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ABSTRACT. Let Q C R, n > 2, be a l-sided non-tangentially accessible domain (aka uni-
form domain), that is, Q satisfies the interior Corkscrew and Harnack chain conditions, which
are respectively scale-invariant /quantitative versions of openness and path-connectedness. Let
us assume also that 2 satisfies the so-called capacity density condition, a quantitative ver-
sion of the fact that all boundary points are Wiener regular. Consider Lou = —div(AoVu),
Lu = —div(AVu), two real (non-necessarily symmetric) uniformly elliptic operators in 2, and
write wr,, wr for the respective associated elliptic measures. The goal of this program is to
find sufficient conditions guaranteeing that wr satisfies an A.-condition or a RHg4-condition
with respect to wr,. In this paper we establish that if the discrepancy of the two matrices
satisfies a natural Carleson measure condition with respect to wr,, then wr € Ao (wr,). Addi-
tionally, we can prove that wy, € RHg(wr,) for some specific ¢ € (1, 00), by assuming that such
Carleson condition holds with a sufficiently small constant. This “small constant” case extends
previous work of Fefferman-Kenig-Pipher and Milakis-Pipher together with the last author of
the present paper who considered symmetric operators in Lipschitz and bounded chord-arc
domains, respectively. Here we go beyond those settings, our domains satisfy a capacity den-
sity condition which is much weaker than the existence of exterior Corkscrew balls. Moreover,
their boundaries need not be Ahlfors regular and the restriction of the n-dimensional Hausdorff
measure to the boundary could be even locally infinite. The “large constant” case, that is,
the one on which we just assume that the discrepancy of the two matrices satisfies a Carleson
measure condition, is new even in the case of nice domains (such as the unit ball, the upper-
half space, or non-tangentially accessible domains) and in the case of symmetric operators. We
emphasize that our results hold in the absence of a nice surface measure: all the analysis is
done with the underlying measure wr,,, which behaves well in the scenarios we are considering.
When particularized to the setting of Lipschitz, chord-arc, or 1-sided chord-arc domains, our
methods allow us to immediately recover a number of existing perturbation results as well as
extend some of them. Our arguments rely on the square function and non-tangential estimates
obtained in [3]. The “large constant” case is obtained using the method of extrapolation of
Carleson measure. This is a bootstrapping scheme that allows us to reduce matters to the case
on which the discrepancy between the coefficients is small in some sawtooth domains.
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1. INTRODUCTION AND MAIN RESULTS

The purpose of this program is to study some perturbation problems for second order diver-
gence form real elliptic operators with bounded measurable coefficients in domains with rough
boundaries. Let € R*"! n > 2, be an open set and let Lu = — div(AVu) be a second order
divergence form real elliptic operator defined in 2. Here the coefficient matrix A = (al]())f;":ll
is real (not necessarily symmetric) with a;; € L>(Q) and is uniformly elliptic, that is, there
exists a constant A > 1 such that

(L.1) ATHEP < AXE ¢, [A(X)E - nl < Afg][n]

for all £,7 € R™™! and for almost every X € Q. Associated with L one can construct a family
of positive Borel measures {wy } xcq, defined on 9 with wX (9Q) < 1 for every X € Q, so that
for each f € C.(02) one can define its associated weak-solution

(1.2) u(X) = /89 f(2)dwX(z), whenever X € Q,

which satisfies Lu = 0 in € in the weak sense. In principle, unless we assume some further
condition, u needs not be continuous all the way to the boundary but still we think of v as the
solution to the continuous Dirichlet problem with boundary data f. We call wi( the elliptic
measure of ) associated with the operator L with pole at X € ). For convenience, we will
sometimes write wy, and call it simply the elliptic measure, dropping the dependence on the
pole.

Given two such operators Lou = —div(AgVu) and Lu = —div(AVu), one may wonder
whether one can find conditions on the matrices Ay and A so that some “good estimates” for
the Dirichlet problem or for the elliptic measure for Ly might be transferred to the operator
L. Similarly, one may try to see whether A being “close” to Ay in some sense gives some
relationship between wy, and wr,,. In this direction, a celebrated result of Littman, Stampacchia,
and Weinberger in [37] states that the continuous Dirichlet problem for the Laplace operator
Lo = A, (i.e., Ap is the identity) is solvable if and only if it is solvable for any real elliptic
operator L. By solvability here we mean that the elliptic measure solutions as in (1.2) are
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indeed continuous in Q. It is well known that solvability in this sense is in fact equivalent to the
fact that all boundary points are regular in the sense of Wiener, a condition which entails some
capacitary thickness of the complement of €2. Note that, for this result, one does not need to
know that L is “close” to the Laplacian in any sense (other than the fact that both operators
are uniformly elliptic).

On the other hand, if ) = Ri is the upper-half plane and Ly = A, then the harmonic measure
associated with A is mutually absolutely continuous with respect to the surface measure on
the boundary, and its Radon-Nykodym derivative is the classical Poisson kernel. However,
Caffarelli, Fabes, and Kenig in [4] constructed a uniformly real elliptic operator L in the plane
(the pullback of the Laplacian via a quasiconformal mapping of the upper half plane to itself)
for which the associated elliptic measure wy, is not even absolutely continuous with respect to
the surface measure (see also [42] for another example). Hence, in principle the “good behavior”
of harmonic measure does not always transfer to any elliptic measure even in a nice domain
such as the upper-half plane. Consequently, it is natural to see if those good properties can be
transferred by assuming some conditions reflecting the fact that L is “close” to Lg or, in other
words, imposing some conditions on the disagreement of A and Ag.

In [3] we studied the square function and non-tangential maximal function estimates for
solutions. Here we will consider the perturbation results. Tu put them in context let us recall
the development of this field. With Ly and L as above, we define the disagreement of A and
Ag as

oA A)X) = s JAY)-A(Y), XeQ
YeB(X,6(X)/2)

where §(X) = dist(X, 9Q) (thus, the supremum is taken over a Whitney ball). Define, for every
x € 09 and 0 < r < diam(052),

) i oA A2\
h(‘””’”‘<a<3<x,r>ma@> e ™55 dX)’

where 0 = H"|sq (i-e, the n-dimensional Hausdorff measure restricted to the boundary). The
study of perturbation of elliptic operators was initiated by Fabes, Jerison, and Kenig in [17] and
later studied by Dahlberg [13] for symmetric operators. Dahlberg in the case of Q = B(0,1)
observed that if

lim sup h(z,7) =0

r—0 |z|=1

and if wr, < o with dwy/do € RHy(o) (the classical reverse Holder condition with respect to
the surface measure) for some 1 < ¢ < 00, then wy, < ¢ and dwy,/do € RH,(0). The importance
of these reverse Holder conditions comes from the fact that dwy,/do € RH (o) is equivalent to
the Lq/—solvability of the Dirichlet problem, that is, the non-tangential maximal function for
the solution u given in (1.2) is controlled by f in the LY (¢)-norm. Dahlberg’s approach was to
define Ay = (1—1t)Ap+tA for 0 <t < 1, obtaining a differential inequality for the best constant
in the reverse Holder inequality for dwy,/do. Later, Fefferman in [18] made the first attempt
to remove the smallness of the function h. Working again in the domain Q = B(0,1) and
with symmetric operators, he showed that an A, (o) condition is still inherited from the first
measure (that is, wy € A (o) implies wy, € A (o)) provided that A(o(A4, Ao)) € L*(0B(0,1))
(and the bound needs not be small). Here,

2 %
(1.3) A(o(A, Ag))(x) := (//F( )Wd)()
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and I'(z) is the non-tangential cone with vertex at x € 9 with angular aperture 6 < 7/2.
Using Fubini’s theorem one can easily see the connection between h(z,r) and A(o(A, Ap))(x):

1
2

1 2
h,r) 5 (O’(B(l‘, Cr)non) /B(x,Cr)maQ AeleSon(a) dg)

It was also noted in [19] that finiteness of ||.A(o(A, Ao))| £ (aB(0,1)) does not allow one to pre-
serve the reverse Holder exponent. Indeed it was shown that for a given 1 < p < oo, there
exist uniformly elliptic symmetric matrices Ap and A with the property that A(o(A, Ap)) €
L>(0B(0,1)), wr, € RHy(o) but wy, ¢ RH,(0). On the other hand, one of the main results
in the pioneering perturbation article by Fefferman, Kenig, and Pipher [19] established that if
the Carleson norm supg., <1, |z|=1 h(z,r) is merely assumed to be finite (not necessarily going
to zero as 7 — 0) then wr, € Ax(0) implies wy, € Ax(0) in the symmetric case. In the same
article, it was shown that the assumption that the previous Carleson norm supg,.1, |gj=1 2(7, %)
be finite, is also necessary and cannot be weakened. One of the ingredients in [19] was to see
that if € is a Lipschitz domain and if

N

1 2 GLO (X)
(14) feug?z o) (WLO (B(l', T) N 89) //B(:r,r)ﬁﬂ Q(A7 AO) <X) 5(X)2 dX) =

0<r<diam(

for eo sufficiently small, then w; € RHs(wr,), where Gr,(X) = Gr,(Xo,X) is the Green
function for Ly in © with a pole at some fixed Xy € Q. We further remark that in [19] the
authors also considered L"-averages of the disagreement function p(A, Ap) as opposed to the
supremum. Using that approach it was shown that there exists r (depending on ellipticity)
such that for each ¢ > 1 there exists ¢, so that wy, € RHy(wr,,) provided that L"-average of the
disagreement function o(A, Ag) satisfies (1.4) with ¢,.

Milakis, Pipher, and the fourth author of this article in [39] made the first attempt to study
perturbation problems for symmetric operators beyond the Lipschitz setting. To describe their
results we need more notions which will be described briefly here and made precise later. A
domain is called non-tangentially accessible (NTA for short) if it satisfies quantitative interior
and exterior openness as well as quantitative (interior) path-connectedness (see Definitions 2.1,
2.2, and 2.5 below). A boundary of a domain is called Ahlfors regular if the surface measure of
balls with center on the boundary and radius r behaves like 7" (in ambient dimension n + 1)
(see Definition 2.7). Note that NTA domains with Ahlfors regular boundaries (called chord-arc
domains) are not necessarily Lipschitz domains and in general they cannot be locally represented
as graphs. The first result of Fefferman, Kenig, and Pipher discussed above was generalized in
[39] to the setting of bounded chord-arc domains. That is, if  is a chord-arc domain and if
(1.4) is satisfied for some €9 > 0 small, then w;, € RHa(wr,) (see also [41]). In addition, [39]
established that if A(x,r) is small enough (uniformly in z € 992 and 0 < r < diam(992)) and
wr, € RHy(o) for some 1 < ¢ < oo then wr, € RHy(o). Futhermore, assuming that h(z,r)
is merely bounded (uniformly in z € 9Q and 0 < r < diam(0Q)), if wy, € RH,(o) for some
1 < ¢ < o0, then wy, € RHy(0) for some 1 < p < oo.

We also mention that Escauriaza in [15] showed that if Q is a Lipschitz domain, and if
h(z,r) converges to 0 uniformly in x € 9Q as r goes to 0, then log(dwr,/do) € VMO(o) if
log(dwr,,/do) € VMO(o); here VMO stands for the space of vanish mean oscillation introduced
by Sarason. This result was further generalized to bounded chord-arc domains in [40].

In [8], Cavero, and the second and the third authors of this article studied the “small”and
“large” perturbation for symmetric operators when the domain is a 1-sided NTA domain with
Ahlfors regular boundary (called 1-sided chord-arc domains). Here 1-sided NTA domains (aka
uniform domains) satisfy only quantitative interior openness and path-connectedness. In [8], the
perturbation results of [19, 39] were generalized to 1-sided chord-arc domains. Again, smallness
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of h(x,r) allowed the authors to preserve the exponent in the reverse Holder condition, while
finiteness yields only that the A, condition is transferred from one operator to the other. It
is relevant to mention that the approach in [8], which is different from that of [19, 39], uses
the extrapolation of Carleson measure, originally introduced by Lewis and Murray in [36] (but
based on the Corona construction of [6, 7]) and later developed in [26, 29, 28], as well as good
properties of sawtooth domains (following the sawtooth construction in [14]). The bottom line
is that the large perturbation case can be reduced to the small perturbation in some sawtooth
subdomains. We would like to note that the arguments of [19, 39, 8] are written explicitly
only in the case of real symmetric coefficients, but we would expect that similar arguments
could be carried over to the non-symmetric case as well. We also mention [9], where the non-
symmetric case is also considered by using a different method, as well as [38], where perturbation
theory for certain degenerate elliptic operators is developed in the setting of domains with lower
dimensional boundaries.

One common feature in the previous perturbation results is that the surface measures of the
boundaries of the domains always have good properties, since in all cases the boundary is Ahlfors
regular. For those results in which one is perturbing RH,(c) or A (o), this is natural as one
implicitly needs to make sense of o and to that extent the Ahlfors regularity is natural. However,
if one carefully looks at (1.4) and the conclusion derived from it, that is, w;, € RHa(wr, ), there
is no appearance of the surface measure, and these conditions make sense whether or not the
surface measure is a well-behaved object. Another natural question that arises from (1.4) is
whether one can target some other reverse Holder conditions by allowing £y to be larger, or
ultimately to investigate what are the conclusions that can be obtained assuming that g is just
an arbitrary large finite constant.

The goal of this paper is to answer these questions. Our setting is that of 1-sided NTA domains
satisfying the so called capacity density condition (CDC for short), see Section 2 for the precise
definitions. The latter is a quantitative version of the well-known Wiener criterion and it is
weaker than the Ahlfors regularity of the boundary or the existence of exterior Corkscrews. This
setting guarantees among other things that any elliptic measure is doubling in some appropriate
sense, hence one can see that a suitable portion of the boundary of the domain endowed with
the Euclidean distance and with a given elliptic measure wy,, is a space of homogeneous type. In
particular, classes like A (wr,) or RH,(wr,) have the same good features of the corresponding
ones in the Euclidean setting. However, our assumptions do not guarantee that the surface
measure has any good behavior and could even be locally infinite. In one of our main results,
we consider the case in which (1.4) holds either with small or large 9. The small constant
case can be seen as an extension of [19, 39] to a setting in which surface measure is not a good
object. The large constant case is new even in nice domains such as balls, upper-half spaces,
Lipschitz domains or chord-arc domains. To the best of our knowledge, our work is the first
to establish perturbation results on sets with bad surface measures, and our large perturbation
results are the first of their type. Finally, we do not require the operators to be symmetric. Our
main result is formulated as follows:

Theorem 1.5. Let Q C R"™ n > 2 be a 1-sided NTA domain (cf. Definition 2.5) satis-
fying the capacity density condition (cf. Definition 2.10). Let Lu = —div(AVu) and Lou =
—div(ApVu) be real (non-necessarily symmetric) elliptic operators. Define the disagreement
between A and Ay in ) by

(1.6) 0(A, Ao)(X) == [|A — Aoll Lo (B(x,5(x)/2))> X €qQ,
where §(X) := dist(X,00Q), and

N 1 Gry(Xa, X)
(1.7) llo(A, Ag)]| := s%psg})m ///mQ Q(A,Ao)(X)QW dX,
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where A = BNOQ, A’ = B'NON, and the sups are taken respectively over all balls B = B(x,r)
with x € 9Q and 0 < r < diam(9N), and B' = B(z',r") with ' € 2A and 0 <1’ < rcy/4, and
co 1s the Corkscrew constant.

(a) If |lo(A, Ag)|| < oo, then wr € Ax(0Q,wr,) (cf- Definition 2.56). More precisely,
there exists 1 < q < oo such that wy, € RHy(09Q,wr,) (cf Definition 2.56). Here, q¢ and
(WLl RH,(90.we) (¢f- Definition 2.56) depend only on dimension, the 1-sided NTA and CDC
constants, the ellipticity constants of Ly and L, and ||o(A4, Ao)||-

(b) Given 1 < p < oo, there exists €, > 0 (depending only on dimension, the 1-sided NTA
and CDC' constants, the ellipticity constants of Lo and L, and p) such that if one has
lo(A, Ao)ll < ep, then wr € RH,(0Q,wr,) (cf. Definition 2.56). Here, [wr|RrH,(00.w0)
(cf. Definition 2.56) depends only on dimension, the 1-sided NTA and CDC constants,
the ellipticity constants of Lo and L, and p.

Remark 1.8. Let us make a few remarks regarding the expression in (1.6). First, the collection
of B’ in the second sup is chosen so that Xa ¢ 4B’, hence the Green function is not singular in
the domain of integration. But even if the domain of integration contained Xa this would not
cause any problem, since the corresponding estimate near Xa

2Gro(Xa, X)

5(X)2 dX

/)
e o(A, Ao)(X)
Wi (&) S B(xasxa)/2)

1
2 1—-n
< (4= AO”LOO(B(XA’&(XA)N))) 6(Xa)? //B(X 5(Xa)/2)NQ X=Xl X
A A

S (14 = Aol L= (B(xa,6(xa)/20)

Second, at a first glance (1.6) seems different than (1.4), the condition imposed by Fefferman,
Kenig, and Pipher in [19], which in the current case and if 2 is bounded (avoiding the pole as
just mentioned) would read as

9 llof4, Aol = sup wxgl(Ar) // o oA Ao)(X)QCW X,

where Xq € Q is a “center” of  (say, Xq is the Corkscrew point associated with the surface ball
A(zg,diam(99Q)/2) for some fixed g € ) so that §(Xq) ~ diam(9Q); A’ = B'NON and the sup
is taken over all balls B’ = B(2/,r’) with 2’ € 9Q and 0 < r < diam(9€)cy/4. We can easily
see that [|o(A4, Ao)|| =~ ||e(A, Ao)||,. First, using Lemma 2.63 below and possibly Harnack’s
inequality, one can see that for B = B(z,r) and B’ = B(a/,7') asin (1.7) if X € B’ N Q then

G:%(()AX(AA’/);) ~ G:%((;Z”))()' Thus, [lo(4, Ao)ll < llle(4, Ao)]ll,. To obtain the converse inequality,
let B' = B(z/,r") with 2’ € 9Q and 0 < r’ < diam(09Q)co/4. Pick max{1,4r"/(diam(0Q)co)} <
6 < 1 and write r = 0 diam(99Q) so that diam(9)/2 < r < diam(9Q) and " < rey/4.
Set B = B(2',r) and note that the Harnack chain condition and Harnack’s inequality easily
yield wX2(A’) ~ wXa(A’), and also G, (Xq, X) ~ Gr,(Xa, X) for every X € B' N, where
A =BnNoNand A" = B'NoN. All these give at once that [|o(A, Ao)lll, < le(4, Ao)||. Hence,
lle(A, Ao)lll = [le(A, Ao)]||, when 2 is bounded.

In the unbounded case, one could use a similar argument working with a pole at infinity,
which would require to normalize appropriately wr, and Gp,; here we will simply work with
the scale-invariant expression (1.7) to avoid that issue.

Finally, we also have a generalization of a result of [18, 19, 39]:

Theorem 1.10. Let Q C R"! n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying
the capacity density condition (cf. Definition 2.10), and let Lu = —div(AVu) and Lou =
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—div(AgVu) be real (non-necessarily symmetric) elliptic operators. Given o > 0, set

(1.11) Aa(0(A, Ag)) (// o(4, Aon(ﬂ) dX>2, z € 09,

where p(z) ={Y € Q: |Y —z| < (1+a)d(Y)}.

(a) If Aa(o(A, Ag)) € L®(wr,), then wr € Ax(0Q,wr,) (cf. Definition 2.56). More pre-
cisely, there exists 1 < g < oo such that wy, € RHy(0Q,wr,) (cf. Definition 2.56). Here,
q and [WL]rH, (00w (¢f- Definition 2.56) depend only on dimension, the 1-sided NTA
and CDC constants, the ellipticity constants of Lo and L, a, and || Aa(0(A, Ao))l| Lo (@)

(b) Given p, 1 < p < oo, there exists ¢, > 0 (depending only on p, dimension, the 1-
sided NTA and CDC constants, the ellipticity constants of Ly and L, and o) such that if
Aa(0(A, Ag)) € L*™(wr,) with ||AQ(Q(A,A0))||LOC(MLO) < ¢p, then wy, € RH,(0Q,wr,) (cf.
Definition 2.56). Here [WL]rm, (00w, (¢f- Definition 2.56) depends only on dimension,
the 1-sided NTA and CDC constants, the ellipticity constants of Ly and L, o, and p.

Remark 1.12. Note that in the previous result we are not specifying the pole for the elliptic
measure wr,,. However there is no ambiguity since, as a matter of fact, for any given X, Y € Q
one has that wfo and wfo are mutually absolutely continuous, thus L (052, wi(o ) = L>(09, wfo)

with || - ||Loo(aQ,w§O) = ||Loo(aQ,w{O)-

The plan of this paper is as follows. Section 2 contains some of the preliminaries, definitions,
and tools which will be used throughout the paper. Section 3 is devoted to proving our main
results. As a matter of fact Theorem 1.5 follows from a local version, interesting in its own
right, which is valid on bounded domains, see Proposition 3.1. The proof of Theorem 1.10 is
also in Section 3. The proof of Proposition 3.1 is in Sections 3.2 and 3.3 which respectively
handle the large and small constant cases. The proof of the large constant case is based on the
extrapolation of Carleson measure technique mentioned above. Finally, in Section 4 we apply
our main results to consider the case of 1-sided CAD (cf. Definition 2.9) —hence the domain
is 1-sided NTA and satisfies the CDC condition— and show in Corollaries 4.2 and 4.5 that one
can immediately recover some results from [8, 9] (see also [13, 18, 19, 39]) as well as give new
extensions.

We would like to mention that after an initial version of this work was posted on arXiv [1],
Feneuil and Poggi in [20] obtained results related to ours, compare for instance Theorem 1.5
part (a) with [20, Theorem 1.27], or Corollary 4.2 part (a) with [20, Corollary 1.32]. Also, the
recent work [5] complements this paper and its companion [2], see for instance [5, Theorem 1.2,
Corollary 1.6].

2. PRELIMINARIES

2.1. Notation and conventions.

e We use the letters ¢, C to denote harmless positive constants, not necessarily the same at each
occurrence, which depend only on dimension and the constants appearing in the hypotheses
of the theorems (which we refer to as the “allowable parameters”). We shall also sometimes
write a < b and a = b to mean, respectively, that a < Cb and 0 < ¢ < a/b < C, where
the constants ¢ and C' are as above, unless explicitly noted to the contrary. Unless otherwise
specified upper case constants are greater than 1 and lower case constants are smaller than
1. In some occasions it is important to keep track of the dependence on a given parameter
7, in that case we write a Sy b or a =, b to emphasize that the implicit constants in the
inequalities depend on ~.
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e Our ambient space is R"t1, n > 2.
e Given E C R"*! we write diam(E) = sup, ,cp [z — y| to denote its diameter.

e Given a domain  C R™! we shall use lower case letters x,, z, etc., to denote points on
9Q, and capital letters X,Y, Z, etc., to denote generic points in R™*! (especially those in
R\ 9Q).

e The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(z,r) when the
center z lies on 99, or B(X,r) when the center X € R*""1\ Q. A surface ball is denoted
A(z,r) := B(z,r) N 0, and unless otherwise specified it is implicitly assumed that x € 9€2.

e If 90 is bounded, it is always understood (unless otherwise specified) that all surface balls
have radii controlled by the diameter of 9, that is, if A = A(z,r) then r < diam(912). Note
that in this way A = 00 if diam(99Q) < r < diam(052).

e For X € R" we set 6(X) := dist(X, 99).
o We let H™ denote the n-dimensional Hausdorff measure.

e For a Borel set A C R""! we let 14 denote the usual indicator function of A4, i.e. 14(X) =1
if X €A and 14(X) =01if X ¢ A.

e We shall use the letter I (and sometimes J) to denote a closed (n+ 1)-dimensional Euclidean
cube with sides parallel to the coordinate axes, and we let ¢(I) denote the side length of I.
We use @ to denote dyadic “cubes” on E or 0f). The latter exist as a consequence of Lemma
2.34 below.

2.2. Some definitions.

Definition 2.1 (Corkscrew condition). Following [34], we say that a domain Q C R"*!
satisfies the Corkscrew condition if for some uniform constant 0 < ¢y < 1 and for every z € 92
and 0 < r < diam(092), if we write A := A(x,r), there is a ball B(Xa, cor) C B(z,r) N . The
point XA C Q is called a Corkscrew point relative to A (or, relative to B). We note that we
may allow r < C' diam(9f2) for any fixed C, simply by adjusting the constant cg.

Definition 2.2 (Harnack Chain condition). Again following [34], we say that ) satisfies
the Harnack Chain condition if there are uniform constants Cy, Co > 1 such that for every pair
of points X, X’ € 2 there is a chain of balls By, Ba, ..., By C Q with N < C1(2+1logj ) where

X — X'
min{§(X),5(X")}
such that X € By, X’ € By, By N Biy1 # @ and for every 1 <k < N
(2.4) Cy ! diam(By,) < dist(By, 0Q) < Cy diam(By,).
The chain of balls is called a Harnack Chain.

(2.3) II:=

We note that in the context of the previous definition if II < 1 we can trivially form the
Harnack chain By = B(X,30(X)/5) and By = B(X’,30(X’)/5) where (2.4) holds with Cy = 3.
Hence the Harnack chain condition is non-trivial only when II > 1.

Definition 2.5 (1-sided NTA and NTA). We say that a domain Q is a I-sided non-
tangentially accessible domain (1-sided NTA) if it satisfies both the Corkscrew and Harnack
Chain conditions. Furthermore, we say that €2 is a non-tangentially accessible domain (NTA
domain) if it is a 1-sided NTA domain and if, in addition, Qe := R™*1\ Q also satisfies the
Corkscrew condition.

Remark 2.6. In the literature, 1-sided NTA domains are also called wniform domains. We
remark that the 1-sided NTA condition is a quantitative form of path connectedness.
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Definition 2.7 (Ahlfors regular). We say that a closed set E C R"*! is n-dimensional
Ahlfors regular (AR for short) if there is some uniform constant C; > 1 such that

(2.8) Ol <HYEN B(x,r) <Ci7", 2z €FE, 0<r<diam(E).

Definition 2.9 (1-sided CAD and CAD). A 1-sided chord-arc domain (1-sided CAD) is a
1-sided NTA domain with AR boundary. A chord-arc domain (CAD) is an NTA domain with
AR boundary.

We next recall the definition of the capacity of a set. Given an open set D C R"*! (where
we recall that we always assume that n > 2) and a compact set K C D we define the capacity
of K relative to D as

Cap, (K, D) = inf{//D |Vo(X)[2dX : veC(D), v(z) >1in K}

Definition 2.10 (Capacity density condition). An open set {2 is said to satisfy the capacity
density condition (CDC for short) if there exists a uniform constant ¢; > 0 such that

Capy(B(z,r) \ Q, B(z,2r)) S
Capy(B(z,r), B(x,2r))
for all x € 9Q and 0 < r < diam(99).

(2.11)

The CDC is also known as the uniform 2-fatness as studied by Lewis in [35]. Using [24,
Example 2.12] one has that

(2.12) Capy(B(z,7), B(x,2r)) ~ "1, for all x € R** and r > 0,

and hence the CDC is a quantitative version of the Wiener regularity, in particular every x € 02
is Wiener regular. It is easy to see that the exterior Corkscrew condition implies CDC. Also,
it was proved in [43, Section 3] and [25, Lemma 3.27] that a set with Ahlfors regular boundary
satisfies the capacity density condition with constant ¢; depending only on n and the Ahlfors
regular constant.

Remark 2.13. Given €, a 1-sided NTA domain satisfying the CDC, as shown in [3, Remark
2.56] if A = A(z,r) with z € 9Q and 0 < r < diam(99) then diam(A) ~ r.

2.3. Dyadic analysis. Throughout this section we will work with £ C R"*! and a countable
collection of Borel sets D = {Q}gep which is a dyadic grid on E, whose elements will be called
“cubes”. This means that D = (J,cp Dy (with Dy # O for each k € Z) and the following
properties hold:

o = UQeIDJk Q for every k € Z with the union comprising pairwise disjoint sets.
o If Q@ € D and Q' € D; with k£ > j then either Q C Q" or QN Q' = .
e If for every k > j and @Q € Dy, there exists (a unique) Q' € D; such that Q C Q'.

See Section 2.4 below (and the references [10], and [32, 33]) for a discussion of the existence
of such a dyadic system, as well as its additional properties.

Note that by assumption, within the same generation (that is, within each Dy) the cubes
are pairwise disjoint (hence, there are no repetitions). On the other hand, we allow repetitions
in the different generations, that is, we could have that Q € D and Q' € Dy_; agree. Then,
although @) and " are the same set, as cubes we consider that they are different. In short, it is
then understood that D is an indexed collection of sets where repetitions of sets are allowed in
the different generations but not within the same generation. With this in mind, we can give
a proper definition of the “length” of a cube (this concept has no geometric meaning in this
context). For every Q € Dy, we set £(Q) = 27, which is called the “length” of Q. Note that
the “length” is well defined when considered on D, but it is not well-defined on the family of
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sets induced by . It is important to observe that the “length” refers to the way the cubes
are organized in the dyadic grid and in general may not have a geometrical meaning (see the
examples below).

Remark 2.14. We would like to observe that in our notion of dyadic grid the generations run for
all k € Z. However, as we are about to see, sometimes it is natural to truncate the generations
(from above or from below). For instance, it could be that £ = Qo for some Qo € Dy, and
ko € Z, hence Dy = {Qo} for all k < k. In that scenario it is convenient to ignore those k € Z
with k < ko and work with D = Uk>k0 Dg. We will actually use this convention throughout
this paper and, more specifically, when FE is bounded we will be working with the generations
k € Z so that 27% < diam(E). In any case, the results and proofs in this section remain valid
with or without the truncation of generations.

It is interesting to introduce some examples. In R™ we can consider the collection of classical
dyadic cubes. Note that here there are no repetitions at all, £ = R", and that if we let D be
the collection of those dyadic cubes with side length 27%, then the “length” is indeed the side
length. Analogously, with £ = R™ we can let Dy}, be the collection of those dyadic cubes with
side length 27% and Dy = Dyy. Hence there are repetitions of cubes in D and “length” is
comparable to the square root of the side length.

Another example is the collection of dyadic subcubes of the unit cube Qo = [0,1)". To frame
this in the previous definition (without truncating the generations), we let Dy be the collection
of dyadic subcubes of Qg if £ > 0 and Dy = {Qo} for £ < 0. In this scenario F = @y and all
the dyadic ancestors of (g are indeed @y, hence there are repetitions in . Observe that the
“length” agrees with the side length in Dy, for £ > 0. On the other hand, for Q; € Dy with £ <0
we have that £(Qy) = 2% (note that Qj, and Qg are the same set but as dyadic cubes they are
distinct). In this case, it may be convenient and more natural to truncate the generations and
just work with Dy, k£ > 0, in which case the “length” agrees with the side length.

We can also consider all classical dyadic cubes with side length at least 1. In this scenario, let
Dy, be the set of classical dyadic cubes with side length 27% for k < 0, and D, the collection of
classical dyadic cubes with side length 1 for £ > 0. In this scenario, £ = R" and all the dyadic
descendants of any cube ) with length side equal 1 are indeed @), hence there are repetitions in
D. Note that “length” agrees with the side length in Dy, for k£ < 0, however in Dy, for k > 0 the
“length” is 2% although the cubes comprising that family have side length 1. Again, in this
example, it may be more natural to truncate the generations and work with Dy, £ < 0, so that
“length” and side length agree.

Our last example is that of dyadic subcubes of the unit cube Qo = [0,1)™ with side length at
least 27V with N € N fixed. We let Dy, be the collection of dyadic subcubes of Qg if 0 < k < N,
Dr = {Qo} for k < 0, and Dy, k > N, is the collection of all dyadic subcubes of Qg of side
length 27V, In this case, F = Qy, all the dyadic ancestors of Qg are indeed Q, and all the
dyadic descendants of any cube Q with length side equal 27 are indeed Q. We have infinitely
many cubes but only a finite number of different sets. Here the reasonable thing is to truncate
the generations and just work with Dy, 0 < k < N.

We next introduce the “discretized Carleson region” relative to @, Dg ={Q' € D: Q" C Q}.
Let F = {Q;} C D be a family of pairwise disjoint cubes. The “global discretized sawtooth”
relative to F is the collection of cubes () € D that are not contained in any @; € F, and for a
given Q € D, the “local discretized sawtooth” relative to F is the collection of cubes in Dg in
Dx. These are respectively

Dr:=D\ U Dg,, Drq :ZDQ\ U Dg, = Dr NDg.
QieF QiEF

We also allow F to be the null set in which case Dy =D and Dy g = Dg.
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With a slight abuse of notation, let Q¥ be either E, and in that case Dgo := D, or a fixed
cube in D, hence Dgo is the family of dyadic subcubes of Q°. Let p be a non-negative Borel

measure on Q" so that 0 < u(Q) < oo for every Q € Dgo. Consider the operators Ago, Bgo
defined by

(2.15) Agoa(x)::( 3 M(lQ)ag)é, Biya(r) = sup <H(1Q) > ozé)é,

2EQED 4o 2E€QED G0 Q'eDg

where o = {aQ}QeDQo is a sequence of real numbers. Note that these operators are discrete
analogues of those used in [12] to develop the theory of tent spaces. Sometimes, we use a
truncated version of .AQO, which is denoted as A“F ’Oa k > 0, and where the sum runs over

zeQeDf :={Q eDg: Q") <27°(Q)}.

The following lemma is a discrete version of [12, Theorem 1] and extends [8, Lemma 3.8]:

Lemma 2.16. Under the previous considerations, given Q° as above, and o = {aQ}QeDQo;

8= {5Q}Q€DQ0 sequences of real numbers, we have that

(2.17) Z lagBol <4/ Afoa(@) By B(2) du(z).

QEIDJQO

Proof. The proof follows the argument in [8, Lemma 3.8] which in turn is based on [12, Theorem
1]. We first claim that it suffices to assume that Q° € D. Indeed, if Q° = E we have

> lagBol =) IaQﬁQI—Sup > > lagBel

QeD 4o QeD N Qep_y @ebg
<4sup Z /.A Béﬂ x) dp(z <4/AQ004 )Bgoﬁ(x)du(a:),
QG]D)

where in the first estimate we have used our claim for ), which has finite length, and in the
second one the fact that the cubes in D_y are pairwise disjoint.

From now on we assume Q° € D, hence £(Q") < co. Recall D that is countable collection of
cubes and then we can find D' cD? C --- Cc DV C--- C Dwith D = UNleD)N and #DV < N.

Given N > 1, let gV = {ﬁg}QGDQO where ﬁg = B if Q € DV and Bg = 0 otherwise. With
this notation in mind, if we show (2.17) for BV then observing that BY,5Y < B3 we just
need to let N — oo and the desired estimate follows at once.

Thus from now on we work with S~. To simplify the presentation we drop the exponent
and keep in mind that Sg = 0 for every Q ¢ DY. For Q € Dgo, let kg > 0 be so that

0(Q) = 27%24(Q). Suppose that Q' € Do satisfies £(Q") < 27k Q%) = ¢(Q) and Q'NQ # O,
then necessarily Q' € Dg and for every = € Q

(2.18) &g :_][(A"’ Bly ][ > 1g(y BQ du(y)

Q’G]DJ
@ 2 O < (Bpd )’

Q’G]D)

Since Bg = 0 for Q & DV and #DV < N, we have Aéoﬁ(x) < Cy < oo for every z € Q° and
hence &g < C% < co. Now, define

Fy:={xeQ": AiB(z)>2BpA(x), Vk > 0}.
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1
In particular, using (2.18), we have Aﬂ’fQﬁ(x) > 255 for each z € Q N Fy. We claim that

Ap(Q N Fy) < p(Q). Indeed, if £g = 0 then one can see that Ag(]fQB(y) = 0 for every y € @ and

hence Q N Fy = O, which trivially gives that 4,(Q N Fy) < p(Q). On the other hand, if {g > 0,
we have

tequ@n R < [ (A5Bw) duty) < (@)
and the desired estimate follows since 0 < g < 0o. Let us now consider
(2.19) k() = min {k > 0: ALFB(z) <2BhB)},  weQ\ R
Setting F1 g :={z € Q\ Fy: k(z) > kg} and using (2.18) we obtain
FioC{zeQ\Fy: A“Mp() >2§%}.
Applying Chebyshev’s inequality, it follows that

uFa) < g | (A 6w) dut) < Gu(@)

Setting Fr g :={x € Q \ Fo : k(z) < kg}, and gathering the above estimates, we have

W(Fa0) = Q) — 1(Q N Fy) — n(Fro) > ~u(Q).

2
Hence, Cauchy-Schwarz’s inequality and (2.19) yield

l2gfql |25
2 F 9 ) ]
QGZD:QO ol = QGZ]D)E?O #r2a) Q) = /QO\FO QEXD:QO 1(Q) Frq (z) dp(z)

I alx L 2 x % x
gz/QO\FOAQO ( )( > 0 BoLE g )) dp(x)

QEDQO

<2 / Ay (@) A B(2) dp(z)
Q\Fp

< 4/ AQoa 06(‘7:) du(z),

where we have used that @ € ID)Q(O) for each « € F5 . This completes the proof of (2.17). O

Lemma 2.20. Under the previous considerations, given Q° as above, let u and v be two non-
negative Borel measures on Q" so that 0 < p(Q),v(Q) < oo for every Q € Dgo. Assume that
there exist o, B € (0,1) such that

1(F) v(F)
(2.21) FcQeDg, —= >« == > B.
W@ v(Q)
Given v = {’yQ}QGD s @ sequence of non-negative real numbers, if we set
v, == Z o v@), I, = Sup (7 > e n@
QEDQ Q’ED QeBgo #(Q Q'eDg
then,
1
2.22 1-— < < :
(2.22) (1 =a) B, < livll, < 1—a) 3 Il

Let us observe that when p is dyadically doubling (that is, there exists C), such that pu(Q) <
Cup(Q') for every Q,Q" € Dgo with £(Q) = 2¢(Q')), the assumption (2.21) means exactly

v e AD(Q0 1) (see Definition 2.25 below).
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Proof. We first consider the case on which #{Q € Dqo : yq # 0} < oo so that ||, [V, < oo
(albeit with constants depending on the set {Q : vg # 0}), condition which will be used
qualitatively. We will eventually see how to pass to the general case.

Fix Qo € Dgo. Let F = {Q;}; be the collection of dyadic cubes contained in Qg that

are maximal with respect to the inclusion, and therefore pairwise disjoint, with respect to the
property that

Q) "~ 1—a p(Qo)

Note that F C Dg, \ {Qo} since (1 — a)™! > 1. Also, the maximality of the cubes in F
immediately gives

Q) _ 1 vQo)
@)~ L—a p(Qo)’
Set Eg = UQJ- <7 @; and note that if F is the null set then we understand that Ejp is also empty.
The definition of the family F gives

M a v(Q) _ o gV E)
g,eF H ) szef v(Qo) t=a) v(Qo) shoe

Applying (2.21) to F = Qo \ Eo which satisfies 11(Qo \ Eo) > a u(Qo) we obtain v(Qo \ Ep) >
Br(Qo) and eventually v(Ep) < (1 — 5) v(Qp). Therefore,

Yo wu@ =Y > wr@ <k, > v(@)

QEDQO\DFiQO QJG.FQEDQ QjGJ:

= |i|’Y|HuV< U Qj) = [Vl »(Eo) < (1 = B) [l »(Qo)-

QieF

(2.24) VQ e Drg,.

On the other hand, invoking (2.24),

LY @< Y u(@

v(Qo) QD7 0,

Z QM@ _7!”7\%-

1—au QE]DJ

Combining the previous estimates we arrive that

(T > r(@ (220)( Yo wr@+ Y ’YQV(Q)>

QEDg, QREDG\Dr,q QeDr

1

< (@ =B) Il + 7= Wl

We next take the supremum over all Qg € Dgo to conclude

1
il < (4= B) Il + 37— vll.-

Recalling that in the current case [|y[||, < oo (and this is used qualitatively) the first term in
the right hand side can be absorbed and we eventually obtain the second estimate in (2.22).

Let us now remove the assumption #{Q : 79 # 0} < oo. Much as in the proof of Lemma
2.16 we can find D! ¢ D? C --- Cc DV C--- C D with D = UNziDN and #DV < N. Given
N > 1, let 4V = {’Yg}QeDQo where 'yg = Bg if @ € DV and ’yg = 0 otherwise. Note that
#{Q : ’yg # 0} < N < oo hence the previous estimate applies to 4. Thus, for every Qg € Dgo
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o L er@=swoms 3 0v(Q)

14
Nzl Q€eDg,NDy

il

1
=swp s 3 @) < s s I < g Il

N>1V Qo QeDg,

Taking now the supremum over all Qg € Dgo we conclude the second estimate in (2.22).

Obtaining the first estimate in (2.22) is now easy. Set @ = 1 — 8 and 5 = 1 — «, and note
that for any F' C Q € Dgo, applying the contrapositive of (2.21) to @ \ F' we obtain

WE) oo M@VE) o p@Q\E) ()

v(Q) v(Q) Q) wQ

That is, in (2.21) holds with x4 and v swapped, and with a, and B . Hence, the second estimate
in (2.22) with p and v swapped yields

~—

1

1
vl < Y I, = A—a)d v

which is the first estimate in (2.22). This completes the proof. O

As above, QU is either E, and in which case Dgo := D, or a fixed cube in D, hence Dgo is the
family of dyadic subcubes of QV. For the rest of the section we will be working with p which
is dyadically doubling in Q°. This means that there exists C), such that u(Q) < C,u(Q’) for

every Q,Q" € Dgo with £(Q) = 20(Q").

Definition 2.25 (A%*4%). Given Q° and p, a non-negative dyadically doubling measure in Q°,

a non-negative Borel measure v defined on QU is said to belong to Ag%'adic(QO, ) if there exist

constants 0 < «, 8 < 1 such that for every @ € Dgo and for every Borel set F' C @, we have
that

F F

(2.26) G v(F)

(@) v(Q)

It is well known (see [11, 21]) that since p is a dyadically doubling measure in Q% v e
Agg’adlc(QO,,u) if and only if v < p in Q° and there exists 1 < p < oo such that v €
RHSyadlc(QO, ), that is, there is a constant C' > 1 such that

(Lo <cf =22

for every @ € Dgo, and where k = dv/dp is the Radon-Nikodym derivative.

> f.

For each F = {Qi} C Dgo, a family of pairwise disjoint dyadic cubes, and each f Ll oc (),
we define the projection operator

Phf(e) = F@) Loy Ug cran(@) + Y ( dpu(y)) 1, (@),
QieF Qi

If v is a non-negative Borel measure on Q°, we may naturally then define the measure 77541/ as
Pfu fE P]_-]_F dv, that is,

(2.27) Proe) =o(F\ U @)+ X M50,
QiEF QiEF

for each Borel set F' C Q.

The next result follows easily by adapting the arguments in [29, Lemma B.1] and [27, Lemma
4.1] to the current scenario.
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Lemma 2.28. Given Q, let i be a non-negative dyadically doubling measure in Q°, and let v
be a non-negative Borel measure in Q.

(a) If v is dyadically doubling on Q° then Plv is dyadically doubling on Q0.

(b) If v e AZH(Q0, 1) then Phv e AZH(Q0, ).

Let v = {’YQ}QGDQO be a sequence of non-negative numbers. For any collection I’ C Dgo, we
define an associated “discrete measure”

(2.29) m (D) := > o
QeD’
We say that m, is a “discrete Carleson measure” (with respect to ) in QO, if

m (DQ) 1
(2.30) Iy llecoo.y = sup —L—=- = sup —— g Yo < 0.
TIC@m) QEDQO IU’(Q) QEDQO /'L(Q) Q'ebg ¢

For simplicity, when Q° = E we simply write my lle -
Given F = {Q;} C Dgo, a (possibly empty) family of pairwise disjoint dyadic cubes, we
define m, = by
(2.31) my (D) =m,(D'NDF) = Y g D CDg.
QeD'ND £

Equivalently, m, 7 = m,, where vr = {fy]:’Q}QeDQO is given by

Yo i Q € Dggo,
‘F7 = .
T 0 iQeDg, \Drgo
Note that if 7 = @, then vr = v and hence m, 3 = m,.

(2.32)

The following result was proved in [29, Lemma 8.5] under the additional assumption that 02
is AR, however a careful inspection of the proof shows that the same argument can be carried
out under the current assumption. We note that [29, Lemma 8.5] was formulated and proved
in the case that QY € D, but clearly that implies the case Q° = E. We caution the reader to
beware of the distinction between sub- and super-script, Qo vs. @, in the statement of the
following lemma.

Lemma 2.33 ([29, Lemma 8.5]). Given Q°, let i, v be a pair of non-negative dyadically doubling
Borel measures on Q°, and let m., be a discrete Carleson measure with respect to p, with

My [lego,u < Mo.

Suppose that there exists € such that for every Qo € Dgo and every family of pairwise disjoint
dyadic cubes F = {Q;} C Dg, verifying

my(DrQ)
m, r ) = sup ——— - <¢,
2.7 lleo. Qebg, H(Q)
we have that Pj‘:u satisfies the following property:
u(F) Phu(F) _ 1
Ve e (0,1), 3C; > 1 such that (FCQ, P> = 727).
Ot 3G " Q) PEv(Qu) ~ C
Then, there exist no € (0,1) and 1 < Cy < oo such that, for every Qo € Dgo
F F 1
Fc Qo /JL()>1_770 v(F) 1

— .
w(Qo) ~ v(Qo) ~ Co
In other words, v € AZ*(Q0, ).
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2.4. Existence of a dyadic grid. In this section we introduce a dyadic grid along the lines
of that obtained in [10]. More precisely, we will use the dyadic structure from [32, 33|, with a
modification from [31, Proof of Proposition 2.12]:

Lemma 2.34 (Existence and properties of the “dyadic grid”). Let E C R"*! be a closed
set. Then there exists a constant C > 1 depending just on n such that for each k € 7 there is a
collection of Borel sets (called “cubes”)

Dy = {Qf CE: je€J},
where Ji denotes some (possibly finite) index set depending on k satisfying:
(a) E=Ujey, Q? for each k € 7.
(b) If m < k then either Q? C Q" orQMn Qé“ = 0.
(c
(

d) For each k € Z, j € Ji, there is m;“ € E such that

For each k € Z, j € Jx, and m < k, there is a unique © € J,, such that Qf C QM.

)
)
)
)

B(zh,c7'27")nE c Q) c B(a},C27") N E.

Moreover, assume that there is a Borel measure p which is doubling, that is, there exists
Cy > 1 such that p(A(x,2r)) < Cup(A(z, 7)) for every x € E and r > 0. Then u(0Q) =0 for
every Q € Dy, k € Z. Furthermore, there exist 0 < 19 < 1, C, and n > 0 depending only on
dimension and C,, such that for every T € (0,79) and Q € Dy, k € Z,

(2.35) p({ze@: dist(z, E\ Q) < 7Q)}) < Ci7"w(Q).

In what follows given B = B(z,r) with x € E we will denote A = A(x,r) = BNE. A
few remarks are in order concerning this lemma. We first observe that if F is bounded and
k € Z is such that diam(E) < C~127% then there cannot be two distinct cubes in Dj. Thus,
Dy = {QF} with Q* = E. Therefore, as explained in Remark 2.14 we are going to ignore those
k € Z such that 27% > diam(E). Hence, we shall denote by D(E) the collection of all relevant

f, i.e., D(E) := U, Dg, where, if diam(E) is finite, the union runs over those k € Z such that
27% < diam(E). For a dyadic cube Q € Dy, as explained above we shall set £(Q) = 27%, and we
shall refer to this quantity as the “length” of Q. It is clear from (d) that diam(Q) < ¢(Q) (we
will see below that in our setting the converse hold, see Remark 2.13). We write = = 2C?, with
C being the constant in Lemma 2.34, which is a purely dimensional. For @ € D(E) we will set
kE(Q) = k if Q € Dy. Property (d) implies that for each cube @ € D, there exist zg € E and
rg, with Z7H(Q) < rg < ¢(Q) (indeed rg = (2C)~1¢(Q)), such that

(2.36) A(l’@, QTQ) cQcC A((EQ, E?“Q).

We shall denote these balls and surface balls by

(2.37) Bg = B(zq,7q),  Ag:=A(zq,1q),
(2.38) Bq = B(zq,Erq),  Aq:= A(zq,Erq),

and we shall refer to the point zg as the “center” of Q.

Let @ € Dy and consider the family of its dyadic children {@Q" € Dg.1 : Q" C Q}. Note
that for any two distinct children @', Q", one has |z — xgr| > ror = ror = rq/2, otherwise
zgr € Q"N Ag C Q"NQ’, contradicting the fact that Q" and Q" are disjoint. Also z¢g, zgr €
@ C A(zg,rqQ), hence by the geometric doubling property we have a purely dimensional bound
for the number of such xg and hence the number of dyadic children of a given dyadic cube is
uniformly bounded.



ELLIPTIC OPERATORS ON ROUGH DOMAINS 17

2.5. Sawtooth domains. In the sequel, Q C R"™! n > 2. will be a 1-sided NTA domain
satisfying the CDC. Write D = D(9Q) for the dyadic grid obtained from Lemma 2.34 with
E = 09Q. By Remark 2.13 and under the present assumptions one has that diam(A) = ra for
every surface ball A. In particular diam(Q) ~ ¢(Q) for every @ € D in view of (2.36). Given
Q) € D we define the “Corkscrew point relative to Q" as X¢ := Xa,. We note that

I(Xg) =~ dist(Xg, Q) ~ diam(Q).

Much as we did in Section 2.3 of, given @) € D and F a possibly empty family of pairwise
disjoint dyadic cubes, we can define D¢, the “discretized Carleson region”; Dr, the “global
discretized sawtooth” relative to F; and Dr , the “local discretized sawtooth” relative to F.
Note that if F to be the null set in which case Dy =D and Dg o = Dg.

We also introduce the “geometric” Carleson regions and sawtooths. Given @) € D we want to
define some associated regions which inherit the good properties of Q. Let W = W() denote
a collection of (closed) dyadic Whitney cubes of @ C R""! so that the cubes in W form a
covering of  with non-overlapping interiors, and satisfy

(2.39) ddiam(]) < dist(41,09) < dist(I,09) < 40diam(I), VI €W,

and

diam(/;) ~ diam(/2), whenever I; and I touch.

Let X (I) denote the center of I, let ¢(I) denote the side length of I, and write k = ky if
(1) =27,

Given 0 < A < 1 and I € W we write I* = (1 + A\)I for the “fattening” of I. By taking A
small enough, we can arrange matters, so that, first, dist(/*, J*) ~ dist(I, J) for every I,J € W.
Secondly, I meets J* if and only if I meets 9J (the fattening thus ensures overlap of I* and
J* for any pair I,J € VW whose boundaries touch, so that the Harnack Chain property then
holds locally in I* U J*, with constants depending upon \). By picking A sufficiently small, say
0 < XA < Ap, we may also suppose that there is 7 € (%, 1) such that for distinct I,J € W, we
have that 7J N I* = . In what follows we will need to work with dilations I** = (1 4+ 2\)I or

I'"** = (14 4M\)I, and in order to ensure that the same properties hold we further assume that
0< A< )\0/4.

For every @ € D we can construct a family W, C W(2), and define

Ug = U I,

rew

satisfying the following properties: Xg € Ug and there are uniform constants k* and Ky such
that

E(Q) — k" < kr < k(Q)+k*, VIeWp,
(240) X(I) _>UQ XQ7 VI € W57
dist(1, Q) < Ko27M@ | vIeWwp,.

Here, X (I) =y, Xq means that the interior of Ug contains all balls in a Harnack Chain (in €2)
connecting X (/) to Xg, and moreover, for any point Z contained in any ball in the Harnack
Chain, we have dist(Z,09Q) ~ dist(Z, \ Ug) with uniform control of the implicit constants.
The constants k*, Ko and the implicit constants in the condition X (/) —y, Xq, depend on
the allowable parameters and on A. Moreover, given I € W((2) we have that I € W, , where
Qr € D satisfies £(Qr) = £(I), and contains any fixed y € 0S92 such that dist(Z,09Q) = dist(1, 7).
The reader is referred to [29, 30] for full details.
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For a given @ € D, the “Carleson box” relative to @) is defined by

Tq := int < U UQ/)

Q/GDQ
For a given family F = {Q;} C D of pairwise disjoint cubes and a given @) € D, we define the
“local sawtooth region” relative to F by

(2.41) QEQ:int( U UQ/>:int< U I*),
Q'ED]—"Q IGW]:VQ

where Wr ¢ 1= UQ’eD; o Wg? Note that in the previous definition we may allow F to be empty
in which case clearly {2p ¢ = T. Similarly, the “global sawtooth region” relative to F is defined
as

(2.42) = int (Qg) Uy > = int <I€LVJVF I*>,

where Wr := UQ’G]D); Wé If F is the empty set clearly Qg = Q. For a given ) € D and x € 92
let us introduce the “truncated dyadic cone”

Fo(x) = U Uy,
xGQ'EDQ

where it is understood that I'g(xz) = O if z ¢ @Q. Analogously, we can slightly fatten the
Whitney boxes and use I** to define new fattened Whitney regions and sawtooth domains.
More precisely, for every Q € D,

= int < U UQ,> Uy o 1= int ( U Ug?/), To) = |J U
Q’'eDq Q'eDF, zeQ'eDq,
where Ug) := UIeWg? I**. Similarly, we can define T5", QF o, I'(y (z), and Ug" by using I*** in
place of I**.

Given ) we next define the “localized dyadic non-tangential maximal function”

(2.43) Nou(z) := sup |u(Y)], x € 09,

Yery (@)
for every u € C(Tg)), where it is understood that Ngu(z) = 0 for every z € 992\ @ (since
I't(z) = O in such a case). Finally, let us introduce the “localized dyadic conical square
function”

(2.44) Soulx (//FQ Vu(Y)[25(V) wy) L zeon,

for every u € I/Vl (TQO) Note that again Squ(x) = 0 for every x € 90\ Q.

To define the “Carleson box” T associated with a surface ball A = A(x, ), let k(A) denote
the unique k € Z such that 2*]“*1 < 200r < 27% and set

(2.45) ={Q €Dy : @QN2A # 0O}
We then define

(2.46) Th := int < U TQ>.

QehbA

We can also consider fattened versions of T given by

T ::int< U Té), X :zint( U ng*).

QehA QebA
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Following [29, 30], one can easily see that there exist constants 0 < xk; < 1 and ko > 16=
(with = the constant in (2.36)), depending only on the allowable parameters, so that

(2.47) k1BENQ C Ty CTH CTH CTh CroBeNQ=: 3B5NQ,

2.48 SBANQCTACTA CTA CTF ChoBANQ =:3BANQ,
4 A A A 2PA

and also

(2.49) QCroBANON=1BANON=1A"  vQeDA,

where By is defined as in (2.37), A = A(z,r) with z € 02, 0 < r < diam(91?), and Ba = B(z,)
is so that A = BANOS). From our choice of the parameters one also has that B, C BZ}, whenever
Qcq.

In the remainder of this section we show that if € is a 1-sided NTA domain satisfying the
CDC then Carleson boxes and local and global sawtooth domains are also 1-sided NTA domains
satisfying the CDC. We next present some of the properties of the capacity which will be used
in our proofs. From the definition of capacity one can easily see that given a ball B and compact
sets Fy C F» C B then

(2.50) Capy(F1,2B) < Capy(F2,2B).
Also, given two balls By C By and a compact set F' C By then
(2.51) Capy(F,2B3) < Capy(F,2By).

On the other hand, [24, Lemma 2.16] gives that if F is a compact with F' C B then there is a
dimensional constant C,, such that

(2.52) C-1 Capy(F,2B) < Capy(F,4B) < Capy(F,2B).

Lemma 2.53. Let Q C R*™, n > 2, be a 1-sided NTA domain satisfying the CDC. Then all
of its Carleson bozxes Ty and Tx, and sawtooth regions QF, and Qr g are 1-sided NTA domains
and satisfy the CDC with uniform implicit constants depending only on dimension and on the
corresponding constants for §2.

2.6. Uniformly elliptic operators, elliptic measure, and the Green function. Next,
we recall several facts concerning elliptic measure and the Green functions. To set the stage
let © C R™! be an open set. Throughout we consider elliptic operators L of the form Lu =
—div(AVu) with A(X) = (a;;(X )):Lj;ll being a real (non-necessarily symmetric) matrix such
that a; ; € L>(€2) and there exists A > 1 such that the following uniform ellipticity condition
holds

(2.54) ATHEP < AX)E - €, [A(X)E - n| < Af¢][n]
for all £,7 € R*! and for almost every X € Q. We write LT to denote the transpose of L, or,
in other words, L"u = —div(ATVu) with AT being the transpose matrix of A.

We say that u is a weak solution to Lu = 0 in §2 provided that u € VVI})CQ(Q) satisfies
// AX)Vu(X) - Vo(X)dX =0 whenever ¢ € C5°(Q).

Associated with L one can construct an elliptic measure {wi( txeq and a Green function Gp,
(see [30] for full details). Sometimes, in order to emphasize the dependence on 2, we will write
wr.o and Gro. If  satisfies the CDC then it follows that all boundary points are Wiener
regular and hence for a given f € C.(0f2) we can define

u(X) = - f(2)dwy (2), whenever X € Q,
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so that u € I/Vlic2 (2) N C(Q) satisfying u = f on 92 and Lu = 0 in the weak sense. Moreover,
if f € Lip(Q) then u € W12(Q).

We first define the reverse Holder class and the A, classes with respect to fixed elliptic
measure in 2. One reason we take this approach is that we do not know whether H"|5q is well-
defined since we do not assume any Ahlfors regularity in Theorem 1.5. Hence we have to develop
these notions in terms of elliptic measures. To this end, let €2 satisfy the CDC and let Ly and L
be two real (non-necessarily symmetric) elliptic operators associated with Lou = — div(AgVu)
and Lu = — div(AVu) where A and Ay satisfy (2.54). Let wg and wy be the elliptic measures
of ) associated with the operators Ly and L respectively with pole at X € . Note that if
we further assume that () is connected then wl}f < w}j on 9N for every X, Y € Q. Hence if
wfo < wz‘; on Jf) for some Xg, Yy € Q) then wi( < w{o on 0N for every X,Y € Q and thus we
can simply write wy, < wr,, on 0€). In the latter case we will use the notation

X
dws
X
dw o

(2.55) h(-;L, Lo, X) =

to denote the Radon-Nikodym derivative of wf with respect to wfm which is a well-defined
function wfo—almost everywhere on 0f2.

Definition 2.56 (Reverse Holder and A, classes). Fix Ag = By N 9 where By = B(zo, o)
with 29 € 0 and 0 < 9 < diam(02). Given p, 1 < p < oo, we say that wr, € RH,(Ag,wr, ),
provided that wy, < wr,, on Ag, and there exists C' > 1 such that

1 Xag
X P X w A
<][ h(y; Ly Lo, X'y (3/)> = C][ h(y; L, Lo, Xa,)dwy, 0 (y) = CI)}T(),
) . wr, *(A)
0
for every A = BN 0Q where B C B(xo,r9), B = B(,7) with z € 0Q, 0 <1 < diam(9). The

infimum of the constants C' as above is denoted by [WL]RHp(AOMLO)'

Similarly, we say that w; € RHp(09Q,wr,) provided that for every Ag = A(xzg,ro) with
zo € 0Q and 0 < ry < diam(0€) one has wy, € RH,(Ag,wr,) uniformly on Ay, that is,

wilrm, @005, = SKP[WL]RHP(AO,WLO) < 00.
0

Finally,

Aso(Bo,wiy) = | RHy(Ao,wi,) and  As(09Q,wr,) = | ) RH,(0Q,wr,).
p>1 p>1

The following lemmas state some properties for the Green functions and elliptic measures,
proofs may be found in [30].

Lemma 2.57. Suppose that Q C R™ n > 2, is an open set satisfying the CDC. Given a real
(non-necessarily symmetric) elliptic operator L = — div(AV), there exist C > 1 (depending only
on dimension and on the ellipticity constant of L) such that G, the Green function associated
with L, satisfies

(2.58) 0<GLX,)Y)<C|IX-Y'™, VX, YeQ, X=#Y;
(2.59) Gr(»Y) e WA\ {YDNC@\{Y}) and Gr(Y)ga=0 VY €
(2.60) GL(X,Y) =G (Y, X), VX,YeQ, X#Y;

(2.61) //Q AX)VxGL(X,Y) Vo(X)dX = p(Y), Ve Cx(Q).
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Remark 2.62. If we also assume that € is bounded, following [30] we know that the Green
function G, coincides with the one constructed in [23]. Consequently, G (-,Y) € W12(Q\

B(Y,r))N Wol’l(Q) Moreover, for every ¢ € C°(€2) such that 0 < ¢ <1 and ¢ =1 in B(Y,r)
with 0 < r < §(Y), we have that (1 — ¢)Gr(-,Y) € W&’Z(Q).

The following result lists some properties which will be used throughout the paper:
Lemma 2.63. Suppose that @ C R n > 2, is a 1-sided NTA domain satisfying the CDC. Let
Ly = —div(ApV) and L = —div(AV) be two real (non-necessarily symmetric) elliptic operators,
there exist C1 > 1, p € (0,1) (depending only on dimension, the 1-sided NTA constants, the
CDC constant, and the ellipticity of L) and Cy > 1 (depending on the same parameters and on
the ellipticity of Ly ), such that for every By = B(xo,19) with zg € 0X2, 0 < ro < diam(91), and
Ag = By N O we have the following properties:

(a) w¥ (Ag) > Ct for every Y € O By N Q and waO(AO) > ot

(b) If B = B(z,r) with x € 0 and A = BNONY is such that 2B C By, then for all X € Q\ By
we have that O 'wiX (A) < 7 1GL(X, Xa) < Crwi (A).

(¢) If X € Q\ 4By, then wi (2A0) < CrwyX (Ap).

(d) For every X € Q\ 2k0By with ko as in (2.48), we have that

11 duwy 2 1

= o) P—
Crof by = awX W =Xy
(e) If B= B(z,r) with x € Ay, 0 <1 <rg/4 and A = BNOQ, then

for wf-a.e. y € Ay.

1 x X X
awLﬁ(F) < va%Ao (F) < Cuwpo(F),  for every Borel set F' C A.

(f) If L = Ly in B(xo,2kor0) N Q with ko as in (2.48), then

1 XAO XAO

X
@WLO (F) <w;(F) < Cowy °(F),  for every Borel set F' C Ao.

Remark 2.64. We note that from (d) in the previous result, Harnack’s inequality, and (2.36)
one can easily see that
Xo
dwy @ 1
Xow W)~ < —
dw; w; Q)

X 1
(2.65) , for w; ¥ -a.e. y € Q', whenever Q' C Q" € D.

Xon Xor . . .
Observe that since w; ¥ < w; ? an analogous inequality for the reciprocal of the Radon-
Nikodym derivative follows immediately.

We close this section by stating a dyadic versions of the main lemma in [14]. To set the stage
we first quote some auxiliary result:

Proposition 2.66 ([29, Proposition 6.7], [3, Proposition 3.1]). Let Q@ C R™!, n > 2, be a
1-sided NTA domain satisfying the CDC. Fix Qo € D and let F = {Qr}x C Dg, be a family of
pairwise disjoint dyadic cubes. There exists Yo, € Q2N Qr g, N Q% Qo 50 that

(2.67) dist(Yg,, 09) ~ dist(Yg,, 00r q,) ~ dist(Yg,, 0% g,) = £(Qo),

where the implicit constants depend only on dimension, the 1-sided NTA constants, the CDC
constant, and is independent of Qo and F. Additionally, for each Q; € F, there is an n-
dimensional cube P; C 0)F q,, which is contained in a face of I* for some I € W, and which
satisfies

(2.68) 0(Pj) =~ dist(Pj, Q) ~ dist(P},00Q) =~ ((I) = £(Q;),

and Zj 1p; < 1, where the implicit constants depend on allowable parameters.
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We are now ready to state the a version of [29, Lemma 6.15] (see also [14]) valid in our setting:

Lemma 2.69 (Discrete sawtooth lemma for projections, [3, Lemma 3.5]). Suppose that Q C
R n > 2, is a bounded 1-sided NTA domain satisfying the CDC. Let Qy € D, let F =
{Qi} C Dg, be a family of pairwise disjoint dyadic cubes, and let p be a dyadically doubling

measure in Q. Given two real (non-necessarily symmetric) elliptic Lo, L, we write wOQO =
Y. Y. Y .. . . . .
wLEfOQ, wLQO = wLQgg’ for the elliptic measures associated with Lo and L for the domain Q with

fized pole at Yo, € Qr.0,NQ (cf. Proposition 2.66). Let wLQO = wZQg‘Z) 00 be the elliptic measure

associated with L for the domain QF g, with fized pole at Yo, € QF g, N Q. Consider VZQO the
measure defined by

(2.70) v F) o (P @)+ 3 o YQF“Ql)win(B), F C Qu,

QzEf QZEJ: wL 0 Ql)

where P; is the cube produced in Proposition 2.66. Then Pff—_uz/% (see (2.27)) depends only on

Y, Ya, .
wOQO and wL , but not on wL . More precisely,

(2.71) Pho @ (F) =w, 2 (F\ J @)+ > uE g?l)wﬁom), F C Qo.
Q:EF Q:EF

Moreover, there exists 8 > 0 such that for all Q € Dg, and all F' C Q, we have

1 YQO 1 YQO M YQO
.12) = <F>) - Py (F) _ P, (F)

Pl (Q) ”Pﬁév?%@) Pl YQ"(Q).

3. PROOFS OF THE MAIN RESULTS

In order to prove Theorem 1.5 we are going to obtain a local version valid for bounded
domains, interesting on its own right, which in turn will imply the desired results.

Proposition 3.1. Let Q C R*"™, n > 2, be a bounded 1-sided NTA domain satisfying the
CDC. Let Lu = —div(AVu) and Lou = — div(AgVu) be two real (non-necessarily symmetric)
elliptic operators. Fix g € Q2 and 0 < rg < diam(992) and let By = B(xg,70), Ao = By N ONL.
Set

1 Gr, (XA X)
3.2 A A = su // A, Ag)(X )22t 280 2 g x
(3.2) llo(A, Ao)ll 5, up wfjo N 0(A, Ag)(X) 5(X)?

where p(A, Ap) was defined in (1.6), A = BNOSY, and the sup is taken over all balls B = B(x,r)
with © € 2Ag and 0 < 1 < roco/4 (co is the Corkscrew constant).

(a) If lo(A, Ao)ll g, < o0, then wr € Aoc(Ao,wL,), that is, there exists 1 < g < oo such that
wr, € RHy(Ao,wr,). Here, ¢ and the implicit constant depend only on dimension, the 1-
sided NTA and CDC constants, the ellipticity constants of Lo and L, and ||o(A, Ao)l| g, -

(b) Given 1 < p < oo, there exists €, > 0 (depending only on p, dimension, the 1-sided
NTA and CDC constants and the ellipticity constants of Ly and L) such that if one has
lle(A, Ao)llg, < eps then wr € RHy(Ao,wr,), with the implicit constant depending only

on p, dimension, the 1-sided NTA and CDC constants, and the ellipticity constant of Lg
and L.

Assuming this result momentarily we can prove Theorem 1.5:
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Proof of Theorem 1.5, part (a).
Case 1: 2 bounded.

For every ball By = B(xg,r9) with zp € 0Q and 0 < rg < diam(92), we clearly have
lle(A; Ao)lllg, < lle(A, Ao)ll < co. We can then invoke Proposition 3.1 part (a) to find g,
1 < ¢ < o0, such that wy, € RHy(Aop,wr,). Moreover, since supg, [[o(A, Ao)llz, < lle(A; Ao)ll
then the same ¢ is valid for every By and also supa, [WL]RHq(AO, < 00. This means that
wr, € RH (0, wr,) and hence wy, € Axe (09, wr,, ).

W)

Case 2: () unbounded.
Fix By = B(xg,79) with zg € 02 and 0 < rg < diam(9€2). From Lemma 2.53, we know that
every Th is a 1-sided NTA domain satisfying the CDC and moreover all the implicit constants

depend on the corresponding ones for Q2. Write ¢ for the associated Corkscrew constant (which
is independent of A), set K = max{1,cj/co} and fix M > 16K > 16. We have two sub-cases:

Case 2a: 0 < ryp < diam(9Q)/(2M).

Set By = M By, so that B, < diam(0€2)/2, and let Ao = BynoQ. Define Q, = TR CQ,and
our goal is to apply Proposmon 3.1 in this bounded domain. From Lemma 2.53, it follows that
Q, is a 1-sided NTA domain satisfying the CDC and moreover all the implicit constants depend
on the corresponding ones for €2 but are uniform on M. In particular, the interior Corkscrew
condition holds with ¢y (which does not depend on M).

Write By = B(xg,70) = B(wg, Kr9) so that 8By C 8By C EO, and set Ay = By N O,
Ag = 3008(2*, and Aj := ByNo€,. Note that by (2.48) we have 8BOOQ C BOQQ C TA =0,
and hence 8A0 = 8A*. Moreover, one can also see that for every X € 4B() nNQ = 4Bo N Q then
6(X) = dist(X, 08 ) =: 6,(X). Consequently, if Xas denotes the Corkscrew point relative to
A} for the domain €, and X A, denotes the Corkscrew point relative to &0 for the domain (2
we have

coro < 0x(Xay) = 0(Xax) <o, coro < I(
and |XA6 — Xﬁo‘ < (1 +K)T0.

Fix © € 2A¢, 0 < r < roc/4, write B = B(z,r), A = BN 0Q, A* = BN 0, and note
that from the above observations A = A*. Invoking Lemma 2.63 part (e), the Harnack chain
condition for €2, allows us to obtain

XA . Xz, Xz,
WLO Q. (A ) R w6, (A) Rwp §(A).
On the other hand if Y € BNQ, = BNQ and we pick y € 9 so that |[Y —y| = §(Y) = 6,.(Y) < ro.
Write By = B(y,26(Y’)) which satisfies By C 5By and hence Ay := ByNd§) = ByNoS, =: Ay
Then if XA, (respectively X A;) stands for the Corkscrew point relative to Ay (respectively
A3 ) with respect to €2 (respectively €2,) we observe that

AO) Ox (XEO) < 1o,

X A
Groo. (Xas,Y) = Gro0,(Xag, Xay) = 0(Y) "w A,&*(A*y) ~ oY) wLO Q*(AY)

~ oY) WLOQ(AY) Groa(Xx, Xay) = Groa(X3,,Y),

where we have used the Harnack chain condition in both € and €),, Harnack’s inequality, and
Lemma 2.63 parts (b) and (e). Finally,

0(A, A0)(Y) == [|[A = AollBvs.(vy/2) = 1A = AollBvisvy 2) = (A, Ag)(Y)
since Y € BNQ C 4By NQ = 4B, N €, and hence §(Y) = 6,(Y).

At this point we collect the previous estimates to obtain that

lle(A, Ao)ll 5, 2,
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1 Groa.(Xas, X
= sup XA // 0x(A, AO)(X)2 Loﬁ* (XA20 ) aX
B=B(z,r) (A*) BNQy *( )

z€A],0<r<rocy /4 “Lo :Q*

,Groa(Xx Y
< swp / / o(A, Ap)(X) Lg)dx
B=B(z,r) BﬂQ 5( )

z€§0,0<r<%co/4 O’

< [llo(A, Ao)|ll < oo,

where all the implicit constants are independent of M and uniform in By. We can then invoke
Proposition 3.1 part (a) (since €, is bounded) to find ¢, 1 < ¢ < oo, such that wr o, €
RH (Ao, wry.0,). On the other hand, by Lemma 2.63 part (e) we have that wr o, and wr g
are comparable in Ay and so are wr, o, and wr, . Thus eventually, wr o € RHy(Ao,wry.0)-
Moreover, the previous estimate is independent of By and the same ¢ is valid for every By as
in the present case.

Case 2b: diam(09)/(2M) < rp < diam(092).

Note first that this case is vacuous if 92 is unbounded. Hence we may assume that OS2
is bounded. We first find a finite maximal collection of points {xj}jzl € Ag with 1 < J <
(1 + 20M)™*! such that |z; — xp| > diam(9Q)/(10M) for 1 < j < k < J. For any of the
balls B; = B(xz;,diam(092)/(10M)) by Case 2a we have that w;, € RH,(3A;,wr,) where the
implicit constants do not depend on j, and we have written wr, = w0 and wy, = wr, 0.

To show that wy, € RHy(Ao,wr,), let B = B(x,r) C By with x € 0Q and A = BN oQ. If
ANA;#Oand 0 < r < diam(0€)/(10M) we note that ANA; C A C 3A; and thus
q
1

Xa
—~ h(y; L, Lo, Xa)?dw; "0 (y)
Wi (B) /M o

1 X3A, Xa
Xsa; e _wp (A w; (A
: (][ Py L Lo Xaa, ) e, (y)> S §(3A,( ) ~ o )
: () ()
where we have used Harnack’s inequality and that wy, € RH,;(3A;,wr,). On the other hand, if
ANA; # O and diam(0Q)/(10M) < r < ro we have that r =~ rg =~ diam(02). Thus, by Lemma

XA

2.63 parts (a), (b), and (c), waAO(A) ~wr. ' (Aj) = 1 and the same occurs for wr. These yield

1 X
0 e, M R
(.UL j
X T WAy W20 (A)
S h(y;L, Lo, Xa,)9dw, 9 (y) | <" x1a L 2
J Lo XA XA
A wro (D) Wy, (A)

where we have used Harnack’s inequality and the fact that w;, € RH,(3A,wr,). All these, the
fact A C |J; A; NA, and the bound J < (1 + 2M)" L imply

1
X q
(][A h(y; L, Lo, X, ) Ydwy, ™ (y)>
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which eventually shows wr o € RH,(Ag,wr,,0) in the current case.

Collecting Case 2a and Case 2b we have shown that wy o € RHy(Ag,wr,,q) uniformly
on Ay which eventually means that wr o € RH,(0Q,wr, ) and hence wr o € Ax (09, wr,y.0).
This completes the proof.

O

Proof of Theorem 1.5, part (b). We follow the same argument as in the previous proof using part
(b) in place of part (a) in Proposition 3.1. Further details are left to the interested reader. [

Proof of Theorem 1.10. Fix a > 0. It is immediate to see that parts (a) and (b) follow respec-
tively from parts (a) and (b) in Theorem 1.5 and the following estimate:

(3-3) (A, Aol Sa [1Ma(e(A; Ao))l[7w0 )

where, as explained in Remark 1.12, the pole for wy,, needs not to be specified. Hence everything
reduces to obtaining such estimate. With this goal in mind, fix Ag = By N 9N with By =
B(xg,70), Tg € 092, and 0 < ry < diam(09). Let A = BN I with B = B(x,r), a: € 24, and
0 <7 < roco/4, here ¢y is the Corkscrew constant. Write Xo = Xa, and wy = wL Note that
this choice guarantees that Xy ¢ 4B. Define

Wp={leW:INB# 0}

and for every I € Wp let X7 € I N B so that 4diam(/) < dist(Z,09) < §(X;) < r and hence
I C 2B. Pick z; € 9Q such that |X; — 27| = 6(X;) < diam(I) + dist(Z, 92) and let Q; € D be
such that z7 € Qr and ¢(I) = ¢(Qr). By Lemma 2.63 parts (a)—(c) and Harnack’s inequality
one can show that

wo(Qr) = L) G, (X0, X1) = §(Y)"1G1,(Xo,Y), foreveryY €1.

Then,
2GLO(XOa A AO )
I _//Bmﬂ (A4, Ao)(Y) 5(y)2 //Bm Yyt dY wo(Qr)
0(A, Ap)
//Brm 0n+1 y IGZWB 17(Y)wo(Qr) dY.

Fix Y € B and note that by the nature of the Whitney cubes one has #{I e W : I >Y} < C,
for some dimensional constant (indeed the I’s have non-overlapping interiors and hence for a.e.
Y € Q, there is just one Iy containing Y). Pick y € 09 such that |Y —y| =4d(Y). Let z € Qy,
then by (2.36) and (2.39)
2=yl < |z =z +[or = Xy + [ X7 = Y|+ [V —y]
< E0Qq) + 6(X1) + diam(I) + 6(Y) < 325(Y)
and therefore Q; C A(y,3=26(Y)). Note also that
A(y,ad(Y)) C B(Y,(1+a)d(Y))NoQ C (2+ a)A.
Then using Lemma 2.63 parts (a) and (c)
> 1Y) wo(Qr) < Cowo(A(y, 326(Y)))

1eWp
Sa wo(A(y, ad(Y))) <wo(B(Y,(1+a)d(Y)) NoQ).

Hence, using again Lemma 2.63 parts (a) and (c), and Harnack’s inequality we conclude:

o(A, Ag)
Ip Za //Bm 0n+1) wo(B(Y, (14 )5(Y)) N dQ) dY
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A Ap)
/ // OnH Yy 1By, (14a)s(v))non(?) dY dwo(z)
24-a)A BNQ

/2+a //a(z A AOnH) dwo(2)

—/ Aa(0(A, 40))(2)? dun(2)
(24+a)A
< [ Aa(0(A, A0)) [y ((2 + @)A)

Sa [[Ma(o(A, A0) 70 (o) wo(A).
This eventually shows (3.3) and this completes the proof of Theorem 1.10. (]

3.1. Auxiliary results. We next state some auxiliary lemmas which will be needed for our
arguments.

Lemma 3.4. Let Q be a bounded 1-sided NTA domain satisfying the CDC. Consider Ly =
—div(4pV) and L = —div(AV) two real (non-necessarily symmetric) elliptic operators, and
let ug € WH2(Q) be a weak solution to Loug = 0 in Q. Then,

(3.5) / AJ(Y)VyGrr(Y,X)-Vug(Y)dY =0,  for a.e. X € Q.
Q

Proof. We follow the argument in [8, Lemma 3.12] where it was assumed that 0 is AR and
the operators were symmetric. Pick ¢ € C§°(R) with 1(g 1) < ¢ < 1(g9). Fix Xo € Q, for each
0 <e < 6(Xp)/16 we set p(X) = ¢(|X — Xo|/e) and ¢ = 1 — .. By Remark 2.62, one has
that Gp7 (-, Xo)Y: € Wol’2(Q), which together with the assumption that ug € W12(Q) is a weak
solution to Loug = 0 in §2, allows us to see that

] 4301V (G0 Ko () - V) ay =

As a consequence,
// AJVGLT(-,XO)-vuodY:// Ay V(G (- Xo)p:) - VugdY
Q Q

:// AJVGLT(~,X0)~WW€CJY+/ A Ve - VugGrr (-, Xo)dY = I, + IT..
Q Q

We use (1.1), Cauchy-Schwarz’s inequality, Caccioppoli’s inequality for G (-, Xo) (which sat-
isfies LTG (-, Xo) = 0 in the weak sense in Q\ {Xo}), and (2.58)

|Is| 5 // |VGLT(',XU)| |VUO| dYy
X0,26)
1

00 1 1
2 2
< § (// yvyGLT(Y,XO)PdY> (// \vuoy2dy>
=0 27 Je<|Y —Xo|<2—iF1e B(Xg,277+1¢)

oo

1
. n—1 2
< May(|Vug|1a)(Xo) (277¢) 2 <// |GLT(Y,X0)|2dY>
— 2-i-1e<|Y — Xo|<2-7+2¢

J
S 8M2(‘VU0’]_Q)(X0),

where My f := M(|f|? )2 with M being the Hardy-Littlewood maximal operator on R"*!. For
the second term, we invoke again (2.58) and Jensen’s inequality:

7. < et / / Gy (Y, Xo)| [Vuo(Y)] dY
<|Y —Xo|<2¢
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<o // Vo (V)| dY < eMa(|Vuo|10)(Xo).
B(Xo,2¢)

Combining the obtained estimates we have shown that, for every Xy € Q2 and for every 0 < € <
6(X0)/167

(3.6) ‘ // ATVG,+ (-, Xo) - Vg dY‘ < eMy(|Vup|10)(Xo).
Q

Since ug € WH2(Q) it the follows that Ms(|Vug|lg) € L**°(R™™1), and as a result Ma(|Vug|1q)
is finite almost everywhere in R"*!. Thus, we can let ¢ — 0T in (3.6) to obtain the desired
equality. O

Lemma 3.7. Let Q2 be a bounded 1-sided NTA domain satisfying the CDC, and let Ly =
—div(AoV) and L = —div(AV) be two real (non-necessarily symmetric) elliptic operators.
Given g € Lip(0Q2), consider the solutions ug and u given by

wX) = [ gwafe).  ux) = [ gpate).  Xeo
Then,
(3.8) w(X) — ug(X) = / /Q (Ao — A)T(Y)VyG o (Y, X) - Vauo(Y) dY
for almost every X € Q.

Proof. We again follow the argument in [8, Lemma 3.18] with some appropriate changes. Fol-
lowing [30] we know that ug = § — vo and u = § — v, where § € Lip,(R"*!) is a Lipschitz
extension of g, and vy, v € VVO1 2(Q) are the Lax-Milgram solutions of Lovg = Log and Lv = Lg

respectively. Hence, we have that u —ug = vg —v € VVO1 ’Q(Q), and following again [30] one can
extend (2.61) so that

(u —up)(X) = //Q AT(Y)VyG (Y, X)-V(u—ug)(Y)dY, forae X eQ.

For almost every X €  we then have that
(1 — ) (X) — / / (Ao — AT (V)Vy Gyt (Y, X) - Vo (V) dY
Q

:// AT(Y)VyGpr (Y, X) - Vu(Y) dY—// A (Y)VyGrr(Y,X) - Vuy(Y)dY.
Q Q

Using Lemma 3.4 for both terms the right side of the above equality vanishes almost everywhere,
and this proves (3.8). O

For the following result, we recall the definition of the localized dyadic conical square function
in (2.44). Also, if p is a non-negative Borel measure on Qg so that 0 < u(Q) < oo for every
Q € Dg,, we define the localized dyadic maximal function with respect to p as

d — v(Q)
Mo (@) xeé‘é%% (@)’

where v is a non-negative Borel measure on Q).

Lemma 3.9. Let Q be a 1-sided NTA domain satisfying the CDC and let Ly = — div(AgV)
and L = — div(AV) be two real (non-necessarily symmetric) elliptic operators. Let Qo € D and
let F ={Q;}; C Do, be a (possibly empty) family of pairwise disjoint dyadic cubes. Let ug €
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VV&)’CQ(Q), and let 0 < H € L>®(Q). LetYp € Q\Bao (see (2.47)) and define vy, = {VYO,Q}QGDQO
where

oo =@ S [HEwiey, Q€ Dg,
IGW*
Then,
(3.10) // Y)|Vy Gyr (Y, Yo)| Vo (V)| dY
Q]:QO

Y
Slm 2l gy [ M F) @) Sauno(e)dils o).

Proof. To ease the notation let us write wqg := w}L/g, w = wzo, o,Q@ = Q> and vy, = 7. From
the definition of Qr g,; Cauchy-Schwarz’s, Caccioppoli’s and Harnack’s inequalities (applied
to G7(-,Yy) which satisfies LT G (-,Yp) = 0 in the weak sense in Q \ {Yp}); the fact that
U(I) = Q) = §(Y) for every Y € I" € W; (2.60); and Lemma 2.63 part (b) in conjunction
with (2.47), we clearly have

T = / / Y)Wy Gy (Y, Yo)| [Vuo(Y)|dY
Q]:QO

< Y Y e / Yy G (V. Y0) | [Vap(Y)|dY

QG]D)]: Qo IEW*

S22 Il <// VyGur (Y. 20)] dY) (/ i IVuo<Y>|2dY>é

QEDF g, TEW)

> X et SRS (] e w)

QGD}"QO IGW&

ST I Hpenw(@) </I*|VUO(Y)\25(Y)1_”dY>2

QGD}"QOIEV\}é
(Q) )2 Y 26 Y l—ndY % %
o //U Vuo(Y)5(Y) Vi

< Y (wo(Q) (50(

QEDg,

where in the last estimate we have used that the family {I*} rews has bounded overlap. If we
now set a = {ag}tgen,, with

aq = (wo(Q) <;((%)))2 /I Q |Vuo<Y>|26<Y>1—"dY> L Dg,,

we obtain by invoking Lemma 2.16 with p = wp

Ty < Z aQ’y]_-Q <4 / AG a(x)Bg) ({7]5.-@}@6]]])@0)(33) dwo(z).

QG]D)QO

Note that for every z € Qg

wo _ w(@
‘AQoa(aj) - Z <w0((Q))

IEQEDQO

[N

2
) //U VuoPs() Y | < M, wle) Soyun(a),
Q
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where we have used that the family {Ug}qen,,, has finite overlap. Besides, if z € Qo
(1) ) (@) L > : I, 7112

Bg, (177qQeng, ) (x) =  sup ( ’Y]—',Q’) < [my7llé :

@o 7@ o Z‘EQEDQO WO(Q) Q'eDg ! CQoso)

Collecting all the obtained estimates completes the proof of (3.10). U

Throughout the rest of this section we will always assume that €2 is a 1-sided NTA domain
satisfying the CDC, hence 952 is also bounded. We fix D = D(9€2) the dyadic grid for Lemma
2.34 with E' = 09Q. Let Lu = — div(AVu) and Lyu = — div(ApVu) be two real (non-necessarily

symmetric) elliptic operators. Fix zg € 992 and 0 < rg < diam(9€2) and let By = B(xo,r0),

Ay = By N 0. From now on Xg := Xa,, wo := wﬁ? and w = wfo.

We further assume that 0 < 79 < diam(052)/2. In particular roa, < diam(9€2). We introduce
the following notation (which should not be confused with the one introduced in (2.45)):

(3.11) DAo — {Q eD: QN3Ag#0, &1 <UQ) < 8%’07“0}.

Fixed p € C°°(0,00) with 1 1) < ¢ < 1(g2), we define

(3.12) Pig(x) := / or(x,y)g(y) dwo(y) whenever x € 02,
o0

© (\x;m)
Joa <|w;z\) duwo(2)

A variant of the following lemma was shown in [8, Lemma 3.5].

where

(3.13) pi(z,y) =

whenever x,y € 0.

Lemma 3.14. Let Q@ C R" be a 1-sided NTA domain satisfying the CDC. Let Lou =
—div(AgVu) be a real (non-necessarily symmetric) elliptic operator. Fix ¢ € C*°(0,00) with
10,1) < ¢ <12y There exists C' depending only on dimension n, the 1-sided NTA constants,
the CDC constant, the ellipticity constant of Lo, and ¢ (and independent of Ag), such that for
every Q € Do with Q" € D20, and with P; as above then the following statements are true:

(a) If g € LI(09,w0), 1 < q < o0, then

~ < _ )
0<§1<12Q) HPtgHLq(?AQ,wo) = CHgHLq(gAQ’wO)

(b) If g € LU0, wp), 1 < g < oo, and 0 <t < £(Q) then Pglg) € Lip(02) N L>(9Q, wy).
(¢) If g € L0, wp), 1 < q < oo, then P,g —> g in Lq(ZﬁQ,wg) ast — 0T,
(d

(e) If supp(g) C A(w,r) then supp(Pg) C A(z,r + 2t).

If g € C(09) then Pig(x) — g(x) ast — 0T for every x € 2&@.

)
)
)
)

Proof. We start with some preliminaries. Fix @) € Dgo with Q" € D20, Set

H(z):= / © <|x—z|> dwo(z), x € 00
o0 t
and observe that wy(A(z,t)) < H(z) < wo(A(z,2t)). Hence if x,y € 90

In@y () 1A@20)(Y)

(8.15) (A, 20) = PV S GlA @)
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This easily implies (e) and also, recalling the notation in (2.36)—(2.38),

La@n(y) _ oo(z.y) 1AG@20)(Y) 7
oA, 1) ~ ~ wo(A(z, 21))
by Lemma 2.63 part (c¢), and the implicit constant does not depend on ¢. Moreover, for every
x € 4AQ

(3.17) sup |Pg(z)| <C  sup f l9(y)| do(y).
0<t<l(Q) 0<t<20(Q)J Az t)

(3.16) 0<t<lQ", z€4Ag,

Note also that fixed 0 < t < £(Q) < £(Q°) < rq for every x € 4AQ we have 6(Xa(z,2¢)) > 2cot
and since Q¥ € D50

[ Xa@2t) — Xaol <1 Xa@2y — | + 2 — 2l + [vg — 2| + [vg0 — 0| + |70 — Xa,|

< 2t 4 626(Q°) + 31 < 7.

Hence, the Harnack Chain condition and Harnack’s inequality yield
(3.18) wo(A(x,2t)) ~ WLOA(I D (A(x,2t) ~ 1
where the last estimate follows from Lemma 2.63 part (a) and the implicit constants depend on
t but are uniform in x € 4Aq.

To show (a), note first (Ptg)IQKQ = (Pt(glggQ))lng whenever 0 < ¢t < ¢(Q). This, Fubini’s
theorem and (3.17) yield

1Pl 03 < 030 W10 1Pl a5y < ol

Thus, (a) follows easily from Marcinkiewicz’s interpolation theorem.

To obtain (b) we first observe that (e) yields supp(F;(glg)) C 3&@. This, (3.16), Holder’s
inequality, and (3.18) give for every z € 3Aq

1P (91Q)()] SJ[A( " 9(W) 1o (y) dwo(y) St 191l Lo(Quuwo)-
Thus, Pi(g1lg) € L*(99, wp).
We next see that P;(glg) € Lip(0f2). Using what we have proved so far it is trivial to see

that it suffices to consider the case on which |z — 2’| < £(Q) and both z,z’ € 4A(. Taking such
points we note that

[P (g1q)(x) — Pi(glq)(2)] < /m lpe(z,y) — (2’ y)] l9(y)| 1g(y) dwo(y)-

Note that for every y € Q we have by the mean value theorem and easy calculations

s o (5)o(252)

t
+o () | - 7
5%(“@)‘”"

where in the last estimate we have used (3.18). Consequently,

1P (910)(z) — Pr(91Q)(2")| S IIVSOHLooll‘—xI/ y)11q(y) dwo(y)

IS HV()O||L°° HgHLq(wo,Q)|x - .1‘/|,
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and this completes the proof of (b).

Let us now establish (d). Since g € C'(9€2) and 0N2 is bounded, g is uniformly continuous and
hence given £ > 0 there exists n > 0 such that |g(y) — g(x)| < € whenever |z —y| < min{n, /(Q)}.
Hence, if 0 < t < 7/2 and x € 4Ag by (3.16)

Pg(z) — ()| < ][A 1 900) @ < <

and therefore P,g(x) — g(x) for every x € 48@ (which is indeed stronger than what stated in
(d)).

Finally, we show (c¢). To set the stage, fix ¢ > 0 and g € L%(wp,00), 1 < ¢ < oo. Pick
h € C(09) such that [|g — hllLa(90,u) < - Proceeding as in the proof of (d) there exists n > 0

such that |h(y) —h(z)| < & whenever |z —y| < min{n, ¢(Q)}. Hence, if 0 <t <n/2 and z € 2£Q
by (3.16)

Peh() = hia)| S Ihly) = ha)lden <
A(z,2t)
Using all these we obtain for all 0 < t < /2

1P = 9l a0z g ey < 100 = Pl o 23 g )
NP =Bl LooR g gy + 11 = 9l aoR gy S €
where we have used item (a) and the fact that wy(9) < 1. This completes the proof. .

Lemma 3.19. Let Q C R™! be a I-sided NTA domain satisfying the CDC and adopt the
notation introduced above. There exists k > 0 depending only on dimension n, the 1-sided NTA
constants, the CDC constant, and the ellipticity constant of Lo (and independent of Ag) such
that if Q¥ € D20 and we set

(320) QR = VX0,Q ‘= wO(Q) Z ”A - AOH%OO([*)v Q € DQ07
Iewy

then [[m,[lc(o.wy) < kllle(A, Ao)llp, -

Proof. Fix Q¥ € D20 and pick yg € Q°NAg. Let Q € Dgo and note that by (2.36) and the fact
that kg > 16=

=c
[z — o] < |0 — Yol + |yo — 20| < 2Erge + 1o < 224(Q°) + 719 < (4,.;0 + 1> ro < 270.
0

Hence zg € 2Ag. Note also that By = 2korg < 2k0f(QY) < 70co/4. This means that Bg is
one of the balls in the sup in (3.2). Also, Xo ¢ 4B, hence if Q e€DgandY € I* € WE)/ we
have by Harnack’s inequality and Lemma 2.63 parts (a)—(c),

wo(Q) = wo(Agr) = £(Q)" ' Gry(Xo, Xgr) = (V)" 1Gry (X0, Y).

On the other hand, by (2.39) and recalling that I* = (1 + A\)I with 0 < A\ < 1, it follows that
I* € B(Y,0(Y)/2) and thus [|A — Agl| oo (1+) < 0(A, Ag)(Y'). All these imply

(3.21) m,(Dg) = > wo(@) > A = Aol 1+
Q'eDg Iewy,
o(A, Ap)
= Z wo(@Q Z // (7)1+1 dY
Q'eDg Iewy, -

~ Y //U/Q(A,Ag)(Y)deY
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o Gry(Xo,Y)
Z//U o(A, Ag)(Y) S S0 gy

Q'eDg

QGLO(XO7 )
/ /T o AP sy
S lle(A; Ao)ll 5, wo(Ag)

S lle(A; Ao)lll g, wo(@Q),

where have used that the families {I*};ew and {Ug }qren,, have bounded overlap, (2.47), and
Lemma 2.63, parts (b) and (c). This leads to the desired estimate. O

For each j € N (large enough), let (see Figure 1)

: AY) fY eQand§(Y)>277;
(3.22) IY) = _ »
Ap(Y) ifYeQando(Y) <277,

and define Liu = —div(47Vu). Note that the matrix A7 is uniformly elliptic with constant

Ao = max{Aa, A4, }, where Ay and A4, are the ellipticity constants of A and Ay respectively.
Let w;; be elliptic measure of ) associated to the operator L7 with pole at Xj.

A

mw

FIGURE 1. Definition of the matrix A7 in .

The following result is a version of [8, Proposition 4.28] adapted to our setting.

Lemma 3.23. Let Q C R"! be bounded 1-sided NTA domain satisfying the CDC. Assume
that there exists q, 1 < q < oo, such that wy; € RHq(%AO, wo) for every j > jo and with implicit
constants which are uniform in j and in Ag. Then wy € RHy(Ao,wo) with [WLlrm,(agw) S
Sup;> [ij]RHq(ng,wo)’ with an implicit constant depending on dimension n, the 1-sided NTA

constants, the CDC constant, and the ellipticity constants of Lo and L (and independent of Ay ).

Proof. Set T := sup;>;, [ij]RHq(%Ao,wo)' Consider an arbitrary A{j = Bj N 0Q with B =

B(zg, ) C By Write Xg = Xar, o' = wfé, wy = wﬁf’ (and note that wy = w?foo since
Xo = Xa,). Write Ay = %Ag, let r| = %7’6 be its radius and set X; = Xa,. By hypotheses
wri <K wp in %AO, hence h(-; L7, Lo, X) is defined wp-a.e. in %AO.
If ry < coro/(3ko) so that Xo € Q\ 2k9B, by Lemma 2.63 part (d) applied to L; and Lo we
have
dw?  dw? dwrt dwil WP (Ay)

3.24 h(-: L7, Ly, Xo) = —LL = ~ L
(3.24) ( o Xo) duX0  dw X.l dwfol dwfoo WX (Ay)

h(-5 L7, Lo, X1),

wp-a.e. in Aj. This and Lemma 2.63 part (d) give

1

(325) WG Lo Xl o,y ™ (¥ 2

1R (-5 L7, Lo, X0) |l £a(Ay wo)

1

< Wol R, (3 apw@0(B1) 7 < Two(Ag) 7,

Q\‘ i

where the implicit constants are independent of j.
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For any f € C(99), we define ®(f) := [y, f(y)dw'(y). Let f € Lip(9Q) with supp(f) C Ay
and consider the following solutions to the Dirichlet problems associated with the operators L
and L7 in Q:

u(X) = / fdoX (@) and w(X) = [ fdeX@), Xeq.
o0 o0

Implicit in the way that w;; is defined and since €2 is bounded one has that u; = F' — v;
where F' is a compactly supported Lipschitz extension (e.g., [16, p. 80] multiplied some cut-off

function) of f such that || F[|pip@n+1) < |f[ipe) + £l (a0) and v; € Wy (Q) is the unique
Lax-Milgram solution to the problem L’ v = L’F in Q. Also, one has

(3.26) sup HujHW1,2(Q) < CQHFHWLQ(Q) < 00
J

where the implicit constants depend on diam(9€2) and Ay.

Since f € Lip(99) it follows that we can use Lemma 3.7 (slightly moving X|) if needed) to
obtain

u(X5) ~ uy(Xp) = [ (A~ AT (V) Gy (V. X) - D (V).
Q
We want to estimate the right hand-side of this identity. To this end, if j > jp is large enough

so that 277 < 5(XA6)/2 then 3, :={Y € Q: §(Y) <277} N B(X{,8(X})/2) = @. Using (1.1)
and Holder’s inequality we have

(3-27)  |u(Xp) — u;(X)] 5/ IVy G (Y, X0)| [Vu; (Y)|dY
Qﬂzj

SIVy G (, X0) s, 2) sup [lujllwr 2
J

By Remark 2.62 and (3.26) the dominated convergence theorem gives that u;(X() — u(X{)
as j — oo. Using this observation, the definitions of u, u;, ®, and the fact that supp(f) C Ay,
we get that for every f € Lip(90Q) with supp(f) C Ay

— ! — . . / < , , L. ]
(3:28) 120D = X0 = Jim [0 (XD S WL gy S0P 155 7 Lo X g,y

=

S HfHLq’(ALwO)T wo(Ap) 7.

Note that in the previous inequalities we have employed that A, C A; have comparable radii,
Harnack’s inequality, and (3.25).

We next write Ay = %A{) so that Aj C Eg C Ay C Ay C Ay and let f € Lq/(Ag,wé)
X A1

(where we recall that w), = w LOAO). Abusing the notation we extend f by 0 in 92\ As so that

supp(f) C As. By definition of ]D)*A6, see (3.11), we have that Al C Ay C UQ 53 @ where the
€D,

cubes in ]D)*Aé’ are pairwise disjoint. Also, by Harnack’s inequality and Lemma 2.63 parts (a)
and (c)
#D0 ~ #Dp (M) < YD wh@ <wo( |J @) <1,
A/ Al
QeD,° QeD,°

hence #D20 is uniformly bounded. This means that by Lemma 3.14 applied with w(, in place
of wo

Pf= Y Pi(flg) € L®(092,uw)) N Lip(9Q)

A/
QeD, "
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provided 0 < t < ¢or(/(32k0) =: to. Note that ¢ty < ¢(Q) for every Q € ]D)*Aé. Also Lemma 3.14
applied with w(, in place of wy implies that

supp(P f) C Az, %7‘6 +2t) C Ay,

provided 0 < t < r(/16. Consequently, if 0 < ¢t < ¢, we have shown that P;f € Lip(9Q) with
supp(P:f) C A1. We can then invoke (3.28) to see that

1
T wo(Ay)7 sup [R(B) S sup [Pefll o ar o)
0<t<to 0<t<to
< Z sup ||Pt(f1Q)||Lq’(25Q7w6) = Z HleHLq’(ng,wé) S ||f”qu(A2,w/0)’
A 0<t<l(Q) A
QeD,° QeD,°

where we have used that supp(P;(f1q)) C A(zg,Crg +2t) C 2£Q for every Q € D20, Lemma
3.14 applied with wy, in place of wy, and that #D20 is uniformly bounded.

On the other hand, if 0 < t, s < to we have that P,f — Psf € Lip(92) with supp(P,f — Psf) C
A and again we can invoke (3.28) to see that a similar computation lead us to

v - 3
T wo(Ap) 7 [D(Pef) — ®(Psf)] = T wo(A5) 7 |@(Pef — Psf)
5 HPtf - PsfHLq’(Ahwé) < HPtf - f”L‘?'(Al,wé) + ”Psf - fHLq’(Al,wé)
< Z HPt(le) - leHLq’(zﬁQ,wé) + ||Ps(f1Q) - leHLq/(QZQ’wé)‘
QeDLO

This and Lemma 3.14 applied with w(, in place of wy yield that {®(P;f)}o<i<t, is a Cauchy

sequence and we can define ®(f) := lim,_,o+ ®(P,f). Clearly, ® is a well-defined linear operator
and satisfies

()] = Jim (@(R)| < sup [S(Ff)] S Two(Ag) ¥ HfHLq'(Ag,wé)'

0<t<tg

o

Consequently, there exists g € L9(Aq, wp) with ||g]|pa(a,wy) S Two(Ap) ¢ such that

(3.29) ®f) = | @) dwj(y), V[ €L (Agu)).

We now assume that f € C(dQ) with supp(f) C A, thus f € L% (Ag,w}) and hence
P,f € Lip(09). Also, proceeding as above

sup [R(Rf)| < D sup (P10l e g )

0<t<to Ly 0<t<(Q)
QenZo

S S 11l ey ) S 1l (002t
QGD*A6
Note also that, as mentioned above, for ¢ small enough one has supp(P.f) C A; and the

cubes in ID)*AO cover A;. Hence by Lemma 3.14 applied with w(, in place of wy it follows that

P,f(x) — f(z) as t — 0T for every y € A;. These, the definitions of ®, ®, and the dominated
convergence theorem yield for every f € C'(9€2) with supp(f) C Ag

(3.30) @(f) = lim ®(Pf) = lim | Pf(y)do/(y) = lim, / P f(y)dw'(y)
t— A1

t—0t t—0t Jon

= [ () = / F () (5) = ().
A1 o0
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Our next goal is to show that w’ = wfé < wfé = w( in Ag = %Ag. Let E C Az a Borel set.
Since both measures are Borel regular, given £ > 0 we can find a compact set K and open set
U such that K C¢ E C U C Ay satisfying w(U \ K) + wo(U \ K) < e. Using Urysohn’s lemma
we construct f € C.(09) such that 1x < f < 1y and supp(f) C Ag. Thus, combining (3.29)
and (3.30), and using definition of ® and ® we have

W(E) <etw'(K)<e+ 89f(y)dw'(y) =e+O(f) =+ 0(f)

1
o

L —
< eF 1l (a9l Laazwy) S €+ (e +wp(E)) 7 Two(Ag) .

1 1
By letting ¢ — 0 we see that w/'(E) < w((E)7 Ywo(Aj) ¢ and consequently w’ < wj in As.

X,
Thus we can write h(-) := h(-; L, Lo, X{)) = dog) _ dof o LY(As,w}) which is well-defined for

X7 duf
wy-a.e. point in Ag and if f € C(9€) with sup[L)Of C A3 C Ay
(3.31) Af@w@mﬂm:@ﬂ:¢uw:mﬂwm@w:Afwmwmmm

Note that i = (g — h)1a, € LY(89Q,w}) hence proceeding as above if 0 < t < t, Lemma 3.14
applied with w(, in place of wy gives

1P =l agwy < Y I1P(R1g) — Mol oy — 0 ast— 0",
Qen2

On the other hand, for any = € Aj and 0 < t < r{/32 if we consider ¢; as in (3.13) with

w( in place of wy we have supp(pi(x,-)) C A(x,2t) C Az. Thus, we can invoke (3.31) with

f=wi(z,-) to get Ph(z) = 0 for every x € Aj. Thus, Lemma 3.14 part (c) applied with wf
allows us to conclude that h = 0 w(-a.e. in Aj. Hence g = h > 0 wj-a.e. in A}, and using that

_1
1911 La(azwy) S Two(Ap) 7

Q=

(3.32) < h(y;l««Lo,JYé)qdaé(y)> - (j/ h(y)qda%(y)>
Al /

0

1 1
4 wol(AL) _1
—<%9@WMMO STAJiT“T%@@“’
Ao w(Ap)«

where the last estimate follows from Lemma 2.63 part (a). At this point we can repeat the
computations we have done in (3.24) replacing L’ by L and A; by Az —we already know that
W < w)in Az = %A{) where B, was arbitrary chosen so that B, C By, hence taking B{ = By
we conclude that w < wg in Az3— to obtain that

Xo /
wy ’(Asz) w(Ap) /
LB T Lo XA~ S0 o X,
wfo(fg) ( 0 A3) WO(ﬁé)) ( 0 O)

0

h(Z, L7 L07 XO) ~

for wp-a.e. z € Ag, and where we have used Harnack’s inequality to pass from X{j to Xa,. This,

Lemma 2.63 part (d), and (3.32) give
(] i

(4 0
w(Ap)

<7T = i L, Lo, X .
~ wO(AB) A()h(zﬁ » 140, O)dw(](y)

1

l =
/ w(Af q

h(y3 L7 LO,XO)qdwO(y)> ~ (7());
WO(Aé)q

/
0
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Since A = Bj N 0N was arbitrary with B = B(x{,r) C By we therefore conclude that
wr, € RH (Ao, wp) with [WL]RHq(Ao,wLO) < T and this completes the proof. O
3.2. Proof Proposition 3.1, part (a). We start assuming that Q is a bounded 1-sided
NTA domain satisfying the CDC and whose boundary 02 is bounded. We fix D = D(9Q)
the dyadic grid from Lemma 2.34 with F = 9. As in the statement of Proposition 3.1 let
Lu = —div(AVu) and Lou = —div(ApVu) be two real (non-necessarily symmetric) elliptic
operators. Fix xp € 002 and 0 < ro < diam(9Q) and let By = B(zg,10), Ao = By N IS2. From

now on Xy := Xa,, wo := wﬁf and w := wfo.

We first observe that we can reduce the proof to the case 0 < ry < diam(9f2)/2. Assuming
that this has been already proved we now explain how to consider the general case. Let By =
B(xg, 1) with diam(02)/2 < r¢ < diam(052). We proceed as Case 2b in the proof of Theorem
1.5 part (a) with M = 1 to find the corresponding collection {a:j}jzl with J < 217+ Let
B; = B(zj;,diam(0£2)/10) for 1 < j < J. Then we can easily see that Harnack’s inequality
yields sup; << [[o(4, A0)|HBJ_7Q* S lle(A, Ao)ll g, and since rp; < diam(092)/2 we can apply the
claimed case to conclude that wy, € RH,(3Aj,wr,) (for part (b), ¢ = p). At this point we carry
out the same argument mutatis mutandis to conclude that wy, € RH,(Ao,wr,) which completes
the proof.

We split the proof in several steps.

3.2.1. Step 0. We first make a reduction which will allow us to use some qualitative properties
of the elliptic measure. By Lemma 3.23 it suffices to show that there exists 1 < g < oo such
that for every j large enough wy; € RHy(2Ag,wp) uniformly in j and in Ag. Thus we fix
j €N and let L = L7 be the operator defined by Lu = — div(AVu), with A = A7 (see (3.22)).
As mentioned above A is uniformly elliptic with constant Ag = max{A, A Ao }- Also, since
L=Loin{Y € Q: §Y) < 279}, by Lemma 2.63 part (f) and Harnack’s inequality give
that wr, < w; < wr,, hence recalling (2.55) we have that h(-;L, Lo, X) exists wi-a.e. for
every X € . Moreover, fixed Ay = A(z1,7r1) with 21 € 9Q and 0 < 71 < 27772 /kq for every
A = BnNoQ with B= B(z,r) C By, z € 09, and 0 < r < diam(0f?), we have by Lemma 2.63
part (f) .
W= S (A, r -
1=~ ng(()) :][ h(y; L, Lo, XA,) dwaAl(y).
wr, (A, 7)) Az,r)

Letting r — 0T the Lebesgue differentiation theorem (whose applicability is ensured by the
fact that wfoAl is doubling in A;) yields h(y;E,LO,XAl) ~ 1, for wfoAl—a.e. x € Ay. Thus, by
Harnack’s inequality h(- - L, Lo, X) € Lig (09, OJ}L/O) for every X, Y €  —the actual norm will
depend on X, Y and 7, but we will use this fact in a qualitative fashion. This qualitative control
will be essential in the following steps. At the end of Step 3 we will have obtained the desired
conclusion for the operator L=1 , with constants independent of j € N, which as observed
above will allow us to complete the proof by Lemma 3.23.

3.2.2. Step 1. Let us recall that we have fixed already z¢ € 092 and 0 < ro < diam(952)/2 and
let By = B(xo,10), Ao = BoN o, Xog = Xa,, and wp = wi)o. Set w := w%(‘). Fix Q" € D50 (see
(3.11)), so that by (2.47),

(3.33) Xo € Q\ By CQ\ §Bho CQ\Tgo.
Set E(Y) :=A(Y) — Ap(Y), Y € Q, and consider v = {VQ}QGDQO
(3.34) Y9 = Vx0.0 = wo(Q) Z sup HSH%OOU*), whenever @ € Dgo.

« Yel
Tewy,
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Lemma 3.19 yields that |[m,[[c(gowy) S lle(A4; Ao)llp, < oo, hence my is a discrete Carleson

wo) ~
measure with respect to wp in Q°. Our goal is to show that @ € AdyadlC(QO, wp) and we will use
Lemma 2.33 with 1 = wp. To this aim we fix Qg € Dgo and a family of pairwise disjoint dyadic
cubes F = {Q;} C Dg, such that
m,(Dr,Q)

(3.35) Iy # ooy = sup THEQ) < o

7, 1C(Qo,wo) QeDg, wo (@)
with g9 > 0 sufficiently small to be chosen and where we have used the notation introduced in
(2.31) and (2.32).

We modify the operator L inside the region F.Qo (see (2.41)), by defining L, = Lf’QO as
Liu = —div(A1Vu), where

A(Y) = AY) ifY €Qrg,,
BT 40(Y) Y €0\ Q7.

See Figure 2. Recalling that A = A7 (sce (3.22)), it is clear that & 1= Ay — Ag verifies |&1| <
€10y o, and also & (Y) = 0 if 6(Y) < 277 (this latter condition will be used qualitatively).

Hence much as before if we write wiX = wi(l for every X € Q and wy = wf( % we have that

w1 < wp and hence we can write h(-; L1, Lo, Xo) = dw; /dw which is well-defined wp-a.e. Also,
as shown in Step 0 we have that h(-; L1, Lo, Xo) € L5, (082, wp) (the bound depends on Xy and
the fixed j but we will use this quahtatlvely).

A

FIGURE 2. Definition of the matrix A; in Q.

We next fix Qf € D¢, an define L7 = L] T as Liu = —div(AjVu) where

AY) if Y €Qros,
Apr) =4 A i

Ao(Y) if Y EQ\Q}:QE;.
Note that if Q5 = Qo then LT = L1. Again & := A} — A verifies |£]] < [€]1q, , and also
EX(Y) = 0if 6(Y) < 277 (this latter condition Will be used qualitatively). Hence if write
wX = wX L for every X € Q we have that w¥ < wO for every X €  and hence we can write

h(-; LY, Lo, X) = dwX /dwgt which is well-defined wg-a.e. Also, as shown in Step 0 we have
h(-; L%, Lo, X) € LS.(092, wi) for every X,Y € Q (the bound depends on X, Y and the fixed j
but we will use this qualitatively).

Set X, := X *IA* which satisfies 2korqs < 6(Xy) < 7o since £(Qf) < £(Qo) < £(Q") < &=

50

Moreover, X, € Q\ B*6' To simplify the notation set w, = wX* and w§ = g{*.

‘We have two cases:

Case 1: Qf ¢ Drg,, that is, Qf C Q] € F for some j. Clearly, Qr s = O and hence
L = Lo in Q. As a consequence, wX = wil for every X € Q and h(-; L}, Lo, Xx) = 1 in 9Q. In
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turn we obtain
(3.36) [[A(+; L7, Lo, X*)HLq’(Qg,wo = wp(Qp)
Case 2: Qj € Dr ,. In this case it is easy to see that

Fo={Q; €EF:Q;NQy # 0} ={Q; € F: Q; C Q} C Dg;.
Thus, DF NDg; = Dz, NDgy and Qr gs = QF, @z- On the other hand, we set 7* = {Vé}QeDQS

1
7

where
NG = Wit (Q) Z sup HSH%M(I*), whenever Q) € Dy .
TEWH Yer*
Q
Using (2 65) and Harnack’s inequality we have that w§(Q) ~ wo(Q)/wo(Qf) for Q € Doy where
Wi = wi'*. Hence, by (3.34),

* WO(Q) ’YQ
v A sup €112 ooy = ; Q € Dgy.
97 wo(Qp) I;;* verr I T W (@) “
and, by (3.35),
m *(]D)Q NDg,) mv*(]D)Q NDx)
337 m *7]:* x o*) — Sup Y o A— —
( ) H Y ||C(Qov %) QGDQS w(*](Q) QEDQ6 wO(Q)
- m,(Drq) m, (Drq)
A sup p Tw@) < |lmy 7 lle(@owo) < o-

KO (OX)
QeDgy WO(Q)WO(QO) QeDgy

We next fix 1 < ¢ < oo and 0 < g € LI(Qf,w;) with [|g]|Le(@swy) = 1. Extend g by 0 in
O\ Qf. Set g+ = Prg with 0 < t < £(Q})/3 (see (3.12)) and note that Lemma 3.14 gives that
g+ € Lip(9Q) with supp(g:) C 2Aq;. We then consider

ub(X) = /mgt(y)dwéf(y) and ut(X) = /mgt@)dwf(y), Xeq

Since 2 is bounded, we can use Lemma 3.7 (slightly moving X, if needed). This, Lemma 3.9,
(3.37), and Holder’s inequality yield

[ (X,) — ub(X,)| = / / (Ao — AT (V)Vy Gpayr (Y, X,) - Vah(Y)dY

// V) Vy Gt (Y, X4 (Vb (V)| dY

fQ*

< o s /Q Mg s () (@) Sy ()t ()
0
1
Sef | Mg @S x)
0

1
< 502“Mgg,wg(w*)“Lq’(Qg,wa HSQSUB(@HLQ( W)
Using the well-known fact that M3 5w is bounded on L7 (Qf, wp) and that, as mentioned before
wy K wj with h(-; L7, Lo, X4) = dw* / dwf, it readily follows that
||MQ5 wg (W*)”Lq’(Q* wE) ~ < NI 5 LY, Lo, *)HLq’(ngg)'

On the other hand, using the square-function non-tangential estimates from [3, Theorem 1.5,
Proposition 2.57], Lemma 3.14, Remark 2.64, and Harnack’s inequality to pass from X, to X, Qi
and the fact that supp g C Q, yield

HSQ(SUB(JJ)HM(QS,WS) < HNQSUEHLQ(QO,%) S lgellza (QYwE)
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%

1 1
——l19tllza Qi wo) S ——1 19l La(@g00) = 91l La(@pwg) = 1-
wo(Qp) wo(Qp) ?

1
Thus we conclude that |ul(X,) — uh(Xs)| < e2llh(: ;LT’L()’X*)“L‘ZI(QS,WS)’ hence, using the

definitions of uf, and u! we arrive at
0 *

‘/mg(y)dw*(y)—Aﬂg(y)dwé(y) < Jul (X)) = ug (X + lg = gell 2 o) + 19 = 9ell L1 (902.00,)

1
S &g A5 L1, Lo, Xl Lo (s ey + 19 = ellroner) + 119 = 9ellr00.0.)-
Since g € LY(Qo,wp) with supp(g) C Qf, it follows that supp(g),supp(g:) C 28%. Hence,
Lemma 3.14, Harnack’s inequality and (2.65) give
1
_ _ " _ N +
lg — gtHLl(aQ,wg) =g - PtgHLl(QAQ67w6) ~ wo(QS) lg Ptg”Ll(QAQ(*)Mo) — 0, ast—0".
Similarly, using that as mentioned above w, < wg with h(-; L}, Lo, Xx) € LS. (09, wo)

lg = gell 1 o0,w,) = llg — Ptg\\Ll(ggQ*,w*)
0

< ||h(-; LT, Lo, Xy) — 0, ast — 0.

||LOO(2EQ6’WS) ||g - Ptg”Ll(QgQS 7L/JS)

Combining the previous estimates and letting ¢ — 0™ we conclude that

o< |
Q

h(y; L7, Lo, X&) g(y)dwg () =/ h(y; LY, Lo, X+) g(y)dw§(y)

5 o9

1
= | 00)dn(s) £ 5IHC L o Kol g + [ o))

=

1
<eg|lh(-; L7, Lo, X*)HLq/(Q&wa) + wj(Q5) 7

Taking now the sup over all 0 < g € LY(Qf, wj) with HgHLq(Q(*):“’S) = 1 we eventually get

1 1
(3.38) [h(-5 LT, LOvX*)HLQ’(Qg,wg) Seglln(; LT, LOaX*)HLq’(Qa,wa) +wj(Q5) 7
Since h(-; L1, L§, X&) € LiS.(09,wy) (albeit with bounds which may depend on X, or j) we

can hide the first term on the right hand side and eventually obtain fixing ¢ small enough
(depending on n, the 1-sided NTA constants, the CDC constant, the ellipticity constants of Lg
and Lg, and on q),

(3.39) 1+ L Lo, Xl sy S w5(Q5)

Note then that by (3.36) we conclude that (3.39) holds for any Q§ € Dg,. On the other
hand, using [29, Lemma 3.55] (which holds as well in our scenario), there exists 0 < k1 < k1 (see
(2.47)), depending only on the allowable parameters, such that k1 Bgs NQr q, = K1Bg;NF.qs,
Hence L} = Ly in K1 Bg; N which, by Lemma 2.63 part (f) and Harnack’s inequality, gives that
wy and wj are comparable in nAgy with n = k1/(2ko), thus h(-; Ly, Lo, X&) ~ h(-; L1, Lo, X)
for wj-a.e. in nAQa (hence, also wp-a.e.). This, Remark 2.64, Harnack’s inequality, and Lemma
2.63 part (c) yield

Xo Xo X * %
de1 - de1 de1 deO _ w1 (@} h

h';LlaL()?XO - - ~
( ) dwfé’ dwﬁ* dwfo* dwfoo wo(Q})

(' 7 L17 LOvX*)

~ IR 1 L, X

wo(nAgy)
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and these hold wp-a.e. in nAgs an VQp € D, (recall that wi and wy are mutually absolutely

continuous). Eventually, (3.39), Remark 2.64 and Harnack’s inequality allow us to conclude
that for all Qf € Dg,

m\‘,_.

1
q ! Nwl(r}AQS) * q 3 *

(3.40) h(y; L1, Lo, Xo) dwo(y) | =~ 1Bor) h(y; LY, Lo, Xx)? dwi(y)

nAQ6 wWolNaQs nAQa

w1 (nAgs
51(77620):][ h(y; L1, Lo, Xo)duwo(y).
wo(nBqp)  Jnag,

Our next goal is to show that the latter implies that w; € AZ* (Qg,wp) and to show that
we use an argument similar to [8, Lemma 3.1]. Let @ € Dg, and a Borel set F' C nAg and note
that by (3.40) applied to @

wi(F) , "
WAQ) —]{;AQ ]_F(y)h(y, Ll,Lo,Xo)d 0
_wo(F) \F | v VT o (@) ) wilndg)
= <wo(nAQ)> <]7[7AQ M s Lo Yol 0<y)) “ (wo(nAQ)> wo(nAq)’
hence
wi(F) wo(F) 7
(3.41) 7&)1(77AQ) < (w()(??AQ)) , VF C nAQ, Qe ]D)QO‘

On the other hand, by Lemma 2.63 part (¢), wo(Q) < Cowp(nlg) for all @ € Dg,. Fix then
o, 0 < a < (CoC])~1, and take F' C @ such that wo(F) > (1 —a)wo(Q). Writing Fy = nAgNF
and F; =nAg \ F, it is clear that

IRNCI(®)) wo(F) wo(Fo) | wo(@\nAQ) _ wo(Fo) wo(@)
=) ma) < mBg) = mlnhg) T wmba)  whe) T wolndg) -

As a result,

(3.42) wolf) g wolfy) @@

wo(nAq) wo(nAq) — wo(nAq)
Combining (3.41) and (3.42) applied to Fy we obtain w (F)/wi(nAg) < C1(Caa)
the fact that wi(Q) < Cswi(nAg), by Lemma 2.63 part (c), yield

wi(F) _ wi(nAg) wi(fo) _ 1 (0 wi(F1) 1 - C1(Cra)
w1 (Q) - w1 (@) wi(nAg) e (1 wl(ﬂAQ)) ~ Cs

with 0 < 8 < 1 by our choice of . This eventually shows that w; € A% (Qq,wpy) (see
Definition (2.25)) as desired. This with the help of Lemma 2.28 allows us to obtain that

wo

Fwy € Aggadic(Qo,wg), which is the conclusion of Step 1.

1
q

. This and

Q=

::1_57

3.2.3. Step 2. We next define a new operator Lou = — div(A2Vu) where (see Figure 3):

Ay(Y) = E(Y) ifY € Tg, \ QF Qo>
T Ay) Y €0\ (To, \ 2r.00).

The goal of this step is to show that PPws € Agé’adiC(Qo,wo), where much as before let
wy = wﬁo.
We apply Lemma 2.66 to obtain Yo, € QN Qr g, satisfying (2.67). For k = 1,2 we write

Y, Y, e . . . .
kaO =w Lf‘)Q a for the elliptic measures associated with Ly for the domain 2 and with pole at
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Ao

Lo

FIGURE 3. Definition of matrix Ay in .

Yq,. Likewise, let w: = wzfoﬂf be the elliptic measures associated with Lj for the domain
Qr g, and with pole at Y,. By deﬁnition Ay = A in Tg,, A2 = Ag in Q\ Tp,, and Ay = Ay
in Qr g,. Hence Ly = L1 in Qr g,, and thus w;/ % = wi/* If we now consider the associated

measures I/zfo and VL2 in (2.70) from Lemma 2.69 it follows from (2.71) (With i = wo which

is clearly (dyadically) doubling in p by Lemma 2.63 part (c)) that P}‘éol/ PWOI/ZQO as
measures on Q.

In Step 1 we showed that PPw; € AdyadlC(Qo,wo), then there is 1 < ¢ < oo such that
PYw € RH; dyadlC(Qo, wp). Note that by Remark 2.64 and Harnack’s inequality we have that

PPw QO ~ PRwp/wi(Qo) for k = 1,2. Then given @ € Dg, and a Borel set F' C @ we have
that all these yield

1 1
Wi Ye 2 W Y 23
p;):OWQ(F) fp]__ L2 (F) _ 73]__0 LQQO(F) 0 B 73}_0 L?O (F) 2
109/ W Y, ~ w Y, - W Y,
'P]__sz(Q) Pw Qo Q) POy L2Qo Q) Py L?O Q)
< [PF L (F) g - (P;Owl(p)>eé _ (wO(F)>021fi’
pogia@) ) “\PFa@) T \w(@)

where in the second and third estimates we have invoked Lemma 2.69 respectively for Lo
(with parameter 63) and L;, and the last estimate follows easily from the fact that Pw; €

RHgyadiC(Qo,wO) and Holder’s inequality. This, the fact that PZ°ws is dyadic doubling in Qo
by Lemma 2.28 part (a) since wy is indeed doubling in 4Ag, by Lemma 2.63 part (c), and [29,

Lemma B.7] (which is a purely dyadic result and hence applies in our setting) gives that there
exists 6,60 > 0 such that

wo(F)\? _ PLws(F) _ (wolF)\”
249 () *Fm@ s (@) © YFeeeera

3.2.4. Step 3. In this part, we change the operator outside of Ty, to complete the process. To
this end, let Lyu = — div(A3Vu), where

A(Y) i Y €Tg,,
Ay(Y) = B (Y) . Qo
AY) if Y eQ\Ty,,
and note that Ly = L in (see Figure 4). Let wg(o = wLO be the elliptic measure of €2

associated with the operator L3 = L with pole at Xj.
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A

Lo

FIGURE 4. Definition of the matrix As in €.

In this step we are going to need the following property: if 7 > 0 is small enough, there exists
C; > 1 such that

_ E) UJQ(E) (.U3(E)
o ws(F) <o, B2 YECQo\ %,
w(Q0) = wa(Q0) = (@) Qo
where X, := {z € Qo : dist(z,00\ Qo) < 7¢(Qo)}.
Assuming this momentarily, our final goal is to prove that for every ¢, 0 < ¢ < 1, there exists
C¢ > 1 such that

(3.44)

wo(F) 'P;J_-OOJ;;(F) i
(3.45) P @ = = PPw@o) © G

Fix then ¢ € (0,1), and F' C Qo with wo(F) > Cwo(Qop). Consider first the case on which
F ={Qo}, in which case

Pruws(F) wwoo((QFo))w?’(QO) _ wo(F)

= = >
Prws(Qo)  ol80g(Qo) (@) =

which is the desired estimate with C¢ = (. Thus we may assume that F C Dg, \ {Qo}. Let
7 < 1 small enough to be chosen and let Qf := Qo \ Ugrez, @', where

I, ={Q €Dg, : T(Qo) < Q") <27¢(Qy), Q' NT, # B}.
By construction, %r C Ugez, @' and by (2.36) every Q' € Z; satisfies Q' C X(144z),. Using
Lemma 2.34 (see [3, Remark 2.19]), along with the fact that wy is doubling in 4A, with a

constant which does not depend on A (see Lemma 2.63 part (¢)), if 7 = 7(¢) > 0 is sufficiently
small then

(@0 \ QB) < w0(S1azyr) S (@) < 5 en(@o)
Letting F/ = F N QJ, it follows that

Cwo(Qo) < wo(F) < wo(F) +wo(Qo \ Q) < wo(F') + gwo(Qo)-
Hence wo(F")/wo(Qo) > ¢/2 and by (3.43), we conclude that

PFuwa(F') wo(F)\’ _ (¢\?
(3.46) Pfi)m(Qo) S (w(())(Qo)) - (§> .

Our next goal is to show that there is ¢c > 0 such that PPws(F’) > cPFPwa(F’). To see
this let Qi € F be such that F' N Qy # @. We consider two cases. If Q C Qf, we can invoke
(3.44) since Qf C Qo \ X7, to conclude that

wa2(Qr) ~ w3(Qr)
wa(Qo) " w3(Qo)’

Otherwise, Q. \ Qf # O, and there exists Q' € Z, such that Q; N Q" # @. Then necessarily
Q' C Qr —if Qr C Q' then Qi C Qo \ QF, contradicting that F' NQy # O and F' C Qf— and,

(3.47)
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in particular, £(Qx) > 7¢(Q). Take Qr € Do, with ¢, € Qk, £(Qr) = 27M0(Q)) and M > 1
to be chosen. Note that diam(Q) ~ 27M¢(Q}.) (see Remark 2.13) and clearly
UQp) ~ 1o, < dist(zg,, 0\ Ag,) < diam(Qy) + dist(Qr, I\ Ag,)
~ 27 MY(Qy) + dist(Qr, 90\ Ag, ).
Taking M > 1 large enough, we conclude that
ctl(Qo) < cl(Qy) < dist(Qr, 9N\ Ag,) < dist(Qr, 92\ Qo)
and hence Q C Qo \ Zer. Using again (3.44) (with ¢r in place of 7) and Lemma 2.63 part (c)

we obtain

w3(Qk) w3(Qr) ~ w2 (Qr) S w2(Qk)
w3(Qo) ~ w3(Qo) " w2(Qo) ™ w2(Qo)
Combining (3.47), (3.48) and invoking (3.44), since F' C Qf C Qo \ X, we conclude that

(3.48)

PRws(F) _ Prws(F) _ ws(F\Uger Qk) Py wo(Qr N F') w3(Qr)
P ws3(Qo) — PFws(Qo) w3(Qo) e wo(Qr)  ws3(Qo)

w2 (F'\ Ug, er @) wo(Qr NF) wa(Qr)  PFuwa(F") ¢\
< w2(Qo) +Q§E:f wo(Qr)  wa(Qo)  Pws(Qo) < ( ) ’

2
where we have used that 7 = 7((), that P2 w;(Qo) = wi(Qo) for i = 2,3, and the last estimate
follows from (3.46). This eventually proves (3.45) in the present case and it remains to establish
our claim (3.44).

To show (3.44) write r = 74(Qo)/(8ko) (see (2.48)) and find a maximal collection of points
{zi}rex C Qo \ X with respect to the property that |z — xp/| > 2r/3 for every k, k' € K
with k # k'. Write Ay = A(wy,7) and observe that {1 A}k is a family of pairwise disjoint
surface balls such that Qo \ r C Uy Ak. Note that by (2.36), we have A, C 2Aq, C
Az, 320(Qo)), for every k € IC, hence Lemma 2.63 part (c) yields

BKC wo(2Bg,) < S wo(3Ay) = WO( U %AQ < wo(2A¢,),
ke ke

which eventually gives #K < C.

We claim that By NQ C Ty, with B} := B*Ak = B(zy, 2ror) and ko as in (2.48). To see this
let Y € By N and take I € W such that Y € I. Pick y;, € 09 verifying dist(Z, 0Q) = dist(/, yx)
and let Ry € D be the unique dyadic cube such that yx € Ry and ¢(Ry) = ¢(I), thus I € Whg,-
Let us see that Ry, € Dg,. First, by (2.39) and our choice of M

{(Ry) = (1) < dist(1,09) < | — Y| < 2607 = 170(Qo) < Qo).
Also, since 73, € Qo \ ¥, we can write by (2.39)
T(Qo) < dist(zg, 0N\ Qo) < |z — Y| + diam(7) + dist(I, yx) + dist(yx, 92 \ Qo)
< %E(Qo) + Zdist([, 00) + dist(yg, 02\ Qo) < 1%76(@0) + dist(yx, 02 \ Qo),

and hence y;, € int(Qp). Since yi € Qo N Ry and (Ry) < £(Qo)/4 it follows that Ry € Dg,.
This and the fact that Y € I € Wy, allow us to conclude that Y € Tg,. Consequently, we have
shown that B} N§) C T, and thus Ly = L3 in B N2 for every k € K.

Next, we observe that 6(Xg,) ~ £(Qo), d(Xa,) =~ 74(Qo), and | X¢g, — Xa, | < 4(Qo). Hence,
we can use Harnack’s inequality to move from Xg, to X, with constants depending on T,
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Lemma 2.63 part (f) and Remark 2.64 to obtain that if F; C A; N Q;

wa(Fy) Xa, Xa, w3 (F)
~w Fi) ~rwy ’ .
wa(Qo) 7 (i) 2 w3(Qo)
This and the fact Qo \ X+ C Upex Ak readily give (3.44) and we finish Step 3.

XA
(Fk) ~ Ws B4

X,
(Fk) N Wy o (Fk) ~

3.2.5. Step 4. Let us recap what we have obtained so far. Fixed zg € 92 and 0 < rg <
diam(09)/2, we set By = B(xzg,r0), Ao = BoNOQ, Xo = Xa,, and wy = wz(oo, in Step 0 we
took an arbitrary j and wrote L = L7, (see (3.22)) and & = wgo. For an arbitrary Q0 € D20
(see (3.11)), and for any given Qo € Dgo we let F = {Q;} C Dg, be a family of pairwise
disjoint dyadic cubes such that (3.35) holds with g9 small enough to be chosen. Combining
Step 1-Step 3 we have shown that if ¢y is small enough (depending only in the allowable
parameters) then (3.45) is satisfied. Note that keeping track of the constants one can easily
see that C¢ does not depend on j, xq, ro, Q" and Qo —the fact that L=1J , which agrees
with Ly in small boundary strip, was mainly used, and only in a qualitative fashion, in (3.38)
in Step 1 to a priori know that some term is finite so that it can be hidden. We can then
invoke Lemma 2.33 with the dyadically doubling measures (see Lemma 2.63 part (¢)) p = wy
and v = & to eventually show that (3.45) (recalling that Ls = L as mentioned in Step 3) yields
& € Adyadic (Q°, wp) (uniformly on the implicit j and Q), that is, there exist 1 < ¢ < co and C
(independent of j an Q") such that for every Q € Dgo with Q" € Do

(3.49) (]2 h(y; Z,LO,XO)qdwO(y)>q < C][Q h(y; L, Lo, Xo)dwo(y) = CZ((%))_

Our next goal is to see that @ € RHy(3A0,wp) (uniformly in j). To do this let A = B N o
with B = B(z,7) C 2By such that z € 9. Write 7 = min{z, 53, }, where Z is the constant
in (2.36), and let

DA — {QE]D: QNA#QD, 7<UQ) <2?}.
Clearly, DA is a family of pairwise disjoint cubes such that A C UQGBA Q C 2A. Note that if
Qe DA then @ ZQNAC QH%AO N %Ao, thus Q N QP # O for some Q° € D20, Besides,

U(Q) < 21 < coro/(16k0) < £(Q°). Consequently, Q € Dgo and (3.49) applies to each Q € DA,
All in one we have

(f, o o))" 5 % (]é b0 . o, X ()

QebA
5Q) . 1 w(28) o ©(4)
S Q%A WO(Q) S wO(A)w(QE]IJ))A Q) g WO(A) ,S, WO(A)’

where we have used that wo(A) ~ w(Q) for every Q € D2, and also that &(2A) &~ &(A). These
in turn follow from Lemma 2.63 part (¢) and the facts that @ meets A and ¢(Q) ~ 7 ~ r since
0 < r < rg. This eventually establishes that wfjo =wE€ RHq(gAg,wo) with a constant that
depends only on the allowable parameters and which is ultimately independent of j and Ag.
This, as explained in Step 0, allows us to conclude that wy, € RHy(Ag,wp) with the help of
Lemma 3.23, completing the proof of Proposition 3.1, part (a). O

3.3. Proof Proposition 3.1, part (b). We start assuming that Q is a bounded 1-sided
NTA domain satisfying the CDC and whose boundary 02 is bounded. We fix D = D(9Q)
the dyadic grid from Lemma 2.34 with E = 9. As in the statement of Proposition 3.1 let
Lu = —div(AVu) and Lou = —div(ApVu) be two real (non-necessarily symmetric) elliptic
operators. Fix xg € 0 and 0 < ro < diam(9Q) and let By = B(xg,10), Ao = By N IS2. From
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now on Xg := Xa,, wo := wi(oo and w := wL As observed in the proof of part (a), without loss
of generality we may assume that 0 < ro < diam(92)/2.

We fix 1 < p < oo and assume that [|o(A4, Ao)ll5, < &, where ¢ is a small enough parameter
to be chosen. Our goal is to obtain that w € RH,(Ag, wp).

We split the proof in several steps.

3.3.1. Step 0. Much as before Lemma 3.23 guarantee that just need to see that for every j large
enough w;; € RH ( Ao,wo) uniformly in j and in Ag. Thus we fix j € N and let L=1

be the operator defined by Lu = — div(AVu), with A = A7 (see (3.22)), and set & := wfo

As mentioned above A is uniformly elliptic with constant Ag = max{A4,A4,}. Also, since
L=Lyin {Y € Q: §(Y) < 277}, the analogous step in part (a) showed, wy < w; < wp and
h(-; E, Lo, X) € L$.(09, WL ) for every X, Y € Q —the actual norm will depend on X, Y and
7, but we will use this fact in a qualitative fashion. This qualitative control will be essentlal in
the following steps. At the end of Step 3 we will have obtained the desired conclusion for the
operator L= L7, with constants independent of j € N, which as observed above will allow us
to complete the proof by Lemma 3.23.

3.3.2. Step 1. Consider an arbitrary surface ball Ay = A(x1,71) with 21 € ng and 0 < r <
10‘35701537"0, and let By = B(x1,7r1). Set Ay := B, N0 with By := B(xy,7+) where x, = 21 and
0

re = 2kor1 (hence A, = 2r9A1) satisfy z, € %Ao and 0 < 7, < 1(2)5 270. By (2.48), (2.49) we
have
(3.50) X*:X—lA*EQ\BA C Q\ 3BA, CQ\TA".

Note also that 2ko7, < §(X,) < r9. We claim that D2+ € D20 := UQ0€DAO Dgo (see (2.45) and
(3.11)). To see this, let Qp € D?* and pick y, € Qo N 2A,. Then
400 9

3
105 2 + 4)7“0 < =Tp

5
\y*—!Eo\S!y*—x*\+|$*—$0|<27‘*+17“0§( 5

hence y, € %AO and there exists a unique QV € D20 such that y, € Q°. Moreover, by construc-
tion

<Dy < 0QY),

0(Qo) = 27K < 4007, < 20
(Qo) "= 125620 16

and therefore Qo € Dgo as desired.
Set £(Y) := A(Y) — Ap(Y), Y € Q, and consider v = {’)/Q}QE]DAO

(3.51) YQ = Vx0,Q = wo(Q) Z ﬁlg) HSH%M(I*), whenever Q € D20,
Tewy

Lemma 3.19 yields that for every Qo € D2+, if Q¥ € D20 is selected so that Qg € Dgo
(3.52) [y lle(@o,wo) < My lle(@owe) S lle(A; Ao)ll g, <e

where the last inequality is our main assumption in the current scenario and ¢ is to be chosen.

*

We also set wi = wy * and v* = {75 }gepa. where

75 = wp(Q) Z sup ||5HLOO (1% whenever Q € D4,
rewy Y&
Using (2.65) and Harnack’s inequality we have that w§(Q) ~ wo(Q)/wo(Qf). Hence, by (3.51)

* wO(Q) fYQ A
Vo = = sup Elf ooy = > Q €D~
O @) B, o 1 = @
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and, by (3.52),

m+(Dg) m, (Dg)
(3.53) My lle(@rws) = SUP ——F & sup Wt (Q)wo(QF)
TIe(@5 ) Qebgy wH(Q)  Qepg; wh(Q)wo(QE)
m, (Dg)
~ Sup —_— < m W 5 6‘
~ QEDQ* (Q) —= || 'Y”C(QO, 0)

We modify the operator L inside the region Ta, (see (2.46)), by defining L, = L as
Liu = —div(4;1Vu), where

A(Y) = AY) Y €eTa,,
BTl AoY) Y €Q\ Ta..

See Figure 5. Write wi* = wl)fl for every X € Q and w, = wf*

A

Ao

FIGURE 5. Definition of A; in .

Recalling that A = A7 (see (3.22)), it is clear that & := A, — Ay verifies |&] < |E|11,, and

also £1(Y) = 01if 6(Y) < 277 (this latter condition will be used qualitatively). Hence much as

before if write wi' = wX 1, for every X € €2 we have that wi < wé( for every X € € and hence

we can write h(-; L1, Lo, X) = dw;* /dw{’ which is well-defined w;-a.e. Also, as shown in Step
0 we have that h(- i L1, Lo, X) € L (00, W) for every X,Y € Q (the bound depends on X,Y
and the fixed j but we will use this qualitatively).

In order to simplify the notation, we recall (2.48), (2.49), and set A, = FAY = Az, Kory)
and let 0 < g € Lp’(ﬁ*,w(*)) with ||g||Lp/(3* i) = 1. Extend g by 0 in 00\ A,. Set s = Py
with 0 < ¢t < kor1/3 (see (3.12)). It is easy to see that A, C 3 Ao, hence A, can be covered

by the cubes in D20, This and the fact that r,/3 < coro/(16r0) guarantee that Lemma 3.14
applies to give g¢ € Lip(9€2) with supp(g;) C A}. We then consider

ubh(X) = / G@)def(y)  and  u(X) = / Wl (y), Xeq
o0 o0

Since 2 is bounded, we can use Lemma 3.7 (slightly moving X, if needed). This, Lemma 3.9
with F = @, (3.53), and Hoélder’s inequality yield

(3.54) [ul (Xy) — uh(Xy)| = ‘// (Ag —Al)T(Y)VyGLlT(Y, X)- Vb (¥)dy
//T Y)[Vy G (Y, Xl [Vug(Y)| dY
< 2 //T VVy G (Y. X)) [Vug (V)] dY

Q €A«
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IN

1
2 d t *
Q} e i /Q Mg 62) (0)Ss(a) r)
o€D~1

3 *
ez ) i M, s (i) (2) Sy ub () dwy ()
QoEDA 70

1
Sez Y |IME s (@l Lr o) 18004t ()| o' (g )
QoEDA+

IN

Using the well-known fact that M, do,wa is bounded on LP(Qo, wj) and that, as mentioned before

wy K wj with h(-; L7, Lo, Xi) = dw,/dw§, it readily follows that
1M8q 5 (@)l Lo(@ows) S 1AC5 L1, Lo, X) | LoQoon):

On the other hand, given Qo € D?+, let Q° € D20 be such that Qy € Q°. We claim that

Al C 2&@0 and hence supp g C 2&@0. Indeed, if y € A} and we recall that y, € Qo N 2A, we
obtain

ly — zgo| < |y — o] + |Ts — Yu| + [yx — 20| < 2(Ko + 1)7r4 + Crgo
< 8co L= < 128f
ro + =7 —
100k 0 9T 105

thus y € 2&620 as desired. On the other hand, observe that X € Q\ 2koBX, = B(zx, 2K374),
for otherwise we would get a contradiction:

(QO) + Zrgo < 2=2rgo,

4
coro < 0(Xp) < | Xo— x| < 2&%7”* < 1—8(5)1“0.
Hence Lemma 2.63 part (d) and Harnack’s inequality to pass from X, to Xa:

dvg 1
dwo ~ wo(A%)’
After all these observations we use Harnack’s inequality to pass from X, to Xgo and from

Xqgo to Xo, Remark 2.64, the square-function non-tangential estimates from [3, Theorem 1.5,
Proposition 2.57], and Lemmas 3.14 and 2.63 to conclude

(3.55)

wo-a.e. in AJ.

1
wo(Qo)”’ HSQ()u(t](x)HLP’(QmwS) S HSQOUB(@HLP,(QO WXQO) S HgtHLp,(QO wXQo) ~ ”gtHLp’(Qova)
Ehed0) ™0

=

1
S0 38 ) = 191207 By~ 0D 11 3, )~ 0(Q0)

Plugging the obtained estimates into (3.54) we conclude that
1 1
W (X) —uh(X) S ¥ 3 03 L Lo X |m@ow) S e IAC: L, Lo, X o s, s
QoeDA+

where we have used (2.49) and that D”* has bounded cardinality, which follows from wo(Qo) ~

wo(A,) for every Qo € DA and (2.49). Using then the definitions of /) and u we conclude
that

(3.56) ‘/ gdw*—/ g dwp
o0 o

1
S e2|[h(5 Ly Lo, Xl 1o, ) + 119 = 9tllzr 0wy + 119 = 9ellLr@0.m.)-

< uf (X)) —up(X0)] + llg — gellLr@awy) 119 — gtllLroa.w,)

Fix Qg € D?*, we showed before that if we pick Q¥ € D20 so that Qp C Q°, then A* C 2&@0.

Recalling that 0 < g € Lp,(ﬁ*,wg), with supp(g),supp(g¢) C A%, then (3.55) and Lemma 3.14
give
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1
(3.57) g = gellro0.ws) = lg — giellLrazwy) = MHQ = gtllLr(arwo)
1
+
< m”g - Ptg||L1(25QO7w0) — 0, ast—0".
Similarly, using also that as mentioned above w; < wy with h(-; L1, Lo, X,) € LS. (0, wo)

(3.:58) llg — gtllLr 00w, = 119 = PegllLr(arw)
< ||A(-; Ly Lo, Xo)ll oo (az w19 — Pegllnrazwyy — 0, ast—07.

*

Combining (3.56), (3.57), (3.58) and letting t — 0% we conclude that

0< /A* 9(y)dw(y) = /m g(y)dw,(y) = / 9(y) h(y; L1, Lo, X..) dwis(y)

o2
1
< 3105 L, Lo, Xl (s, sy + /a o))
1 ~ 1
S €2 Hh( ) leLOa X*)HLP(A*,UJS) + WS(A*)P

Taking now the sup over all 0 < g € Lp/(ﬁ*, w§) with ||9||Lp’(3 wr) = Lwe eventually get
x40
1

1 o R L
(3.59) |h(-; L1, Lo, X*)”Lp(ﬁ*,wg) S ez||h(-; L, Lo, X*)HLp(ﬁ*MS) +wi(Ax)?.
Since h(-; L1, Lo, Xi) € LS. (09, wy) (albeit with bounds which may depend on X, or j) we can

loc

hide the first term on the right hand side and eventually obtain fixing € small enough (depending
on n, the 1-sided NTA constants, the CDC constant, the ellipticity constants of Ly and Lo, and

on p)
(3.60) k(-5 L1, Lo, X4)

=

”LP(E*,wS) S WS(A*) .

3.3.3. Step 2. Let us next define

AY) Y €Ta,,
A(Y) =12 ‘
AY) ifY e Q\Ta,,
and set Lou := —div(AQVu). Note that Ly = L in (see Figure 6). Since L = Ly in
{Y € Q: 6(Y) < 277} we have already mentioned in Step 0 that wy, = w; and wy, are
mutually absolutely continuous with A(-; L, Lo, X ) € L2 (09, w{o) for every X,Y € Q.
A
N
A A A

T
FIGURE 6. Definition of As in €.

Note that by construction By = ﬁB*. Besides, by (2.48), 2kgB1 N C %B* NQ C Ta, and
since L = Ly = Ly in Th,, Lemma 2.63 part (f) and Harnack’s inequality give that w-)j_:(* and
wﬁ* = w, are comparable in Ay, thus A(-; L1, Lo, X\) ~ h(-; Z, Ly, X,) for wi-a.e. y € Ay (and
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also wp-a.e.). On the other hand using that as shown above Xo € Q\ 2koBA, C Q\ 2k9B1 we
can invoke Lemma 2.63 part (d) and Harnack’s inequality to see that

dwX0 dwX0 dw%(* dwfo* N w1 (A1)

h(-;L,Lo, Xo) = —% = —L ~ h(-;L, Lo, X4

(5L, Lo, Xo) ol dw dwps du? wo(By) ' Lo X
w(Aq)
e~ h(-; Ly, Ly, Xy),
wo(Al)( 1 Lo Xo)

for wo-a.e. y € Ay (recall that w; and wp are mutually absolutely continuous). This, the fact
that A; C A,, (3.60) and Lemma 2.63 part (d) yield

(3.61) <][A1 h(y;z,Lo,Xo)pdwo(y)>;% Z((AAll)) <][Al h(y;z,Lg,X*)pdwa(y)>ll’ < i((AAll)).

3.3.4. Step 3. Let us summarize what we have obtained up to this point. We fixed x¢ € 92 and
0 < rp < diam(02)/2, we set By = B(zo,70), Ao = Bo NN, Xo = Xa,, and wy = wf(?. We
also fix 1 < p < oo and assumed that [[o(A, Ao)]|| 5, < € with ¢ small enough at our disposal. In

Step 0 we took an arbitrary j and wrote L = LJ, (see (3.22)) and & = wgo. For an arbitrary
surface ball Ay = A(x1,71) with z1 € gAO and 0 < 7 < 100570“3TO we have obtained, combining
Step 1 and Step 2, that provided ¢ is small enough (independently of j and Ap) then (3.61)
holds.

Our next goal is to see that (3.61) holds as well with ng replacing Ay. To do thisr = 100570“8710

and find a maximal collection of points {zx}rex C %Ao with respect to the property that
|z — x| > 2r/3 for every k, k' € K with k # k/. Write Ay = A(xg,r) and note that {%Ak}ke;c
is a family of pairwise disjoint surface balls such that %Ao C Ugex Ak C %Ao. Note that
since r =~ rg and z € %Ao it follows from Lemma 2.63 part (c) that wo(iAo) ~ wo(Ag) and
W(200) = B(5A0) = &(Ag) ~ @(3Ay) for every k € K. Thus using (3.61) for every Ay (whose
applicability is ensure by the facts that z; € ng and rp, =7 = 1005—(’,{87“0) it follows that

(3.62) (fA h(y;E,LmXo)pdwo(y))p > (][A hy: L, Lo,Xo)pdwo(y)>p

1 kel
5(380) _ @(3A0)

(Ar) L
< ~ w A ) < ~ .
,;Cwo(Ak) wo(2Ap) <kgcg wo(3A0)  wo(2A0)

We now have all the ingredients to show that @ € RH,(2Ag,wr,) (uniformly in j) and to do

this we let A = BN o with B = B(x,r) C %Bg and z € 00, If ra <1 < locsﬁro then we
0
can invoke (3.61) with A; = A and this gives us the desired estimate. Assume otherwise that
rA > 11065$r0, hence ra =~ rg since B C %BO implies that ra < %7‘0. In that scenario using that
0

A C 3A¢ and that wo(A) & wo(2Ap), ©(A) ~ &(5A0) by Lemma 2.63 part (c) we obtain that
(3.62) gives as desired

P N B0 B4
<][A h(y; L, Lo, Xo) dwo(y)> S ( ‘A h(y; L, Lo, Xo) d”‘)(y)) S woéAo) ~ wo(A)

All in one, we have shown that @ € RHp(ng, wr, ), where the implicit constant depends only
on the allowable parameters and which is ultimately independent of j and Ag. This, as argued

in Step 0, permits us to show that w;, € RH,(Ag,wr,) with the help of Lemma 3.23. The
proof of Proposition 3.1, part (b) is then complete. O
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4. DOMAINS WITH AHLFORS-REGULAR BOUNDARY

Throughout this section we assume that Q C R"*1 n > 2 is a 1-sided CAD (cf. Definition
2.9). This means that Q is a 1-sided NTA domain (it satisfies the Corkscrew and Harnack
Chain conditions) and 912 is AR. As mentioned in Section 2.2, the latter condition implies that
Q) satisfies the CDC, hence the theory we have developed in this paper applies to 2. On the other
hand, the fact that Ahlfors regularity condition says that the surface measure o := H"|gq is a
well-behaved object. The goal of this section is to show how some earlier perturbation results,
valid in Lipschitz, NTA or 1-sided NTA settings, can be obtained easily from our results. Before
giving the precise statements let us present some definition:

Definition 4.1 (Reverse Holder and A, classes with respect to surface measure). Given p,
1 < p < oo, we say that wy, € RH,(05), o), provided that w;, < o on 9€, and there exists C' > 1
such that, writing kz, = dd"’—UL for the associated Radon-Nikodym, for every Ag = By N J€2 where
By = B(zg,70) with zg € 9 and 0 < ry < diam(952)

K80

( k20 (y)P do(y ) <C][]<:A°d —C L(A()A)

for every A = BN OQ where B C By, B = B(z,r) with z € 99, 0 < r < diam(99). The
infimum of the constants C' as above is denoted by [wr|rw, (90,0)-

We also define
A0, 0) = | | RH,(09,0).
p>1

These are the results that we can reprove with our methods:

Corollary 4.2. Let Q C R"™ n > 2, be a 1-sided CAD. Consider Lu = — div(AVu) and

Lou = —div(AgVu) two real (non-necessarily symmetric) elliptic operators. Define the dis-
agreement between A and Ag in Q) by
(4.3) 0(A, Ao)(X) == [|[A = Aollp=(B(x,5(x)/2)), X €L,

where §(X) := dist(X,09Q), and

2

where A = BN O, and the sup is taken over all balls B = B(x,r) with x € 02 and 0 < r <
diam(09).

(a) Assume that [|o(A, Ao)|l, < oo. If wr, € Axc(08,0), then wr, € Ax(0,0). More
precisely, if wr, € RHp(0Q, o) for some p, 1 < p < oo, then wy, € RH,(0Q,0) for some
q, 1 < g < co. Here, q and [wL]RHq(agvg) depend only on dimension, the 1-sided CAD
constants, the ellipticity constants of Lo and L, ||o(A, Ao)ll,, p, and [wr,]rm,00.0)-

(b) If wr, € RH,(0Q,0), for some p, 1 < p < oo, there exists ¢, > 0 (depending only
on dimension, the 1-sided CAD constants, the ellipticity constants of Ly and L, p, and
(Wil RE,(90,0)) sSuch that if [[o(A, Ao)lll, < ep, thenwr, € RH,(09Q,0). Here, (WL rH,(090,0)
depends only on dimension, the 1-sided CAD constants, the ellipticity constants of Lo and
L, p, and [wro|ri,(00,0)-

Corollary 4.5. Let Q C R"" n > 2 be a 1-sided CAD. Consider Lu = — div(AVu) and
Lou = — div(AopVu) two real (non-necessarily symmetric) elliptic operators, and recall the def-
inition of Aq(0(A, Ap)) in (1.11) for any given a > 0.

(a) Assume that Ay(0(A, Ag)) € L>®(0). If wr, € Axc(9Q,0), then wr € Ax(0Q,0). More
precisely, if wr, € RH,(0Q,0) for some p, 1 < p < oo, then wy, € RHy(09Q,0) for
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some q, 1 < q < oo. Here, ¢ and [WL]RHQ(@Q,O-) depend only on dimension, the 1-sided
CAD constants, the ellipticity constants of Lo and L, «, || Aa(0(A, Ao))ll 1<), P, and
[WLO]RHp(aQ,a) .

(b) If wr, € RHy(0R,0), for some p, 1 < p < oo, there exists ¢, > 0 (depending only
on dimension, the 1-sided CAD constants, the ellipticity constants of Ly and L, p, and
[Wiolrm,00.0)): such that if Aa(0(A, Ag)) € L (o) with || Aa(o(A, Ao))l| Lo (o) < €p, then
wr, € RH,(0Q,0). Here, [wLrH,00,0) depends only on dimension, the 1-sided CAD
constants, the ellipticity constants of Lo and L, o, p, and [WLO]RHP(6Q7O—).

In the case of symmetric operators, part (b) of Corollary 4.2 has been proved for the unit ball
n [13], for bounded CAD in [39], and for 1-sided CAD domains in [8]. On the other hand, part
(a) of Corollary 4.2 can be found for Lipschitz domains in [19] and for bounded CAD in [39],
both in the case of symmetric operators (but we would expect that similar arguments could
be carried over to the non-symmetric case as well). The corresponding result in the setting of
1-sided CAD has been obtained in [8] for symmetric operators and then extended to the general
case in [9]. Note then that Corollary 4.2 part (b) seems to be new in the case of non-symmetric
operators in 1-sided CAD. Regarding Corollary 4.5, part (a) for symmetric operators was proved
in [18] in the unit ball and in [39] in the setting of bounded CAD.

Before proving the previous results we need the following auxiliary lemma:

Lemma 4.6. Let Q C R" be a 1-sided CAD and consider Lu = —div(AVu) and Lou =
—div(ApVu) two real (non-necessarily symmetric) elliptic operators. If wr, € Ax(0Q2,0) and
wr, € Axe(0Q, wr,,) then wr, € A (0, 0). More precisely, if wr, € RH,(0Q,0), 1 < p < oo,

and wy, € RHy(0Q,wr,), 1 < ¢ < oo, then wy, € RH,(0Q,0) with r = pqu_l € (1, min{p, ¢})

and, moreover,
1
a
welrH, 00.0) < WLlRH,(02.00) [WLo] R, (50,0

Proof. Fix Ay = By N0 where By = B(xg,ro) with xp € 9Q and 0 < rg < diam(99). Write

X X
wp = wLOAO and w = wLAO. By definition wy < ¢ and w < wp, hence w < 0. Given A = BN oS
where B C B(zg,r0), B = B(x,r) with x € 09, 0 < r < diam(92), by Holder’s inequality with
exponent £ > 1 we obtain

(L)) - (5 »)
) (L))
() <§§;)qdwozq

Sl

1

< [wLlrRm, (99.w0) [WLo}ng(aﬂ,a)

b
= [WL}RHq(aQ,wO) [WLQ}RHp(aQJ) T

Thus we conclude that w;, € RH, (092, 0) with
1

WLlrH, (90.0) < WLlRH,(09.00) [WLol i1, (90,0
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and the proof is complete. O
Proof of Corollary 4.2. Assume that wr, € Ax (09, 0). Our first goal is to show that using the
notation in (1.7) we have
(4.7) (A, Ao)lll < lle(A; Ao)ll,-

To see this we take some ideas from the proof of Theorem 1.10. Let D = D(02) be the dyadic
grid from Lemma 2.34 with E = 0. For any Q € D we set

oA, A)(X)? |

Ug

Fix By = B(xq,19) with zp € 9Q and 0 < rg < diam(92). Let A = BN with B = B(x,r),
x € 2A¢, and 0 < r < rocp/4, here ¢ is the Corkscrew constant. Write Xo = Xa, and wo = wfoo.
Note that this choice guarantees that Xy ¢ 4B. Define

Wp={leW:INB# 0}
and for every I € Wp let X; € I N B so that 4diam(/) < dist(Z,9€) < §(X7) < r and hence
I C 2B. Pick z1 € 99 such that |X; — 27| = §(X ) < diam([) + dist(Z,99) and let Q; € D be

such that z; € Qr and ¢(I) = ¢(Q). By Lemma 2.63 parts (a)—(c), Harnack’s inequality and
the fact that 0€ is AR one has

Gro(Xo,Y)  Gro(Xo,Xy)  wo(Qr) _ wo(Qr)

sY) D) e T eQn) VY €1.
Using this
= St Yy ()
A AO (¥)? WO(Q[) . .
<2 //U W@ T A (@)

where we have used that by construction I C Ug, € Wg;,.
Note that £(Qr) = £(I) < diam(Qr) < r/4. Also if z € @, then by (2.36) and (2.39)

|z — 2| < |z — 2| + |zr — Xg| + [ X1 — 2
< E0(Qp) + 6(X)) + % < 20(Qr) + diam(I) + dist(I, 59) + % <1227

and therefore Q; C 122A. Write then Fao = {Q e D : [ < /(Q) < §,Q N12EA # O}, so
that Fa is a family of pairwise disjoint dyadic cubes with uniformly bounded cardinality and so
that 12EZA C Uger, @ C 13EA. By construction, if I € Wpg, then Q)7 C Q for some Q) € Fa.

Introducing the notation
Mloa = 300 sip —mn 3 agren(@),
QEFA Q'eDq of Q”EDQ/

it follows that
48) I < > D> 1 wo(@) < Mluya D w0(@)
QEFA Q'€Dq QEFA
< A lly .2 wo(IBEA) S {1Vl g, a wolA),
where we have used Lemma 2.63.

We next estimate |||, A- Since we have assumed that wr, € Ax(09,0), it follows that
wr, € RH,(0Q,0) for some p, 1 < p < oo, then it is straightforward to see using Lemma
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2.63 that waQ € RHY*(Q, o) for every Q € D (cf. Definition 2.25). In particular, for every
Q' € Dg with @ € D and for every F C Q" we have

UE?C;’];) :][/ 17 kp 2 do(y) < (Z((SI))V (][ KXy dg(y)>i
U(F))p

< [Wrol R, (09,0) (U Q)

where C' > 1 is a uniform constant. Take then o = 3, 8= (2C [WLO]RHP(QQ7O-))_Z)/ € (0,1), and
apply Lemma 2.20 with p = waQ and v = ¢ to obtain

sup Z Q" wL ) = Z Q" U

Q/E]D)Q w Q”EDQ/ Q/EDQ Q”GD
o(A, A
= sup Z // 0 ) dX
QIEDQ Q”ED U
1 Q(A,AO)(X)2
S sw o] 4X < [lo(A, 40)ll,.
@ebg 0(AG) J By 6(X)

where we have used that the family {Ug }qgrep has bounded overlap, (2.47), the AR property
of o and (4.4). Invoke once again Lemma 2.63 and Harnack’s inequality to conclude that (4.8)
along with the previous estimate readily yield

Ip Swo(A) sup sup 5, > g wL Q") Swo(A)[le(A, Ao)ll,»
QEFa Q/EDQ (.U (Q ) Q”ED ,

Taking then the sup over all B and B(] as above we have shown that (4.7) holds.

With (4.7) at hand we are now ready to prove (a) and (b) in the statement. To prove (a)
note that by assumption ||o(4, Ao)ll|, < oo and wr, € Ax(0,0). Hence, (4.7) says that
lle(A, Ag)|| < oo and Theorem 1.5 part (a) yields wy, € Ax(0Q,wr,). In turn, Lemma 4.6
implies that wr, € Ax (09, 0) as desired.

To prove (b) we proceed as follows. Assume that wr, € RHy(09Q,0). By Gehring s lemma
[22] (see also [11]) there exists s > 1 such that wr, € RH,s(0Q,0). Set q := 2= > 1 and
note that by (4.7) and Theorem 1.5 part (b) we can find ¢, > 0 sufficiently small (dependlng
only on dimension, the 1-sided CAD constants, the ellipticity constants of Ly and L, p, and
[wrol RE,(90,0)) SO that if [|o(A, Ao)|l, < € then wy € RH,(0Q,wp,). If we apply Lemma 4.6
with ps and our choice of ¢ we conclude that wy, € RH, (0%, 0) where r = pffq{l = p. This
completes the proof. O

Proof of Corollary 4.5. Note first that in both cases (a) and (b), the fact that wr, € A (92, 0)
implies wr,, < 0. On the other hand, since the Ay, property is symmetric we clearly have that
o < wr,. It is important to emphasize that by Harnack’s inequality wf < w% for every X, Y €
€, hence we do not need to specify the pole in wy,. All these show that |- || () = |- HLOO(MLO).

To prove (a) we then observe that the assumption Aq(0(A4, Ag)) € L>(o) gives at once that
An(0(A, Ap)) € L*®(wr,) and by Theorem 1.10 part (a) we conclude that wr, € A (99, wr,)-
This, the fact that wr, € Ax (09, 0), and Lemma 4.6 readily gives that wy, € A (08, 0) as
desired.

To prove (b) we proceed much as in the corresponding case in the proof of Corollary 4.2.
Assume that wr, € RH,(0R,0) and invoke once again Gehring’s lemma to find s > 1 such
that wr, € RH,s(0Q,0). Set ¢ := 2= > 1 and note that if ||Aa(0(4, Ao))|l1x() =
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| Aq (o( A, AO))HLOO(UJLO) is sufficiently small, Theorem 1.10 part (b) says that wy, € RH, (0, wr,).

We next apply Lemma 4.6 with p s and our choice of g to conclude that wy, € RHy(9S2, o) much
as we did before. O
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