this, let C1, · · · ,Cm be its connected components. The next lemma
establishes a bound of the order of log n

log log n on the size of the largest component in

contrast to the bounds of�(log n),�(n2/3), or�(n), that one has for Gn, dn
depending

on if d < 1, d = 1 or d > 1. This sub-logarithmic bound will be crucial in our
application and justifies our sparsification step.

Lemma 5.4 For δ2 > 0, let Cδ2 be the following event.

Cδ2 :=
{
|Ci | ≤ 2 + δ2

ε

log n

log log n
, ∀i

}
. (43)

Then,

lim inf
n→∞

− logP(Ccδ2)
log n

≥ δ2

2
.

Proof The proof implements the standard first moment argument, (see e.g., [16, Chap-
ter 5,6]). Throughout the proof, the value of the constant C may change from line to
line. Let N̄k,−1 be the number of connected subgraphs having k vertices and k − 1
edges, in other words the number of trees of size k. Using (41) and Stirling’s formula,
and the fact that the number of labelled spanning trees on k vertices is kk+2, for some
large constant c0 > 0,

EN̄k,−1 ≤
(
n

k

)
kk+2

(d ′

n

1

(log n)ε/2

)k−1
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≤ Cek
nk

kk
kk+2 (d ′)k−1

nk−1(log n)
ε
2 (k−1)

= Cn
ekk2(d ′)k−1

(log n)
ε
2 (k−1)

≤ Cn(log n)ε/2
( c0
(log n)ε/2

)k
. (44)

Hence, denoting Nk by the number of connected components with k vertices, picking
a spanning tree from each connected component, one obtains

ENk ≤ EN̄k,−1 ≤ Cn(log n)ε/2
( c0
(log n)ε/2

)k
.

Define m := 2+δ2
ε

log n
log log n , and let N be the number of connected components having

at least m vertices. Then,

EN = E

n∑

k=m

Nk ≤ Cn(log n)ε/2
( c0
(log n)ε/2

)m ≤ C(log n)ε/2n
(log c0)(2+δ2)

ε log log n n− δ2
2 .

Since P(N ≥ 1) ≤ E(N ), the proof is complete. ��

For our applications, we will also need to bound the number of subgraphs having
k vertices and k + � edges without the subgraph necessarily being connected. This
estimate will be crucially used later to prove the structure theorem conditioned on Uδ .

Lemma 5.5 For � ≥ 0, let Nk,� be the number of subgraphs in X (1) having k vertices
and k + � edges. Then, for 0 ≤ � ≤ (k

2

) − k,

ENk,� ≤ C min

(( k
n

)�

,
( d ′e2

(log n)ε/2

)k+�
)

.

Proof Denote by Ck,� the number of labelled graphs with k vertices and k + � edges.
Then, for any −k ≤ � ≤ (k

2

) − k, using Stirling’s formula we have

Ck,� =
( (k

2

)

k + �

)
≤

(
k2

k + �

)
≤ (k2)k+�

(k + �)! ≤ ek+� k2(k+�)

(k + �)k+�
. (45)

Then, for 0 ≤ � ≤ (k
2

) − k,

ENk,� ≤
(
n

k

)
Ck,�q

k+�
(41)≤ Ce2k+� n

k

kk
k2(k+�)

(k + �)k+�

(d ′

n

1

(log n)ε/2

)k+�

≤ C
( k
n

)�( d ′e2

(log n)ε/2

)k+�

. (46)
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where in the first inequality we use Stirling’s formula again to bound k!. In particular,
since k ≤ n,

ENk,� ≤ C
( d ′e2

(log n)ε/2

)k+�

, (47)

and since d ′e2 ≤ (log n)ε/2 for sufficiently large n,

ENk,� ≤ C
( k
n

)�

. (48)

��
Having bounded the maximum component size, we next proceed to estimating how

close the components are to trees by bounding the number of tree excess edges, i.e.,
how many edges need to be removed from such a component to obtain a tree.

Lemma 5.6 For δ3> 0, let Eδ3 be the event defined by

Eδ3 := {|E(Ci )| < |V (Ci )| + δ3, ∀i}. (49)

Then,

lim inf
n→∞

− logP(Ec
δ3

)

log n
≥ δ3. (50)

In addition, define the event T by

T := {|E(Ci )| = |V (Ci )| − 1, ∀i}.

In other words, T is the event that all the connected components of X (1) are trees.
Then,

P(T c) ≤ C

(log n)ε
. (51)

Proof For � ≥ 0, recall the notation Nk,� from Lemma 5.5. Since the occurrence
of the event Ec

δ3
∩ C2δ3 demands the existence of a connected component Ci with

|Ci | ≤
⌊
2+2δ3

ε
log n

log log n

⌋
=: m and |E(Ci )| ≥ |Ci | + �δ3�, by the first moment bound,

P(Ec
δ3

∩ C2δ3) ≤
m∑

k=3

(k2)−k∑

�=�δ3�
ENk,�

(48)≤ C
m∑

k=3

( k
n

)�δ3� ≤ C
m�δ3�+1

n�δ3� . (52)

Therefore, by (52) and Lemma 5.4 (with δ2 = 2δ3), we obtain (50).
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Next, we prove (51). Let Ncycle be the number of cycles in X (1). Then,

ENcycle =
n∑

k=3

(
n

k

)
(k − 1)!

2
qk ≤

n∑

k=3

nk

2k

(d ′

n

1

(log n)ε/2

)k ≤ C

(log n)ε
.

Since the occurrence of T c implies the existence of cycle, by the first moment bound,
we obtain (51). ��

5.4 Spectral tail for tree like networks

We have so far defined the events Dα , Cα , Eα , T , and in the previous series of lem-
mas, having established that each connected component is of size O(

log n
log log n ) and the

number of excess edges is bounded with high probability, in the following key propo-
sition, we control the spectral norm of such a connected component. This will be a
particularly important ingredient in the proof of Theorem 1.1.

Proposition 5.7 Consider a connected network G = (V , E, A) (where A = (ai j ) is
the matrix of conductances) satisfying the following properties:

1. d1(G) ≤ c1
log n

log log n

2. |V | ≤ c2
log n

log log n

3. |E | ≤ |V | + c3

Suppose that the conductance matrix A is given by i.i.d. Gaussians associated to each
element of E, conditioned on having absolute value greater than

√
ε log log n. Let k

be a maximum size of clique in G and λ be the largest eigenvalue of A. Then, for any
ε, α, γ, η > 0 with η < 1

2 , for sufficiently large n,

P(λ ≥ √
2α log n) ≤ n

− α

2θ2
+ εc2

2 +γ + n
− k

2(k−1) (1−θ)2α+ c1ε

2η2
+γ

, (53)

where θ := (2η2 + 2η4c3)1/4.

The expression on the right hand side is technical but the constants ε, η, γ will

be suitably chosen sufficiently close to zero so that n− α

2θ2
+ εc2

2 +γ and n
c1ε

2η2
+γ

are

negligible and the dominant behavior will be n− k
2(k−1) α.

Fromnowon, for any graph H , we denote by E(H) and
−−−→
E(H) the sets of undirected

and directed edges in H respectively. Recall that E denotes the set of edges in G, and
let

−→
E be its directed version.

Proof The proof proceeds by analyzing the leading eigenvector (A priori, there may
be several such eigenvectors and in this case, we choose any one of them arbitrarily.
However, in fact, owing to the continuity of the Gaussian distribution, one can show
that almost surely, every non-zero eigenvalue is simple. See Remark 5.8 for further
elaboration). Let V = [�] and f = ( f1, · · · , f�) be the unit (random) eigenvector
associated with the largest eigenvalue λ := λ1(G). Thus by definition, λ = f �A f .
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One would have liked to use Proposition 3.1 and the tail estimate (39). However
the application of the latter is useful only when the parameter b in the upper bound
of m is small enough compared to 1

ε
. On the other hand, in Lemma 5.4, the bound

on |Ci | which would be m in the application is O( 1
ε

log n
log log n ) rendering the above

straightforward strategy useless. To address this, the first step is to argue that entries
of f that are small in absolute value do not contribute much to the above quadratic
form. This allows us to focus on only the large entries, of which there are not too many
and hence allows an application of the above outlined strategy with a reduced value
of m. Towards this, for 0 < η < 1/2, define the collection of vertices

I := {i ∈ [�] : f 2i < η2}.

Let B1 be the collection of (directed) edges defined by

B1 := {(i, j) ∈ −→
E : i, j ∈ I }

and let B2 := −→
E \B1 where again each edge is considered twice (this is done simply

as a matter of convention) Now since f is a unit vector, by Markov’s inequality,
|I c| ≤ 1

η2
. In addition, by the upper bound on the max-degree in condition (1), we

obtain

1

2
|B2| ≤ c1

η2

log n

log log n
. (54)

We write

λ =
∑

(i, j)∈−→
E

ai j fi f j =
∑

(i, j)∈B1
ai j fi f j +

∑

(i, j)∈B2
ai j fi f j =: S1 + S2.

Recall θ = (2η2 + 2η4c3)1/4, we have

P(λ ≥ √
2α log n) ≤ P(S1 ≥ θ

√
2α log n) + P(S2 ≥ (1 − θ)

√
2α log n). (55)

Of course, the above inequality holds for any θ and the particular choice we make is
guided by our subsequent estimates of S1 and S2. First, we show that

∑

(i, j)∈B1
f 2i f 2j ≤ 2η2 + 2η4c3 = θ4. (56)

We will rely on Lemma 3.4. Choose a spanning tree T of G, and define a set of

(directed) edges
−→
E ′ := −→

E \−−−→
E(T ). Then, by condition (3) on the number of excess

edges, 1
2 |E ′| ≤ c3 + 1. Now the graph with edge set B1\−→E ′ is necessarily a forest.

Since adding more edges can only increase
∑

(i, j)∈B1\
−→
E ′ f

2
i f 2j we can in fact assume
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that the graph with edge set B1\−→E ′ is a tree. Now applying Lemma 3.4 with s = 1,
and since 2η2 ≤ 1, we conclude that

∑

(i, j)∈B1\
−→
E ′

f 2i f 2j ≤ 2η2(1 − η2). (57)

Hence,

∑

(i, j)∈B1
f 2i f 2j =

∑

(i, j)∈B1\
−→
E ′

f 2i f 2j +
∑

(i, j)∈B1∩
−→
E ′

f 2i f 2j ≤ 2η2(1 − η2) + 2(c3 + 1)η4,

(58)

where for the second term, we simply use the fact that the total number of summands is
at most 2(c3+1)with each being at most η4. This proves (56). Hence by the definition
of S1, by Cauchy–Schwarz inequality, we immediately have

S1≤
( ∑

(i, j)∈B1
a2i j

)1/2( ∑

(i, j)∈B1
f 2i f 2j

)1/2≤θ2
( ∑

(i, j)∈B1
a2i j

)1/2≤θ2
( ∑

(i, j)∈E
a2i j

)1/2
.

Thus, for any γ > 0, for sufficiently large n,

P(S1 ≥ θ
√
2α log n) ≤ P

( ∑

i< j,(i, j)∈E
a2i j ≥ α

θ2
log n

)
≤ n

− α

2θ2
+ εc2

2 +γ
, (59)

where the last inequality follows by a direct application of (39) in Lemma 5.1, with
L = α

θ2
log n and m = c2

log n
log log n + c3.

Next, we estimate S2. Since, by hypothesis, the maximum size of clique in the
subgraph induced by edges in B2 is no larger than k, by Lemma 3.3,

S2 ≤
( ∑

(i, j)∈B2
a2i j

)1/2( ∑

(i, j)∈B2
f 2i f 2j

)1/2 ≤
(k − 1

k

)1/2( ∑

(i, j)∈B2
a2i j

)1/2
. (60)

Note that the event
∑

i< j(i, j)∈B2 a
2
i j ≥ t implies the existence of a random subset

J ∈ [n] with |J | ≤
⌊

1
η2

⌋
such that

∑

i or j∈J ,i< j,i∼ j

a2i j ≥ t . Hence, for any γ > 0, for

sufficiently large n,

P(S2 ≥ (1 − θ)
√
2α log n)

(60)≤ P

( ∑

i< j, (i, j)∈B2
a2i j ≥ k

k − 1
(1 − θ)2α log n

)

≤ |V |
⌊

1
η2

⌋

n
− k

2(k−1) (1−θ)2α+ c1ε

2η2
+ γ

2 ≤ n
− k

2(k−1) (1−θ)2α+ c1ε

2η2
+γ

. (61)
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The second inequality is obtained by a simple first moment bound, in conjunction
with (39) in Lemma 5.1 with L = k

k−1 (1− θ)2α log n and m ≤ c1
η2

log n
log log n (see (54)).

In the last inequality, we used condition (2) i.e., |V | ≤ c2
log n

log log n , to bound the term

|V |
⌊

1
η2

⌋

by nγ /2 for sufficiently large n.
Thus, by (55), (59) and (61), for sufficiently large n,

P(λ ≥ √
2α log n) ≤ n

− α

2θ2
+ εc2

2 +γ + n
− k

2(k−1) (1−θ)2α+ c1ε

2η2
+γ

(62)

which finishes the proof. ��
Remark 5.8 (Simplicity of the non-zero spectrum). One canprove that the conductance
matrix (denoted by A) of any network with i.i.d. Gaussian edge weights on a graph
G = (V , E) has no non-zero multiple eigenvalues almost surely. Since weights are
continuous randomvariables, it is natural to expect that, almost surely, every eigenvalue
is simple. However, one needs to be careful since networks having several isolated
vertices possess multiple zero-eigenvalues and hence what turns out to be true is the
simplicity of every non-zero eigenvalue. We provide a brief outline below on how to
formalize this.

As an intermediate step, using induction on the number of edges, we first show that
for any fixed λ �= 0, almost surely

det(A − λI ) �= 0 (63)

(it is obvious that the base case, all graphs without any edges, satisfies this property).
Take any edge e = (v,w) and let X be the Gaussian weight on it. Conditioned on the
weights on all the other edges, det(A − λI ) is (at most) a quadratic function in X .
Denoting by Ā a conductance matrix induced by V \{v,w}, the coefficient of X2 in
det(A−λI ) is given by−det( Ā−λI ), which is non-zero by the induction hypothesis.
Since for any a, b, c ∈ R with a �= 0, P(aX2 + bX + c = 0) = 0, we obtain (63).

Equipped with (63), using again an induction on the number of edges, we now
prove that every non-zero eigenvalue of A is simple (the base case, a graph without any
edges, has no non-zero eigenvalue).Decompose the underlying graphG into connected
components. By (63) and the independence of weights, non-zero eigenvalues coming
fromdifferent components are distinct almost surely. Hence,without loss of generality,
one can assume that G is connected.

For a vertex v ∈ V , let Av be the conductance matrix on the network induced
by V \{v}. Suppose that A has a non-simple eigenvalue λ. Then, by the interlacing
property of eigenvalues, for any v ∈ V , λ is also an eigenvalue of Av .

To carry out the argument, we will rely on the claim that there exists x ∈ V with
λ−eigenvector f (x) of Ax which does not all vanish on the neighbors of x . Taking any
v ∈ V , if λ−eigenvector f (v) of Av vanishes on the neighbors of v, then take vertices
x, y �= v with x ∼ y such that f (v)(x) = 0 and f (v)(y) �= 0 (this is possible since
the underlying graph is connected). One can check that the vector f (x) defined by
f (x)(z) := f (v)(z) for z ∈ V \{x, v} and f (x)(z) := 0 for z = v is an eigenvector of
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Ax corresponding to the same eigenvalue λ. Since f (x)(y) = f (v)(y) �= 0 and x ∼ y,
f (x) satisfies the desired property.
Now, for each λ-eigenvector g of A, and any x such as above, write g = (ḡx , gx ),

where ḡx and gx denote the V \{x} and x-coordinates of g respectively. We consider
the following two possible cases and analyze each case.

1. gx = 0 for all λ-eigenvectors g of A.
2. There exists a λ-eigenvector g of A such that gx �= 0.

First case: We use the simple fact that if a λ-eigenvector g of A satisfies gx = 0, then
ḡx is a λ-eigenvector of Ax . This implies that in the first case, multiplicity property of
the eigenvalue λ of the network A is passed on to the (strictly) smaller network Ax .
Hence, we are done by the induction hypothesis.

Second case: Write

A =
(
Ax Wx

WT
x 0

)
,

where Wx denotes the column vector induced by weights on the edges having x as
an endpoint. Using the eigenvalue equation, it is not hard to see that if there is a
λ−eigenvector g of A with gx �= 0, then any λ−eigenvector of Ax is orthogonal
to Wx . Recall that there exists a λ−eigenvector f (x) of Ax which does not vanish
on all the neighbors of x . Since edge weights are continuous random variables and
independent, for such f (x), P( f (x) · Wx = 0) = 0 (by conditioning on the weights in
Ax ). Since x is random, a simple union bound over all possible choices of x concludes
the proof.

With all this preparation,we are now ready to prove the upper bound inTheorem1.1.

5.5 Proof of Theorem 1.1: upper bound

Recall the matrices from (40) as well as the matrix X (1) from (41). Let C1, · · · ,Cm

be the connected components of X (1), and define λ1(Ci ) to be the largest eigenvalue
of the matrix Z (1) restricted to Ci . Let Few − cycles be the event defined by

Few − cycles := {|{i : Ci not tree}| < log n}.

By Lemma 5.6 (51), the probability of existence of some cycle is C
(log n)ε

. Since
the occurrence of the event Few − cyclesc demands the disjoint occurrence of log n
many cycles, by the above fact and Van-den Berg-Kesten (BK) inequality [38],

P(Few − cyclesc) ≤ C

(log n)ε log n/2 . (64)

Also, since λ1(Z) ≤ λ1(Z (1)) + λ1(Z (2)),

P(λ1(Z) ≥ √
2(1 + δ) log n)
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≤ P(λ1(Z
(1)) ≥ √

2(1 + δ′) log n) + P(λ1(Z
(2)) ≥ √

ε(1 + δ)
√
log n),

(65)

where δ′ > 0 is defined by

√
2(1 + δ′) = √

2(1 + δ) − √
ε(1 + δ). (66)

Note that from this (by rearranging and multiplying both sides by
√
2(1 + δ) +√

2(1 + δ′)), we have

δ − √
2ε(1 + δ)3/2 ≤ δ′ ≤ δ. (67)

Using the result in Sect. 5.2, the second term in (65) will be negligible, so we focus
on estimating the first one. Recalling X (1)

i j := Xi j1|Yi j |>√
ε log log n , let us estimate the

conditional probability P(λ1(Z (1)) ≥ √
2(1 + δ′) log n|X (1)) on the high probability

event D4δ′ ∩ C4δ′ ∩ E4δ′ ∩ Few − cycles. By definition, on this event, we have

d1(X
(1)) < (1 + 4δ′) log n

log log n
, (68)

|V (Ci )| <
2 + 4δ′

ε

log n

log log n
, i = 1, · · · ,m, (69)

|E(Ci )| < |V (Ci )| + 4δ′, i = 1, · · · ,m, and, (70)

|{i = 1, · · · ,m : Ci not tree}| < log n. (71)

From now on we will denote by Z (1)
i , the matrix Z (1) restricted to Ci , and by ki

the size of the largest clique in Ci . By (68)–(70) and Proposition 5.7 with

c1 = 1 + 4δ′, c2 = 2 + 4δ′

ε
, c3 = 4δ′, α = 1 + δ′, η = ε1/4 and γ = ε,

setting ξ := (2ε1/2 + 8εδ′)1/4, on the event D4δ′ ∩ C4δ′ ∩ E4δ′ , sufficiently small
ε > 0,

P(λ1(Z
(1)
i ) ≥ √

2(1 + δ′) log n | X (1)) < Cn
− ki

2(ki−1) (1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε

, (72)

by observing that for ε small enough, the first term in (53) is negligible compared
to the second term and can be absorbed in the constant C . More precisely, using the
bound (67), one can take sufficiently small ε such that

1 + δ′ > 2(2ε1/2 + 8εδ′)1/2(1 + δ′ + (1 + 2δ′)). (73)

Then, for k ≥ 2, 1+δ′
2ξ2

− (1 + 2δ′) ≥ 1 + δ′ ≥ k
2(k−1) (1 − ξ)2(1 + δ′), which implies

that the first term in (53) decays faster than the second term.
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Define

I := {i = 1, · · · ,m : ki ≥ 3}, J := {i = 1, · · · ,m : ki = 2}, and,

k̄ := max{k1, · · · , km}. (74)

Then, since k
k−1 is decreasing in k, by (72), under the eventD4δ′ ∩ C4δ′ ∩ E4δ′ , for any

i ∈ I ,

P(λ1(Z
(1)
i ) ≥ √

2(1 + δ′) log n | X (1)) < Cn
− k̄

2(k̄−1)
(1−ξ)2(1+δ′)+ 1+4δ′

2 ε1/2+ε
, (75)

and for any i ∈ J ,

P(λ1(Z
(1)
i ) ≥ √

2(1 + δ′) log n | X (1)) < Cn−(1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε. (76)

Also, by Lemmas 5.3, 5.4, 5.6 and (64), defining the event

F0 := D4δ′ ∩ C4δ′ ∩ E4δ′ ∩ Few − cycles, (77)

we have

P(Fc
0 ) ≤ C

n2δ′ . (78)

Using (41), by the first moment bound, for k ≥ 3,

P(X (1) contains a clique of size k) ≤
(
n

k

)
q(k2) ≤ (d ′)(

k
2)

n(k2)−k
. (79)

Also, since any connected component Ci which is a tree has ki = 2, on the event
Few − cycles, we have |I | < log n. Thus, using (79) and the fact λ1(Z (1)) =
maxi=1,··· ,m λ1(Z

(1)
i ),

P(λ1(Z
(1)) ≥ √

2(1 + δ′) log n)

≤
n∑

k=3

E

[
P(max

i∈I {λ1(Z (1)
i )} ≥ √

2(1 + δ′) log n | X (1))1F01k̄=k

]

+ E

[
P(max

i∈J
{λ1(Z (1)

i )} ≥ √
2(1 + δ′) log n | X (1))1D4δ′∩C4δ′∩E4δ′

]
+ P(F0

c)

≤ C log n
n∑

k=3

(d ′)(
k
2)n−(k2)+k− k

2(k−1) (1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε

+ Cn · n−(1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε + Cn−2δ′

, (80)
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where (75) and (76) are used to bound the first and second terms respectively. The
multiplicative factors of log n and n appear as a result of a union bound over the
components contributing to the index sets I and J respectively. Recalling ξ = (2ε1/2+
8εδ′)1/4 and δ′ from (66), note that limε→0 δ′ = δ and limε→0 ξ = 0. Furthermore,
recall from (3) that ψ(δ) = mink≥2 φk(δ) where φk(δ) = k(k−3)

2 + 1+δ
2

k
k−1 .

Hence, by bounding the term log n by nε, there exists η1 = η1(ε)with limε→0 η1 =
0 such that the first term of RHS in (80) is bounded by

n∑

k=3

(d ′)(
k
2)n−(k2)+k− k

2(k−1) (1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+2ε (81)

≤
n∑

k=3

(d ′)(
k
2)n− k(k−3)

2 − 1+δ
2

k
k−1+ η1

2 (82)

≤ C(log n)1/4(d ′)(
(log n)1/4

2 )n−ψ(δ)+ η1
2 +

n∑

k=(log n)1/4

n
1
2 (

k
2)− k(k−3)

2 − 1+δ
2

k
k−1+ η1

2

< Cn−ψ(δ)+η1 . (83)

As the reader perhaps already notices, the cutoff (log n)1/4 is not special and any
poly-log cutoff (log n)r with 0 < r < 1/2 works.

For further applications later, we provide a quantitative bound for η1. Using (67)
and the fact that k

2(k−1) ≤ 1 for k ≥ 2, one can estimate the difference between the
two exponents of n in (81) and (82):

k

2(k − 1)
(1 + δ) − k

2(k − 1)
(1 − ξ)2(1 + δ′) + 1 + 4δ′

2
ε1/2 + 2ε

≤ (1 + δ) − (1 − 2ξ)(1 + δ − √
2ε(1 + δ)3/2) + 1 + 4δ

2
ε1/2 + 2ε

≤ 4(ε1/8 + δ1/4ε1/4)(1 + δ) + √
2ε(1 + δ)3/2 + 1 + 4δ

2
ε1/2 + 2ε =: rδ(ε), (84)

where we used ξ = (2ε1/2 + 8εδ′)1/4 ≤ 2ε1/8 + 2δ1/4ε1/4 in the last inequality. In
addition, for any constant η1 > 0, the inequality (83) holds for sufficiently large n.
Hence, η1 > 0 can be chosen as

η1 = 2rδ(ε), (85)

which obviously converges to 0 as ε → 0.
Similarly, for some η2 = η2(ε) such that limε→0 η2 = 0,

n · n−(1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε ≤ n−δ+η2 ≤ n−ψ(δ)+η2 . (86)
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Hence, applying (83) and (86) to (80), using the bound for δ′ in (67), for sufficiently
small ε,

P(λ1(Z
(1)) ≥ √

2(1 + δ′) log n) < Cn−ψ(δ)+max(η1,η2). (87)

Recall by Lemma 5.2, for all large n,

P(λ1(Z
(2)) ≥ √

ε(1 + δ)
√
log n) ≤ n−2δ−δ2+o(1) ≤ n−δ+o(1) ≤ n−ψ(δ)+o(1).

Since ε > 0 is arbitrary small, by (65) and the above two displays, we are done. ��

6 Structure conditioned onUı

We prove Theorem 1.4 in this section.We begin by stating some facts about φδ . Recall
thatM(δ) is the set of ofminimizers ofφδ(·), and by the strict convexity ofφδ(·),M(δ)

is at most of size 2 containing either a single element or two consecutive numbers. In
addition, since δ > δ2, we have ψ(δ) < φδ(2) = δ. From this, one can deduce that
there exists a constant c(δ) ∈ (0,min(δ − ψ(δ), 1)) such that

k /∈ M(δ) ⇒ φδ(k) − ψ(δ) ≥ c(δ) (88)

(recall that ψ(δ) = mink≥2 φδ(k)). In fact, let us define, in the case when M(δ) =
{h(δ)} is a singleton, by the strict convexity of φδ(·),

c(δ) = min
(
φδ(h(δ) − 1) − φδ(h(δ)), φδ(h(δ) + 1) − φδ(h(δ)),

1

2
(δ − ψ(δ)),

1

2

)
,

and whenM(δ) = {h(δ), h(δ)+1} (recall that h(δ) is the minimal element ofM(δ)),

c(δ) = min
(
φδ(h(δ) − 1) − φδ(h(δ)), φδ(h(δ) + 2) − φδ(h(δ) + 1),

1

2
(δ − ψ(δ)),

1

2

)
.

The minimum with 1/2 and (δ − ψ(δ))/2 is taken for technical reasons since in later
applications we will need c(δ) to be small enough, while (88) holds even without it.
Note that the quantity c(δ) can be arbitrary close to 0. In fact, for any δ0 such that
|M(δ0)| = 2, c(δ) is close to 0 if δ is close to δ0.

Recall the notation k̄ from (74). Now by the same chain of reasoning as in (80),
setting ξ := (2ε1/2 + 8εδ′)1/4, we obtain that for some η1, η2 with limε→0 η1 =
limε→0 η2 = 0,

P(k̄ /∈ M(δ), λ1(Z
(1)) ≥ √

2(1 + δ′) log n)

≤ C log n
∑

k /∈M(δ)

(d ′)(
k
2)n−(k2)+k− k

2(k−1) (1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε (89)

+ Cn · n−(1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε + Cn−2δ′
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≤ Cn−ψ(δ)−c(δ)+η1 + Cn−δ+η2 , (90)

where the bound on the first term is obtained as follows. By (84), for each k /∈ M(δ),
the exponent of n in (89) is bounded by

−
(
k

2

)
+ k − k

2(k − 1)
(1 − ξ)2(1 + δ′) + 1 + 4δ′

2
ε1/2 + ε

≤ −
(
k

2

)
+ k − k

2(k − 1)
(1 + δ) + rδ(ε) = −φδ(k) + rδ(ε)

(88)≤ −ψ(δ) − c(δ) + rδ(ε).

Hence, by the argument (81)–(83), the term (89) can be bounded by n−ψ(δ)−c(δ)+2rδ(ε),
and since limε→0 rδ(ε) = 0, we obtain (90). Therefore, using the fact that ψ(δ) +
c(δ) < δ, for sufficiently small ε > 0,

P(k̄ /∈ M(δ), λ1(Z
(1)) ≥ √

2(1 + δ′) log n) ≤ Cn−ψ(δ)−c(δ)+η1 . (91)

Since the statement of the theorem is about the entire graph X and not just X (1),

we will now show that superimposing X (2) on the latter does not alter the size of the
maximal clique with high probability owing to the sparsity of X (2). Recall that we use
kX to denote the size of the maximal clique in X . Since kX ≥ k̄ (recall that k̄ is the
maximal clique size in X (1)), (91) implies

P(kX ≤ h(δ) − 1, λ1(Z
(1)) ≥ √

2(1 + δ′) log n) ≤ Cn−ψ(δ)−c(δ)+η1 . (92)

To treat the non-trivial direction, i.e., superimposing X (2) does not make kX larger
than k̄, define the event F1, measurable with respect to X (1), by

F1 :=
{
|E(H)| −

(
k̄

2

)
≤ |V (H)| − k̄ : any subgraph H in X (1) such that |V (H)| ≤ 2h(δ) + 2

}
.

(93)

In words, under F1, the subgraph induced on any subset of vertices of size bigger
than k̄, has significantly smaller number of edges than the clique induced on the same
subset.

Note that, in particular, if k̄ ≥ 4, then on the event F1,

X (1) has a unique maximal clique K := KX (1) of size k̄. (94)

This follows from the definition of F1 applied to the subgraph induced on K ∪ K ′
where K ′ is another set of k̄ vertices.

We will show first show that F1 is likely, and on it, for X to have a larger clique,
X (2) must fill in the ‘substantially many’ edges absent in X (1) which will then be
shown to be unlikely.
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Showing F1 is likely. Towards this, observe that

P({k̄ = k} ∩ Fc
1 )

(48)≤ C
2h(δ)+2∑

i=1

( i

n

)(k2)−k+1 ≤ C(2h(δ) + 2)(
k
2)−k+2 1

n(k2)−k+1
. (95)

Hence, recalling the event F0 in (77), using the above and the argument of (80) again,
there is η′

1 with limε→0 η′
1 = 0 such that for δ > δ2,

P(k̄ ∈ M(δ),Fc
1 , λ1(Z

(1)) ≥ √
2(1 + δ′) log n)

≤
∑

k∈M(δ)

E

[
P(max

i∈I {λ1(Z (1)
i )} ≥ √

2(1 + δ′) log n | X (1))1F01F c
1
1k̄=k

]

+ E

[
P(max

i∈J
{λ1(Z (1)

i )} ≥ √
2(1 + δ′) log n | X (1))1D4δ′∩C4δ′∩E4δ′

]
+ P(Fc

0 )

≤ C(log n)n−1
∑

k∈M(δ)

(2h(δ) + 2)(
k
2)−k+2n−(k2)+k− k

2(k−1) (1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε

+ Cn · n−(1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε + Cn−2δ′

≤ Cn−ψ(δ)−1+η′
1 , (96)

where the extra n−1 factor in the first term comes from (95). Note that the condition
δ > δ3 implies that elements in M(δ) are greater than or equal to 4, and hence the
condition k ≥ 3 in the summation throughout the argument in (80) is already implied
by k ∈ M(δ). Putting the above together, letting

F2 := {k̄ ∈ M(δ)} ∩ F1, (97)

by (91) and (96), for large δ,

P(Fc
2 , λ1(Z

(1)) ≥ √
2(1 + δ′) log n) ≤ n−ψ(δ)−c(δ)+η1 (98)

(recall that c(δ) ∈ (0, 1)). By Lemma 5.2, this in particular implies

P(Fc
2 , λ1(Z) ≥ √

2(1 + δ) log n)

≤ P(Fc
2 , λ1(Z

(1)) ≥ √
2(1 + δ′) log n) + P(λ1(Z) ≥ √

2(1 + δ) log n, λ1(Z
(1))

<
√
2(1 + δ′) log n)

≤ Cn−ψ(δ)−c(δ)+η1 + P(λ1(Z
(2)) ≥ √

ε(1 + δ)
√
log n) ≤ Cn−ψ(δ)−c(δ)+η1 .

(99)

Combining this with (4), since limε→0 η1 = 0, there exists ε0 = ε0(δ) > 0 such that
for any ε < ε0 (recall that ε implicitly appears in the definition of X (1)),

lim
n→∞ P(Fc

2 | Uδ) = 0. (100)
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Since the minimum element inM(δ) is greater than or equal to 4 under the condition
δ > δ3, the event F2 implies k̄ ≥ 4 (see (97)). Hence, recalling F2 ⊂ F1 and the fact
that F1 along with k̄ ≥ 4 implies the uniqueness of maximal clique K in X (1) (see
(94)),

lim
n→∞ P(there is a unique maximal clique K in X (1) | Uδ) = 1. (101)

For convenience, let us denote the above event byUnique.Wenowproceed to showing
that the unique maximal clique K of X (1) continues to be so on superimposing X (2)

to obtain X .

We first define some notations. For two subsets of vertices A and B, define the set
of undirected edges

Edge(A, B) := {e = (i, j) : i < j, i, j ∈ B\A} ∪ {e = (i, j) : i ∈ B\A, j ∈ A ∩ B}.

Note that

|Edge(A, B)| =
(|B|

2

)
−

(|A ∩ B|
2

)
. (102)

Then, define the random subset of edges, measurable with respect to X (1), by

X (1)(A, B) = Edge(A, B) ∩ E(X (1)).

We first verify that under the event F2 = {k̄ ∈ M(δ)} ∩ F1, any clique K ′ of size
� ≤ k̄ satisfies

|X (1)(K , K ′)| ≤ � − |K ∩ K ′| (103)

where as mentioned above K is the unique maximal clique in X (1). Since

|E(K ∪ K ′)| ≥
(
k̄

2

)
+ |X (1)(K , K ′)|,

applying (93) to H = K∪K ′ (note that under the event k̄ ∈ M(δ), we have |K∪K ′| ≤
2k̄ ≤ 2 h(δ) + 2),

(
k̄

2

)
+ |X (1)(K , K ′)| −

(
k̄

2

)
≤ |K ∪ K ′| − k̄ = � − |K ∩ K ′|,

which implies (103).
Note that conditioning on X (1), the entries of X are independent and satisfy

P(Xi j = 1|X (1)
i j = 0) ≤ 2d

n
for large n,
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P(Xi j = 1|X (1)
i j = 1) = 1.

In fact, using the fact that P(Xi j = 0) = 1 − d
n ≥ 1

2 for large n,

P(Xi j = 1|X (1)
i j = 0) = P(|Yi j | <

√
ε log log n, Xi j = 1)

P(X (1)
i j = 0)

≤ P(Xi j = 1)

P(Xi j = 0)
≤ 2d

n
,

and the second identity is obvious.
We will now define two events B0 and B1,which will be shown to be very likely on

Uδ and together would imply that K is the unique maximal clique in X and moreover,
the largest clique not fully contained in K is a triangle.

We begin with B0 which is measurable with respect to the sigma algebra generated
by X (1) and X .

B0 := (Unique ∩ {there is a clique of size 4 in X which is edge-disjoint from K })c.
(104)

In other words,Bc
0 demands a disjoint occurrence of the clique K and a clique of size 4

(in the graph X ). Recalling that K is of size k̄, by BK inequality and using Lemma 4.3

P(Bc
0 ∩ {k̄ ∈ M(δ)}) ≤ C

(1
n

)(h(δ)
2 )−h(δ)(1

n

)(42)−4 = C
(1
n

)(h(δ)
2 )−h(δ)+2

, (105)

where C > 0 is a constant depending only on δ. We write

P

(
Bc
0, λ1(Z

(1)) ≥ √
2(1 + δ′) log n

)

≤ E

[
P(λ1(Z

(1)) ≥ √
2(1 + δ′) log n|X (1), X)1F01k̄∈M(δ)1Bc

0

]

+ P

((
F0 ∩ {k̄ ∈ M(δ)})c, λ1(Z (1)) ≥ √

2(1 + δ′) log n
)

. (106)

Since λ1(Z (1)) and X are conditionally independent given X (1), by (75) and (76), there
is η3 = η3(ε) with limε→0 η3 = 0 such that for sufficiently small ε > 0,

P(λ1(Z
(1)) ≥ √

2(1 + δ′) log n|X (1), X)1F01k̄∈M(δ)

≤ C(log n)n
− k̄

2(k̄−1)
(1−ξ)2(1+δ′)+ 1+4δ′

2 ε1/2+ε + Cn · n−(1−ξ)2(1+δ′)+ 1+4δ′
2 ε1/2+ε

≤ Cn
− k̄

2(k̄−1)
(1+δ)+η3+ε ≤ Cn− h(δ)+1

2h(δ)
(1+δ)+η3+ε

,

where the second and last inequalities follow by observing k̄
2(k̄−1)

(1 + δ) ≤ φδ(k̄) <

φδ(2) = δ (since k̄ ≥ 3 and δ > δ2) and k̄ ≤ h(δ)+1 respectively.Hence, applying this
and (105) to (106), using (78) and (98) to bound the last term in (106), for sufficiently
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small ε > 0,

P

(
Bc
0, λ1(Z

(1)) ≥ √
2(1 + δ′) log n

)

≤ Cn− h(δ)+1
2h(δ)

(1+δ)+η3+ε
P(Bc

0 ∩ {k̄ ∈ M(δ)}) + Cn−2δ′ + n−ψ(δ)−c(δ)+η1

(105)≤ Cn− h(δ)+1
2h(δ)

(1+δ)+η3+ε
(1
n

)(h(δ)
2 )−h(δ)+2 + Cn−2δ′ + n−ψ(δ)−c(δ)+η1

≤ Cn−ψ(δ)−1+η3+ε + Cn−2δ′ + n−ψ(δ)−c(δ)+η1 ≤ Cn−ψ(δ)−c(δ)+η1 (107)

(recall that c(δ) ∈ (0, 1)), where the third inequality follows from the fact

h(δ) + 1

2h(δ)
(1 + δ) +

(
h̃(δ)

2

)
− h(δ) =

(
h(δ)

2(h(δ) − 1)
(1 + δ) + h(δ)(h(δ) − 3)

2

)

− 1

2h(δ)(h(δ) − 1)

≥ ψ(δ) − 1,

where the last inequality follows from the observation that the term in the parentheses
is exactly ψ(δ). Let us define the another event, again measurable with respect to the
sigma algebra generated by X (1) and X ,

B1 := (Unique ∩ {there is a clique K ′ of size 4 in X such that 2 ≤ |K ∩ K ′| ≤ 3})c.
(108)

Thus, in words, the event Bc
1 demands the existence of a clique of size 4 which is not

edge disjoint from K but also is not contained in the latter.
Note that by (102) and (103), under the event F2, the number of missing edges (of

X (1)) in Edge(K , K ′) is

|Edge(K , K ′)\X (1)(K , K ′)| ≥
(|K ′|

2

)
−

(|K ∩ K ′|
2

)
− (|K ′| − |K ∩ K ′|).

Hence,

P(Bc
1 | X (1))1F2

≤
3∑

m=2

∑

|K∩K ′|=m

P(Xi j = 1 for all edges e

= (i, j) ∈ Edge(K , K ′)\X (1)(K , K ′) | X (1))1F2

≤
3∑

m=2

k̄mn4−m
(2d
n

)(42)−(m2)−(4−m) ≤ C
3∑

m=2

(1
n

)((42)−2·4)−((m2)−2m) ≤ C
1

n
.

(109)
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Hence, observing that, X and λ1(Z (1)) are conditionally independent given X (1),

by (87) and (98),

P

(
Bc
1, λ1(Z

(1)) ≥ √
2(1 + δ′) log n

)

≤ E

[
P(Bc

1|X (1), λ1(Z
(1)))1F21λ1(Z (1))≥√

2(1+δ′) log n

]
+ P(Fc

2 , λ1(Z
(1))

≥ √
2(1 + δ′) log n)

≤ Cn−ψ(δ)−c(δ)+η1 . (110)

Combining with (91) and (107),

P

(
(B0 ∩ B1 ∩ {k̄ ∈ M(δ)})c, λ1(Z (1)) ≥ √

2(1 + δ′) log n
)

≤ Cn−ψ(δ)−c(δ)+η1 .

(111)

Proceeding as in (99)–(101), there exists ε1 > 0 such that for any ε < ε1,

lim
n→∞ P(B0 ∩ B1 ∩ {k̄ ∈ M(δ)} | Uδ) = 1. (112)

Recall that conditionally on Uδ , the event Unique happens with high probability
(see (101)). Hence, by (112) and recalling the definition of B0 and B1, we have the
following conclusion: With high probability conditionally on Uδ , there is a unique
maximal clique K in X (1) and furthermore,

there is no clique of size 4 in X edge-disjoint from K

and

there is no clique K ′ of size 4 in X with 2 ≤ |K ∩ K ′| ≤ 3.

This implies the statements in Theorem 1.4 and in particular

lim
n→∞ P(there is a unique maximal clique KX in X and is equal to K | Uδ) = 1.

(113)

��

7 Optimal localization of leading eigenvector

We prove Theorem 1.7 in this section. Recall v = (v1, · · · , vn) is the unit eigenvector
associated with the largest eigenvalue λ1 = λ1(Z) and let KX be the unique maxi-
mal clique (recall that Theorem 1.4 ensures uniqueness conditioned on Uδ with high
probability). Then,
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λ1 =
∑

1≤i, j≤n

Zi jviv j =
∑

1≤i, j≤n

Z (1)
i j viv j +

∑

1≤i, j≤n

Z (2)
i j viv j . (114)

The proof has two parts. In the first, we prove that the eigenvector allocates most of
its mass on KX , while in the second part we further show that the mass is uniformly
distributed.

Mass concentration. Let us recall rδ(ε) and c(δ) defined in (84) and (88) respectively.
We choose a parameter ε sufficiently small so that

2rδ(ε) < c(δ), (115)

ε ≤ 1

δ4
, (116)

ε < min(ε0, ε1) (117)

(ε0 and ε1 are positive constant depending on δ such that (101) and (113) are satisfied
for ε < ε0 and ε < ε1 respectively). Recall that by (101) and (113), conditionally
on Uδ , with probability tending to 1, the following is true: the maximal cliques KX (1)

and KX are unique and equal which will be often denoted by K for brevity. Hence,
throughout the proof, we assume the occurrence of this event.

Recall

A1 :=
{ ∑

i∈K
v2i ≥ 1 − κ

}
, (118)

where κ > 0 is the parameter in the statement of the theorem. Since

P

⎛

⎝
∑

1≤i, j≤n

Z (2)
i j viv j ≥ √

ε(1 + δ)
√
log n

⎞

⎠ ≤ P

(

λ1(X
(2)) ≥ (1 + δ)

√
log n

log log n

)

≤ n−(2δ+δ2)+o(1),

by (65), for any event A,

P(A, λ1 ≥ √
2(1 + δ) log n) ≤ P(A,

∑

1≤i, j≤n

Z (1)
i j viv j

≥ √
2(1 + δ′) log n) + n−(2δ+δ2)+o(1), (119)

where δ′ > 0 as before is defined to be

√
2(1 + δ′) = √

2(1 + δ) − √
ε(1 + δ). (120)
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Note that since ε ≤ 1
δ4
, using the bound for δ′ in (67), we have

δ′ = δ + oδ(1) as δ → ∞. (121)

We will now bound the first term on the RHS of (119) with A = A1 using Proposi-
tion 3.1 and the fact that on the high probability event F1 defined in (93), the largest
clique outside K is at most a triangle (the reason will be explained shortly in (129)
and the discussion following it) which would make it suboptimal in a large deviation
theoretic sense for the eigenvector to allocate mass off of K . We now proceed to make
this precise. The arguments will bear similarities with those appearing in the proof of
Proposition 5.7.

LetC1, · · · ,Cm be connected components of X (1), and letwithout loss of generality
C1 contain the clique K of size k̄. Let ki be the maximum clique size in Ci .

We will now work with the high probability event F0 from (77). As in the proof of
Proposition 5.7, define B1 to be the collection of (directed) edges defined by

B1 := {e = (i, j) ∈ −−−→
E(C1) : v2i , v

2
j < η̄2} (122)

(recall that for any graph H ,
−−−→
E(H) denotes the set of directed edges in H ), where the

parameter η̄ is chosen to be

η̄ = ε1/4. (123)

Define the set of (directed) edges B2 := −−−→
E(C1)\B1. Since |{i : v2i ≥ η2}| ≤ 1

η̄2
, under

the event F0, using the definition of D4δ′,

1

2
|B2| ≤ 1 + 4δ′

η̄2

log n

log log n
, (124)

by the same reasoning as preceding (54). We write

∑

(i, j)∈−−−→
E(C1)

Z (1)
i j viv j =

∑

(i, j)∈B1
Z (1)
i j viv j +

∑

(i, j)∈B2
Z (1)
i j viv j =: S1 + S2. (125)

By the same reasoning as in (58), and following the same notation as in the latter, for
2η̄2 ≤ 1, under the event F0,

∑

(i, j)∈B1
v2i v

2
j ≤ 2η̄2(1 − η̄2) + 2(4δ′ + 1)η̄4 =: θ4. (126)

Note that since η̄ = ε1/4 ≤ 1
δ
(see (116)), by (121), we have

θ = O
( 1

δ1/2

)
as δ → ∞. (127)
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By Cauchy–Schwarz inequality and (126),

S1 ≤
( ∑

(i, j)∈B1
v2i v

2
j

)1/2( ∑

(i, j)∈B1
(Z (1)

i j )2
)1/2 ≤ θ2

( ∑

(i, j)∈−−−→
E(C1)

(Z (1)
i j )2

)1/2
. (128)

Next, we estimate S2. Define x := ∑
i∈K v2i and y := ∑

C1\K v2i . Recalling the
definition of event F1 in (93), on the latter,

the maximum size of clique in Kc is at most 3. (129)

To see this, note that if Kc contains a clique K ′ of size 4, then |E(K ∪ K ′)| ≥ (k̄
2

) + 6
and |V (K ∪ K ′)| = k̄ + 4, which contradicts (93). Hence, under the event F1,

∑

(i, j)∈B2
v2i v

2
j ≤

∑

(i, j)∈−−−→
E(C1)

v2i v
2
j ≤

∑

i �= j,i, j∈K
v2i v

2
j + 2

∑

i∈K , j∈C1\K
v2i v

2
j

+
∑

i �= j,(i, j)∈−−−−−−→
E(C1\K )

v2i v
2
j

≤ 2
( k̄ − 1

2k̄
x2 + xy + 1

3
y2

)
. (130)

The final bound follows from (21). Thus, under the event F1,

S2 ≤
( ∑

(i, j)∈B2
v2i v

2
j

)1/2( ∑

(i, j)∈B2
(Z (1)

i j )2
)1/2

≤
( k̄ − 1

k̄
x2 + 2xy + 2

3
y2

)1/2( ∑

(i, j)∈B2
(Z (1)

i j )2
)1/2

. (131)

Note that using the fact

1 =
n∑

i=1

v2i = x + y +
m∑

�=2

( ∑

i∈C�

v2i

)
,

we have

∑

1≤i, j≤n

Z (1)
i j viv j = S1 + S2 +

m∑

�=2

∑

(i, j)∈−−−→
E(C�)

Z (1)
i j viv j

≤ S1 + S2 +
m∑

�=2

λ(Z (1)
� )

( ∑

i∈C�

v2i

)
≤ S1 + S2

+ (1 − x − y) max
�=2,··· ,m λ(Z (1)

� ). (132)
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We now estimate the following conditional probability

P

(
x < 1 − κ,

∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

= P

(
x < 1 − κ, y ≥ κ

2
,

∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

+ P

(
x < 1 − κ, y <

κ

2
,

∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

=: R1 + R2. (133)

We next bound R1 and R2 in turn.

Bounding R1. By (132),

R1 ≤ P(S1 ≥ θ
√
2(1 + δ′) log n | X (1))1F0∩F2

+ P

(
x < 1 − κ, y ≥ κ

2
, S2 ≥ (x + y − θ)

√
2(1 + δ′) log n | X (1)

)
1F0∩F2

+ P

(
max

�=2,··· ,m λ(Z (1)
� ) ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

=: R1,1 + R1,2 + R1,3. (134)

By (128) and (39) in Lemma 5.1 with γ = ε, L = 1
θ2

(1 + δ′) log n and m ≤
2+4δ′

ε
log n

log log n + 4δ′ (see (69) and (70)), for sufficiently large n,

R1,1 ≤ P

( ∑

i< j,(i, j)∈−−−→
E(C1)

(Z (1)
i j )2 ≥ 1

θ2
(1 + δ′) log n | X (1)

)
1F0∩F2 ≤ n

− 1+δ′
2θ2

+(1+2δ′)+ε
.

(135)

To bound R1,2, we first need the following technical bound. There exists a constant
λ = λ(κ) ∈ (0, 1

100 ) such that for sufficiently large δ, under the event k̄ ∈ M(δ), for
x < 1 − κ, y ≥ κ

2 ,

k̄ − 1

k̄
x2 + 2xy + 2

3
y2 <

( k̄ − 1

k̄
− λ

)
(x + y − θ)2. (136)

In fact, rearranging, this inequality holds if

λx2 + 2
(1
k̄

+ λ
)
xy + 2

( k̄ − 1

k̄
− λ

)
θ(x + y) <

( k̄ − 1

k̄
− λ − 2

3

)
y2.

Recall that by (9), k̄ ∈ M(δ) implies

(1 + δ

2

)1/3 − 1 ≤ k̄ ≤
(1 + δ

2

)1/3 + 3. (137)
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Hence, there is λ = λ(κ) > 0 such that for x < 1− κ, y ≥ κ
2 and sufficiently large δ,

under the event k̄ ∈ M(δ),

λx2 <
1

10
y2, 2

(1
k̄

+ λ
)
xy <

1

10
y2, 2

( k̄ − 1

k̄
− λ

)
θ(x + y) < 2θ <

1

10
y2

(see (127) for the bound of θ ). If λ is small enough, say λ ∈ (0, 1
100 ), then for

sufficiently large δ, under the event k̄ ∈ M(δ), 3
10 < k̄−1

k̄
−λ− 2

3 , and thus we obtain
(136).

Thus, by (131) and (136), using the fact ( k̄−1
k̄

− λ)−1 ≥ k̄
k̄−1

+ λ,

R1,2 ≤ P

( ∑

i< j,(i, j)∈B2
(Z (1)

i j )2 ≥
( k̄

k̄ − 1
+ λ

)
(1 + δ′) log n | X (1)

)
1F0∩F2 . (138)

Note that the event
∑

i< j,(i, j)∈B2(Z
(1)
i j )2 ≥ t implies the existence of a random subset

J ∈ V (C1)with |J | ≤
⌊

1
η̄2

⌋
such that

∑

i< j,i or j∈J ,i∼ j

(Z (1)
i j )2 ≥ t . Hence, by the union

bound and (39) in Lemma 5.1 with

γ = ε, L =
( k̄

k̄ − 1
+ λ

)
(1 + δ′) log n, m ≤ 1 + 4δ′

η̄2

log n

log log n

(see (124)), recalling η̄ = ε1/4, for large enough δ, for sufficiently large n,

R1,2 ≤ |V (C1)|
⌊

1
η̄2

⌋

n
− 1

2 ( k̄
k̄−1

+λ)(1+δ′)+ ε
2
1+4δ′

η̄2
+ε ≤ n

− 1
2

k̄
k̄−1

(1+δ′)− 1
2 λ(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
.

(139)

Here, we used the fact |V (C1)| ≤ (1+ 4δ′) log n
log log n to bound the term |V (C1)|

⌊
1
η̄2

⌋

by
nε.

Recall from (129) that the size of maximal clique in C�, � = 2, · · · ,m, is at most
3 under the event F2 = {k̄ ∈ M(δ)} ∩ F1. Hence, by Proposition 5.7 with

α = 1 + δ′, k ≤ 3, γ = ε, η = ε1/4, c1 = 1 + 4δ′, c2 = 2 + 4δ′

ε
, c3 = 4δ′,

setting ξ := (2η2 + 8η4δ′)1/4, for sufficiently large δ,

R1,3 ≤ n(n
− 1+δ′

2ξ2
+(1+2δ′)+ε + n− 3

4 (1−ξ)2(1+δ′)+ 1
2 (1+4δ′)ε1/2+ε)

≤ Cn− 3
4 (1−ξ)2(1+δ′)+ 1

2 (1+4δ′)ε1/2+ε+1. (140)
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Here, we used the following comparison between exponents: as δ → ∞,

1 + δ′

2ξ2
− (1 + 2δ′) − ε = �(δ2),

3

4
(1 − ξ)2(1 + δ′) − 1

2
(1 + 4δ′)ε1/2 − ε =

(3
4

+ oδ(1)
)
δ.

This follows from ε ≤ 1
δ4

and the fact

ξ = O
( 1

δ1/2

)
as δ → ∞, (141)

which is a consequence of ξ = (2η2 + 8η4δ′)1/4 = (2ε1/2 + 8εδ′)1/4, ε ≤ 1
δ4

and the
bound for δ′ in (121).

Thus, applying the above bounds for R1,1, R1,2 and R1,3 (see (135), (139) and (140)
respectively) to (134), for sufficiently large δ,

R1 ≤ Cn
− 1

2
k̄

k̄−1
(1+δ′)− 1

2λ(1+δ′)+ 1
2 (1+4δ′)ε1/2+2ε

. (142)

This follows from the fact that for sufficiently large δ, under the event k̄ ∈ M(δ),
RHS of (139) is the slowest decaying term among itself, (135) and (140). In fact,
using ε ≤ 1

δ4
and the bound for θ , k̄ and ξ in (127), (137) and (141) respectively, we

have

1 + δ′

2θ2
− (1 + 2δ′) − ε = �(δ2), (143)

1

2

k̄

k̄ − 1
(1 + δ′) + 1

2
λ(1 + δ′) − 1

2
(1 + 4δ′)ε1/2 − 2ε =

(1 + λ

2
+ oδ(1)

)
δ,

(144)

3

4
(1 − ξ)2(1 + δ′) − 1

2
(1 + 4δ′)ε1/2 − ε − 1 =

(3
4

+ oδ(1)
)
δ. (145)

Since λ ∈ (0, 1
100 ), for large δ, (144) is smaller than the other two terms.

Bounding R2. For υ > 0 to be chosen later, we write

R2 ≤ P(S1 ≥ θ
√
2(1 + δ′) log n|X (1))1F0∩F2

+ P

(
S2 ≥ (1 + υ)

(
x + k̄

k̄ − 1
y
)√

2(1 + δ′) log n|X (1)
)
1F0∩F2

+ P

(
x < 1 − κ, y <

κ

2
, (1 − x − y)max

�≥2
λ1(Z

(1)
� )

≥
(
1 − (1 + υ)

(
x + k̄

k̄ − 1
y
)

− θ
)√

2(1 + δ′) log n|X (1)
)
1F0∩F2

=: R2,1 + R2,2 + R2,3. (146)
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We take υ > 0 such that for sufficiently large δ > 0 and small κ > 0, under the event
k̄ ∈ M(δ), for any x < 1 − κ and y < κ

2 ,

1 − (1 + υ)
(
x + k̄

k̄ − 1
y
)

− θ ≥ 1 − (1 + υ)(x + y) − 1 + υ

2(k̄ − 1)
κ − θ

>
9

10
(1 − x − y). (147)

Here, the last inequality follows from the bound x + y ≤ 1 − κ
2 and the bound for θ

in (127).
By (135), for sufficiently large n,

R2,1 ≤ n
− 1+δ′

2θ2
+(1+2δ′)+ε

. (148)

Note that for sufficiently large δ, under the event k̄ ∈ M(δ), by the bound for k̄ in
(137), we have 2( k̄−1

2k̄
x2 + xy + 1

3 y
2) < k̄−1

k̄
(x + k̄

k̄−1
y)2. Thus, by (131),

S2 ≤
( k̄ − 1

k̄

)1/2(
x + k̄

k̄ − 1
y
)( ∑

(i, j)∈B2
(Z (1)

i j )2
)1/2

.

Hence, by the same arguments as in (138) and (139) (apply (39) in Lemma 5.1 with
γ = ε, L = k̄

k̄−1
(1+υ)2(1+ δ′) log n and m ≤ 1+4δ′

η̄2
log n

log log n ), for large enough δ, for
sufficiently large n,

R2,2 ≤ P

( ∑

i< j,(i, j)∈B2
(Z (1)

i j )2 ≥ k̄

k̄ − 1
(1 + υ)2(1 + δ′) log n | X (1)

)
1F0∩F2

≤ |V (C1)|
⌊

1
η̄2

⌋

n
− 1

2
k̄

k̄−1
(1+υ)2(1+δ′)+ 1

2 (1+4δ′)ε1/2+ε

≤ n
− 1

2
k̄

k̄−1
(1+δ′)−υ(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
. (149)

Next, by (147),

R2,3 ≤ P

(
max

�=2,··· ,m λ1(Z
(1)
� ) ≥ 9

10

√
2(1 + δ′) log n | X (1)

)
1F0∩F2 .

Since the size of maximal clique in C�, � = 2, · · · ,m, is at most 3 under the event
F2, by the same argument as in (140) (apply Proposition 5.7 with α = ( 9

10 )
2(1+ δ′),

k ≤ 3, η = ε1/4 and γ = ε), for sufficiently large δ,

R2,3 ≤ n(n
−( 9

10 )2 1+δ′
2ξ2

+(1+2δ′)+ε + n− 3
4 ( 9

10 )2(1+δ′)+ 1
2 (1+4δ′)ε1/2+ε)

≤ Cn− 3
4 ( 9

10 )2(1+δ′)+ 1
2 (1+4δ′)ε1/2+ε+1. (150)
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Thus, applying (148), (149) and (150) to (146), for large enough δ, for sufficiently
large n,

R2 ≤ Cn
− 1

2
k̄

k̄−1
(1+δ′)−υ(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
. (151)

This follows from the fact that for sufficiently large δ, under the event k̄ ∈ M(δ),
RHS of (149) is the slowest decaying term among itself, (148) and (150). This can be
verified by the similar argument as in (142), combined with the fact that

1

2

k̄

k̄ − 1
(1 + δ′) + υ(1 + δ′) − 1

2
(1 + 4δ′)ε1/2 − 2ε =

(1
2

+ υ + oδ(1)
)
δ

and 1
2 < 3

4 (
9
10 )

2.
Therefore, using the bounds in (142) and (151) in (133) we get that

P

(
x < 1 − κ,

∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

≤ Cn
− 1

2
k̄

k̄−1
(1+δ′)−min( 12λ,υ)(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
. (152)

Finishing the proof. Recall that under the event F0, the number of non-tree compo-
nents is less than log n. Hence, by (75) and (76),

P

( ∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0

≤ P

(
max

�=1,··· ,m λ1(Z
(1)
� ) ≥ √

2(1 + δ′) log n | X (1)
)
1F0

≤ C(log n)n
− k̄

2(k̄−1)
(1−ξ)2(1+δ′)+ 1

2 (1+4δ′)ε1/2+ε + Cn · n−(1−ξ)2(1+δ′)+ 1
2 (1+4δ′)ε1/2+ε

(153)

(recall that ξ = (2ε1/2 + 8εδ′)1/4). Using the bound for ξ in (141) and ε ≤ 1
δ4
, in the

case k̄ ≥ 3, for large δ, for sufficiently large n, (153) is bounded by

Cn
− k̄

2(k̄−1)
(1−ξ)2(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
, (154)

and for k̄ = 2, (153) is bounded by

Cn−(1−ξ)2(1+δ′)+ 1
2 (1+4δ′)ε1/2+ε+1. (155)

Recalling F2 = {k̄ ∈ M(δ)} ∩ F1, we write

P

(
x < 1 − κ,

∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n
)
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≤
∑

k∈M(δ)

E

[
P

(
x < 1 − κ,

∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1k̄=k1F01F2

]

+
∑

k∈M(δ)

E

[
P

( ∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1k̄=k1F01Fc

1

]

+
∑

k /∈M(δ)

E

[
P

( ∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1k̄=k1F0

]
+ P(Fc

0 ). (156)

Recalling ε ≤ 1
δ4
, by (79) and (152), the first term in (156) is bounded by

C
∑

k∈M(δ)

n− 1
2

k
k−1 (1+δ′)−min( 12λ,υ)(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε (d ′)(
k
2)

n(k2)−k
. (157)

We use the argument in (81)–(83) to bound this quantity. The exponent in n above is
less than

[
−

(
k

2

)
+ k − k

2(k − 1)
(1 − ξ)2(1 + δ′) + 1 + 4δ′

2
ε1/2 + 2ε

]
− min

(1
2
λ, υ

)
(1 + δ′).

Comparing thiswith the exponent in (81),wenotice the additional termmin( 12λ, υ)(1+
δ′). Hence, recalling η1 in (83) can be chosen as η1 = 2rδ(ε) (see (85)), (157) can be
bounded by

Cn−ψ(δ)−min( 12λ,υ)(1+δ′)+2rδ(ε). (158)

Similarly, using (95) and (154), the second term in (156) is bounded by

C
∑

k∈M(δ)

n− k
2(k−1) (1−ξ)2(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
(
2h(δ) + 2

n

)(k2)−k+1

≤ Cn−ψ(δ)−1+2rδ(ε).

(159)

This follows from the fact that there is an additional n−1 term arising from

(
2 h(δ)+2

n )(
k
2)−k+1. In addition, by (79), (154) and (155), the third term in (156) is

bounded by

C
∑

k≥3,k /∈M(δ)

n
− k̄

2(k̄−1)
(1−ξ)2(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε (d ′)(
k
2)

n(k2)−k
+ Cn−(1−ξ)2(1+δ′)+ 1

2 (1+4δ′)ε1/2+ε+1

≤ Cn−ψ(δ)−c(δ)+2rδ(ε). (160)

Here, the additional term c(δ) comes from the fact that in the first term, the summation
is taken only over k ∈ M(δ)c and φδ(k) ≥ ψ(δ) + c(δ) for k ∈ M(δ)c (see (90) for
details). The second term can be absorbed in the constantC sinceψ(δ) = ( 12 +oδ(1))δ
(see (6)).
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Finally, by (78), the last term in (156) is bounded by n−2δ′
. Hence, applying the

above bounds to (156), for sufficiently large δ > 0,

P

(
x < 1 − κ,

∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n
)

≤ Cn−ψ(δ)−c(δ)+2rδ(ε). (161)

Above, we used the fact that for large enough δ, c(δ) < 1 < min( 12λ, υ)(1+δ′), which
follows from the bound for δ′ in (121). Since 2rδ(ε) < c(δ) (see (115)), applying (119)
and then Theorem 1.1, for sufficiently large δ,

lim
n→∞ P(x < 1 − κ | Uδ) = 0. (162)

Therefore, for sufficiently large δ,

lim
n→∞ P(A1 | Uδ) = 1. (163)

��
Uniformity of eigenvector.We will aim to show

∑
i< j,i, j∈K (v2i − v2j )

2 is small from
which the form of uniformity appearing in the theorem statement follows immediately.

We first recall the parameter θ defined in (126). By (132), setting ρ := 16κ ,

P

(
x ≥ 1 − κ,

∑

i< j,i, j∈K
(v2i − v2j )

2 > ρ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

≤ P(S1 ≥ θ
√
2(1 + δ′) log n | X (1))1F0∩F2

+ P

(
x ≥ 1 − κ,

∑

i< j,i, j∈K
(v2i − v2j )

2 > ρ, S2 ≥ (x + y − θ)
√
2(1 + δ′) log n | X (1)

)
1F0∩F2

+ P

(
max

�=2,··· ,m λ(Z (1)
� ) ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2 . (164)

Since the first and third terms were already estimated during the analysis in the first
part, we now estimate the second term. Using the identity

k̄ − 1

2k̄

( ∑

i∈K
v2i

)2 −
∑

i< j,i, j∈K
v2i v

2
j = 1

2k̄

∑

i< j,i, j∈K
(v2i − v2j )

2,

under the event F1, we have an improvement of (130):

∑

(i, j)∈B2
v2i v

2
j ≤

∑

i �= j,i, j∈K
v2i v

2
j + 2

∑

i∈K , j∈C1\K
v2i v

2
j +

∑

i �= j,(i, j)∈−−−−−−→
E(C1\K )

v2i v
2
j

≤ 2
( k̄ − 1

2k̄
x2 + xy + 1

3
y2

)
− 1

k̄

∑

i< j,i, j∈K
(v2i − v2j )

2
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where we used the above identity to bound the first term on the RHS. Thus, under the
event

∑
i< j,i, j∈K (v2i − v2j )

2 > ρ, using x ≤ 1, we obtain the analog of (131):

S2 ≤
(( k̄ − 1

k̄
− ρ

k̄

)
x2 + 2xy + 2

3
y2

)1/2( ∑

(i, j)∈B2
(Z (1)

i j )2
)1/2

. (165)

To bound the above, we need the following technical inequality. For sufficiently large
δ, under the event k̄ ∈ M(δ), for x ≥ 1 − κ ,

( k̄ − 1

k̄
− ρ

k̄

)
x2 + 2xy + 2

3
y2 <

( k̄ − 1

k̄
− ρ

2̄k

)
(x + y − θ)2. (166)

In fact, by rearranging, (166) holds for sufficiently large δ if

2
(1
k̄

+ ρ

2k̄

)
xy + 2

( k̄ − 1

k̄
− ρ

2k̄

)
θ(x + y) ≤ ρ

2k̄
x2, (167)

since using (137) we know the coefficient of y2 on the RHS is at least that on the LHS.
For x ≥ 1 − κ , we have y ≤ κ and thus 2( 1

k̄
+ ρ

2k̄
)xy ≤ ρ

4k̄
x2 holds for small

enough κ > 0 (recall ρ = 16κ). Also, by the bounds for θ and k̄ in (127) and (137)
respectively, under the event k̄ ∈ M(δ), we have 2( k̄−1

k̄
− ρ

2k̄
)θ(x + y) ≤ 2θ ≤ ρ

4k̄
x2.

The previous two inequalities imply (167) and thus (166).
Hence, by (165) and (166), and further using ( k̄−1

k̄
− ρ

2k̄
)−1 ≥ k̄

k̄−1
+ ρ

2k̄
, the second

term in (164) is bounded by

P

( ∑

i< j,(i, j)∈B2
(Z (1)

i j )2 ≥
( k̄

k̄ − 1
+ ρ

2k̄

)
(1 + δ′) log n | X (1)

)
1F0∩F2 . (168)

Asbefore, by the unionbound andLemma5.1withγ = ε, L = ( k̄
k̄−1

+ ρ

2k̄
)(1+δ′) log n

and m ≤ 1+4δ′
η̄2

log n
log log n , the above, and thus the second term in (164), is bounded by

|V (C1)|
⌊

1
η̄2

⌋

n
− 1

2 ( k̄
k̄−1

+ ρ

2k̄
)(1+δ′)+ 1

2 (1+4δ′)ε1/2+ε

≤ n
− 1

2
k̄

k̄−1
(1+δ′)− ρ

4k̄
(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
. (169)

Since the first and last terms in (164) are bounded by (135) and (140) respectively,
one can deduce that

P

(
x ≥ 1 − κ,

∑

i< j,i, j∈K
(v2i − v2j )

2 > ρ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n|X (1)
)
1F0∩F2

≤ Cn
− 1

2
k̄

k̄−1
(1+δ′)− ρ

4k̄
(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
. (170)
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Similarly as (156), we write

P

(
x ≥ 1 − κ,

∑

i< j,i, j∈K
(v2i − v2j )

2 > ρ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n
)

≤
∑

k∈M(δ)

E

[
P

(
x ≥ 1 − κ,

∑

i< j,i, j∈K
(v2i − v2j )

2 > ρ,
∑

1≤i, j≤n

Z (1)
i j viv j

≥ √
2(1 + δ′) log n | X (1)

)
1k̄=k1F01F2

]

+
∑

k∈M(δ)

E

[
P

( ∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1k̄=k1F01F c

1

]

+
∑

k /∈M(δ)

E

[
P

( ∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1k̄=k1F0

]
+ P(Fc

0 ).

(171)

Using (137) and (170), there exist a constant c > 0 such that the first term in (171) is
bounded by

C
∑

k∈M(δ)

n
− 1

2
k̄

k̄−1
(1+δ′)− ρ

4k̄
(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε (d ′)(
k
2)

n(k2)−k
≤ Cn−ψ(δ)−cρδ2/3+2rδ(ε).

(172)

Other three terms in (171) can be bounded using (159), (160) and (78) respectively.
Hence, combining these together, using the fact that c(δ) < 1 < cρδ2/3 for large δ,
we have

P

(
x ≥ 1 − κ,

∑

i< j,i, j∈K
(v2i − v2j )

2 > ρ,
∑

1≤i, j≤n

Z (1)
i j viv j

≥ √
2(1 + δ′) log n

)
≤ Cn−ψ(δ)−c(δ)+2rδ(ε).

Since 2rδ(ε) < c(δ), applying (119) and then Theorem 1.1,

lim
n→∞ P

(
x ≥ 1 − κ,

∑

i< j,i, j∈K
(v2i − v2j )

2 > ρ | Uδ

)
= 0,

and thus by (162),

lim
n→∞ P

(
x ≥ 1 − κ,

∑

i< j,i, j∈K
(v2i − v2j )

2 ≤ ρ | Uδ

)
= 1.

123



664 S. Ganguly, K. Nam

It is now straightforward to obtain the uniformity statement in the theorem from
the smallness of

∑
i< j,i, j∈K (v2i − v2j )

2. To see this, note that setting S := ∑
i∈K v2i ,

∑

i∈K

(
v2i − 1

|K | S
)2 =

∑

i∈K
v4i − 2

S

|K |
∑

i∈K
v2i + 1

|K | S
2 =

∑

i∈K
v4i − 1

|K | S
2

= 1

|K |
(
(K − 1)

∑

i∈K
v4i − 2

∑

i< j,i, j∈K
v2i v

2
j

)
= 1

|K |
∑

i< j,i, j∈K
(v2i − v2j )

2.

(173)

Hence, recalling ρ = 16κ , for sufficiently large δ,

lim
n→∞ P

(
x ≥ 1 − κ,

∑

i∈K

(
v2i − 1

|K |
∑

i∈K
v2i

)2 ≤ 16κ

|K | | Uδ

)
= 1. (174)

Using the inequality (a + b)2 ≤ 2(a2 + b2), under the event

{ ∑

i∈K
v2i ≥ 1 − κ

}
∩

{ ∑

i∈K

(
v2i − 1

|K |
∑

i∈K
v2i

)2 ≤ 16κ

|K |
}
,

we have

∑

i∈K

(
v2i − 1

|K |
)2 ≤ 2

∑

i∈K

(
v2i − 1

|K |
∑

i∈K
v2i

)2 + 2|K |
( 1

|K |
∑

i∈K
v2i − 1

|K |
)2

≤ 32κ

|K | + 2κ2

|K | ≤ 40κ

|K | =: κ0

|K | . (175)

Recalling that KX = K , the proof is complete.

8 Uniform largeness of Gaussian weights

Weprove Theorem1.6 in this section. The proof essentially proceeds by comparing the
�1 and �2 norms of the Gaussian variables on the edges of the clique KX by obtaining
sharp estimates on each of them. The final statement then can be deduced from a
quantitative version of the Cauchy–Schwarz inequality. However, as the statement of
the theorem indicates, we will end up working with a set T slightly smaller than KX .

Implementing the strategy involves a few steps and in particular relies on Theorem 1.7
which is the reason we proved the latter first.

Sum of squares of the Gaussian weights. We use the same notations as in Sect. 7.
Also, as in the beginning of the proof of Theorem 1.7, we assume that the maximal
cliques K := KX (1) and KX are unique and equal.
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Setting ρ := 16κ , similarly as (166), for sufficiently large δ, under the event k̄ ∈
M(δ), for x ≥ 1 − κ ,

k̄ − 1

k̄
x2 + 2xy + 2

3
y2 ≤

( k̄ − 1

k̄
+ ρ

k̄

)
(x + y − θ)2. (176)

Using the above and (131),

S2 ≤
( k̄ − 1

k̄
+ ρ

k̄

)1/2
(x + y − θ)

( ∑

(i, j)∈B2
(Z (1)

i j )2
)1/2

, (177)

where S1 and S2 were defined in (125). We now define an event guaranteeing a sharp
behavior of the �2 norm of the Gaussian variables on the edges in B2 where the latter
was defined below (122),

A3 :=
{
2
( k̄

k̄ − 1
− ρ

k̄

)
(1 + δ′) log n ≤

∑

(i, j)∈B2
(Z (1)

i j )2 ≤ 2
( k̄

k̄ − 1
+ ρ

k̄

)
(1 + δ′) log n

}
.

(178)

Thus we have

P

(
Ac

3, x ≥ 1 − κ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

≤ P(S1 ≥ θ
√
2(1 + δ′) log n | X (1))1F0∩F2

+ P

(
Ac

3, x ≥ 1 − κ, S2 ≥ (x + y − θ)
√
2(1 + δ′) log n | X (1)

)
1F0∩F2

+ P

(
max

�=2,··· ,m λ(Z (1)
� ) ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2 . (179)

Since the first and last terms above can be bounded using (135) and (140) respectively,
we only bound the second term.

-Bounding the second term: Using ( k̄−1
k̄

+ ρ

k̄
)−1 ≥ k̄

k̄−1
− ρ

k̄
,

P

(
Ac

3, x ≥ 1 − κ, S2 ≥ (x + y − θ)
√
2(1 + δ′) log n | X (1)

)
1F0∩F2

(177)≤ P

(
Ac

3,
∑

(i, j)∈B2
(Z (1)

i j )2 ≥ 2
( k̄

k̄ − 1
− ρ

k̄

)
(1 + δ′) log n | X (1)

)
1F0∩F2

≤ P

( ∑

i< j,(i, j)∈B2
(Z (1)

i j )2 ≥
( k̄

k̄ − 1
+ ρ

k̄

)
(1 + δ′) log n | X (1)

)
1F0∩F2 , (180)

where the last inequality follows from the definition ofA3. As before, by union bound
and (39) in Lemma 5.1with γ = ε, L = ( k̄

k̄−1
+ ρ

k̄
)(1+δ′) log n andm ≤ 1+4δ′

η̄2
log n

log log n
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(using the bound on |B2| in (124)), for sufficiently large n, the above, and thus the
second term in (179), is bounded by

|V (C1)|
⌊

1
η̄2

⌋

n
− 1

2 ( k̄
k̄−1

+ ρ

k̄
)(1+δ′)+ 1

2 (1+4δ′)ε1/2+ε

≤ n
− 1

2
k̄

k̄−1
(1+δ′)− ρ

2k̄
(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
. (181)

-Combining altogether: As mentioned above, the first and last terms in (179) can be
bounded using (135) and (140) respectively. Hence, combining these together,

P

(
Ac

3, x ≥ 1 − κ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

≤ Cn
− 1

2
k̄

k̄−1
(1+δ′)− ρ

2k̄
(1+δ′)+ 1

2 (1+4δ′)ε1/2+2ε
. (182)

This follows from the fact that for sufficiently large δ, under the event F0 ∩F2, (181)
is the slowest decaying term among itself, (135) and (140). This follows from (143)
and (145) and observing that ε ≤ 1

δ4
and the bound for k̄ in (137) together, under the

event k̄ ∈ M(δ), implies

1

2

k̄

k̄ − 1
(1 + δ′) + ρ

2k̄
(1 + δ′) − 1

2
(1 + 4δ′)ε1/2 − 2ε =

(1
2

+ oδ(1)
)
δ.

Similarly as in (156), we write

P

(
Ac

3, x ≥ 1 − κ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n
)

≤
∑

k∈M(δ)

E

[
P

(
Ac

3, x ≥ 1 − κ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1k̄=k1F01F2

]

+
∑

k∈M(δ)

E

[
P

( ∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1k̄=k1F01Fc

1

]

+
∑

k /∈M(δ)

E

[
P

( ∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1k̄=k1F0

]
+ P(Fc

0 ). (183)

First, as in (157), one can bound the first term above using (182). In fact, using the
bound for δ′ and k̄ in (121) and (137) respectively, under k̄ ∈ M(δ), ρ

2k̄
(1 + δ′) ≥

cδ2/3 for some c > 0. Thus, for large δ, the first term in (183) can be bounded by
Cn−ψ(δ)−c′δ2/3 for some c′ < c. Combining this with the bounds for other three
terms, previously obtained in (159), (160) and (78) respectively, using the fact that
c(δ) < 1 < c′δ2/3 for large δ, (183) is bounded by Cn−ψ(δ)−c(δ)+2rδ(ε). Hence, using
(119), for large δ,

P(Ac
3, x ≥ 1 − κ, λ1 ≥ √

2(1 + δ) log n) ≤ Cn−ψ(δ)−c(δ)+2rδ(ε). (184)
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Since 2rδ(ε) < c(δ), combined with Theorem 1.1 and (162), for sufficiently large δ,

lim
n→∞ P

(
A3 | Uδ

)
= 1. (185)

Sum of absolute values of Gaussian weights.We now estimate the sum of absolute
values of Z (1)

i j . Defining

A′ :=
{ ∑

i∈K

(
v2i − 1

k̄

)2 ≤ κ0

k̄

}
(186)

(recall κ0 = 40κ , see (175)), since k̄ = |K |, by (174) and (175),

lim
n→∞ P

(
A′ | Uδ

)
= 1. (187)

Recalling that K = KX with probability going to one conditionally on Uδ, the events
A2 (from the statement of the theorem) and A′ are essentially the same.

We now define the set of vertices T appearing in the statement of the theorem,

T :=
{
i ∈ K :

∣∣∣v2i − 1

k̄

∣∣∣ <
κ
1/4
0

k̄

}
.

Then, by (137), for sufficiently large δ, under the event |k̄ − h(δ)| ≤ 1,

i �= j, i, j ∈ T implies (i, j) ∈ B2. (188)

This is because for i ∈ T and large δ, v2i ≥ (1 − κ
1/4
0 ) 1

k̄

(137)≥ c
δ1/3

> 1
δ2

≥ η̄2 where
the final inequality is by our choice of η̄ in (123). We now write

S2 =
∑

(i, j)∈B2
Z (1)
i j viv j =

∑

i or j∈T c,(i, j)∈B2
Z (1)
i j viv j +

∑

i, j∈T ,(i, j)∈B2
Z (1)
i j viv j

=: S21 + S22 (189)

(see (125) for the definition of S2). By Cauchy–Schwarz inequality, under the event
A′,

∑

i∈K

∣∣∣v2i − 1

k̄

∣∣∣ ≤ κ
1/2
0 . (190)

Thus, under the event A′,

|T c ∩ K | ≤ κ
1/4
0 k̄, |T | ≥ (1 − κ

1/4
0 )k̄. (191)
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Note that (190) implies
∑

v2i ≥ 1
k̄
(1+κ

1/4
0 )

(v2i − 1
k̄
) ≤ κ

1/2
0 , and thus under the event A′,

∑

i∈T c

v2i =
∑

v2i ≥ 1
k̄
(1+κ

1/4
0 )

v2i +
∑

v2i ≤ 1
k̄
(1−κ

1/4
0 )

v2i ≤
(
κ
1/2
0 + 1

k̄
κ
1/4
0 k̄

)
+ 1

k̄
κ
1/4
0 k̄ = κ

1/2
0 + 2κ1/4

0 .

Hence, under the event A′,
∑

i or j∈T c,(i, j)∈B2
v2i v

2
j ≤ 2

( ∑

i∈T c

v2i

)( ∑

j∈C1

v2j

)
≤ 2κ1/2

0 + 4κ1/4
0 =: κ ′2, (192)

and thus

S21 ≤
( ∑

i or j∈T c,(i, j)∈B2
(Z (1)

i j )2
)1/2( ∑

i or j∈T c,(i, j)∈B2
v2i v

2
j

)1/2

≤ κ ′( ∑

i or j∈T c,(i, j)∈B2
(Z (1)

i j )2
)1/2

. (193)

In addition, using the fact that v2i < 1
k̄
(1 + κ

1/4
0 ) for i ∈ T ,

|S22| ≤ 1

k̄
(1 + κ

1/4
0 )

∑

i, j∈T ,(i, j)∈B2
|Z (1)

i j | ≤ 1

k̄
(1 + κ

1/4
0 )

∑

i �= j,i, j∈T
|Z (1)

i j |. (194)

Now, we define the following event analogous to A3, but for the �1 norm,

A4 :=
{
k̄(1 − 3κ1/4)

√
2(1 + δ′) log n ≤

∑

i �= j,i, j∈T
|Z (1)

i j | ≤ k̄(1 + 3κ1/4)
√
2(1 + δ′) log n

}
.

(195)

Now using the decomposition in (132) and further using (189),

∑

1≤i, j≤n

Z (1)
i j viv j ≤ S1 + S21 + S22 + (1 − x − y) max

�=2,··· ,m λ(Z (1)
� ),

we write

P

(
Ac

4,A′, x ≥ 1 − κ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

≤ P(S1 ≥ θ
√
2(1 + δ′) log n|X (1))1F0∩F2 + P(A′, S21

≥ √
κ ′√2(1 + δ′) log n | X (1))1F0∩F2

+ P

(
Ac

4, x ≥ 1 − κ, S22 ≥ (x + y − θ − √
κ ′)

√
2(1 + δ′) log n | X (1)

)
1F0∩F2

+ P

(
max

�=2,··· ,m λ(Z (1)
� ) ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2 (196)
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(recall that κ ′ is defined in (192)). Since we already have estimates for the first and
last terms above, we only focus on the second and third terms.

-Bounding the second term: By (193),

P(A′, S21 ≥ √
κ ′√2(1 + δ′) log n | X (1))1F0∩F2

≤ P

(
A′,

∑

i< j, i or j∈T c,(i, j)∈B2
(Z (1)

i j )2 ≥ 1

κ ′ (1 + δ′) log n | X (1)
)
1F0∩F2 . (197)

Note that by (39) in Lemma 5.1 with

γ = ε, L = 1

κ ′ (1 + δ′) log n, m ≤ 4κ1/4k̄(1 + 4δ′) log n

log log n

(see (68)), for sufficiently large n, the quantity (197), and thus the second term in
(196), is bounded by

|V (C1)|
⌊
4κ1/4 k̄

⌋
n− 1

2κ′ (1+δ′)+ 1
2 4κ

1/4 k̄(1+4δ′)ε+ε ≤ n− 1
2κ′ (1+δ′)+2κ1/4 k̄(1+4δ′)ε+2ε

. (198)

The above inequality follows from the bound for |V (C1)| in (69) and observing that

(2 + 4δ′

ε

log n

log log n

)⌊
4κ1/4 k̄

⌋
(137)≤

(2 + 4δ′

ε

log n

log log n

)cδ1/3 ≤ nε

for large n (c > 0 is a constant depending on κ). The first factor in (198), as several
times before, appears due to a union bound over all possible choices of T c ∩ K .

-Bounding the third term: Note that for sufficiently small κ > 0, for large enough δ

and x ≥ 1 − κ ,

1 − 3κ1/4 ≤ x + y − θ − √
κ ′

1 + κ
1/4
0

(199)

(recall κ0 = 40κ). In fact, (199) holds if (1 − 3κ1/4)(1 + κ
1/4
0 ) ≤ 1 − κ − θ − √

κ ′
for sufficiently large δ and small κ > 0, which follows from the bound for θ in (127).

Hence, using (194) and (199), recalling the definition ofA4 in (195), the third term
in (196) can be controlled by

P

(
Ac

4, x ≥ 1 − κ, S22 ≥ (x + y − θ − √
κ ′)

√
2(1 + δ′) log n | X (1)

)
1F0∩F2

≤ P

(
Ac

4,
∑

i �= j,i, j∈T
|Z (1)

i j | ≥ k̄(1 − 3κ1/4)
√
2(1 + δ′) log n | X (1)

)
1F0∩F2

≤ P

( ∑

i �= j,i, j∈T
|Z (1)

i j | > k̄(1 + 3κ1/4)
√
2(1 + δ′) log n | X (1)

)
1F0∩F2
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≤ P

( ∑

i< j,i, j∈T
(Z (1)

i j )2 >
k̄2

k̄(k̄ − 1)
(1 + 3κ1/4)2(1 + δ′) log n | X (1)

)
1F0∩F2 .

(200)

The second inequality follows from the definition of A4, (similar to (180)), while
in the third inequality above, we used the Cauchy–Schwarz inequality and the fact
|T | ≤ k̄. Hence, by the union bound and (39) in Lemma 5.1 with γ = ε, L =
k̄

k̄−1
(1+ 3κ1/4)2(1+ δ′) log n and m ≤ k̄2, for sufficiently large n, the quantity (200),

and thus the third term in (196), is bounded by

|V (C1)|k̄n− 1
2

k̄
k̄−1

(1+3κ1/4)2(1+δ′)+ε ≤ n
− 1

2
k̄

k̄−1
(1+3κ1/4)2(1+δ′)+2ε

. (201)

Here, we used the bound for |V (C1)| in (69) and the upper bound for k̄ in (137) under
the event k̄ ∈ M(δ).

-Combining altogether: As mentioned already, the first and the last terms in (196) can
be bounded by (135) and (140) respectively. Thus, combining these with (198) and
(201), for sufficiently small κ > 0 and large δ, for large enough n,

P

(
Ac

4,A′, x ≥ 1 − κ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n | X (1)
)
1F0∩F2

≤ Cn
− 1

2
k̄

k̄−1
(1+3κ1/4)2(1+δ′)+2ε ≤ Cn

− 1
2

k̄
k̄−1

(1+δ′)−3κ1/4δ′+2ε
.

(202)

This follows from the fact that for sufficiently small κ > 0 and large δ, under the event
F0 ∩ F2, (201) is the slowest decaying term among itself, (135), (140) and (198). In
fact, using ε ≤ 1

δ4
and the bound for k̄ in (137), under the event k̄ ∈ M(δ),

1

2κ ′ (1 + δ′) − 2κ1/4k̄(1 + 4δ′)ε − 2ε =
( 1

2κ ′ + oδ(1)
)
δ,

1

2

k̄

k̄ − 1
(1 + 3κ1/4)2(1 + δ′) − 2ε =

(1
2
(1 + 3κ1/4)2 + oδ(1)

)
δ.

Hence, recalling the definition of κ ′ in (192), for small κ > 0 and large δ, the quantity
(201) slowly decays than (198). Also, by comparing the above asymptotic with (143)
and (145), one can deduce that the quantity (201) slowly decays than (135) and (140)
for small κ and large δ.

Thus, by proceeding as in (156), for sufficiently large δ,

P

(
Ac

4,A′,x ≥ 1 − κ,
∑

1≤i, j≤n

Z (1)
i j viv j ≥ √

2(1 + δ′) log n
)

≤ n−ψ(δ)−c(δ)+2rδ(ε).

In fact, one can bound this quantity by the sum of four quantities via the argument of
(156). Using (202) and the bound for k̄ in (137), for large δ, the corresponding first
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term in (156) can be bounded by Cn−ψ(δ)−cδ for some c > 0, and other three terms
can be bounded by (159), (160) and (78) respectively. Combining these together, using
the fact that c(δ) < 1 < cδ for large δ, we obtain the above inequality. Applying
(119) and then Theorem 1.1,

lim
n→∞ P

(
Ac

4,A′,x ≥ 1 − κ | Uδ

)
= 0.

Hence, by (162) and (187),

lim
n→∞ P

(
A4 | Uδ

)
= 1. (203)

Finishing the proof. Finally, using (185) and (203), we finish the proof. Define the
event

A5 := {k̄ ∈ M(δ)}.

By (100), recalling A5 ⊂ F2,

lim
n→∞ P

(
A5 | Uδ

)
= 1. (204)

Now, define the event

A6 := A′ ∩ A3 ∩ A4 ∩ A5.

SinceA′,A3,A4 andA5 are typical events conditioned on Uδ (see (187), (185), (203)
and (204) respectively),

lim
n→∞ P

(
A6 | Uδ

)
= 1. (205)

Wenext verify that the eventA6 implies the desired uniformity ofGaussians claimed
in the statement of the theorem. As indicated earlier, the proof involves technical
manipulations involving the Cauchy–Schwarz inequality to relate the �1 and �2 norms.

For the ease of reading, let us recall the events

A3 =
{
2
( k̄

k̄ − 1
− ρ

k̄

)
(1 + δ′) log n ≤

∑

(i, j)∈B2
(Z (1)

i j )2 ≤ 2
( k̄

k̄ − 1
+ ρ

k̄

)
(1 + δ′) log n

}
,

A4 =
{
k̄(1 − 3κ1/4)

√
2(1 + δ′) log n ≤

∑

i �= j,i, j∈T
|Z (1)

i j | ≤ k̄(1 + 3κ1/4)
√
2(1 + δ′) log n

}
.

Note that using the fact ρ = 16κ and (188), for sufficiently large δ, the event
A3 ∩ A4 ∩ A5 implies that

1

2

∑

i �= j,i ′ �= j ′,i, j,i ′, j ′∈T
(|Z (1)

i j | − |Z (1)
i ′ j ′ |)2
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= |T |(|T | − 1)
( ∑

i �= j,i, j∈T
(Z (1)

i j )2
)

−
( ∑

i �= j,i, j∈T
|Z (1)

i j |
)2

≤ 2|T |(|T | − 1)
( k̄

k̄ − 1
+ ρ

k̄

)
(1 + δ′) log n − 2k̄2(1 − 3κ1/4)2(1 + δ′) log n

≤ (32(k̄ − 1)κ + 12κ1/4k̄2)(1 + δ′) log n ≤ Cκ1/4k̄2(1 + δ′) log n,

where we used |T | ≤ k̄ and κ ≤ κ1/4 in the second and the last inequality respectively.
From this, using the argument in (173), setting S′ = ∑

i, j∈T |Z (1)
i j |, one can deduce

that

∑

i �= j,i, j∈T

(
|Z (1)

i j | − 1

|T |(|T | − 1)
S′)2 ≤ Cκ1/4(1 + δ′) log n. (206)

We check that under the eventA′ ∩A4 ∩A5, there exists ι(κ) with limκ→0 ι = 0 such
that

∣∣∣
1

|T |(|T | − 1)
S′ − 1

h(δ)

√
2(1 + δ′) log n

∣∣∣ ≤
(
ι(κ) + C

h(δ)

) 1

h(δ)

√
2(1 + δ′) log n.

(207)

In fact, first note that by (191), |T | ≥ (1− κ
1/4
0 )k̄ under the event A′. Also, k̄ ≥ h(δ)

under A5 and we have the upper bound for S′ under A4. Hence, combining these
ingredients together, under the event A′ ∩ A4 ∩ A5,

1

|T |(|T | − 1)
S′ ≤ 1 + 3κ1/4

1 − κ
1/4
0

1

k̄(1 − κ
1/4
0 ) − 1

√
2(1 + δ′) log n

≤ (1 + 10κ1/4)
1

h(δ)(1 − κ
1/4
0 ) − 1

√
2(1 + δ′) log n

≤ (1 + 10κ1/4)
(
1 + 2κ1/4

0 + 2

h(δ)

) 1

h(δ)

√
2(1 + δ′) log n

(recall κ0 = 40κ , see (175)), and the similar lower bound holds. This gives (207).
Hence, (206) and (207) imply that for some ι′(κ) with limκ→0 ι′ = 0, under the

event A6 (recall that A6 = A′ ∩ A3 ∩ A4 ∩ A5) ,

∑

i �= j,i, j∈T

(
|Z (1)

i j | − 1

h(δ)

√
2(1 + δ′) log n

)2 ≤
(
ι′(κ) + C

h(δ)

)
(1 + δ′) log n.

By Cauchy–Schwarz inequality, using the fact that |T | ≤ k̄, under the event A6,

∑

i �= j,i, j∈T

∣∣∣|Z (1)
i j | − 1

h(δ)

√
2(1 + δ′) log n

∣∣∣ ≤ Ch(δ)

√
(
ι′(κ) + C

h(δ)

)
(1 + δ′) log n.

(208)
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Note that under the event A5,

∣∣∣
∑

i �= j,i, j∈T
|Zi j | −

∑

i, j∈T
|Z (1)

i j |
∣∣∣ ≤

∑

i, j∈T
|Z (2)

i j | ≤ k̄2
√

ε log log n

≤ Ch(δ)2
√

ε log log n. (209)

Hence, by the above two inequalities, under the event A6, for sufficiently large n,

∑

i �= j,i, j∈T

∣∣∣|Zi j | − 1

h(δ)

√
2(1 + δ′) log n

∣∣∣ ≤ Ch(δ)

√
(
ι′(κ) + C

h(δ)

)
(1 + δ′) log n.

(210)

By (120) and recalling ε ≤ 1
δ4
, for large enough δ, the above implies

∑

i �= j,i, j∈T

∣∣∣|Zi j | − 1

h(δ)

√
2(1 + δ) log n

∣∣∣ ≤ Ch(δ)

√
(
ι′(κ) + C

h(δ)

)
(1 + δ) log n.

(211)

In fact, by the triangle inequality, the difference between LHS of (210) and (211) is
bounded by

√
ε(1 + δ)

√
log n

h(δ)
h(δ)2

(116)≤ Ch(δ)

√
log n

δ

(9)≤ Ch(δ)

√
(
ι′(κ) + C

h(δ)

)
(1 + δ) log n.

Since κ0 = 40κ , by (191), under the event A6, we have |T | ≥ (1 − cκ1/4)k̄. In
addition, since h(δ) ≥ cδ1/3, one can simplify the term ι′(κ) + C

h(δ)
to ζ(κ) with

limκ→0 ζ(κ) = 0 if δ is chosen large enough depending on κ . Dividing both sides by
h(δ)2 and using (205) completes the proof.

Remark 8.1 Note that (211) gives a bound depending on both δ and κ and only on
taking δ large enough depending on κ yields the theorem. Further, even though we
provided sharp bounds for both �1 and �2 norms, in fact, a lower bound for the former
and an upper bound for the latter suffices.

9 Lower tail large deviations

We end with the short argument establishing the large deviation probability of the
lower tail, Theorem 1.8.

Proof of Theorem 1.8 The upper bound is an easy consequence of the inequality (29).
In fact, by Lemma 4.1, 4.2 and (29),

P(λ1(Z) ≤ √
2(1 − δ) log n) ≤ P(max Zi j ≤ √

2(1 − δ) log n)
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≤ E

(
P(max Zi j ≤ √

2(1 − δ) log n | X)1E0

)
+ P(Ec

0)

≤ e
−c′ nδ√

log n + e−cn .

Wenowprove amatching lower bound. Define an eventSδ , measurablewith respect
to X , by

Sδ :=
{
λ1(X) ≤ (1 + δ)

√
log n

log log n

}
.

Notice that P(Sδ) → 1 by Lemma 5.2. Since λ1(Z (2)) ≤ √
ε log log n · λ1(X),

conditionally on X , under the event Sδ , it holds that

λ1(Z
(2)) ≤ √

ε(1 + δ)
√
log n.

Since λ1(Z) ≤ λ1(Z (1)) + λ1(Z (2)),

P(λ1(Z) ≤ √
2(1 − δ) log n) ≥ P(λ1(Z

(1)) ≤ √
2(1 − δ′′) log n, λ1(Z

(2))

≤ √
ε(1 + δ)

√
log n),

where δ′′ > 0 is defined by
√
2(1 − δ′′) = √

2(1 − δ) − √
ε(1 + δ). Recalling the

definition of F0 = D4δ′ ∩ C4δ′ ∩ E4δ′ ∩ Few − cycles from (77), analogously we
define F3 := D4δ′′ ∩ C4δ′′ ∩ E4δ′′ ∩ Few − cycles ∩ Sδ , we have

P(λ1(Z) ≤ √
2(1 − δ) log n) ≥ E

[
P(λ1(Z

(1)) ≤ √
2(1 − δ′′) log n | X , X (1))1F3

]
.

(212)

Above we use that F3 is measurable with respect to the sigma algebra generated by
{X (1), X}. We now estimate P(λ1(Z (1)) ≤ √

2(1 − δ′′) log n | X , X (1)) under the
event F3 and finally we will use that F3 is likely. We will crucially use throughout the
proof that given X (1), Z (1) and X are conditionally independent.

Let C1, · · · ,Cm be X (1)’s connected components and denote by ki the size of
maximal clique in Ci . Let

I := {i = 1, · · · ,m : ki ≥ 3}, J := {i = 1, · · · ,m : ki = 2}

and define ξ := (2ε1/2 + 8εδ′′)1/4. By Proposition 5.7 with γ = ε and η = ε1/4, for
sufficiently small ε > 0, under the event F3, for i ∈ I ,

P(λ1(Z
(1)
i ) ≥ √

2(1 − δ′′) log n | X , X (1)) < n− 1
2 (1−ξ)2(1−δ′′)+ 1+4δ′′

2 ε1/2+ε (213)

using the fact that k
k−1 ≥ 1, and for i ∈ J ,

P(λ1(Z
(1)
i ) ≥ √

2(1 − δ′′) log n | X , X (1)) < n−(1−ξ)2(1−δ′′)+ 1+4δ′′
2 ε1/2+ε. (214)
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Since |I | < log n under the event Few − Cycles, by (213) and (214),

P(λ1(Z
(1)
i ) ≤ √

2(1 − δ) log n, ∀i | X , X (1))

> (1 − n−(1−ξ)2(1−δ′′)+ 1+4δ′′
2 ε1/2+ε)n(1 − n− 1

2 (1−ξ)2(1−δ′′)+ 1+4δ′′
2 ε1/2+ε)log n

≥ 1

2
exp(−n1−(1−ξ)2(1−δ′′)+ 1+4δ′′

2 ε1/2+ε). (215)

Since P(F3) ≥ 1
2 and ε > 0 is arbitrary small, by (212) and (215), proof is concluded.
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Appendix A. Key estimates

In this appendix, we include the outstanding proofs of basic properties about Gaussian
random variables. as well as the proof of Lemma 4.2 involving a straightforward
application of Chernoff’s bound.

Proof of Lemma 4.1 Recalling the basic tail bounds from (24), for some constant c1 >

0,

P( max
i=1,··· ,m Xi ≥ √

2(1 + δ) log n) = 1 − (1 − P(X1 ≥ √
2(1 + δ) log n))m

≥ c1
1

nδ
√
log n

.

Similarly, for some constant c2 > 0,

P( max
i=1,··· ,m Xi ≤ √

2(1 − δ) log n) = (1 − P(X1 ≥ √
2(1 − δ) log n))m ≤ e

−c2
nδ√
log n .

��
Proof of Lemma 4.2 We use the Chernoff’s bound for Bernoulli variables for q > p:

P(Bin(m, p) ≥ mq) ≤ e−mIp(q), (216)

where Ip(x) := x log x
p + (1 − x) log 1−x

1−p is the relative entropy function. Thus,

P

(
Bin

(n(n − 1)

2
, 1 − d

n

)
≥ n(n − 1)

2

(
1 − d

4n

))
≤ e

− n(n−1)
2 I

1− d
n
(1− d

4n )
, (217)
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Using log(1 + x) ≥ x
2 for small positive x ,

I1− d
n

(
1 − d

4n

)
≥

(
1 − d

4n

) 3d

8(n − d)
+ d

4n
log

1

4
≥ C1

n − d
− C2

n2
. (218)

Hence, by (217) and (218), there exists a constant c > 0 such that for sufficiently large
n,

P

(
Bin

(n(n − 1)

2
, 1 − d

n

)
≥ n(n − 1)

2

(
1 − d

4n

))
≤ e−cn .

This implies that

P

(
Bin

(n(n − 1)

2
,
d

n

)
≤ n(n − 1)

2

d

4n

)
≤ e−cn,

which concludes the proof. ��
Proof of Lemma 5.1 Recall that we are aiming to show

P(Ỹ 2
1 + · · · + Ỹ 2

m ≥ L) ≤ Cme− 1
2 Le

1
2m

( L

m

)m
e
1
2 εm log log n,

and in particular, for any a, b, c > 0, if m ≤ b log n
log log n + c and L = a log n, then, for

any γ > 0, for sufficiently large n,

P(Ỹ 2
1 + · · · + Ỹ 2

m ≥ a log n) ≤ n− a
2+ εb

2 +γ . (219)

By exponential Chebyshev’s bound, for any t > 0,

P(Ỹ 2
1 + · · · + Ỹ 2

m ≥ L) ≤ e−t L(EetỸ
2
1 )m . (220)

Using the lower bound for the tail (24), the probability density function of Ỹ , denoted
by f̃ (x) for |x | ≥ √

ε log log n, satisfies

f̃ (x) ≤ C

(
√

ε log log n)−1e− 1
2 ε log log n

e− 1
2 x

2 = C
√

ε log log ne
1
2 ε log log ne− 1

2 x
2
.

Hence, using the upper bound for the tail (24), by making a change of variable x =
1√
1−2t

y,

EetỸ
2
1 ≤ C

√
ε log log ne

1
2 ε log log n

∫ ∞
√

ε log log n
etx

2
e− 1

2 x
2
dx

= C
√

ε log log ne
1
2 ε log log n 1√

1 − 2t

∫ ∞
√
1−2t

√
ε log log n

e− 1
2 y

2
dy
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≤ C
√

ε log log ne
1
2 ε log log n 1√

1 − 2t

1√
1 − 2t

√
ε log log n

e− 1
2 (1−2t)ε log log n

= C
1

1 − 2t
etε log log n .

Applying this to (220),

P(Ỹ 2
1 + · · · + Ỹ 2

m ≥ L) ≤ Cme−t L 1

(1 − 2t)m
etεm log log n .

We take t = 1
2 (1 − m

L ) < 1
2 (recall that L > m) in order to balance two terms e−t L

and 1
(1−2t)m . We conclude the proof of (38).

We now show (219). We first check that for any L > 0, a function x �→ ( Lx )x is
increasing on (0, L

e ). This is because the derivative of x log( Lx ), which is given by
log( Lx ) − 1, is positive for x ∈ (0, L

e ). Hence, for any γ > 0, for sufficiently large n,
the LHS of (219) is bounded by

Cb log n
log log n +cn− a

2+ εb
2 n

b
2 log log n

(a
b
log log n

)b log n
log log n +c ≤ n− a

2+ εb
2 +γ .

Here, we used the fact that for large n, (c1 log log n)
c2

log n
log log n ≤ n

γ
2 . ��
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localized regime. arXiv:1912.11410 (2019)

10. Basak, A., Mukherjee, S.: Universality of the mean-field for the potts model. Probab. Theory Relat.
Fields 168(3–4), 557–600 (2017)

11. Benaych-Georges, F., Bordenave, C., Knowles, A.: Largest eigenvalues of sparse inhomogeneous
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J. Combin. 32(7), 1000–1017 (2011)
23. Chatterjee, S., Varadhan, S.R.S.: Large deviations for random matrices. Commun. Stoch. Anal. 6(1),

1–13 (2012)
24. Cook, N., Dembo, A.: Large deviations of subgraph counts for sparse Erdős-Rényi graphs.
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