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Abstract. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided non-tangentially accessible domain (aka uni-
form domain), that is, Ω satisfies the interior Corkscrew and Harnack chain conditions, which
are respectively scale-invariant/quantitative versions of openness and path-connectedness. Let
us assume also that Ω satisfies the so-called capacity density condition, a quantitative ver-
sion of the fact that all boundary points are Wiener regular. Consider L0u = − div(A0∇u),
Lu = − div(A∇u), two real (non-necessarily symmetric) uniformly elliptic operators in Ω, and
write ωL0 , ωL for the respective associated elliptic measures. The goal of this program is to
find sufficient conditions guaranteeing that ωL satisfies an A∞-condition or a RHq-condition
with respect to ωL0 . In this paper we establish that if the discrepancy of the two matrices
satisfies a natural Carleson measure condition with respect to ωL0 , then ωL ∈ A∞(ωL0). Addi-
tionally, we can prove that ωL ∈ RHq(ωL0) for some specific q ∈ (1,∞), by assuming that such
Carleson condition holds with a sufficiently small constant. This “small constant” case extends
previous work of Fefferman-Kenig-Pipher and Milakis-Pipher together with the last author of
the present paper who considered symmetric operators in Lipschitz and bounded chord-arc
domains, respectively. Here we go beyond those settings, our domains satisfy a capacity den-
sity condition which is much weaker than the existence of exterior Corkscrew balls. Moreover,
their boundaries need not be Ahlfors regular and the restriction of the n-dimensional Hausdorff
measure to the boundary could be even locally infinite. The “large constant” case, that is,
the one on which we just assume that the discrepancy of the two matrices satisfies a Carleson
measure condition, is new even in the case of nice domains (such as the unit ball, the upper-
half space, or non-tangentially accessible domains) and in the case of symmetric operators. We
emphasize that our results hold in the absence of a nice surface measure: all the analysis is
done with the underlying measure ωL0 , which behaves well in the scenarios we are considering.
When particularized to the setting of Lipschitz, chord-arc, or 1-sided chord-arc domains, our
methods allow us to immediately recover a number of existing perturbation results as well as
extend some of them. Our arguments rely on the square function and non-tangential estimates
obtained in [3]. The “large constant” case is obtained using the method of extrapolation of
Carleson measure. This is a bootstrapping scheme that allows us to reduce matters to the case
on which the discrepancy between the coefficients is small in some sawtooth domains.
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1. Introduction and Main results

The purpose of this program is to study some perturbation problems for second order diver-
gence form real elliptic operators with bounded measurable coefficients in domains with rough
boundaries. Let Ω ⊂ Rn+1, n ≥ 2, be an open set and let Lu = −div(A∇u) be a second order
divergence form real elliptic operator defined in Ω. Here the coefficient matrix A = (ai,j(·))n+1

i,j=1

is real (not necessarily symmetric) with ai,j ∈ L∞(Ω) and is uniformly elliptic, that is, there
exists a constant Λ ≥ 1 such that

Λ−1|ξ|2 ≤ A(X)ξ · ξ, |A(X)ξ · η| ≤ Λ|ξ| |η|(1.1)

for all ξ, η ∈ Rn+1 and for almost every X ∈ Ω. Associated with L one can construct a family
of positive Borel measures {ωXL }X∈Ω, defined on ∂Ω with ωX(∂Ω) ≤ 1 for every X ∈ Ω, so that
for each f ∈ Cc(∂Ω) one can define its associated weak-solution

(1.2) u(X) =

∫
∂Ω
f(z)dωXL (z), whenever X ∈ Ω,

which satisfies Lu = 0 in Ω in the weak sense. In principle, unless we assume some further
condition, u needs not be continuous all the way to the boundary but still we think of u as the
solution to the continuous Dirichlet problem with boundary data f . We call ωXL the elliptic
measure of Ω associated with the operator L with pole at X ∈ Ω. For convenience, we will
sometimes write ωL and call it simply the elliptic measure, dropping the dependence on the
pole.

Given two such operators L0u = −div(A0∇u) and Lu = −div(A∇u), one may wonder
whether one can find conditions on the matrices A0 and A so that some “good estimates” for
the Dirichlet problem or for the elliptic measure for L0 might be transferred to the operator
L. Similarly, one may try to see whether A being “close” to A0 in some sense gives some
relationship between ωL and ωL0 . In this direction, a celebrated result of Littman, Stampacchia,
and Weinberger in [37] states that the continuous Dirichlet problem for the Laplace operator
L0 = ∆, (i.e., A0 is the identity) is solvable if and only if it is solvable for any real elliptic
operator L. By solvability here we mean that the elliptic measure solutions as in (1.2) are
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indeed continuous in Ω. It is well known that solvability in this sense is in fact equivalent to the
fact that all boundary points are regular in the sense of Wiener, a condition which entails some
capacitary thickness of the complement of Ω. Note that, for this result, one does not need to
know that L is “close” to the Laplacian in any sense (other than the fact that both operators
are uniformly elliptic).

On the other hand, if Ω = R2
+ is the upper-half plane and L0 = ∆, then the harmonic measure

associated with ∆ is mutually absolutely continuous with respect to the surface measure on
the boundary, and its Radon-Nykodym derivative is the classical Poisson kernel. However,
Caffarelli, Fabes, and Kenig in [4] constructed a uniformly real elliptic operator L in the plane
(the pullback of the Laplacian via a quasiconformal mapping of the upper half plane to itself)
for which the associated elliptic measure ωL is not even absolutely continuous with respect to
the surface measure (see also [42] for another example). Hence, in principle the “good behavior”
of harmonic measure does not always transfer to any elliptic measure even in a nice domain
such as the upper-half plane. Consequently, it is natural to see if those good properties can be
transferred by assuming some conditions reflecting the fact that L is “close” to L0 or, in other
words, imposing some conditions on the disagreement of A and A0.

In [3] we studied the square function and non-tangential maximal function estimates for
solutions. Here we will consider the perturbation results. Tu put them in context let us recall
the development of this field. With L0 and L as above, we define the disagreement of A and
A0 as

%(A,A0)(X) := sup
Y ∈B(X,δ(X)/2)

|A(Y )−A0(Y )|, X ∈ Ω,

where δ(X) = dist(X, ∂Ω) (thus, the supremum is taken over a Whitney ball). Define, for every
x ∈ ∂Ω and 0 < r < diam(∂Ω),

h(x, r) =

(
1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

%(A,A0)(X)2

δ(X)
dX

) 1
2

,

where σ = Hn|∂Ω (i.e, the n-dimensional Hausdorff measure restricted to the boundary). The
study of perturbation of elliptic operators was initiated by Fabes, Jerison, and Kenig in [17] and
later studied by Dahlberg [13] for symmetric operators. Dahlberg in the case of Ω = B(0, 1)
observed that if

lim
r→0

sup
|x|=1

h(x, r) = 0

and if ωL0 � σ with dω0/dσ ∈ RHq(σ) (the classical reverse Hölder condition with respect to
the surface measure) for some 1 < q <∞, then ωL � σ and dωL/dσ ∈ RHq(σ). The importance
of these reverse Hölder conditions comes from the fact that dωL/dσ ∈ RHq(σ) is equivalent to

the Lq
′
-solvability of the Dirichlet problem, that is, the non-tangential maximal function for

the solution u given in (1.2) is controlled by f in the Lq
′
(σ)-norm. Dahlberg’s approach was to

define At = (1− t)A0 + tA for 0 ≤ t ≤ 1, obtaining a differential inequality for the best constant
in the reverse Hölder inequality for dωLt/dσ. Later, Fefferman in [18] made the first attempt
to remove the smallness of the function h. Working again in the domain Ω = B(0, 1) and
with symmetric operators, he showed that an A∞(σ) condition is still inherited from the first
measure (that is, ω0 ∈ A∞(σ) implies ωL ∈ A∞(σ)) provided that A(%(A,A0)) ∈ L∞(∂B(0, 1))
(and the bound needs not be small). Here,

A(%(A,A0))(x) :=

(∫∫
Γ(x)

%(A,A0)(X)2

δ(X)n+1
dX

) 1
2

(1.3)
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and Γ(x) is the non-tangential cone with vertex at x ∈ ∂Ω with angular aperture θ < π/2.
Using Fubini’s theorem one can easily see the connection between h(x, r) and A(%(A,A0))(x):

h(x, r) .

(
1

σ(B(x,Cr) ∩ ∂Ω)

∫
B(x,Cr)∩∂Ω

A(%(A,A0))(x)2dσ

) 1
2

.

It was also noted in [19] that finiteness of ‖A(%(A,A0))‖L∞(∂B(0,1)) does not allow one to pre-
serve the reverse Hölder exponent. Indeed it was shown that for a given 1 < p < ∞, there
exist uniformly elliptic symmetric matrices A0 and A with the property that A(%(A,A0)) ∈
L∞(∂B(0, 1)), ωL0 ∈ RHp(σ) but ωL /∈ RHp(σ). On the other hand, one of the main results
in the pioneering perturbation article by Fefferman, Kenig, and Pipher [19] established that if
the Carleson norm sup0<r<1, |x|=1 h(x, r) is merely assumed to be finite (not necessarily going

to zero as r → 0) then ωL0 ∈ A∞(σ) implies ωL ∈ A∞(σ) in the symmetric case. In the same
article, it was shown that the assumption that the previous Carleson norm sup0<r<1, |x|=1 h(r, x)

be finite, is also necessary and cannot be weakened. One of the ingredients in [19] was to see
that if Ω is a Lipschitz domain and if

sup
x∈∂Ω

0<r<diam(∂Ω)

(
1

ωL0(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

%(A,A0)2(X)
GL0(X)

δ(X)2
dX

) 1
2

< ε0(1.4)

for ε0 sufficiently small, then ωL ∈ RH2(ωL0), where GL0(X) = GL0(X0, X) is the Green
function for L0 in Ω with a pole at some fixed X0 ∈ Ω. We further remark that in [19] the
authors also considered Lr-averages of the disagreement function %(A,A0) as opposed to the
supremum. Using that approach it was shown that there exists r (depending on ellipticity)
such that for each q > 1 there exists εq so that ωL ∈ RHq(ωL0) provided that Lr-average of the
disagreement function %(A,A0) satisfies (1.4) with εq.

Milakis, Pipher, and the fourth author of this article in [39] made the first attempt to study
perturbation problems for symmetric operators beyond the Lipschitz setting. To describe their
results we need more notions which will be described briefly here and made precise later. A
domain is called non-tangentially accessible (NTA for short) if it satisfies quantitative interior
and exterior openness as well as quantitative (interior) path-connectedness (see Definitions 2.1,
2.2, and 2.5 below). A boundary of a domain is called Ahlfors regular if the surface measure of
balls with center on the boundary and radius r behaves like rn (in ambient dimension n + 1)
(see Definition 2.7). Note that NTA domains with Ahlfors regular boundaries (called chord-arc
domains) are not necessarily Lipschitz domains and in general they cannot be locally represented
as graphs. The first result of Fefferman, Kenig, and Pipher discussed above was generalized in
[39] to the setting of bounded chord-arc domains. That is, if Ω is a chord-arc domain and if
(1.4) is satisfied for some ε0 > 0 small, then ωL ∈ RH2(ωL0) (see also [41]). In addition, [39]
established that if h(x, r) is small enough (uniformly in x ∈ ∂Ω and 0 < r < diam(∂Ω)) and
wL0 ∈ RHq(σ) for some 1 < q < ∞ then wL0 ∈ RHq(σ). Futhermore, assuming that h(x, r)
is merely bounded (uniformly in x ∈ ∂Ω and 0 < r < diam(∂Ω)), if wL0 ∈ RHq(σ) for some
1 < q <∞, then wL ∈ RHp(σ) for some 1 < p <∞.

We also mention that Escauriaza in [15] showed that if Ω is a Lipschitz domain, and if
h(x, r) converges to 0 uniformly in x ∈ ∂Ω as r goes to 0, then log(dωL/dσ) ∈ VMO(σ) if
log(dωL0/dσ) ∈ VMO(σ); here VMO stands for the space of vanish mean oscillation introduced
by Sarason. This result was further generalized to bounded chord-arc domains in [40].

In [8], Cavero, and the second and the third authors of this article studied the “small”and
“large” perturbation for symmetric operators when the domain is a 1-sided NTA domain with
Ahlfors regular boundary (called 1-sided chord-arc domains). Here 1-sided NTA domains (aka
uniform domains) satisfy only quantitative interior openness and path-connectedness. In [8], the
perturbation results of [19, 39] were generalized to 1-sided chord-arc domains. Again, smallness
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of h(x, r) allowed the authors to preserve the exponent in the reverse Hölder condition, while
finiteness yields only that the A∞ condition is transferred from one operator to the other. It
is relevant to mention that the approach in [8], which is different from that of [19, 39], uses
the extrapolation of Carleson measure, originally introduced by Lewis and Murray in [36] (but
based on the Corona construction of [6, 7]) and later developed in [26, 29, 28], as well as good
properties of sawtooth domains (following the sawtooth construction in [14]). The bottom line
is that the large perturbation case can be reduced to the small perturbation in some sawtooth
subdomains. We would like to note that the arguments of [19, 39, 8] are written explicitly
only in the case of real symmetric coefficients, but we would expect that similar arguments
could be carried over to the non-symmetric case as well. We also mention [9], where the non-
symmetric case is also considered by using a different method, as well as [38], where perturbation
theory for certain degenerate elliptic operators is developed in the setting of domains with lower
dimensional boundaries.

One common feature in the previous perturbation results is that the surface measures of the
boundaries of the domains always have good properties, since in all cases the boundary is Ahlfors
regular. For those results in which one is perturbing RHq(σ) or A∞(σ), this is natural as one
implicitly needs to make sense of σ and to that extent the Ahlfors regularity is natural. However,
if one carefully looks at (1.4) and the conclusion derived from it, that is, ωL ∈ RH2(ωL0), there
is no appearance of the surface measure, and these conditions make sense whether or not the
surface measure is a well-behaved object. Another natural question that arises from (1.4) is
whether one can target some other reverse Hölder conditions by allowing ε0 to be larger, or
ultimately to investigate what are the conclusions that can be obtained assuming that ε0 is just
an arbitrary large finite constant.

The goal of this paper is to answer these questions. Our setting is that of 1-sided NTA domains
satisfying the so called capacity density condition (CDC for short), see Section 2 for the precise
definitions. The latter is a quantitative version of the well-known Wiener criterion and it is
weaker than the Ahlfors regularity of the boundary or the existence of exterior Corkscrews. This
setting guarantees among other things that any elliptic measure is doubling in some appropriate
sense, hence one can see that a suitable portion of the boundary of the domain endowed with
the Euclidean distance and with a given elliptic measure ωL0 is a space of homogeneous type. In
particular, classes like A∞(ωL0) or RHp(ωL0) have the same good features of the corresponding
ones in the Euclidean setting. However, our assumptions do not guarantee that the surface
measure has any good behavior and could even be locally infinite. In one of our main results,
we consider the case in which (1.4) holds either with small or large ε0. The small constant
case can be seen as an extension of [19, 39] to a setting in which surface measure is not a good
object. The large constant case is new even in nice domains such as balls, upper-half spaces,
Lipschitz domains or chord-arc domains. To the best of our knowledge, our work is the first
to establish perturbation results on sets with bad surface measures, and our large perturbation
results are the first of their type. Finally, we do not require the operators to be symmetric. Our
main result is formulated as follows:

Theorem 1.5. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided NTA domain (cf. Definition 2.5) satis-
fying the capacity density condition (cf. Definition 2.10). Let Lu = −div(A∇u) and L0u =
−div(A0∇u) be real (non-necessarily symmetric) elliptic operators. Define the disagreement
between A and A0 in Ω by

(1.6) %(A,A0)(X) := ‖A−A0‖L∞(B(X,δ(X)/2)), X ∈ Ω,

where δ(X) := dist(X, ∂Ω), and

(1.7) |||%(A,A0)||| := sup
B

sup
B′

1

ωX∆
L0

(∆′)

∫∫
B′∩Ω

%(A,A0)(X)2GL0(X∆, X)

δ(X)2
dX,
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where ∆ = B ∩∂Ω, ∆′ = B′∩∂Ω, and the sups are taken respectively over all balls B = B(x, r)
with x ∈ ∂Ω and 0 < r < diam(∂Ω), and B′ = B(x′, r′) with x′ ∈ 2∆ and 0 < r′ < rc0/4, and
c0 is the Corkscrew constant.

(a) If |||%(A,A0)||| < ∞, then ωL ∈ A∞(∂Ω, ωL0) (cf. Definition 2.56). More precisely,
there exists 1 < q < ∞ such that ωL ∈ RHq(∂Ω, ωL0) (cf.Definition 2.56). Here, q and
[ωL]RHq(∂Ω,ω0) (cf. Definition 2.56) depend only on dimension, the 1-sided NTA and CDC
constants, the ellipticity constants of L0 and L, and |||%(A,A0)|||.

(b) Given 1 < p < ∞, there exists εp > 0 (depending only on dimension, the 1-sided NTA
and CDC constants, the ellipticity constants of L0 and L, and p) such that if one has
|||%(A,A0)||| ≤ εp, then ωL ∈ RHp(∂Ω, ωL0) (cf. Definition 2.56). Here, [ωL]RHp(∂Ω,ω0)

(cf. Definition 2.56) depends only on dimension, the 1-sided NTA and CDC constants,
the ellipticity constants of L0 and L, and p.

Remark 1.8. Let us make a few remarks regarding the expression in (1.6). First, the collection
of B′ in the second sup is chosen so that X∆ /∈ 4B′, hence the Green function is not singular in
the domain of integration. But even if the domain of integration contained X∆ this would not
cause any problem, since the corresponding estimate near X∆

1

ωX∆
L0

(∆′)

∫∫
B(X∆,δ(X∆)/2)

%(A,A0)(X)2GL0(X∆, X)

δ(X)2
dX

. (‖A−A0‖L∞(B(X∆,δ(X∆)/2)))
2 1

δ(X∆)2

∫∫
B(X∆,δ(X∆)/2)∩Ω

|X −X∆|1−n dX

. (‖A−A0‖L∞(B(X∆,δ(X∆)/2)))
2.

Second, at a first glance (1.6) seems different than (1.4), the condition imposed by Fefferman,
Kenig, and Pipher in [19], which in the current case and if Ω is bounded (avoiding the pole as
just mentioned) would read as

(1.9) |||%(A,A0)|||∗ := sup
B′

1

ωXΩ(∆′)

∫∫
B′∩Ω

%(A,A0)(X)2GL0(XΩ, X)

δ(X)2
dX,

where XΩ ∈ Ω is a “center” of Ω (say, XΩ is the Corkscrew point associated with the surface ball
∆(x0, diam(∂Ω)/2) for some fixed x0 ∈ Ω) so that δ(XΩ) ≈ diam(∂Ω); ∆′ = B′∩∂Ω and the sup
is taken over all balls B′ = B(x′, r′) with x′ ∈ ∂Ω and 0 < r < diam(∂Ω)c0/4. We can easily
see that |||%(A,A0)||| ≈ |||%(A,A0)|||∗. First, using Lemma 2.63 below and possibly Harnack’s
inequality, one can see that for B = B(x, r) and B′ = B(x′, r′) as in (1.7) if X ∈ B′ ∩ Ω then
GL0

(X∆,X)

ω
X∆
L0

(∆′)
≈ GL0

(XΩ,X)

ω
XΩ
L0

(∆′)
. Thus, |||%(A,A0)||| . |||%(A,A0)|||∗. To obtain the converse inequality,

let B′ = B(x′, r′) with x′ ∈ ∂Ω and 0 < r′ < diam(∂Ω)c0/4. Pick max{1
2 , 4 r

′/(diam(∂Ω)c0)} <
θ < 1 and write r = θ diam(∂Ω) so that diam(∂Ω)/2 < r < diam(∂Ω) and r′ < rc0/4.
Set B = B(x′, r) and note that the Harnack chain condition and Harnack’s inequality easily
yield ωXΩ(∆′) ≈ ωX∆(∆′), and also GL0(XΩ, X) ≈ GL0(X∆, X) for every X ∈ B′ ∩ Ω, where
∆ = B ∩ ∂Ω and ∆′ = B′ ∩ ∂Ω. All these give at once that |||%(A,A0)|||∗ . |||%(A,A0)|||. Hence,
|||%(A,A0)||| ≈ |||%(A,A0)|||∗ when Ω is bounded.

In the unbounded case, one could use a similar argument working with a pole at infinity,
which would require to normalize appropriately ωL0 and GL0 ; here we will simply work with
the scale-invariant expression (1.7) to avoid that issue.

Finally, we also have a generalization of a result of [18, 19, 39]:

Theorem 1.10. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying
the capacity density condition (cf. Definition 2.10), and let Lu = −div(A∇u) and L0u =
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−div(A0∇u) be real (non-necessarily symmetric) elliptic operators. Given α > 0, set

Aα(%(A,A0))(x) :=

(∫∫
Γα(x)

%(A,A0)(X)2

δ(X)n+1
dX

) 1
2

, x ∈ ∂Ω,(1.11)

where Γα(x) = {Y ∈ Ω : |Y − x| < (1 + α)δ(Y )}.

(a) If Aα(%(A,A0)) ∈ L∞(ωL0), then ωL ∈ A∞(∂Ω, ωL0) (cf. Definition 2.56). More pre-
cisely, there exists 1 < q <∞ such that ωL ∈ RHq(∂Ω, ωL0) (cf. Definition 2.56). Here,
q and [ωL]RHq(∂Ω,ω0) (cf. Definition 2.56) depend only on dimension, the 1-sided NTA
and CDC constants, the ellipticity constants of L0 and L, α, and ‖Aα(%(A,A0))‖L∞(ωL0

).

(b) Given p, 1 < p < ∞, there exists εp > 0 (depending only on p, dimension, the 1-
sided NTA and CDC constants, the ellipticity constants of L0 and L, and α) such that if
Aα(%(A,A0)) ∈ L∞(ωL0) with ‖Aα(%(A,A0))‖L∞(ωL0

) ≤ εp, then ωL ∈ RHp(∂Ω, ωL0) (cf.

Definition 2.56). Here [ωL]RHp(∂Ω,ω0) (cf. Definition 2.56) depends only on dimension,
the 1-sided NTA and CDC constants, the ellipticity constants of L0 and L, α, and p.

Remark 1.12. Note that in the previous result we are not specifying the pole for the elliptic
measure ωL0 . However there is no ambiguity since, as a matter of fact, for any given X, Y ∈ Ω
one has that ωXL0

and ωYL0
are mutually absolutely continuous, thus L∞(∂Ω, ωXL0

) = L∞(∂Ω, ωYL0
)

with ‖ · ‖L∞(∂Ω,ωXL0
) = ‖ · ‖L∞(∂Ω,ωYL0

).

The plan of this paper is as follows. Section 2 contains some of the preliminaries, definitions,
and tools which will be used throughout the paper. Section 3 is devoted to proving our main
results. As a matter of fact Theorem 1.5 follows from a local version, interesting in its own
right, which is valid on bounded domains, see Proposition 3.1. The proof of Theorem 1.10 is
also in Section 3. The proof of Proposition 3.1 is in Sections 3.2 and 3.3 which respectively
handle the large and small constant cases. The proof of the large constant case is based on the
extrapolation of Carleson measure technique mentioned above. Finally, in Section 4 we apply
our main results to consider the case of 1-sided CAD (cf. Definition 2.9) —hence the domain
is 1-sided NTA and satisfies the CDC condition— and show in Corollaries 4.2 and 4.5 that one
can immediately recover some results from [8, 9] (see also [13, 18, 19, 39]) as well as give new
extensions.

We would like to mention that after an initial version of this work was posted on arXiv [1],
Feneuil and Poggi in [20] obtained results related to ours, compare for instance Theorem 1.5
part (a) with [20, Theorem 1.27], or Corollary 4.2 part (a) with [20, Corollary 1.32]. Also, the
recent work [5] complements this paper and its companion [2], see for instance [5, Theorem 1.2,
Corollary 1.6].

2. Preliminaries

2.1. Notation and conventions.

• We use the letters c, C to denote harmless positive constants, not necessarily the same at each
occurrence, which depend only on dimension and the constants appearing in the hypotheses
of the theorems (which we refer to as the “allowable parameters”). We shall also sometimes
write a . b and a ≈ b to mean, respectively, that a ≤ Cb and 0 < c ≤ a/b ≤ C, where
the constants c and C are as above, unless explicitly noted to the contrary. Unless otherwise
specified upper case constants are greater than 1 and lower case constants are smaller than
1. In some occasions it is important to keep track of the dependence on a given parameter
γ, in that case we write a .γ b or a ≈γ b to emphasize that the implicit constants in the
inequalities depend on γ.
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• Our ambient space is Rn+1, n ≥ 2.

• Given E ⊂ Rn+1 we write diam(E) = supx,y∈E |x− y| to denote its diameter.

• Given a domain Ω ⊂ Rn+1, we shall use lower case letters x, y, z, etc., to denote points on
∂Ω, and capital letters X,Y, Z, etc., to denote generic points in Rn+1 (especially those in
Rn+1 \ ∂Ω).

• The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r) when the
center x lies on ∂Ω, or B(X, r) when the center X ∈ Rn+1 \ ∂Ω. A surface ball is denoted
∆(x, r) := B(x, r) ∩ ∂Ω, and unless otherwise specified it is implicitly assumed that x ∈ ∂Ω.

• If ∂Ω is bounded, it is always understood (unless otherwise specified) that all surface balls
have radii controlled by the diameter of ∂Ω, that is, if ∆ = ∆(x, r) then r . diam(∂Ω). Note
that in this way ∆ = ∂Ω if diam(∂Ω) < r . diam(∂Ω).

• For X ∈ Rn+1, we set δ(X) := dist(X, ∂Ω).

• We let Hn denote the n-dimensional Hausdorff measure.

• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e. 1A(X) = 1
if X ∈ A, and 1A(X) = 0 if X /∈ A.

• We shall use the letter I (and sometimes J) to denote a closed (n+ 1)-dimensional Euclidean
cube with sides parallel to the coordinate axes, and we let `(I) denote the side length of I.
We use Q to denote dyadic “cubes” on E or ∂Ω. The latter exist as a consequence of Lemma
2.34 below.

2.2. Some definitions.

Definition 2.1 (Corkscrew condition). Following [34], we say that a domain Ω ⊂ Rn+1

satisfies the Corkscrew condition if for some uniform constant 0 < c0 < 1 and for every x ∈ ∂Ω
and 0 < r < diam(∂Ω), if we write ∆ := ∆(x, r), there is a ball B(X∆, c0r) ⊂ B(x, r) ∩Ω. The
point X∆ ⊂ Ω is called a Corkscrew point relative to ∆ (or, relative to B). We note that we
may allow r < C diam(∂Ω) for any fixed C, simply by adjusting the constant c0.

Definition 2.2 (Harnack Chain condition). Again following [34], we say that Ω satisfies
the Harnack Chain condition if there are uniform constants C1, C2 > 1 such that for every pair
of points X,X ′ ∈ Ω there is a chain of balls B1, B2, . . . , BN ⊂ Ω with N ≤ C1(2+log+

2 Π) where

(2.3) Π :=
|X −X ′|

min{δ(X), δ(X ′)}
.

such that X ∈ B1, X ′ ∈ BN , Bk ∩Bk+1 6= Ø and for every 1 ≤ k ≤ N

(2.4) C−1
2 diam(Bk) ≤ dist(Bk, ∂Ω) ≤ C2 diam(Bk).

The chain of balls is called a Harnack Chain.

We note that in the context of the previous definition if Π ≤ 1 we can trivially form the
Harnack chain B1 = B(X, 3δ(X)/5) and B2 = B(X ′, 3δ(X ′)/5) where (2.4) holds with C2 = 3.
Hence the Harnack chain condition is non-trivial only when Π > 1.

Definition 2.5 (1-sided NTA and NTA). We say that a domain Ω is a 1-sided non-
tangentially accessible domain (1-sided NTA) if it satisfies both the Corkscrew and Harnack
Chain conditions. Furthermore, we say that Ω is a non-tangentially accessible domain (NTA
domain) if it is a 1-sided NTA domain and if, in addition, Ωext := Rn+1 \ Ω also satisfies the
Corkscrew condition.

Remark 2.6. In the literature, 1-sided NTA domains are also called uniform domains. We
remark that the 1-sided NTA condition is a quantitative form of path connectedness.
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Definition 2.7 (Ahlfors regular). We say that a closed set E ⊂ Rn+1 is n-dimensional
Ahlfors regular (AR for short) if there is some uniform constant C1 > 1 such that

(2.8) C−1
1 rn ≤ Hn(E ∩B(x, r)) ≤ C1 r

n, x ∈ E, 0 < r < diam(E).

Definition 2.9 (1-sided CAD and CAD). A 1-sided chord-arc domain (1-sided CAD) is a
1-sided NTA domain with AR boundary. A chord-arc domain (CAD) is an NTA domain with
AR boundary.

We next recall the definition of the capacity of a set. Given an open set D ⊂ Rn+1 (where
we recall that we always assume that n ≥ 2) and a compact set K ⊂ D we define the capacity
of K relative to D as

Cap2(K,D) = inf

{∫∫
D
|∇v(X)|2dX : v ∈ C∞0 (D), v(x) ≥ 1 in K

}
.

Definition 2.10 (Capacity density condition). An open set Ω is said to satisfy the capacity
density condition (CDC for short) if there exists a uniform constant c1 > 0 such that

(2.11)
Cap2(B(x, r) \ Ω, B(x, 2r))

Cap2(B(x, r), B(x, 2r))
≥ c1

for all x ∈ ∂Ω and 0 < r < diam(∂Ω).

The CDC is also known as the uniform 2-fatness as studied by Lewis in [35]. Using [24,
Example 2.12] one has that

(2.12) Cap2(B(x, r), B(x, 2r)) ≈ rn−1, for all x ∈ Rn+1 and r > 0,

and hence the CDC is a quantitative version of the Wiener regularity, in particular every x ∈ ∂Ω
is Wiener regular. It is easy to see that the exterior Corkscrew condition implies CDC. Also,
it was proved in [43, Section 3] and [25, Lemma 3.27] that a set with Ahlfors regular boundary
satisfies the capacity density condition with constant c1 depending only on n and the Ahlfors
regular constant.

Remark 2.13. Given Ω, a 1-sided NTA domain satisfying the CDC, as shown in [3, Remark
2.56] if ∆ = ∆(x, r) with x ∈ ∂Ω and 0 < r < diam(∂Ω) then diam(∆) ≈ r.

2.3. Dyadic analysis. Throughout this section we will work with E ⊂ Rn+1 and a countable
collection of Borel sets D = {Q}Q∈D which is a dyadic grid on E, whose elements will be called
“cubes”. This means that D =

⋃
k∈ZDk (with Dk 6= Ø for each k ∈ Z) and the following

properties hold:

• E =
⋃
Q∈Dk Q for every k ∈ Z with the union comprising pairwise disjoint sets.

• If Q ∈ Dk and Q′ ∈ Dj with k ≥ j then either Q ⊂ Q′ or Q ∩Q′ = Ø.

• If for every k > j and Q ∈ Dk there exists (a unique) Q′ ∈ Dj such that Q ⊂ Q′.

See Section 2.4 below (and the references [10], and [32, 33]) for a discussion of the existence
of such a dyadic system, as well as its additional properties.

Note that by assumption, within the same generation (that is, within each Dk) the cubes
are pairwise disjoint (hence, there are no repetitions). On the other hand, we allow repetitions
in the different generations, that is, we could have that Q ∈ Dk and Q′ ∈ Dk−1 agree. Then,
although Q and Q′ are the same set, as cubes we consider that they are different. In short, it is
then understood that D is an indexed collection of sets where repetitions of sets are allowed in
the different generations but not within the same generation. With this in mind, we can give
a proper definition of the “length” of a cube (this concept has no geometric meaning in this
context). For every Q ∈ Dk, we set `(Q) = 2−k, which is called the “length” of Q. Note that
the “length” is well defined when considered on D, but it is not well-defined on the family of
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sets induced by D. It is important to observe that the “length” refers to the way the cubes
are organized in the dyadic grid and in general may not have a geometrical meaning (see the
examples below).

Remark 2.14. We would like to observe that in our notion of dyadic grid the generations run for
all k ∈ Z. However, as we are about to see, sometimes it is natural to truncate the generations
(from above or from below). For instance, it could be that E = Q0 for some Q0 ∈ Dk0 and
k0 ∈ Z, hence Dk = {Q0} for all k ≤ k0. In that scenario it is convenient to ignore those k ∈ Z
with k < k0 and work with D =

⋃
k≥k0

Dk. We will actually use this convention throughout
this paper and, more specifically, when E is bounded we will be working with the generations
k ∈ Z so that 2−k . diam(E). In any case, the results and proofs in this section remain valid
with or without the truncation of generations.

It is interesting to introduce some examples. In Rn we can consider the collection of classical
dyadic cubes. Note that here there are no repetitions at all, E = Rn, and that if we let Dk be
the collection of those dyadic cubes with side length 2−k, then the “length” is indeed the side
length. Analogously, with E = Rn we can let D2 k be the collection of those dyadic cubes with
side length 2−k and D2 k+1 = D2 k. Hence there are repetitions of cubes in D and “length” is
comparable to the square root of the side length.

Another example is the collection of dyadic subcubes of the unit cube Q0 = [0, 1)n. To frame
this in the previous definition (without truncating the generations), we let Dk be the collection
of dyadic subcubes of Q0 if k ≥ 0 and Dk = {Q0} for k ≤ 0. In this scenario E = Q0 and all
the dyadic ancestors of Q0 are indeed Q0, hence there are repetitions in D. Observe that the
“length” agrees with the side length in Dk for k ≥ 0. On the other hand, for Qk ∈ Dk with k ≤ 0
we have that `(Qk) = 2−k (note that Qk and Q0 are the same set but as dyadic cubes they are
distinct). In this case, it may be convenient and more natural to truncate the generations and
just work with Dk, k ≥ 0, in which case the “length” agrees with the side length.

We can also consider all classical dyadic cubes with side length at least 1. In this scenario, let
Dk be the set of classical dyadic cubes with side length 2−k for k ≤ 0, and Dk the collection of
classical dyadic cubes with side length 1 for k ≥ 0. In this scenario, E = Rn and all the dyadic
descendants of any cube Q with length side equal 1 are indeed Q, hence there are repetitions in
D. Note that “length” agrees with the side length in Dk for k ≤ 0, however in Dk for k ≥ 0 the
“length” is 2−k although the cubes comprising that family have side length 1. Again, in this
example, it may be more natural to truncate the generations and work with Dk, k ≤ 0, so that
“length” and side length agree.

Our last example is that of dyadic subcubes of the unit cube Q0 = [0, 1)n with side length at
least 2−N with N ∈ N fixed. We let Dk be the collection of dyadic subcubes of Q0 if 0 ≤ k ≤ N ,
Dk = {Q0} for k ≤ 0, and Dk, k ≥ N , is the collection of all dyadic subcubes of Q0 of side
length 2−N . In this case, E = Q0, all the dyadic ancestors of Q0 are indeed Q0, and all the
dyadic descendants of any cube Q with length side equal 2−N are indeed Q. We have infinitely
many cubes but only a finite number of different sets. Here the reasonable thing is to truncate
the generations and just work with Dk, 0 ≤ k ≤ N .

We next introduce the “discretized Carleson region” relative to Q, DQ = {Q′ ∈ D : Q′ ⊂ Q}.
Let F = {Qi} ⊂ D be a family of pairwise disjoint cubes. The “global discretized sawtooth”
relative to F is the collection of cubes Q ∈ D that are not contained in any Qi ∈ F , and for a
given Q ∈ D, the “local discretized sawtooth” relative to F is the collection of cubes in DQ in
DF . These are respectively

DF := D \
⋃
Qi∈F

DQi , DF ,Q := DQ \
⋃
Qi∈F

DQi = DF ∩ DQ.

We also allow F to be the null set in which case DØ = D and DØ,Q = DQ.
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With a slight abuse of notation, let Q0 be either E, and in that case DQ0 := D, or a fixed

cube in D, hence DQ0 is the family of dyadic subcubes of Q0. Let µ be a non-negative Borel

measure on Q0 so that 0 < µ(Q) < ∞ for every Q ∈ DQ0 . Consider the operators AQ0 , BQ0

defined by

(2.15) Aµ
Q0α(x) :=

( ∑
x∈Q∈DQ0

1

µ(Q)
α2
Q

) 1
2

, Bµ
Q0α(x) := sup

x∈Q∈DQ0

(
1

µ(Q)

∑
Q′∈DQ

α2
Q′

) 1
2

,

where α = {αQ}Q∈DQ0 is a sequence of real numbers. Note that these operators are discrete

analogues of those used in [12] to develop the theory of tent spaces. Sometimes, we use a

truncated version of Aµ
Q0 , which is denoted as Aµ,k

Q0 α, k ≥ 0, and where the sum runs over

x ∈ Q ∈ DkQ := {Q′ ∈ DQ : `(Q′) ≤ 2−k`(Q)}.
The following lemma is a discrete version of [12, Theorem 1] and extends [8, Lemma 3.8]:

Lemma 2.16. Under the previous considerations, given Q0 as above, and α = {αQ}Q∈DQ0 ,

β = {βQ}Q∈DQ0 sequences of real numbers, we have that

(2.17)
∑

Q∈DQ0

|αQβQ| ≤ 4

∫
Q0

Aµ
Q0α(x)Bµ

Q0β(x) dµ(x).

Proof. The proof follows the argument in [8, Lemma 3.8] which in turn is based on [12, Theorem
1]. We first claim that it suffices to assume that Q0 ∈ D. Indeed, if Q0 = E we have∑

Q∈DQ0

|αQβQ| =
∑
Q∈D
|αQβQ| = sup

N

∑
Q∈D−N

∑
Q′∈DQ

|αQ′βQ′ |

≤ 4 sup
N

∑
Q∈D−N

∫
Q
AµQα(x)BµQβ(x) dµ(x) ≤ 4

∫
E
Aµ
Q0α(x)Bµ

Q0β(x) dµ(x),

where in the first estimate we have used our claim for Q, which has finite length, and in the
second one the fact that the cubes in D−N are pairwise disjoint.

From now on we assume Q0 ∈ D, hence `(Q0) <∞. Recall D that is countable collection of
cubes and then we can find D1 ⊂ D2 ⊂ · · · ⊂ DN ⊂ · · · ⊂ D with D =

⋃
N≥1 DN and #DN ≤ N .

Given N ≥ 1, let βN = {βNQ }Q∈DQ0 where βNQ = βQ if Q ∈ DN and βNQ = 0 otherwise. With

this notation in mind, if we show (2.17) for βN then observing that Bµ
Q0β

N ≤ Bµ
Q0β we just

need to let N →∞ and the desired estimate follows at once.

Thus from now on we work with βN . To simplify the presentation we drop the exponent
and keep in mind that βQ = 0 for every Q 6∈ DN . For Q ∈ DQ0 , let kQ ≥ 0 be so that

`(Q) = 2−kQ`(Q0). Suppose that Q′ ∈ DQ0 satisfies `(Q′) ≤ 2−kQ`(Q0) = `(Q) and Q′∩Q 6= Ø,
then necessarily Q′ ∈ DQ and for every x ∈ Q

(2.18) ξQ := −
∫
Q

(
Aµ,kQ
Q0 β(y)

)2
dµ(y) = −

∫
Q

∑
Q′∈DQ

1Q′(y)
1

µ(Q′)
β2
Q′ dµ(y)

=
1

µ(Q)

∑
Q′∈DQ

β2
Q′ ≤

(
Bµ
Q0β(x)

)2
.

Since βQ = 0 for Q 6∈ DN and #DN ≤ N , we have Aµ
Q0β(x) ≤ CN < ∞ for every x ∈ Q0 and

hence ξQ ≤ C2
N <∞. Now, define

F0 :=
{
x ∈ Q0 : Aµ,k

Q0 β(x) > 2Bµ
Q0β(x), ∀k ≥ 0

}
.
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In particular, using (2.18), we have Aµ,kQ
Q0 β(x) > 2 ξ

1
2
Q for each x ∈ Q ∩ F0. We claim that

4µ(Q∩F0) ≤ µ(Q). Indeed, if ξQ = 0 then one can see that Aµ,kQ
Q0 β(y) = 0 for every y ∈ Q and

hence Q∩F0 = Ø, which trivially gives that 4µ(Q∩F0) ≤ µ(Q). On the other hand, if ξQ > 0,
we have

4 ξQ µ(Q ∩ F0) ≤
∫
Q∩F0

(
Aµ,kQ
Q0 β(y)

)2
dµ(y) ≤ ξQ µ(Q),

and the desired estimate follows since 0 < ξQ <∞. Let us now consider

(2.19) k(x) := min
{
k ≥ 0 : Aµ,k

Q0 β(x) ≤ 2Bµ
Q0β(x)

}
, x ∈ Q0 \ F0.

Setting F1,Q := {x ∈ Q \ F0 : k(x) > kQ} and using (2.18) we obtain

F1,Q ⊂ {x ∈ Q \ F0 : Aµ,kQ
Q0 β(x) > 2 ξ

1
2
Q

}
.

Applying Chebyshev’s inequality, it follows that

µ(F1,Q) ≤ 1

4 ξQ

∫
Q\F0

(
Aµ,kQ
Q0 β(y)

)2
dµ(y) ≤ 1

4
µ(Q).

Setting F2,Q := {x ∈ Q \ F0 : k(x) ≤ kQ}, and gathering the above estimates, we have

µ(F2,Q) = µ(Q)− µ(Q ∩ F0)− µ(F1,Q) ≥ 1

2
µ(Q).

Hence, Cauchy-Schwarz’s inequality and (2.19) yield∑
Q∈DQ0

|αQβQ| ≤ 2
∑

Q∈DQ0

µ(F2,Q)
|αQβQ|
µ(Q)

≤ 2

∫
Q0\F0

∑
Q∈DQ0

|αQβQ|
µ(Q)

1F2,Q
(x) dµ(x)

≤ 2

∫
Q0\F0

Aµ
Q0α(x)

( ∑
Q∈DQ0

1

µ(Q)
β2
Q1F2,Q

(x)

) 1
2

dµ(x)

≤ 2

∫
Q0\F0

Aµ
Q0α(x)Aµ,k(x)

Q0 β(x) dµ(x)

≤ 4

∫
Q0

Aµ
Q0α(x)Bµ

Q0β(x) dµ(x),

where we have used that Q ∈ Dk(x)
Q0 for each x ∈ F2,Q. This completes the proof of (2.17). �

Lemma 2.20. Under the previous considerations, given Q0 as above, let µ and ν be two non-
negative Borel measures on Q0 so that 0 < µ(Q), ν(Q) < ∞ for every Q ∈ DQ0. Assume that
there exist α, β ∈ (0, 1) such that

(2.21) F ⊂ Q ∈ DQ0 ,
µ(F )

µ(Q)
> α =⇒ ν(F )

ν(Q)
≥ β.

Given γ = {γQ}Q∈DQ0 , a sequence of non-negative real numbers, if we set

|||γ|||ν := sup
Q∈DQ0

1

ν(Q)

∑
Q′∈DQ

γQ′ ν(Q′), |||γ|||µ := sup
Q∈DQ0

1

µ(Q)

∑
Q′∈DQ

γQ′ µ(Q′).

then,

(2.22) (1− α)β |||γ|||µ ≤ |||γ|||ν ≤
1

(1− α)β
|||γ|||µ.

Let us observe that when µ is dyadically doubling (that is, there exists Cµ such that µ(Q) ≤
Cµµ(Q′) for every Q,Q′ ∈ DQ0 with `(Q) = 2`(Q′)), the assumption (2.21) means exactly

ν ∈ Adyadic
∞ (Q0, µ) (see Definition 2.25 below).
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Proof. We first consider the case on which #{Q ∈ DQ0 : γQ 6= 0} <∞ so that |||γ|||ν , |||γ|||µ <∞
(albeit with constants depending on the set {Q : γQ 6= 0}), condition which will be used
qualitatively. We will eventually see how to pass to the general case.

Fix Q0 ∈ DQ0 . Let F = {Qj}j be the collection of dyadic cubes contained in Q0 that
are maximal with respect to the inclusion, and therefore pairwise disjoint, with respect to the
property that

(2.23)
ν(Q)

µ(Q)
>

1

1− α
ν(Q0)

µ(Q0)

Note that F ⊂ DQ0 \ {Q0} since (1 − α)−1 > 1. Also, the maximality of the cubes in F
immediately gives

(2.24)
ν(Q)

µ(Q)
≤ 1

1− α
ν(Q0)

µ(Q0)
, ∀Q ∈ DF ,Q0 .

Set E0 =
⋃
Qj∈F Qj and note that if F is the null set then we understand that E0 is also empty.

The definition of the family F gives

µ(E0)

µ(Q0)
=
∑
Qj∈F

µ(Qj)

µ(Q0)
< (1− α)

∑
Qj∈F

ν(Qj)

ν(Q0)
= (1− α)

ν(E0)

ν(Q0)
≤ 1− α.

Applying (2.21) to F = Q0 \ E0 which satisfies µ(Q0 \ E0) > αµ(Q0) we obtain ν(Q0 \ E0) ≥
β ν(Q0) and eventually ν(E0) ≤ (1− β) ν(Q0). Therefore,∑

Q∈DQ0
\DF,Q0

γQ ν(Q) =
∑
Qj∈F

∑
Q∈DQj

γQ ν(Q) ≤ |||γ|||ν
∑
Qj∈F

ν(Qj)

= |||γ|||ν ν
( ⋃
Qj∈F

Qj

)
= |||γ|||ν ν(E0) ≤ (1− β) |||γ|||ν ν(Q0).

On the other hand, invoking (2.24),

1

ν(Q0)

∑
Q∈DF,Q0

γQ ν(Q) ≤ 1

1− α
1

µ(Q0)

∑
Q∈DF,Q0

γQ µ(Q)

≤ 1

1− α
1

µ(Q0)

∑
Q∈DQ0

γQ µ(Q) ≤ 1

1− α
|||γ|||µ.

Combining the previous estimates we arrive that

1

ν(Q0)

∑
Q∈DQ0

γQ ν(Q) =
1

ν(Q0)

( ∑
Q∈DQ0

\DF,Q0

γQ ν(Q) +
∑

Q∈DF,Q0

γQ ν(Q)
)

≤ (1− β) |||γ|||ν +
1

1− α
|||γ|||µ.

We next take the supremum over all Q0 ∈ DQ0 to conclude

|||γ|||ν ≤ (1− β) |||γ|||ν +
1

1− α
|||γ|||µ.

Recalling that in the current case |||γ|||ν < ∞ (and this is used qualitatively) the first term in
the right hand side can be absorbed and we eventually obtain the second estimate in (2.22).

Let us now remove the assumption #{Q : γQ 6= 0} < ∞. Much as in the proof of Lemma

2.16 we can find D1 ⊂ D2 ⊂ · · · ⊂ DN ⊂ · · · ⊂ D with D =
⋃
N≥1 DN and #DN ≤ N . Given

N ≥ 1, let γN = {γNQ }Q∈DQ0 where γNQ = βQ if Q ∈ DN and γNQ = 0 otherwise. Note that

#{Q : γNQ 6= 0} ≤ N <∞ hence the previous estimate applies to γN . Thus, for every Q0 ∈ DQ0
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1

ν(Q0)

∑
Q∈DQ0

γQ ν(Q) = sup
N≥1

1

ν(Q0)

∑
Q∈DQ0

∩DN

γQ ν(Q)

= sup
N≥1

1

ν(Q0)

∑
Q∈DQ0

γNQ ν(Q) ≤ sup
N≥1

1

(1− α)β

∣∣∣∣∣∣γN ∣∣∣∣∣∣
µ
≤ 1

(1− α)β
|||γ|||µ.

Taking now the supremum over all Q0 ∈ DQ0 we conclude the second estimate in (2.22).

Obtaining the first estimate in (2.22) is now easy. Set α̃ = 1 − β and β̃ = 1 − α, and note
that for any F ⊂ Q ∈ DQ0 , applying the contrapositive of (2.21) to Q \ F we obtain

ν(F )

ν(Q)
> α̃ =⇒ ν(Q \ F )

ν(Q)
< β =⇒ µ(Q \ F )

µ(Q)
≤ α =⇒ µ(F )

µ(Q)
≥ β̃.

That is, in (2.21) holds with µ and ν swapped, and with α̃, and β̃. Hence, the second estimate
in (2.22) with µ and ν swapped yields

|||γ|||µ ≤
1

(1− α̃) β̃
|||γ|||ν =

1

(1− α)β
|||γ|||ν ,

which is the first estimate in (2.22). This completes the proof. �

As above, Q0 is either E, and in which case DQ0 := D, or a fixed cube in D, hence DQ0 is the

family of dyadic subcubes of Q0. For the rest of the section we will be working with µ which
is dyadically doubling in Q0. This means that there exists Cµ such that µ(Q) ≤ Cµµ(Q′) for
every Q,Q′ ∈ DQ0 with `(Q) = 2`(Q′).

Definition 2.25 (Adyadic
∞ ). Given Q0 and µ, a non-negative dyadically doubling measure in Q0,

a non-negative Borel measure ν defined on Q0 is said to belong to Adyadic
∞ (Q0, µ) if there exist

constants 0 < α, β < 1 such that for every Q ∈ DQ0 and for every Borel set F ⊂ Q, we have
that

(2.26)
µ(F )

µ(Q)
> α =⇒ ν(F )

ν(Q)
> β.

It is well known (see [11, 21]) that since µ is a dyadically doubling measure in Q0, ν ∈
Adyadic
∞ (Q0, µ) if and only if ν � µ in Q0 and there exists 1 < p < ∞ such that ν ∈

RHdyadic
p (Q0, µ), that is, there is a constant C ≥ 1 such that(

−
∫
Q
k(x)p dµ(x)

) 1
p

≤ C−
∫
Q
k(x) dµ(x) = C

ν(Q)

µ(Q)
,

for every Q ∈ DQ0 , and where k = dν/dµ is the Radon-Nikodym derivative.

For each F = {Qi} ⊂ DQ0 , a family of pairwise disjoint dyadic cubes, and each f ∈ L1
loc(µ),

we define the projection operator

PµFf(x) = f(x)1E\(
⋃
Qi∈F

Qi)(x) +
∑
Qi∈F

(
−
∫
Qi

f(y) dµ(y)
)
1Qi(x).

If ν is a non-negative Borel measure on Q0, we may naturally then define the measure PµFν as
PµFν(F ) =

∫
E P

µ
F1F dν, that is,

(2.27) PµFν(F ) = ν
(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

µ(F ∩Qi)
µ(Qi)

ν(Qi),

for each Borel set F ⊂ Q0.

The next result follows easily by adapting the arguments in [29, Lemma B.1] and [27, Lemma
4.1] to the current scenario.
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Lemma 2.28. Given Q0, let µ be a non-negative dyadically doubling measure in Q0, and let ν
be a non-negative Borel measure in Q0.

(a) If ν is dyadically doubling on Q0 then PµFν is dyadically doubling on Q0.

(b) If ν ∈ Adyadic
∞ (Q0, µ) then PµFν ∈ A

dyadic
∞ (Q0, µ).

Let γ = {γQ}Q∈DQ0 be a sequence of non-negative numbers. For any collection D′ ⊂ DQ0 , we

define an associated “discrete measure”

(2.29) mγ(D′) :=
∑
Q∈D′

γQ.

We say that mγ is a “discrete Carleson measure” (with respect to µ) in Q0, if

(2.30) ‖mγ‖C(Q0,µ) := sup
Q∈DQ0

mγ(DQ)

µ(Q)
= sup

Q∈DQ0

1

µ(Q)

∑
Q′∈DQ

γQ′ <∞.

For simplicity, when Q0 = E we simply write ‖mγ‖C(µ).

Given F = {Qi} ⊂ DQ0 , a (possibly empty) family of pairwise disjoint dyadic cubes, we
define mγ,F by

(2.31) mγ,F (D′) = mγ(D′ ∩ DF ) =
∑

Q∈D′∩DF

γQ, D′ ⊂ DQ0 .

Equivalently, mγ,F = mγF where γF = {γF ,Q}Q∈DQ0 is given by

(2.32) γF ,Q =

{
γQ if Q ∈ DF ,Q0 ,

0 if Q ∈ DQ0 \ DF ,Q0 .

Note that if F = Ø, then γF = γ and hence mγ,Ø = mγ .

The following result was proved in [29, Lemma 8.5] under the additional assumption that ∂Ω
is AR, however a careful inspection of the proof shows that the same argument can be carried
out under the current assumption. We note that [29, Lemma 8.5] was formulated and proved
in the case that Q0 ∈ D, but clearly that implies the case Q0 = E. We caution the reader to
beware of the distinction between sub- and super-script, Q0 vs. Q0, in the statement of the
following lemma.

Lemma 2.33 ([29, Lemma 8.5]). Given Q0, let µ, ν be a pair of non-negative dyadically doubling
Borel measures on Q0, and let mγ be a discrete Carleson measure with respect to µ, with

‖mγ‖C(Q0,µ) ≤M0.

Suppose that there exists ε such that for every Q0 ∈ DQ0 and every family of pairwise disjoint
dyadic cubes F = {Qi} ⊂ DQ0 verifying

‖mγ,F‖C(Q0,µ) = sup
Q∈DQ0

mγ(DF ,Q)

µ(Q)
≤ ε,

we have that PµFν satisfies the following property:

∀ζ ∈ (0, 1), ∃Cζ > 1 such that
(
F ⊂ Q0,

µ(F )

µ(Q0)
≥ ζ =⇒

PµFν(F )

PµFν(Q0)
≥ 1

Cζ

)
.

Then, there exist η0 ∈ (0, 1) and 1 < C0 <∞ such that, for every Q0 ∈ DQ0

F ⊂ Q0,
µ(F )

µ(Q0)
≥ 1− η0 =⇒ ν(F )

ν(Q0)
≥ 1

C0
.

In other words, ν ∈ Adyadic
∞ (Q0, µ).
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2.4. Existence of a dyadic grid. In this section we introduce a dyadic grid along the lines
of that obtained in [10]. More precisely, we will use the dyadic structure from [32, 33], with a
modification from [31, Proof of Proposition 2.12]:

Lemma 2.34 (Existence and properties of the “dyadic grid”). Let E ⊂ Rn+1 be a closed
set. Then there exists a constant C ≥ 1 depending just on n such that for each k ∈ Z there is a
collection of Borel sets (called “cubes”)

Dk :=
{
Qkj ⊂ E : j ∈ Jk

}
,

where Jk denotes some (possibly finite) index set depending on k satisfying:

(a) E =
⋃
j∈Jk Q

k
j for each k ∈ Z.

(b) If m ≤ k then either Qkj ⊂ Qmi or Qmi ∩Qkj = Ø.

(c) For each k ∈ Z, j ∈ Jk, and m < k, there is a unique i ∈ Jm such that Qkj ⊂ Qmi .

(d) For each k ∈ Z, j ∈ Jk there is xkj ∈ E such that

B(xkj , C
−12−k) ∩ E ⊂ Qkj ⊂ B(xkj , C2−k) ∩ E.

Moreover, assume that there is a Borel measure µ which is doubling, that is, there exists
Cµ ≥ 1 such that µ(∆(x, 2r)) ≤ Cµµ(∆(x, r)) for every x ∈ E and r > 0. Then µ(∂Q) = 0 for
every Q ∈ Dk, k ∈ Z. Furthermore, there exist 0 < τ0 < 1, C1, and η > 0 depending only on
dimension and Cµ such that for every τ ∈ (0, τ0) and Q ∈ Dk, k ∈ Z,

(2.35) µ
({
x ∈ Q : dist(x,E \Q) ≤ τ`(Q)

})
≤ C1τ

ηµ(Q).

In what follows given B = B(x, r) with x ∈ E we will denote ∆ = ∆(x, r) = B ∩ E. A
few remarks are in order concerning this lemma. We first observe that if E is bounded and
k ∈ Z is such that diam(E) < C−12−k, then there cannot be two distinct cubes in Dk. Thus,
Dk = {Qk} with Qk = E. Therefore, as explained in Remark 2.14 we are going to ignore those
k ∈ Z such that 2−k & diam(E). Hence, we shall denote by D(E) the collection of all relevant
Qkj , i.e., D(E) :=

⋃
k Dk, where, if diam(E) is finite, the union runs over those k ∈ Z such that

2−k . diam(E). For a dyadic cube Q ∈ Dk, as explained above we shall set `(Q) = 2−k, and we
shall refer to this quantity as the “length” of Q. It is clear from (d) that diam(Q) . `(Q) (we
will see below that in our setting the converse hold, see Remark 2.13). We write Ξ = 2C2, with
C being the constant in Lemma 2.34, which is a purely dimensional. For Q ∈ D(E) we will set
k(Q) = k if Q ∈ Dk. Property (d) implies that for each cube Q ∈ D, there exist xQ ∈ E and
rQ, with Ξ−1`(Q) ≤ rQ ≤ `(Q) (indeed rQ = (2C)−1`(Q)), such that

(2.36) ∆(xQ, 2rQ) ⊂ Q ⊂ ∆(xQ,ΞrQ).

We shall denote these balls and surface balls by

(2.37) BQ := B(xQ, rQ), ∆Q := ∆(xQ, rQ),

(2.38) B̃Q := B(xQ,ΞrQ), ∆̃Q := ∆(xQ,ΞrQ),

and we shall refer to the point xQ as the “center” of Q.

Let Q ∈ Dk and consider the family of its dyadic children {Q′ ∈ Dk+1 : Q′ ⊂ Q}. Note
that for any two distinct children Q′, Q′′, one has |xQ′ − xQ′′ | ≥ rQ′ = rQ′′ = rQ/2, otherwise
xQ′′ ∈ Q′′ ∩∆Q′ ⊂ Q′′ ∩Q′, contradicting the fact that Q′ and Q′′ are disjoint. Also xQ′ , xQ′′ ∈
Q ⊂ ∆(xQ, rQ), hence by the geometric doubling property we have a purely dimensional bound
for the number of such xQ′ and hence the number of dyadic children of a given dyadic cube is
uniformly bounded.
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2.5. Sawtooth domains. In the sequel, Ω ⊂ Rn+1, n ≥ 2, will be a 1-sided NTA domain
satisfying the CDC. Write D = D(∂Ω) for the dyadic grid obtained from Lemma 2.34 with
E = ∂Ω. By Remark 2.13 and under the present assumptions one has that diam(∆) ≈ r∆ for
every surface ball ∆. In particular diam(Q) ≈ `(Q) for every Q ∈ D in view of (2.36). Given
Q ∈ D we define the “Corkscrew point relative to Q” as XQ := X∆Q

. We note that

δ(XQ) ≈ dist(XQ, Q) ≈ diam(Q).

Much as we did in Section 2.3 of, given Q ∈ D and F a possibly empty family of pairwise
disjoint dyadic cubes, we can define DQ, the “discretized Carleson region”; DF , the “global
discretized sawtooth” relative to F ; and DF ,Q, the “local discretized sawtooth” relative to F .
Note that if F to be the null set in which case DØ = D and DØ,Q = DQ.

We also introduce the “geometric” Carleson regions and sawtooths. Given Q ∈ D we want to
define some associated regions which inherit the good properties of Ω. Let W = W(Ω) denote
a collection of (closed) dyadic Whitney cubes of Ω ⊂ Rn+1, so that the cubes in W form a
covering of Ω with non-overlapping interiors, and satisfy

(2.39) 4 diam(I) ≤ dist(4I, ∂Ω) ≤ dist(I, ∂Ω) ≤ 40 diam(I), ∀I ∈ W,

and

diam(I1) ≈ diam(I2), whenever I1 and I2 touch.

Let X(I) denote the center of I, let `(I) denote the side length of I, and write k = kI if
`(I) = 2−k.

Given 0 < λ < 1 and I ∈ W we write I∗ = (1 + λ)I for the “fattening” of I. By taking λ
small enough, we can arrange matters, so that, first, dist(I∗, J∗) ≈ dist(I, J) for every I, J ∈ W.
Secondly, I∗ meets J∗ if and only if ∂I meets ∂J (the fattening thus ensures overlap of I∗ and
J∗ for any pair I, J ∈ W whose boundaries touch, so that the Harnack Chain property then
holds locally in I∗ ∪ J∗, with constants depending upon λ). By picking λ sufficiently small, say
0 < λ < λ0, we may also suppose that there is τ ∈ (1

2 , 1) such that for distinct I, J ∈ W, we
have that τJ ∩ I∗ = Ø. In what follows we will need to work with dilations I∗∗ = (1 + 2λ)I or
I∗∗∗ = (1 + 4λ)I, and in order to ensure that the same properties hold we further assume that
0 < λ < λ0/4.

For every Q ∈ D we can construct a family W∗Q ⊂ W(Ω), and define

UQ :=
⋃

I∈W∗Q

I∗,

satisfying the following properties: XQ ∈ UQ and there are uniform constants k∗ and K0 such
that

k(Q)− k∗ ≤ kI ≤ k(Q) + k∗, ∀I ∈ W∗Q,

X(I)→UQ XQ, ∀I ∈ W∗Q,

dist(I,Q) ≤ K02−k(Q), ∀I ∈ W∗Q.

(2.40)

Here, X(I)→UQ XQ means that the interior of UQ contains all balls in a Harnack Chain (in Ω)
connecting X(I) to XQ, and moreover, for any point Z contained in any ball in the Harnack
Chain, we have dist(Z, ∂Ω) ≈ dist(Z,Ω \ UQ) with uniform control of the implicit constants.
The constants k∗,K0 and the implicit constants in the condition X(I) →UQ XQ, depend on
the allowable parameters and on λ. Moreover, given I ∈ W(Ω) we have that I ∈ W∗QI , where

QI ∈ D satisfies `(QI) = `(I), and contains any fixed ŷ ∈ ∂Ω such that dist(I, ∂Ω) = dist(I, ŷ).
The reader is referred to [29, 30] for full details.
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For a given Q ∈ D, the “Carleson box” relative to Q is defined by

TQ := int

( ⋃
Q′∈DQ

UQ′

)
.

For a given family F = {Qi} ⊂ D of pairwise disjoint cubes and a given Q ∈ D, we define the
“local sawtooth region” relative to F by

(2.41) ΩF ,Q = int

( ⋃
Q′∈DF,Q

UQ′

)
= int

( ⋃
I∈WF,Q

I∗
)
,

whereWF ,Q :=
⋃
Q′∈DF,QW

∗
Q. Note that in the previous definition we may allow F to be empty

in which case clearly ΩØ,Q = TQ. Similarly, the “global sawtooth region” relative to F is defined
as

(2.42) ΩF = int

( ⋃
Q′∈DF

UQ′

)
= int

( ⋃
I∈WF

I∗
)
,

whereWF :=
⋃
Q′∈DF W

∗
Q. If F is the empty set clearly ΩØ = Ω. For a given Q ∈ D and x ∈ ∂Ω

let us introduce the “truncated dyadic cone”

ΓQ(x) :=
⋃

x∈Q′∈DQ

UQ′ ,

where it is understood that ΓQ(x) = Ø if x /∈ Q. Analogously, we can slightly fatten the
Whitney boxes and use I∗∗ to define new fattened Whitney regions and sawtooth domains.
More precisely, for every Q ∈ D,

T ∗Q := int

( ⋃
Q′∈DQ

U∗Q′

)
, Ω∗F ,Q := int

( ⋃
Q′∈DF,Q

U∗Q′

)
, Γ∗Q(x) :=

⋃
x∈Q′∈DQ0

U∗Q′

where U∗Q :=
⋃
I∈W∗Q

I∗∗. Similarly, we can define T ∗∗Q , Ω∗∗F ,Q, Γ∗∗Q (x), and U∗∗Q by using I∗∗∗ in

place of I∗∗.

Given Q we next define the “localized dyadic non-tangential maximal function”

(2.43) NQu(x) := sup
Y ∈Γ∗Q(x)

|u(Y )|, x ∈ ∂Ω,

for every u ∈ C(T ∗Q), where it is understood that NQu(x) = 0 for every x ∈ ∂Ω \ Q (since

Γ∗Q(x) = Ø in such a case). Finally, let us introduce the “localized dyadic conical square
function”

(2.44) SQu(x) :=

(∫∫
ΓQ(x)

|∇u(Y )|2δ(Y )1−n dY

) 1
2

, x ∈ ∂Ω,

for every u ∈W 1,2
loc (TQ0). Note that again SQu(x) = 0 for every x ∈ ∂Ω \Q.

To define the “Carleson box” T∆ associated with a surface ball ∆ = ∆(x, r), let k(∆) denote
the unique k ∈ Z such that 2−k−1 < 200r ≤ 2−k, and set

(2.45) D∆ :=
{
Q ∈ Dk(∆) : Q ∩ 2∆ 6= Ø

}
.

We then define

(2.46) T∆ := int

( ⋃
Q∈D∆

TQ

)
.

We can also consider fattened versions of T∆ given by

T ∗∆ := int

( ⋃
Q∈D∆

T ∗Q

)
, T ∗∗∆ := int

( ⋃
Q∈D∆

T ∗∗Q

)
.
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Following [29, 30], one can easily see that there exist constants 0 < κ1 < 1 and κ0 ≥ 16Ξ
(with Ξ the constant in (2.36)), depending only on the allowable parameters, so that

κ1BQ ∩ Ω ⊂ TQ ⊂ T ∗Q ⊂ T ∗∗Q ⊂ T ∗∗Q ⊂ κ0BQ ∩ Ω =: 1
2B
∗
Q ∩ Ω,(2.47)

5
4B∆ ∩ Ω ⊂ T∆ ⊂ T ∗∆ ⊂ T ∗∗∆ ⊂ T ∗∗∆ ⊂ κ0B∆ ∩ Ω =: 1

2B
∗
∆ ∩ Ω,(2.48)

and also

(2.49) Q ⊂ κ0B∆ ∩ ∂Ω = 1
2B
∗
∆ ∩ ∂Ω =: 1

2∆∗, ∀Q ∈ D∆,

where BQ is defined as in (2.37), ∆ = ∆(x, r) with x ∈ ∂Ω, 0 < r < diam(∂Ω), and B∆ = B(x, r)
is so that ∆ = B∆∩∂Ω. From our choice of the parameters one also has that B∗Q ⊂ B∗Q′ whenever

Q ⊂ Q′.
In the remainder of this section we show that if Ω is a 1-sided NTA domain satisfying the

CDC then Carleson boxes and local and global sawtooth domains are also 1-sided NTA domains
satisfying the CDC. We next present some of the properties of the capacity which will be used
in our proofs. From the definition of capacity one can easily see that given a ball B and compact
sets F1 ⊂ F2 ⊂ B then

(2.50) Cap2(F1, 2B) ≤ Cap2(F2, 2B).

Also, given two balls B1 ⊂ B2 and a compact set F ⊂ B1 then

(2.51) Cap2(F, 2B2) ≤ Cap2(F, 2B1).

On the other hand, [24, Lemma 2.16] gives that if F is a compact with F ⊂ B then there is a
dimensional constant Cn such that

(2.52) C−1
n Cap2(F, 2B) ≤ Cap2(F, 4B) ≤ Cap2(F, 2B).

Lemma 2.53. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided NTA domain satisfying the CDC. Then all
of its Carleson boxes TQ and T∆, and sawtooth regions ΩF , and ΩF ,Q are 1-sided NTA domains
and satisfy the CDC with uniform implicit constants depending only on dimension and on the
corresponding constants for Ω.

2.6. Uniformly elliptic operators, elliptic measure, and the Green function. Next,
we recall several facts concerning elliptic measure and the Green functions. To set the stage
let Ω ⊂ Rn+1 be an open set. Throughout we consider elliptic operators L of the form Lu =
−div(A∇u) with A(X) = (ai,j(X))n+1

i,j=1 being a real (non-necessarily symmetric) matrix such

that ai,j ∈ L∞(Ω) and there exists Λ ≥ 1 such that the following uniform ellipticity condition
holds

Λ−1|ξ|2 ≤ A(X)ξ · ξ, |A(X)ξ · η| ≤ Λ|ξ| |η|(2.54)

for all ξ, η ∈ Rn+1 and for almost every X ∈ Ω. We write L> to denote the transpose of L, or,
in other words, L>u = −div(A>∇u) with A> being the transpose matrix of A.

We say that u is a weak solution to Lu = 0 in Ω provided that u ∈W 1,2
loc (Ω) satisfies∫∫

A(X)∇u(X) · ∇φ(X)dX = 0 whenever φ ∈ C∞0 (Ω).

Associated with L one can construct an elliptic measure {ωXL }X∈Ω and a Green function GL
(see [30] for full details). Sometimes, in order to emphasize the dependence on Ω, we will write
ωL,Ω and GL,Ω. If Ω satisfies the CDC then it follows that all boundary points are Wiener
regular and hence for a given f ∈ Cc(∂Ω) we can define

u(X) =

∫
∂Ω
f(z)dωXL (z), whenever X ∈ Ω,
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so that u ∈ W 1,2
loc (Ω) ∩ C(Ω) satisfying u = f on ∂Ω and Lu = 0 in the weak sense. Moreover,

if f ∈ Lip(Ω) then u ∈W 1,2(Ω).

We first define the reverse Hölder class and the A∞ classes with respect to fixed elliptic
measure in Ω. One reason we take this approach is that we do not know whether Hn|∂Ω is well-
defined since we do not assume any Ahlfors regularity in Theorem 1.5. Hence we have to develop
these notions in terms of elliptic measures. To this end, let Ω satisfy the CDC and let L0 and L
be two real (non-necessarily symmetric) elliptic operators associated with L0u = −div(A0∇u)
and Lu = −div(A∇u) where A and A0 satisfy (2.54). Let ωX0 and ωXL be the elliptic measures
of Ω associated with the operators L0 and L respectively with pole at X ∈ Ω. Note that if
we further assume that Ω is connected then ωXL � ωYL on ∂Ω for every X,Y ∈ Ω. Hence if

ωX0
L � ωY0

L0
on ∂Ω for some X0, Y0 ∈ Ω then ωXL � ωYL0

on ∂Ω for every X,Y ∈ Ω and thus we
can simply write ωL � ωL0 on ∂Ω. In the latter case we will use the notation

(2.55) h(· ;L,L0, X) =
dωXL
dωXL0

to denote the Radon-Nikodym derivative of ωXL with respect to ωXL0
, which is a well-defined

function ωXL0
-almost everywhere on ∂Ω.

Definition 2.56 (Reverse Hölder and A∞ classes). Fix ∆0 = B0 ∩ ∂Ω where B0 = B(x0, r0)
with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω). Given p, 1 < p < ∞, we say that ωL ∈ RHp(∆0, ωL0),
provided that ωL � ωL0 on ∆0, and there exists C ≥ 1 such that(

−
∫

∆
h(y;L,L0, X∆0)pdω

X∆0
L0

(y)

) 1
p

≤ C−
∫

∆
h(y;L,L0, X∆0)dω

X∆0
L0

(y) = C
ω
X∆0
L (∆)

ω
X∆0
L0

(∆)
,

for every ∆ = B ∩ ∂Ω where B ⊂ B(x0, r0), B = B(x, r) with x ∈ ∂Ω, 0 < r < diam(∂Ω). The
infimum of the constants C as above is denoted by [ωL]RHp(∆0,ωL0

).

Similarly, we say that ωL ∈ RHp(∂Ω, ωL0) provided that for every ∆0 = ∆(x0, r0) with
x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω) one has ωL ∈ RHp(∆0, ωL0) uniformly on ∆0, that is,

[ωL]RHp(∂Ω,ωL0
) := sup

∆0

[ωL]RHp(∆0,ωL0
) <∞.

Finally,

A∞(∆0, ωL0) =
⋃
p>1

RHp(∆0, ωL0) and A∞(∂Ω, ωL0) =
⋃
p>1

RHp(∂Ω, ωL0).

The following lemmas state some properties for the Green functions and elliptic measures,
proofs may be found in [30].

Lemma 2.57. Suppose that Ω ⊂ Rn+1, n ≥ 2, is an open set satisfying the CDC. Given a real
(non-necessarily symmetric) elliptic operator L = −div(A∇), there exist C > 1 (depending only
on dimension and on the ellipticity constant of L) such that GL, the Green function associated
with L, satisfies

0 ≤ GL(X,Y ) ≤ C|X − Y |1−n, ∀X,Y ∈ Ω, X 6= Y ;(2.58)

GL(·, Y ) ∈W 1,2
loc (Ω \ {Y }) ∩ C

(
Ω \ {Y }

)
and GL(·, Y )|∂Ω ≡ 0 ∀Y ∈ Ω;(2.59)

GL(X,Y ) = GL>(Y,X), ∀X,Y ∈ Ω, X 6= Y ;(2.60) ∫∫
Ω
A(X)∇XGL(X,Y ) · ∇ϕ(X) dX = ϕ(Y ), ∀ϕ ∈ C∞c (Ω).(2.61)



ELLIPTIC OPERATORS ON ROUGH DOMAINS 21

Remark 2.62. If we also assume that Ω is bounded, following [30] we know that the Green
function GL coincides with the one constructed in [23]. Consequently, GL(·, Y ) ∈ W 1,2(Ω \
B(Y, r)) ∩W 1,1

0 (Ω) Moreover, for every ϕ ∈ C∞c (Ω) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in B(Y, r)

with 0 < r < δ(Y ), we have that (1− ϕ)GL(·, Y ) ∈W 1,2
0 (Ω).

The following result lists some properties which will be used throughout the paper:

Lemma 2.63. Suppose that Ω ⊂ Rn+1, n ≥ 2, is a 1-sided NTA domain satisfying the CDC. Let
L0 = −div(A0∇) and L = −div(A∇) be two real (non-necessarily symmetric) elliptic operators,
there exist C1 ≥ 1, ρ ∈ (0, 1) (depending only on dimension, the 1-sided NTA constants, the
CDC constant, and the ellipticity of L) and C2 ≥ 1 (depending on the same parameters and on
the ellipticity of L0), such that for every B0 = B(x0, r0) with x0 ∈ ∂Ω, 0 < r0 < diam(∂Ω), and
∆0 = B0 ∩ ∂Ω we have the following properties:

(a) ωYL (∆0) ≥ C−1
1 for every Y ∈ C−1

1 B0 ∩ Ω and ω
X∆0
L (∆0) ≥ C−1

1 .

(b) If B = B(x, r) with x ∈ ∂Ω and ∆ = B∩∂Ω is such that 2B ⊂ B0, then for all X ∈ Ω\B0

we have that C−1
1 ωXL (∆) ≤ rn−1GL(X,X∆) ≤ C1ω

X
L (∆).

(c) If X ∈ Ω \ 4B0, then ωXL (2∆0) ≤ C1ω
X
L (∆0).

(d) For every X ∈ Ω \ 2κ0B0 with κ0 as in (2.48), we have that

1

C 1

1

ωXL (∆0)
≤
dω

X∆0
L

dωXL
(y) ≤ C1

1

ωXL (∆0)
, for ωXL -a.e. y ∈ ∆0.

(e) If B = B(x, r) with x ∈ ∆0, 0 < r < r0/4 and ∆ = B ∩ ∂Ω, then

1

C1
ωX∆
L,Ω(F ) ≤ ωX∆

L,T∆0
(F ) ≤ C1ω

X∆
L,Ω(F ), for every Borel set F ⊂ ∆.

(f) If L ≡ L0 in B(x0, 2κ0r0) ∩ Ω with κ0 as in (2.48), then

1

C2
ω
X∆0
L0

(F ) ≤ ωX∆0
L (F ) ≤ C2ω

X∆0
L0

(F ), for every Borel set F ⊂ ∆0.

Remark 2.64. We note that from (d) in the previous result, Harnack’s inequality, and (2.36)
one can easily see that

(2.65)
dω

XQ′
L

dω
XQ′′
L

(y) ≈ 1

ω
XQ′′
L (Q′)

, for ω
XQ′′
L -a.e. y ∈ Q′,whenever Q′ ⊂ Q′′ ∈ D.

Observe that since ω
XQ′′
L � ω

XQ′
L an analogous inequality for the reciprocal of the Radon-

Nikodym derivative follows immediately.

We close this section by stating a dyadic versions of the main lemma in [14]. To set the stage
we first quote some auxiliary result:

Proposition 2.66 ([29, Proposition 6.7], [3, Proposition 3.1]). Let Ω ⊂ Rn+1, n ≥ 2, be a
1-sided NTA domain satisfying the CDC. Fix Q0 ∈ D and let F = {Qk}k ⊂ DQ0 be a family of
pairwise disjoint dyadic cubes. There exists YQ0 ∈ Ω ∩ ΩF ,Q0 ∩ Ω∗F ,Q0

so that

(2.67) dist(YQ0 , ∂Ω) ≈ dist(YQ0 , ∂ΩF ,Q0) ≈ dist(YQ0 , ∂Ω∗F ,Q0
) ≈ `(Q0),

where the implicit constants depend only on dimension, the 1-sided NTA constants, the CDC
constant, and is independent of Q0 and F . Additionally, for each Qj ∈ F , there is an n-
dimensional cube Pj ⊂ ∂ΩF ,Q0, which is contained in a face of I∗ for some I ∈ W, and which
satisfies

(2.68) `(Pj) ≈ dist(Pj , Qj) ≈ dist(Pj , ∂Ω) ≈ `(I) ≈ `(Qj),
and

∑
j 1Pj . 1, where the implicit constants depend on allowable parameters.
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We are now ready to state the a version of [29, Lemma 6.15] (see also [14]) valid in our setting:

Lemma 2.69 (Discrete sawtooth lemma for projections, [3, Lemma 3.5]). Suppose that Ω ⊂
Rn+1, n ≥ 2, is a bounded 1-sided NTA domain satisfying the CDC. Let Q0 ∈ D, let F =
{Qi} ⊂ DQ0 be a family of pairwise disjoint dyadic cubes, and let µ be a dyadically doubling

measure in Q0. Given two real (non-necessarily symmetric) elliptic L0, L, we write ω
YQ0
0 =

ω
YQ0
L0,Ω

, ω
YQ0
L = ω

YQ0
L,Ω for the elliptic measures associated with L0 and L for the domain Ω with

fixed pole at YQ0 ∈ ΩF ,Q0∩Ω (cf. Proposition 2.66). Let ω
YQ0
L,∗ = ω

YQ0
L,ΩF,Q0

be the elliptic measure

associated with L for the domain ΩF ,Q0 with fixed pole at YQ0 ∈ ΩF ,Q0 ∩ Ω. Consider ν
YQ0
L the

measure defined by

(2.70) ν
YQ0
L (F ) = ω

YQ0
L,∗

(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

ω
YQ0
L (F ∩Qi)

ω
YQ0
L (Qi)

ω
YQ0
L,∗ (Pi), F ⊂ Q0,

where Pi is the cube produced in Proposition 2.66. Then PµFν
YQ0
L (see (2.27)) depends only on

ω
YQ0
0 and ω

YQ0
L,∗ , but not on ω

YQ0
L . More precisely,

(2.71) PµFν
YQ0
L (F ) = ω

YQ0
L,∗

(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

µ(F ∩Qi)
µ(Qi)

ω
YQ0
L,∗ (Pi), F ⊂ Q0.

Moreover, there exists θ > 0 such that for all Q ∈ DQ0 and all F ⊂ Q, we have

(2.72)

(
PµFω

YQ0
L (F )

PµFω
YQ0
L (Q)

)θ
.
PµFν

YQ0
L (F )

PµFν
YQ0
L (Q)

.
PµFω

YQ0
L (F )

PµFω
YQ0
L (Q)

.

3. Proofs of the main results

In order to prove Theorem 1.5 we are going to obtain a local version valid for bounded
domains, interesting on its own right, which in turn will imply the desired results.

Proposition 3.1. Let Ω ⊂ Rn+1, n ≥ 2, be a bounded 1-sided NTA domain satisfying the
CDC. Let Lu = −div(A∇u) and L0u = −div(A0∇u) be two real (non-necessarily symmetric)
elliptic operators. Fix x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω) and let B0 = B(x0, r0), ∆0 = B0 ∩ ∂Ω.
Set

(3.2) |||%(A,A0)|||B0
:= sup

B

1

ω
X∆0
L0

(∆)

∫∫
B∩Ω

%(A,A0)(X)2GL0(X∆0 , X)

δ(X)2
dX,

where %(A,A0) was defined in (1.6), ∆ = B∩∂Ω, and the sup is taken over all balls B = B(x, r)
with x ∈ 2∆0 and 0 < r < r0c0/4 (c0 is the Corkscrew constant).

(a) If |||%(A,A0)|||B0
<∞, then ωL ∈ A∞(∆0, ωL0), that is, there exists 1 < q <∞ such that

ωL ∈ RHq(∆0, ωL0). Here, q and the implicit constant depend only on dimension, the 1-
sided NTA and CDC constants, the ellipticity constants of L0 and L, and |||%(A,A0)|||B0

.

(b) Given 1 < p < ∞, there exists εp > 0 (depending only on p, dimension, the 1-sided
NTA and CDC constants and the ellipticity constants of L0 and L) such that if one has
|||%(A,A0)|||B0

≤ εp, then ωL ∈ RHp(∆0, ωL0), with the implicit constant depending only
on p, dimension, the 1-sided NTA and CDC constants, and the ellipticity constant of L0

and L.

Assuming this result momentarily we can prove Theorem 1.5:
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Proof of Theorem 1.5, part (a).

Case 1: Ω bounded.

For every ball B0 = B(x0, r0) with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω), we clearly have
|||%(A,A0)|||B0

≤ |||%(A,A0)||| < ∞. We can then invoke Proposition 3.1 part (a) to find q,
1 < q < ∞, such that ωL ∈ RHq(∆0, ωL0). Moreover, since supB0

|||%(A,A0)|||B0
≤ |||%(A,A0)|||

then the same q is valid for every B0 and also sup∆0
[ωL]RHq(∆0,ωL0

) < ∞. This means that

ωL ∈ RHq(∂Ω, ωL0) and hence ωL ∈ A∞(∂Ω, ωL0).

Case 2: Ω unbounded.

Fix B0 = B(x0, r0) with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω). From Lemma 2.53, we know that
every T∆ is a 1-sided NTA domain satisfying the CDC and moreover all the implicit constants
depend on the corresponding ones for Ω. Write c?0 for the associated Corkscrew constant (which
is independent of ∆), set K = max{1, c?0/c0} and fix M > 16K ≥ 16. We have two sub-cases:

Case 2a: 0 < r0 < diam(∂Ω)/(2M).

Set B̂0 = MB0, so that r
B̂0
< diam(∂Ω)/2, and let ∆̂0 = B̂0∩∂Ω. Define Ω? = T

∆̂0
⊂ Ω, and

our goal is to apply Proposition 3.1 in this bounded domain. From Lemma 2.53, it follows that
Ω? is a 1-sided NTA domain satisfying the CDC and moreover all the implicit constants depend
on the corresponding ones for Ω but are uniform on M . In particular, the interior Corkscrew
condition holds with c?0 (which does not depend on M).

Write B̃0 = B(x0, r̃0) = B(x0,Kr0) so that 8B0 ⊂ 8B̃0 ⊂ B̂0, and set ∆̃0 = B̃0 ∩ ∂Ω,

∆̃?
0 = B̃0∩∂Ω?, and ∆?

0 := B0∩∂Ω?. Note that by (2.48) we have 8B̃0∩Ω ⊂ B̂0∩Ω ⊂ T
∆̂0

= Ω?

and hence 8∆̃0 = 8∆̃?
0. Moreover, one can also see that for every X ∈ 4B̃0 ∩Ω = 4B̃0 ∩Ω? then

δ(X) = dist(X, ∂Ω?) =: δ?(X). Consequently, if X∆?
0

denotes the Corkscrew point relative to

∆?
0 for the domain Ω? and X

∆̃0
denotes the Corkscrew point relative to ∆̃0 for the domain Ω

we have

c?0r0 ≤ δ?(X∆?
0
) = δ(X∆?

0
) ≤ r0, c0r0 ≤ δ(X∆̃0

) = δ?(X∆̃0
) ≤ r0,

and |X∆?
0
−X

∆̃0
| ≤ (1 +K)r0.

Fix x ∈ 2∆0, 0 < r < r0c
?
0/4, write B = B(x, r), ∆ = B ∩ ∂Ω, ∆? = B ∩ ∂Ω?, and note

that from the above observations ∆ = ∆?. Invoking Lemma 2.63 part (e), the Harnack chain
condition for Ω? allows us to obtain

ω
X∆?0
L0,Ω?

(∆?) ≈ ω
X

∆̃0
L0,Ω?

(∆) ≈ ω
X

∆̃0
L0,Ω

(∆).

On the other hand if Y ∈ B∩Ω? = B∩Ω and we pick y ∈ ∂Ω so that |Y−y| = δ(Y ) = δ?(Y ) < r0.
WriteBY = B(y, 2δ(Y )) which satisfiesBY ⊂ 5B0 and hence ∆Y := BY ∩∂Ω = BY ∩∂Ω? =: ∆?

Y .
Then if X∆Y

(respectively X∆?
Y

) stands for the Corkscrew point relative to ∆Y (respectively

∆?
Y ) with respect to Ω (respectively Ω?) we observe that

GL0,Ω?(X∆?
0
, Y ) ≈ GL0,Ω?(X∆?

0
, X∆?

Y
) ≈ δ(Y )1−nω

X∆?0
L0,Ω?

(∆?
Y ) ≈ δ(Y )1−nω

X
∆̃0

L0,Ω?(∆Y )

≈ δ(Y )1−nω
X

∆̃0
L0,Ω

(∆Y ) ≈ GL0,Ω(X
∆̃0
, X∆Y

) ≈ GL0,Ω(X
∆̃0
, Y ),

where we have used the Harnack chain condition in both Ω and Ω?, Harnack’s inequality, and
Lemma 2.63 parts (b) and (e). Finally,

%?(A,A0)(Y ) := ‖A−A0‖B(Y,δ?(Y )/2) = ‖A−A0‖B(Y,δ(Y )/2) = %(A,A0)(Y )

since Y ∈ B ∩ Ω ⊂ 4B̃0 ∩ Ω = 4B̃0 ∩ Ω? and hence δ(Y ) = δ?(Y ).

At this point we collect the previous estimates to obtain that

|||%(A,A0)|||B0,Ω?
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:= sup
B=B(x,r)

x∈∆?
0,0<r<r0c

?
0/4

1

ω
X∆?0
L0,Ω?

(∆?)

∫∫
B∩Ω?

%?(A,A0)(X)2
GL0,Ω?(X∆?

0
, X)

δ?(X)2
dX

. sup
B=B(x,r)

x∈∆̃0,0<r<r̃0c0/4

1

ω
X

∆̃0
L0,Ω

(∆)

∫∫
B∩Ω

%(A,A0)(X)2
GL0,Ω(X

∆̃0
, Y )

δ(X)2
dX

≤ |||%(A,A0)||| <∞,

where all the implicit constants are independent of M and uniform in B0. We can then invoke
Proposition 3.1 part (a) (since Ω? is bounded) to find q, 1 < q < ∞, such that ωL,Ω? ∈
RHq(∆0, ωL0,Ω?). On the other hand, by Lemma 2.63 part (e) we have that ωL,Ω? and ωL,Ω
are comparable in ∆0 and so are ωL0,Ω? and ωL0,Ω. Thus eventually, ωL,Ω ∈ RHq(∆0, ωL0,Ω).
Moreover, the previous estimate is independent of B0 and the same q is valid for every B0 as
in the present case.

Case 2b: diam(∂Ω)/(2M) < r0 < diam(∂Ω).

Note first that this case is vacuous if ∂Ω is unbounded. Hence we may assume that ∂Ω
is bounded. We first find a finite maximal collection of points {xj}Jj=1 ∈ ∆0 with 1 ≤ J ≤
(1 + 20M)n+1 such that |xj − xk| ≥ diam(∂Ω)/(10M) for 1 ≤ j < k ≤ J . For any of the
balls Bj = B(xj ,diam(∂Ω)/(10M)) by Case 2a we have that ωL ∈ RHq(3∆j , ωL0) where the
implicit constants do not depend on j, and we have written ωL0 = ωL0,Ω and ωL = ωL,Ω.

To show that ωL ∈ RHq(∆0, ωL0), let B = B(x, r) ⊂ B0 with x ∈ ∂Ω and ∆ = B ∩ ∂Ω. If
∆ ∩∆j 6= Ø and 0 < r < diam(∂Ω)/(10M) we note that ∆ ∩∆j ⊂ ∆ ⊂ 3∆j and thus 1

ω
X∆0
L0

(∆)

∫
∆∩∆j

h(y;L,L0, X∆0)qdω
X∆0
L0

(y)

 1
q

.

(
−
∫

∆
h(y;L,L0, X3∆j )

qdω
X3∆j

L0
(y)

) 1
q

.
ω
X3∆j

L (∆)

ω
X3∆j

L0
(∆)
≈
ω
X∆0
L (∆)

ω
X∆0
L0

(∆)
,

where we have used Harnack’s inequality and that ωL ∈ RHq(3∆j , ωL0). On the other hand, if
∆∩∆j 6= Ø and diam(∂Ω)/(10M) < r < r0 we have that r ≈ r0 ≈ diam(∂Ω). Thus, by Lemma

2.63 parts (a), (b), and (c), ω
X∆0
L0

(∆) ≈ ω
X∆j

L0
(∆j) ≈ 1 and the same occurs for ωL. These yield 1

ω
X∆0
L0

(∆)

∫
∆∩∆j

h(y;L,L0, X∆0)qdω
X∆0
L0

(y)

 1
q

.

(
−
∫

∆j

h(y;L,L0, X∆j )
qdω

X∆j

L0
(y)

) 1
q

.
ω
X∆j

L (∆j)

ω
X∆j

L0
(∆j)

≈ 1 ≈
ω
X∆0
L (∆)

ω
X∆0
L0

(∆)
,

where we have used Harnack’s inequality and the fact that ωL ∈ RHq(3∆j , ωL0). All these, the
fact ∆ ⊂

⋃
j ∆j ∩∆, and the bound J ≤ (1 + 2M)n+1 imply(

−
∫

∆
h(y;L,L0, X∆0)qdω

X∆0
L0

(y)

) 1
q

≤

 J∑
j=1

1

ω
X∆0
L0

(∆)

∫
∆∩∆j

h(y;L,L0, X∆0)qdω
X∆0
L0

(y)

 1
q

.
ω
X∆0
L (∆)

ω
X∆0
L0

(∆)
,
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which eventually shows ωL,Ω ∈ RHq(∆0, ωL0,Ω) in the current case.

Collecting Case 2a and Case 2b we have shown that ωL,Ω ∈ RHq(∆0, ωL0,Ω) uniformly
on ∆0 which eventually means that ωL,Ω ∈ RHq(∂Ω, ωL0,Ω) and hence ωL,Ω ∈ A∞(∂Ω, ωL0,Ω).
This completes the proof.

�

Proof of Theorem 1.5, part (b). We follow the same argument as in the previous proof using part
(b) in place of part (a) in Proposition 3.1. Further details are left to the interested reader. �

Proof of Theorem 1.10. Fix α > 0. It is immediate to see that parts (a) and (b) follow respec-
tively from parts (a) and (b) in Theorem 1.5 and the following estimate:

(3.3) |||%(A,A0)||| .α ‖Aα(%(A,A0))‖2L∞(ωL0
),

where, as explained in Remark 1.12, the pole for ωL0 needs not to be specified. Hence everything
reduces to obtaining such estimate. With this goal in mind, fix ∆0 = B0 ∩ ∂Ω with B0 =
B(x0, r0), x0 ∈ ∂Ω, and 0 < r0 < diam(∂Ω). Let ∆ = B ∩ ∂Ω with B = B(x, r), x ∈ 2∆0, and

0 < r < r0c0/4, here c0 is the Corkscrew constant. Write X0 = X∆0 and ω0 = ωX0
L0

. Note that

this choice guarantees that X0 /∈ 4B. Define

WB = {I ∈ W : I ∩B 6= Ø}
and for every I ∈ WB let XI ∈ I ∩ B so that 4 diam(I) ≤ dist(I, ∂Ω) ≤ δ(XI) < r and hence
I ⊂ 5

4B. Pick xI ∈ ∂Ω such that |XI − xI | = δ(XI) ≤ diam(I) + dist(I, ∂Ω) and let QI ∈ D be
such that xI ∈ QI and `(I) = `(QI). By Lemma 2.63 parts (a)–(c) and Harnack’s inequality
one can show that

ω0(QI) ≈ `(I)n−1GL0(X0, XI) ≈ δ(Y )n−1GL0(X0, Y ), for every Y ∈ I.
Then,

IB :=

∫∫
B∩Ω

%(A,A0)(Y )2GL0(X0, Y )

δ(Y )2
dY .

∑
I∈WB

∫∫
B∩I

%(A,A0)(Y )2

δ(Y )n+1
dY ω0(QI)

=

∫∫
B∩Ω

%(A,A0)(Y )2

δ(Y )n+1

∑
I∈WB

1I(Y )ω0(QI) dY.

Fix Y ∈ B and note that by the nature of the Whitney cubes one has #{I ∈ WB : I 3 Y } ≤ Cn
for some dimensional constant (indeed the I’s have non-overlapping interiors and hence for a.e.
Y ∈ Ω, there is just one IY containing Y ). Pick y ∈ ∂Ω such that |Y − y| = δ(Y ). Let z ∈ QI ,
then by (2.36) and (2.39)

|z − y| ≤ |z − xI |+ |xI −XI |+ |XI − Y |+ |Y − y|
≤ Ξ`(QI) + δ(XI) + diam(I) + δ(Y ) < 3Ξδ(Y )

and therefore QI ⊂ ∆(y, 3Ξδ(Y )). Note also that

∆(y, αδ(Y )) ⊂ B(Y, (1 + α)δ(Y )) ∩ ∂Ω ⊂ (2 + α)∆.

Then using Lemma 2.63 parts (a) and (c)∑
I∈WB

1I(Y )ω0(QI) ≤ Cnω0

(
∆(y, 3Ξδ(Y ))

)
.α ω0

(
∆(y, αδ(Y ))

)
≤ ω0

(
B(Y, (1 + α)δ(Y )) ∩ ∂Ω

)
.

Hence, using again Lemma 2.63 parts (a) and (c), and Harnack’s inequality we conclude:

IB .α
∫∫

B∩Ω

%(A,A0)(Y )2

δ(Y )n+1
ω0

(
B(Y, (1 + α)δ(Y )) ∩ ∂Ω

)
dY
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=

∫
(2+α)∆

∫∫
B∩Ω

%(A,A0)(Y )2

δ(Y )n+1
1B(Y,(1+α)δ(Y ))∩∂Ω(z) dY dω0(z)

≤
∫

(2+α)∆

∫∫
Γα(z)

%(A,A0)(Y )2

δ(Y )n+1
dω0(z)

=

∫
(2+α)∆

Aα(%(A,A0))(z)2 dω0(z)

. ‖Aα(%(A,A0))‖2L∞(ω0)ω0((2 + α)∆)

.α ‖Aα(%(A,A0))‖2L∞(ω0)ω0(∆).

This eventually shows (3.3) and this completes the proof of Theorem 1.10. �

3.1. Auxiliary results. We next state some auxiliary lemmas which will be needed for our
arguments.

Lemma 3.4. Let Ω be a bounded 1-sided NTA domain satisfying the CDC. Consider L0 =
−div(A0∇) and L = −div(A∇) two real (non-necessarily symmetric) elliptic operators, and
let u0 ∈W 1,2(Ω) be a weak solution to L0u0 = 0 in Ω. Then,

(3.5)

∫∫
Ω
A>0 (Y )∇YGL>(Y,X) · ∇u0(Y ) dY = 0, for a.e. X ∈ Ω.

Proof. We follow the argument in [8, Lemma 3.12] where it was assumed that ∂Ω is AR and
the operators were symmetric. Pick ϕ ∈ C∞0 (R) with 1(0,1) ≤ ϕ ≤ 1(0,2). Fix X0 ∈ Ω, for each
0 < ε < δ(X0)/16 we set ϕε(X) = ϕ(|X −X0|/ε) and ψε = 1 − ϕε. By Remark 2.62, one has

that GL>(·, X0)ψε ∈W 1,2
0 (Ω), which together with the assumption that u0 ∈W 1,2(Ω) is a weak

solution to L0u0 = 0 in Ω, allows us to see that∫∫
Ω
A>0 (Y )∇

(
GL>(·, X0)ψε

)
(Y ) · ∇u0(Y ) dY = 0.

As a consequence,∫∫
Ω
A>0 ∇GL>(·, X0) · ∇u0 dY =

∫∫
Ω
A>0 ∇

(
GL>(·, X0)ϕε

)
· ∇u0 dY

=

∫∫
Ω
A>0 ∇GL>(·, X0) · ∇u0 ϕε dY +

∫∫
Ω
A>0 ∇ϕε · ∇u0GL>(·, X0) dY =: Iε + IIε.

We use (1.1), Cauchy-Schwarz’s inequality, Caccioppoli’s inequality for GL>(·, X0) (which sat-
isfies L>GL>(·, X0) = 0 in the weak sense in Ω \ {X0}), and (2.58)

|Iε| .
∫∫

B(X0,2ε)
|∇GL>(·, X0)| |∇u0| dY

.
∞∑
j=0

(∫∫
2−jε≤|Y−X0|<2−j+1ε

|∇YGL>(Y,X0)|2 dY
) 1

2
(∫∫

B(X0,2−j+1ε)
|∇u0|2 dY

) 1
2

.M2(|∇u0|1Ω)(X0)
∞∑
j=1

(
2−jε

)n−1
2

(∫∫
2−j−1ε≤|Y−X0|<2−j+2ε

|GL>(Y,X0)|2 dY
) 1

2

. εM2(|∇u0|1Ω)(X0),

where M2f := M(|f |2)
1
2 , with M being the Hardy-Littlewood maximal operator on Rn+1. For

the second term, we invoke again (2.58) and Jensen’s inequality:

|IIε| . ε−1

∫∫
ε≤|Y−X0|<2ε

|GL>(Y,X0)| |∇u0(Y )| dY
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. ε−n
∫∫

B(X0,2ε)
|∇u0(Y )| dY . εM2(|∇u0|1Ω)(X0).

Combining the obtained estimates we have shown that, for every X0 ∈ Ω and for every 0 < ε <
δ(X0)/16,

(3.6)

∣∣∣∣ ∫∫
Ω
A>0 ∇GL>(·, X0) · ∇u0 dY

∣∣∣∣ . εM2(|∇u0|1Ω)(X0).

Since u0 ∈W 1,2(Ω) it the follows that M2(|∇u0|1Ω) ∈ L2,∞(Rn+1), and as a result M2(|∇u0|1Ω)
is finite almost everywhere in Rn+1. Thus, we can let ε → 0+ in (3.6) to obtain the desired
equality. �

Lemma 3.7. Let Ω be a bounded 1-sided NTA domain satisfying the CDC, and let L0 =
−div(A0∇) and L = −div(A∇) be two real (non-necessarily symmetric) elliptic operators.
Given g ∈ Lip(∂Ω), consider the solutions u0 and u given by

u0(X) =

∫
∂Ω
g(y) dωXL0

(y), u(X) =

∫
∂Ω
g(y) dωXL (y), X ∈ Ω.

Then,

(3.8) u(X)− u0(X) =

∫∫
Ω

(A0 −A)>(Y )∇YGL>(Y,X) · ∇u0(Y ) dY

for almost every X ∈ Ω.

Proof. We again follow the argument in [8, Lemma 3.18] with some appropriate changes. Fol-
lowing [30] we know that u0 = g̃ − v0 and u = g̃ − v, where g̃ ∈ Lipc(Rn+1) is a Lipschitz

extension of g, and v0, v ∈W 1,2
0 (Ω) are the Lax-Milgram solutions of L0v0 = L0g̃ and Lv = Lg̃

respectively. Hence, we have that u− u0 = v0 − v ∈ W 1,2
0 (Ω), and following again [30] one can

extend (2.61) so that

(u− u0)(X) =

∫∫
Ω
A>(Y )∇YGL>(Y,X) · ∇(u− u0)(Y ) dY, for a.e. X ∈ Ω.

For almost every X ∈ Ω we then have that

(u− u0)(X)−
∫∫

Ω
(A0 −A)>(Y )∇YGL>(Y,X) · ∇u0(Y ) dY

=

∫∫
Ω
A>(Y )∇YGL>(Y,X) · ∇u(Y ) dY −

∫∫
Ω
A>0 (Y )∇YGL>(Y,X) · ∇u0(Y ) dY.

Using Lemma 3.4 for both terms the right side of the above equality vanishes almost everywhere,
and this proves (3.8). �

For the following result, we recall the definition of the localized dyadic conical square function
in (2.44). Also, if µ is a non-negative Borel measure on Q0 so that 0 < µ(Q) < ∞ for every
Q ∈ DQ0 , we define the localized dyadic maximal function with respect to µ as

Md
Q0,µν(x) := sup

x∈Q∈DQ0

ν(Q)

µ(Q)
,

where ν is a non-negative Borel measure on Q0.

Lemma 3.9. Let Ω be a 1-sided NTA domain satisfying the CDC and let L0 = −div(A0∇)
and L = −div(A∇) be two real (non-necessarily symmetric) elliptic operators. Let Q0 ∈ D and
let F = {Qj}j ⊂ DQ0 be a (possibly empty) family of pairwise disjoint dyadic cubes. Let u0 ∈
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W 1,2
loc (Ω), and let 0 ≤ H ∈ L∞(Ω). Let Y0 ∈ Ω\B∗Q0

(see (2.47)) and define γY0 = {γY0,Q}Q∈DQ0

where

γY0,Q := ωY0
L0

(Q)
∑
I∈W∗Q

‖H‖2L∞(I∗), Q ∈ DQ0 .

Then,

(3.10)

∫∫
ΩF,Q0

H(Y )|∇YGL>(Y, Y0)| |∇u0(Y )|dY

. ‖mγY0
,F‖

1
2

C(Q0,ω
Y0
L0

)

∫
Q0

Md

Q0,ω
Y0
L0

(ωY0
L )(x)SQ0u0(x)dωY0

L0
(x).

Proof. To ease the notation let us write ω0 := ωY0
L0

, ω := ωY0
L , γY0,Q = γQ, and γY0 = γ. From

the definition of ΩF ,Q0 ; Cauchy-Schwarz’s, Caccioppoli’s and Harnack’s inequalities (applied

to GL>(·, Y0) which satisfies L>GL>(·, Y0) = 0 in the weak sense in Ω \ {Y0}); the fact that
`(I) ≈ `(Q) ≈ δ(Y ) for every Y ∈ I∗ ∈ W∗Q; (2.60); and Lemma 2.63 part (b) in conjunction

with (2.47), we clearly have

I0 :=

∫∫
ΩF,Q0

H(Y )|∇YGL>(Y, Y0)| |∇u0(Y )|dY

≤
∑

Q∈DF,Q0

∑
I∈W∗Q

‖H‖L∞(I∗)

∫∫
I∗
|∇YGL>(Y, Y0)| |∇u0(Y )|dY

≤
∑

Q∈DF,Q0

∑
I∈W∗Q

‖H‖L∞(I∗)

(∫∫
I∗
|∇YGL>(Y, Y0)|2dY

) 1
2
(∫∫

I∗
|∇u0(Y )|2dY

) 1
2

.
∑

Q∈DF,Q0

∑
I∈W∗Q

‖H‖L∞(I∗)`(I)n
GL>(XQ, Y0)

δ(XQ)

(∫∫
I∗
|∇u0(Y )|2δ(Y )1−ndY

) 1
2

.
∑

Q∈DF,Q0

∑
I∈W∗Q

‖H‖L∞(I∗)ω(Q)

(∫∫
I∗
|∇u0(Y )|2δ(Y )1−ndY

) 1
2

≤
∑

Q∈DQ0

(
ω0(Q)

(
ω(Q)

ω0(Q)

)2 ∫∫
UQ

|∇u0(Y )|2δ(Y )1−ndY

) 1
2

γ
1
2
F ,Q,

where in the last estimate we have used that the family {I∗}I∈W∗Q has bounded overlap. If we

now set α = {αQ}Q∈DQ0
with

αQ :=

(
ω0(Q)

(
ω(Q)

ω0(Q)

)2 ∫∫
UQ

|∇u0(Y )|2δ(Y )1−ndY

) 1
2

, Q ∈ DQ0 ,

we obtain by invoking Lemma 2.16 with µ = ω0

I0 .
∑

Q∈DQ0

αQγ
1
2
F ,Q ≤ 4

∫
Q0

Aω0
Q0
α(x)Bω0

Q0

(
{γ

1
2
F ,Q}Q∈DQ0

)
(x) dω0(x).

Note that for every x ∈ Q0

Aω0
Q0
α(x) =

 ∑
x∈Q∈DQ0

(
ω(Q)

ω0(Q)

)2 ∫∫
UQ

|∇u0|2δ(·)1−ndY

 1
2

.Md
Q0,ω0

ω(x)SQ0u0(x),
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where we have used that the family {UQ}Q∈DQ0
has finite overlap. Besides, if x ∈ Q0

Bω0
Q0

(
{γ

1
2
F ,Q}Q∈DQ0

)
(x) = sup

x∈Q∈DQ0

(
1

ω0(Q)

∑
Q′∈DQ

γF ,Q′

) 1
2

≤ ‖mγ,F‖
1
2

C(Q0,ω0).

Collecting all the obtained estimates completes the proof of (3.10). �

Throughout the rest of this section we will always assume that Ω is a 1-sided NTA domain
satisfying the CDC, hence ∂Ω is also bounded. We fix D = D(∂Ω) the dyadic grid for Lemma
2.34 with E = ∂Ω. Let Lu = −div(A∇u) and L0u = −div(A0∇u) be two real (non-necessarily
symmetric) elliptic operators. Fix x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω) and let B0 = B(x0, r0),

∆0 = B0 ∩ ∂Ω. From now on X0 := X∆0 , ω0 := ωX0
L0

and ω := ωX0
L .

We further assume that 0 < r0 < diam(∂Ω)/2. In particular r2∆0 < diam(∂Ω). We introduce
the following notation (which should not be confused with the one introduced in (2.45)):

(3.11) D∆0
∗ =

{
Q ∈ D : Q ∩ 3

2∆0 6= Ø, c0
16κ0

r0 ≤ `(Q) < c0
8κ0

r0

}
.

Fixed ϕ ∈ C∞(0,∞) with 1(0,1) ≤ ϕ ≤ 1(0,2), we define

Ptg(x) :=

∫
∂Ω
ϕt(x, y)g(y) dω0(y) whenever x ∈ ∂Ω,(3.12)

where

ϕt(x, y) :=
ϕ
(
|x−y|
t

)
∫
∂Ω ϕ

(
|x−z|
t

)
dω0(z)

whenever x, y ∈ ∂Ω.(3.13)

A variant of the following lemma was shown in [8, Lemma 3.5].

Lemma 3.14. Let Ω ⊂ Rn+1 be a 1-sided NTA domain satisfying the CDC. Let L0u =
−div(A0∇u) be a real (non-necessarily symmetric) elliptic operator. Fix ϕ ∈ C∞(0,∞) with
1(0,1) ≤ ϕ ≤ 1(0,2). There exists C depending only on dimension n, the 1-sided NTA constants,
the CDC constant, the ellipticity constant of L0, and ϕ (and independent of ∆0), such that for
every Q ∈ DQ0 with Q0 ∈ D∆0

∗ , and with Pt as above then the following statements are true:

(a) If g ∈ Lq(∂Ω, ω0), 1 ≤ q ≤ ∞, then

sup
0<t<`(Q)

‖Ptg‖Lq(2∆̃Q,ω0)
≤ C‖g‖

Lq(3∆̃Q,ω0)
.

(b) If g ∈ Lq(∂Ω, ω0), 1 ≤ q ≤ ∞, and 0 < t < `(Q) then Pt(g1Q) ∈ Lip(∂Ω) ∩ L∞(∂Ω, ω0).

(c) If g ∈ Lq(∂Ω, ω0), 1 ≤ q <∞, then Ptg −→ g in Lq(2∆̃Q, ω0) as t→ 0+.

(d) If g ∈ C(∂Ω) then Ptg(x) −→ g(x) as t→ 0+ for every x ∈ 2∆̃Q.

(e) If supp(g) ⊂ ∆(x, r) then supp(Ptg) ⊂ ∆(x, r + 2t).

Proof. We start with some preliminaries. Fix Q ∈ DQ0 with Q0 ∈ D∆0
∗ . Set

H(x) :=

∫
∂Ω
ϕ

(
|x− z|
t

)
dω0(z), x ∈ ∂Ω

and observe that ω0(∆(x, t)) ≤ H(x) ≤ ω0(∆(x, 2t)). Hence if x, y ∈ ∂Ω

(3.15)
1∆(x,t)(y)

ω0(∆(x, 2t))
≤ ϕt(x, y) ≤

1∆(x,2t)(y)

ω0(∆(x, t))
.
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This easily implies (e) and also, recalling the notation in (2.36)–(2.38),

(3.16)
1∆(x,t)(y)

ω0(∆(x, t))
. ϕt(x, y) .

1∆(x,2t)(y)

ω0(∆(x, 2t))
, 0 < t < `(Q0), x ∈ 4∆̃Q0 ,

by Lemma 2.63 part (c), and the implicit constant does not depend on t. Moreover, for every

x ∈ 4∆̃Q

(3.17) sup
0<t<`(Q)

|Ptg(x)| ≤ C sup
0<t<2`(Q)

−
∫

∆(x,t)
|g(y)| dω0(y).

Note also that fixed 0 < t < `(Q) ≤ `(Q0) < r0 for every x ∈ 4∆̃Q we have δ(X∆(x,2t)) ≥ 2c0t

and since Q0 ∈ D∆0
∗

|X∆(x,2t) −X∆0 | ≤ |X∆(x,2t) − x|+ |x− xQ|+ |xQ − xQ0 |+ |xQ0 − x0|+ |x0 −X∆0 |
≤ 2t+ 6Ξ`(Q0) + 3r0 . r0.

Hence, the Harnack Chain condition and Harnack’s inequality yield

(3.18) ω0(∆(x, 2t)) ≈t ω
X∆(x,2t)

L0
(∆(x, 2t)) ≈ 1

where the last estimate follows from Lemma 2.63 part (a) and the implicit constants depend on

t but are uniform in x ∈ 4∆̃Q.

To show (a), note first (Ptg)1
2∆̃Q

= (Pt(g13∆̃Q
))1

2∆̃Q
whenever 0 < t < `(Q). This, Fubini’s

theorem and (3.17) yield

‖Ptg‖L1(2∆̃Q,ω0)
≤ ‖g‖

L1(3∆̃Q,ω0)
and ‖Ptg‖L∞(2∆̃Q,ω0)

≤ C‖g‖
L∞(3∆̃Q,ω0)

.

Thus, (a) follows easily from Marcinkiewicz’s interpolation theorem.

To obtain (b) we first observe that (e) yields supp(Pt(g1Q)) ⊂ 3∆̃Q. This, (3.16), Hölder’s

inequality, and (3.18) give for every x ∈ 3∆̃Q

|Pt(g1Q)(x)| . −
∫

∆(x,2t)
|g(y)|1Q(y) dω0(y) .t ‖g‖Lq(Q,ω0).

Thus, Pt(g1Q) ∈ L∞(∂Ω, ω0).

We next see that Pt(g1Q) ∈ Lip(∂Ω). Using what we have proved so far it is trivial to see

that it suffices to consider the case on which |x−x′| < `(Q) and both x, x′ ∈ 4∆̃Q. Taking such
points we note that

|Pt(g1Q)(x)− Pt(g1Q)(x′)| ≤
∫
∂Ω
|ϕt(x, y)− ϕt(x′, y)| |g(y)|1Q(y) dω0(y).

Note that for every y ∈ Q we have by the mean value theorem and easy calculations

|ϕt(x, y)− ϕt(x′, y)| ≤ 1

H(x)

∣∣∣∣ϕ( |x− y|t

)
− ϕ

(
|x′ − y|

t

)∣∣∣∣
+ ϕ

(
|x′ − y|

t

) ∣∣∣∣ 1

H(x)
− 1

H(x′)

∣∣∣∣
.
‖∇ϕ‖L∞

tω0(∆(x, t))

(
1 +

1

ω0(∆(x′, t))

)
|x− x′|

.t ‖∇ϕ‖L∞ |x− x′|,
where in the last estimate we have used (3.18). Consequently,

|Pt(g1Q)(x)− Pt(g1Q)(x′)| .t ‖∇ϕ‖L∞ |x− x′|
∫
∂Ω
|g(y)|1Q(y) dω0(y)

. ‖∇ϕ‖L∞‖g‖Lq(ω0,Q)|x− x′|,
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and this completes the proof of (b).

Let us now establish (d). Since g ∈ C(∂Ω) and ∂Ω is bounded, g is uniformly continuous and
hence given ε > 0 there exists η > 0 such that |g(y)−g(x)| < ε whenever |x−y| < min{η, `(Q)}.
Hence, if 0 < t < η/2 and x ∈ 4∆̃Q by (3.16)

|Ptg(x)− g(x)| . −
∫

∆(x,2t)
|g(y)− g(x)|dω0 < ε

and therefore Ptg(x) −→ g(x) for every x ∈ 4∆̃Q (which is indeed stronger than what stated in
(d)).

Finally, we show (c). To set the stage, fix ε > 0 and g ∈ Lq(ω0, ∂Ω), 1 ≤ q < ∞. Pick
h ∈ C(∂Ω) such that ‖g − h‖Lq(∂Ω,ω0) < ε. Proceeding as in the proof of (d) there exists η > 0

such that |h(y)−h(x)| < ε whenever |x−y| < min{η, `(Q)}. Hence, if 0 < t < η/2 and x ∈ 2∆̃Q

by (3.16)

|Pth(x)− h(x)| . −
∫

∆(x,2t)
|h(y)− h(x)|dω0 ≤ ε.

Using all these we obtain for all 0 < t < η/2

‖Ptg − g‖Lq(2∆̃Q,ω0)
≤ ‖Pt(g − h)‖

Lq(2∆̃Q,ω0)

+ ‖Pth− h‖Lq(2∆̃Q,ω0)
+ ‖h− g‖

Lq(2∆̃Q,ω0)
. ε

where we have used item (a) and the fact that ω0(∂Ω) ≤ 1. This completes the proof. �

Lemma 3.19. Let Ω ⊂ Rn+1 be a 1-sided NTA domain satisfying the CDC and adopt the
notation introduced above. There exists κ > 0 depending only on dimension n, the 1-sided NTA
constants, the CDC constant, and the ellipticity constant of L0 (and independent of ∆0) such
that if Q0 ∈ D∆0

∗ and we set

(3.20) γQ = γX0,Q := ω0(Q)
∑
I∈W∗Q

‖A−A0‖2L∞(I∗), Q ∈ DQ0 ,

then ‖mγ‖C(Q0,ω0) ≤ κ|||%(A,A0)|||B0
.

Proof. Fix Q0 ∈ D∆0
∗ and pick y0 ∈ Q0 ∩∆0. Let Q ∈ DQ0 and note that by (2.36) and the fact

that κ0 ≥ 16Ξ

|xQ − x0| ≤ |xQ − y0|+ |y0 − x0| < 2ΞrQ0 + r0 ≤ 2Ξ`(Q0) + r0 ≤
(

Ξc0

4κ0
+ 1

)
r0 < 2r0.

Hence xQ ∈ 2∆0. Note also that rB∗Q = 2κ0rQ ≤ 2κ0`(Q
0) < r0c0/4. This means that B∗Q is

one of the balls in the sup in (3.2). Also, X0 /∈ 4B∗Q hence if Q′ ∈ DQ and Y ∈ I∗ ∈ W∗Q′ we

have by Harnack’s inequality and Lemma 2.63 parts (a)–(c),

ω0(Q′) ≈ ω0(∆Q′) ≈ `(Q′)n−1GL0(X0, XQ′) ≈ δ(Y )n−1GL0(X0, Y ).

On the other hand, by (2.39) and recalling that I∗ = (1 + λ)I with 0 < λ < 1, it follows that
I∗ ⊂ B(Y, δ(Y )/2) and thus ‖A−A0‖L∞(I∗) ≤ %(A,A0)(Y ). All these imply

mγ(DQ) =
∑

Q′∈DQ

ω0(Q′)
∑

I∈W∗
Q′

‖A−A0‖2L∞(I∗)(3.21)

≤
∑

Q′∈DQ

ω0(Q′)
∑

I∈W∗
Q′

∫∫
I∗

%(A,A0)(Y )2

`(I)n+1
dY

≈
∑

Q′∈DQ

∫∫
UQ′

%(A,A0)(Y )2 ω0(Q′)

δ(Y )n+1
dY
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≈
∑

Q′∈DQ

∫∫
UQ′

%(A,A0)(Y )2 GL0(X0, Y )

δ(Y )2
dY

.
∫∫

TQ

%(A,A0)(Y )2GL0(X0, Y )

δ(Y )2
dY

. |||%(A,A0)|||B0
ω0(∆∗Q)

. |||%(A,A0)|||B0
ω0(Q),

where have used that the families {I∗}I∈W and {UQ′}Q′∈DQ have bounded overlap, (2.47), and
Lemma 2.63, parts (b) and (c). This leads to the desired estimate. �

For each j ∈ N (large enough), let (see Figure 1)

(3.22) Aj(Y ) =

{
A(Y ) if Y ∈ Ω and δ(Y ) ≥ 2−j ;

A0(Y ) if Y ∈ Ω and δ(Y ) < 2−j ,

and define Lju = −div(Aj∇u). Note that the matrix Aj is uniformly elliptic with constant
Λ0 = max{ΛA,ΛA0}, where ΛA and ΛA0 are the ellipticity constants of A and A0 respectively.
Let ωLj be elliptic measure of Ω associated to the operator Lj with pole at X0.

∂Ω 2−j

A

A0

A0

Figure 1. Definition of the matrix Aj in Ω.

The following result is a version of [8, Proposition 4.28] adapted to our setting.

Lemma 3.23. Let Ω ⊂ Rn+1 be bounded 1-sided NTA domain satisfying the CDC. Assume
that there exists q, 1 < q <∞, such that ωLj ∈ RHq(

5
4∆0, ω0) for every j ≥ j0 and with implicit

constants which are uniform in j and in ∆0. Then ωL ∈ RHq(∆0, ω0) with [ωL]RHq(∆0,ω0) .
supj≥j0 [ωLj ]RHq( 5

4
∆0,ω0), with an implicit constant depending on dimension n, the 1-sided NTA

constants, the CDC constant, and the ellipticity constants of L0 and L (and independent of ∆0).

Proof. Set Υ := supj≥j0 [ωLj ]RHq( 5
4

∆0,ω0). Consider an arbitrary ∆′0 = B′0 ∩ ∂Ω with B′0 =

B(x′0, r
′
0) ⊂ B0. Write X ′0 = X∆′0

, ω′ = ω
X′0
L , ω′0 = ω

X′0
L0

(and note that ω0 = ωX0
L0

since

X0 = X∆0). Write ∆1 = 5
4∆′0, let r1 = 5

4r
′
0 be its radius and set X1 = X∆1 . By hypotheses

ωLj � ω0 in 5
4∆0, hence h(· ;Lj , L0, X) is defined ω0-a.e. in 5

4∆0.

If r′0 < c0r0/(3κ0) so that X0 ∈ Ω \ 2κ0B1, by Lemma 2.63 part (d) applied to Lj and L0 we
have

(3.24) h(· ;Lj , L0, X0) =
dωX0

Lj

dωX0
L0

=
dωX0

Lj

dωX1

Lj

dωX1

Lj

dωX1
L0

dωX1
L0

dωX0
L0

≈
ωX0

Lj
(∆1)

ωX0
L0

(∆1)
h(· ;Lj , L0, X1),

ω0-a.e. in ∆1. This and Lemma 2.63 part (d) give

(3.25) ‖h(· ;Lj , L0, X1)‖
Lq(∆1,ω

X1
L0

)
≈ 1

ωX0

Lj
(∆1)

‖h(· ;Lj , L0, X0)‖Lq(∆1,ω0)

≤ [ωLj ]RHq( 5
4

∆0,ω0)ω0(∆1)
− 1
q′ ≤ Υω0(∆′0)

− 1
q′ ,

where the implicit constants are independent of j.
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For any f ∈ C(∂Ω), we define Φ(f) :=
∫
∂Ω f(y)dω′(y). Let f ∈ Lip(∂Ω) with supp(f) ⊂ ∆1

and consider the following solutions to the Dirichlet problems associated with the operators L
and Lj in Ω:

u(X) =

∫
∂Ω
f(y)dωXL (y) and uj(X) =

∫
∂Ω
f(y)dωXLj (y), X ∈ Ω.

Implicit in the way that ωLj is defined and since Ω is bounded one has that uj = F − vj
where F is a compactly supported Lipschitz extension (e.g., [16, p. 80] multiplied some cut-off

function) of f such that ‖F‖Lip(Rn+1) ≤ ‖f‖Lip(∂Ω) + ‖f‖L∞(∂Ω) and vj ∈W 1,2
0 (Ω) is the unique

Lax-Milgram solution to the problem Ljvj = LjF in Ω. Also, one has

(3.26) sup
j
‖uj‖W 1,2(Ω) ≤ CΩ‖F‖W 1,2(Ω) <∞

where the implicit constants depend on diam(∂Ω) and Λ0.

Since f ∈ Lip(∂Ω) it follows that we can use Lemma 3.7 (slightly moving X ′0 if needed) to
obtain

u(X ′0)− uj(X ′0) =

∫
Ω

(Aj −A)>(Y )∇YGL>(Y,X ′0) · ∇uj(Y )dY.

We want to estimate the right hand-side of this identity. To this end, if j > j0 is large enough
so that 2−j < δ(X∆′0

)/2 then Σj := {Y ∈ Ω : δ(Y ) < 2−j} ∩B(X ′0, δ(X
′
0)/2) = Ø. Using (1.1)

and Hölder’s inequality we have

(3.27) |u(X ′0)− uj(X ′0)| .
∫

Ω∩Σj

|∇YGL>(Y,X ′0)| |∇uj(Y )|dY

. ‖∇YGL>(·, X ′0) 1Σj‖L2(Ω) sup
j
‖uj‖W 1,2(Ω).

By Remark 2.62 and (3.26) the dominated convergence theorem gives that uj(X
′
0) −→ u(X ′0)

as j →∞. Using this observation, the definitions of u, uj , Φ, and the fact that supp(f) ⊂ ∆1,
we get that for every f ∈ Lip(∂Ω) with supp(f) ⊂ ∆1

(3.28) |Φ(f)| = |u(X ′0)| = lim
j→∞

|uj(X ′0)| . ‖f‖Lq′ (∆1,ω′0) sup
j≥j1
‖h(· ;Lj , L0, X∆1)‖

Lq(∆1,ω
X1
L0

)

. ‖f‖Lq′ (∆1,ω0)Υω0(∆′0)
− 1
q′ .

Note that in the previous inequalities we have employed that ∆′0 ⊂ ∆1 have comparable radii,
Harnack’s inequality, and (3.25).

We next write ∆2 = 9
8∆′0 so that ∆′0 ⊂ ∆′0 ⊂ ∆2 ⊂ ∆2 ⊂ ∆1 and let f ∈ Lq

′
(∆2, ω

′
0)

(where we recall that ω′0 = ω
X∆′0
L0

). Abusing the notation we extend f by 0 in ∂Ω \∆2 so that

supp(f) ⊂ ∆2. By definition of D∆′0
∗ , see (3.11), we have that ∆′0 ⊂ ∆1 ⊂

⋃
Q∈D

∆′0
∗
Q where the

cubes in D∆′0
∗ are pairwise disjoint. Also, by Harnack’s inequality and Lemma 2.63 parts (a)

and (c)

#D∆′0
∗ ≈ #D∆′0

∗ ω′0(∆′0) ≤
∑

Q∈D
∆′0
∗

ω′0(Q) ≤ ω0

( ⋃
Q∈D

∆′0
∗

Q
)
≤ 1,

hence #D∆0
∗ is uniformly bounded. This means that by Lemma 3.14 applied with ω′0 in place

of ω0

Ptf =
∑

Q∈D
∆′0
∗

Pt(f1Q) ∈ L∞(∂Ω, ω′0) ∩ Lip(∂Ω)
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provided 0 < t < c0r
′
0/(32κ0) =: t0. Note that t0 ≤ `(Q) for every Q ∈ D∆′0

∗ . Also Lemma 3.14
applied with ω′0 in place of ω0 implies that

supp(Ptf) ⊂ ∆(x′0,
9
8r
′
0 + 2t) ⊂ ∆1,

provided 0 < t < r′0/16. Consequently, if 0 < t < t0 we have shown that Ptf ∈ Lip(∂Ω) with
supp(Ptf) ⊂ ∆1. We can then invoke (3.28) to see that

Υ−1 ω0(∆′0)
1
q′ sup

0<t<t0

|Φ(Ptf)| . sup
0<t<t0

‖Ptf‖Lq′ (∆′1,ω0)

≤
∑

Q∈D
∆′0
∗

sup
0<t<`(Q)

‖Pt(f1Q)‖
Lq′ (2∆̃Q,ω

′
0)
.

∑
Q∈D

∆′0
∗

‖f1Q‖Lq′ (3∆̃Q,ω
′
0)
. ‖f‖Lq′ (∆2,ω′0),

where we have used that supp(Pt(f1Q)) ⊂ ∆(xQ, CrQ + 2t) ⊂ 2∆̃Q for every Q ∈ D∆0
∗ , Lemma

3.14 applied with ω′0 in place of ω0, and that #D∆0
∗ is uniformly bounded.

On the other hand, if 0 < t, s < t0 we have that Ptf−Psf ∈ Lip(∂Ω) with supp(Ptf−Psf) ⊂
∆1 and again we can invoke (3.28) to see that a similar computation lead us to

Υ−1ω0(∆′0)
1
q′ |Φ(Ptf)− Φ(Psf)| = Υ−1ω0(∆′0)

1
q′ |Φ(Ptf − Psf)|

. ‖Ptf − Psf‖Lq′ (∆1,ω′0) ≤ ‖Ptf − f‖Lq′ (∆1,ω′0) + ‖Psf − f‖Lq′ (∆1,ω′0)

≤
∑

Q∈D∆0
∗

‖Pt(f1Q)− f1Q‖Lq′ (2∆̃Q,ω
′
0)

+ ‖Ps(f1Q)− f1Q‖Lq′ (2∆̃Q,ω
′
0)
.

This and Lemma 3.14 applied with ω′0 in place of ω0 yield that {Φ(Ptf)}0<t<t0 is a Cauchy

sequence and we can define Φ̃(f) := limt→0+ Φ(Ptf). Clearly, Φ̃ is a well-defined linear operator
and satisfies

|Φ̃(f)| = lim
t→0+

|Φ(Pt)| ≤ sup
0<t<t0

|Φ(Ptf)| . Υω0(∆′0)
− 1
q′ ‖f‖Lq′ (∆2,ω′0).

Consequently, there exists g ∈ Lq(∆2, ω
′
0) with ‖g‖Lq(∆2,ω′0) . Υω0(∆′0)

− 1
q′ such that

(3.29) Φ̃(f) =

∫
∆2

f(y)g(y) dω′0(y), ∀ f ∈ Lq′(∆2, ω
′
0).

We now assume that f ∈ C(∂Ω) with supp(f) ⊂ ∆2, thus f ∈ Lq
′
(∆2, ω

′
0) and hence

Ptf ∈ Lip(∂Ω). Also, proceeding as above

sup
0<t<t0

|Φ(Ptf)| ≤
∑

Q∈D
∆′0
∗

sup
0<t<`(Q)

‖Pt(f1Q)‖
L∞(2∆̃Q,ω

′
0)

.
∑

Q∈D
∆′0
∗

‖f1Q‖L∞(3∆̃Q,ω
′
0)
. ‖f‖L∞(∂Ω,ω′0).

Note also that, as mentioned above, for t small enough one has supp(Ptf) ⊂ ∆1 and the

cubes in D∆′0
∗ cover ∆1. Hence by Lemma 3.14 applied with ω′0 in place of ω0 it follows that

Ptf(x) −→ f(x) as t→ 0+ for every y ∈ ∆1. These, the definitions of Φ, Φ̃, and the dominated
convergence theorem yield for every f ∈ C(∂Ω) with supp(f) ⊂ ∆2

(3.30) Φ̃(f) = lim
t→0+

Φ(Ptf) = lim
t→0+

∫
∂Ω
Ptf(y)dω′(y) = lim

t→0+

∫
∆1

Ptf(y)dω′(y)

=

∫
∆1

f(y)dω′(y) =

∫
∂Ω
f(y)dω′(y) = Φ(f).
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Our next goal is to show that ω′ = ω
X′0
L � ω

X′0
L0

= ω′0 in ∆3 = 17
16∆′0. Let E ⊂ ∆3 a Borel set.

Since both measures are Borel regular, given ε > 0 we can find a compact set K and open set
U such that K ⊂ E ⊂ U ⊂ ∆2 satisfying ω(U \K) + ω0(U \K) < ε. Using Urysohn’s lemma
we construct f ∈ Cc(∂Ω) such that 1K ≤ f ≤ 1U and supp(f) ⊂ ∆2. Thus, combining (3.29)

and (3.30), and using definition of Φ and Φ̃ we have

ω′(E) ≤ ε+ ω′(K) ≤ ε+

∫
∂Ω
f(y)dω′(y) = ε+ Φ(f) = ε+ Φ̃(f)

≤ ε+ ‖f‖Lq′ (∆2,ω′0)‖g‖Lq(∆2,ω′0) . ε+ [(ε+ ω′0(E))
1
q′Υω0(∆′0)

− 1
q′ ].

By letting ε → 0 we see that ω′(E) . ω′0(E)
1
q′Υω0(∆′0)

− 1
q′ and consequently ω′ � ω′0 in ∆3.

Thus we can write h(·) := h(· ;L,L0, X
′
0) =

dω
X′0
L

dω
X′0
L0

= dω′

dω′0
∈ L1(∆3, ω

′
0) which is well-defined for

ω′0-a.e. point in ∆3 and if f ∈ C(∂Ω) with supp f ⊂ ∆3 ⊂ ∆2∫
∆3

f(y)g(y)dω′0(y) = Φ̃(f) = Φ(f) =

∫
∂Ω
f(y)dω′(y) =

∫
∆3

f(y)h(y)dω′0(y).(3.31)

Note that h̃ = (g − h)1∆3 ∈ L1(∂Ω, ω′0) hence proceeding as above if 0 < t < t0 Lemma 3.14
applied with ω′0 in place of ω0 gives

‖Pth̃− h̃‖L1(∆3,ω′0) ≤
∑

Q∈D
∆′0
∗

‖Pt(h̃1Q)− h̃1Q‖L1(2∆̃Q,ω
′
0)
−→ 0, as t→ 0+.

On the other hand, for any x ∈ ∆′0 and 0 < t < r′0/32 if we consider ϕt as in (3.13) with

ω′0 in place of ω0 we have supp(ϕt(x, ·)) ⊂ ∆(x, 2t) ⊂ ∆3. Thus, we can invoke (3.31) with

f = ϕt(x, ·) to get Pth̃(x) = 0 for every x ∈ ∆′0. Thus, Lemma 3.14 part (c) applied with ω′0
allows us to conclude that h̃ = 0 ω′0-a.e. in ∆′0. Hence g = h ≥ 0 ω′0-a.e. in ∆′0 and using that

‖g‖Lq(∆2,ω′0) . Υω0(∆′0)
− 1
q′

(3.32)

(
−
∫

∆′0

h(y;L,L0, X
′
0)qdω′0(y)

) 1
q

=

(
−
∫

∆′0

h(y)qdω′0(y)

) 1
q

=

(
−
∫

∆′0

g(y)qdω′0(y)

) 1
q

. Υ
ω0(∆′0)

− 1
q′

ω′0(∆′0)
1
q

≈ Υω0(∆′0)
− 1
q′ ,

where the last estimate follows from Lemma 2.63 part (a). At this point we can repeat the
computations we have done in (3.24) replacing Lj by L and ∆1 by ∆3 —we already know that
ω′ � ω′0 in ∆3 = 17

16∆′0 where B′0 was arbitrary chosen so that B′0 ⊂ B0, hence taking B′0 = B0

we conclude that ω � ω0 in ∆3— to obtain that

h(z;L,L0, X0) ≈
ωX0
L (∆3)

ωX0
L0

(∆3)
h(z;L,L0, X∆3) ≈ ω(∆′0)

ω0(∆′0)
h(z;L,L0, X

′
0),

for ω0-a.e. z ∈ ∆3, and where we have used Harnack’s inequality to pass from X ′0 to X∆3 . This,
Lemma 2.63 part (d), and (3.32) give(
−
∫

∆′0

h(y;L,L0, X0)qdω0(y)

) 1
q

≈ ω(∆′0)

ω0(∆′0)
1
q

(
−
∫

∆′0

h(y;L,L0, X
′
0)qdω′0(y)

) 1
q

. Υ
ω(∆′0)

ω0(∆′0)
= Υ−

∫
∆′0

h(y;L,L0, X0)dω0(y).
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Since ∆′0 = B′0 ∩ ∂Ω was arbitrary with B′0 = B(x′0, r
′
0) ⊂ B0 we therefore conclude that

ωL ∈ RHq(∆0, ω0) with [ωL]RHq(∆0,ωL0
) . Υ and this completes the proof. �

3.2. Proof Proposition 3.1, part (a). We start assuming that Ω is a bounded 1-sided
NTA domain satisfying the CDC and whose boundary ∂Ω is bounded. We fix D = D(∂Ω)
the dyadic grid from Lemma 2.34 with E = ∂Ω. As in the statement of Proposition 3.1 let
Lu = −div(A∇u) and L0u = −div(A0∇u) be two real (non-necessarily symmetric) elliptic
operators. Fix x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω) and let B0 = B(x0, r0), ∆0 = B0 ∩ ∂Ω. From

now on X0 := X∆0 , ω0 := ωX0
L0

and ω := ωX0
L .

We first observe that we can reduce the proof to the case 0 < r0 < diam(∂Ω)/2. Assuming
that this has been already proved we now explain how to consider the general case. Let B0 =
B(x0, r0) with diam(∂Ω)/2 ≤ r0 < diam(∂Ω). We proceed as Case 2b in the proof of Theorem
1.5 part (a) with M = 1 to find the corresponding collection {xj}Jj=1 with J ≤ 21n+1. Let

Bj = B(xj , diam(∂Ω)/10) for 1 ≤ j ≤ J . Then we can easily see that Harnack’s inequality
yields sup1≤j≤J |||%(A,A0)|||Bj ,Ω? . |||%(A,A0)|||B0

and since rBj < diam(∂Ω)/2 we can apply the

claimed case to conclude that ωL ∈ RHq(3∆j , ωL0) (for part (b), q = p). At this point we carry
out the same argument mutatis mutandis to conclude that ωL ∈ RHq(∆0, ωL0) which completes
the proof.

We split the proof in several steps.

3.2.1. Step 0. We first make a reduction which will allow us to use some qualitative properties
of the elliptic measure. By Lemma 3.23 it suffices to show that there exists 1 < q < ∞ such
that for every j large enough ωLj ∈ RHq(

5
4∆0, ω0) uniformly in j and in ∆0. Thus we fix

j ∈ N and let L̃ = Lj be the operator defined by L̃u = −div(Ã∇u), with Ã = Aj (see (3.22)).

As mentioned above Ã is uniformly elliptic with constant Λ0 = max{ΛA,ΛA0}. Also, since

L̃ ≡ L0 in {Y ∈ Ω : δ(Y ) < 2−j}, by Lemma 2.63 part (f) and Harnack’s inequality give

that ωL0 � ω
L̃
� ωL0 , hence recalling (2.55) we have that h(·; L̃, L0, X) exists ωX0 -a.e. for

every X ∈ Ω. Moreover, fixed ∆1 = ∆(x1, r1) with x1 ∈ ∂Ω and 0 < r1 < 2−j−2/κ0 for every
∆ = B ∩ ∂Ω with B = B(x, r) ⊂ B1, x ∈ ∂Ω, and 0 < r < diam(∂Ω), we have by Lemma 2.63
part (f)

1 ≈
ω
X∆1

L̃
(∆(x, r))

ω
X∆1
L0

(∆(x, r))
= −
∫

∆(x,r)
h(y; L̃, L0, X∆1) dω

X∆1
L0

(y).

Letting r → 0+ the Lebesgue differentiation theorem (whose applicability is ensured by the

fact that ω
X∆1
L0

is doubling in ∆1) yields h(y; L̃, L0, X∆1) ≈ 1, for ω
X∆1
L0

-a.e. x ∈ ∆1. Thus, by

Harnack’s inequality h(· ; L̃, L0, X) ∈ L∞loc(∂Ω, ωYL0
) for every X,Y ∈ Ω —the actual norm will

depend on X, Y and j, but we will use this fact in a qualitative fashion. This qualitative control
will be essential in the following steps. At the end of Step 3 we will have obtained the desired

conclusion for the operator L̃ = Lj , with constants independent of j ∈ N, which as observed
above will allow us to complete the proof by Lemma 3.23.

3.2.2. Step 1. Let us recall that we have fixed already x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω)/2 and

let B0 = B(x0, r0), ∆0 = B0 ∩ ∂Ω, X0 = X∆0 , and ω0 = ωX0
L0

. Set ω̃ := ωX0

L̃
. Fix Q0 ∈ D∆0

∗ (see

(3.11)), so that by (2.47),

(3.33) X0 ∈ Ω \B∗Q0 ⊂ Ω \ 1
2B
∗
Q0 ⊂ Ω \ T ∗∗Q0 .

Set E(Y ) := A(Y )−A0(Y ), Y ∈ Ω, and consider γ = {γQ}Q∈DQ0

(3.34) γQ = γX0,Q := ω0(Q)
∑
I∈W∗Q

sup
Y ∈I∗

‖E‖2L∞(I∗), whenever Q ∈ DQ0 .
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Lemma 3.19 yields that ‖mγ‖C(Q0,ω0) . |||%(A,A0)|||B0
< ∞, hence mγ is a discrete Carleson

measure with respect to ω0 in Q0. Our goal is to show that ω̃ ∈ Adyadic
∞ (Q0, ω0) and we will use

Lemma 2.33 with µ = ω0. To this aim we fix Q0 ∈ DQ0 and a family of pairwise disjoint dyadic
cubes F = {Qi} ⊂ DQ0 such that

(3.35) ‖mγ,F‖C(Q0,ω0) = sup
Q∈DQ0

mγ(DF ,Q)

ω0(Q)
≤ ε0,

with ε0 > 0 sufficiently small to be chosen and where we have used the notation introduced in
(2.31) and (2.32).

We modify the operator L̃ inside the region ΩF ,Q0 (see (2.41)), by defining L1 = LF ,Q0
1 as

L1u = −div(A1∇u), where

A1(Y ) :=

{
Ã(Y ) if Y ∈ ΩF ,Q0 ,

A0(Y ) if Y ∈ Ω \ ΩF ,Q0 .

See Figure 2. Recalling that Ã = Aj (see (3.22)), it is clear that E1 := A1 − A0 verifies |E1| ≤
|E|1ΩF,Q0

and also E1(Y ) = 0 if δ(Y ) < 2−j (this latter condition will be used qualitatively).

Hence much as before if we write ωX1 = ωXL1
for every X ∈ Ω and ω1 = ωX0

1 we have that
ω1 � ω0 and hence we can write h(· ;L1, L0, X0) = dω1/dω0 which is well-defined ω0-a.e. Also,
as shown in Step 0 we have that h(· ;L1, L0, X0) ∈ L∞loc(∂Ω, ω0) (the bound depends on X0 and
the fixed j but we will use this qualitatively).

x0

∂Ω 2−j

ΩF ,Q0

A0

A0A0

A0

A0 A0

A0
A

0 A0

AA

Figure 2. Definition of the matrix A1 in Ω.

We next fix Q?0 ∈ DQ0 an define L?1 = L
F ,Q?0
1 as L?1u = −div(A?1∇u) where

A?1(Y ) :=

{
Ã(Y ) if Y ∈ ΩF ,Q?0 ,

A0(Y ) if Y ∈ Ω \ ΩF ,Q?0 .

Note that if Q?0 = Q0 then L?1 ≡ L1. Again E?1 := A?1 − A0 verifies |E?1 | ≤ |E|1ΩF,Q and also

E?1 (Y ) = 0 if δ(Y ) < 2−j (this latter condition will be used qualitatively). Hence if write
ωX? = ωXL?1

for every X ∈ Ω we have that ωX? � ωX0 for every X ∈ Ω and hence we can write

h(· ;L?1, L0, X) = dωX? /dω
X
0 which is well-defined ωX0 -a.e. Also, as shown in Step 0 we have

h(· ;L?1, L0, X) ∈ L∞loc(∂Ω, ωY0 ) for every X,Y ∈ Ω (the bound depends on X, Y and the fixed j
but we will use this qualitatively).

SetX? := Xc−1
0 ∆∗

Q?0

which satisfies 2κ0rQ?0 ≤ δ(X?) < r0 since `(Q?0) ≤ `(Q0) ≤ `(Q0) ≤ c0
8κ0

r0.

Moreover, X? ∈ Ω \B∗Q?0 . To simplify the notation set ω? = ωX?? and ω?0 = ωX?0 .

We have two cases:

Case 1: Q?0 /∈ DF ,Q0 , that is, Q?0 ⊂ Qj ∈ F for some j. Clearly, ΩF ,Q?0 = Ø and hence

L?1 ≡ L0 in Ω. As a consequence, ωX? ≡ ωX0 for every X ∈ Ω and h(· ;L?1, L0, X?) ≡ 1 in ∂Ω. In
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turn we obtain

(3.36) ‖h(· ;L?1, L0, X?)‖Lq′ (Q?0,ω0) = ω?0(Q?0)
1
q′ .

Case 2: Q?0 ∈ DF ,Q0 . In this case it is easy to see that

F? := {Qj ∈ F : Qj ∩Q?0 6= Ø} = {Qj ∈ F : Qj ⊂ Q?0} ⊂ DQ?0 .
Thus, DF ∩DQ?0 = DF? ∩DQ?0 and ΩF ,Q?0 = ΩF?,Q?0 . On the other hand, we set γ? = {γ?Q}Q∈DQ?0
where

γ?Q := ωX?0 (Q)
∑
I∈W∗Q

sup
Y ∈I∗

‖E‖2L∞(I∗), whenever Q ∈ DQ?0 .

Using (2.65) and Harnack’s inequality we have that ω?0(Q) ≈ ω0(Q)/ω0(Q?0) for Q ∈ DQ?0 where

ω?0 = ωX?0 . Hence, by (3.34),

γ?Q ≈
ω0(Q)

ω0(Q?0)

∑
I∈W∗Q

sup
Y ∈I∗

‖E‖2L∞(I∗) =
γQ

ω0(Q?0)
, Q ∈ DQ?0 .

and, by (3.35),

(3.37) ‖mγ?,F?‖C(Q?0,ω?0) = sup
Q∈DQ?0

mγ?(DQ ∩ DF?)
ω?0(Q)

= sup
Q∈DQ?0

mγ?(DQ ∩ DF )

ω?0(Q)

≈ sup
Q∈DQ?0

mγ(DF ,Q)

ω?0(Q)ω0(Q?0)
≈ sup

Q∈DQ?0

mγ(DF ,Q)

ω0(Q)
≤ ‖mγ,F‖C(Q0,ω0) ≤ ε0.

We next fix 1 < q < ∞ and 0 ≤ g ∈ Lq(Q?0, ω?0) with ‖g‖Lq(Q?0,ω?0) = 1. Extend g by 0 in

∂Ω \Q?0. Set gt = Ptg with 0 < t < `(Q?0)/3 (see (3.12)) and note that Lemma 3.14 gives that

gt ∈ Lip(∂Ω) with supp(gt) ⊂ 2∆̃Q?0
. We then consider

ut0(X) =

∫
∂Ω
gt(y)dωX0 (y) and ut?(X) =

∫
∂Ω
gt(y)dωX? (y), X ∈ Ω.

Since Ω is bounded, we can use Lemma 3.7 (slightly moving X? if needed). This, Lemma 3.9,
(3.37), and Hölder’s inequality yield

|ut?(X?)− ut0(X?)| =
∣∣∣∣∫∫

Ω
(A0 −A?1)>(Y )∇YG(L?1)>(Y,X?) · ∇ut0(Y )dY

∣∣∣∣
≤
∫∫

ΩF?,Q?0

|E(Y )| |∇YG(L?1)>(Y,X?)| |∇ut0(Y )| dY

. ‖mγ?,F?‖
1
2

C(Q?0,ω?0)

∫
Q?0

Md
Q?0,ω

?
0
(ω?1)(x)SQ?0u

t
0(x)dω?0(x)

. ε
1
2
0

∫
Q?0

Md
Q?0,ω

?
0
(ω?)(x)SQ?0u

t
0(x)dω?0(x)

≤ ε
1
2
0 ‖M

d
Q?0,ω

?
0
(ω?)‖Lq′ (Q?0,ω?0) ‖SQ?0u

t
0(x)‖Lq(Q?0,ω?0).

Using the well-known fact that Md
Q?0,ω

?
0

is bounded on Lq
′
(Q?0, ω

?
0) and that, as mentioned before

ω? � ω?0 with h(· ;L?1, L0, X?) = dω?/dω
?
0, it readily follows that

‖Md
Q?0,ω

?
0
(ω?)‖Lq′ (Q?0,ω?0) . ‖h(· ;L?1, L0, X?)‖Lq′ (Q?0,ω?0).

On the other hand, using the square-function non-tangential estimates from [3, Theorem 1.5,
Proposition 2.57], Lemma 3.14, Remark 2.64, and Harnack’s inequality to pass from X? to XQ?0

,
and the fact that supp g ⊂ Q?0, yield

‖SQ?0u
t
0(x)‖Lq(Q?0,ω?0) . ‖NQ?0u

t
0‖Lq(Q?0,ω?0) . ‖gt‖Lq(Q?0,ω?0)
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≈ 1

ω0(Q?0)
1
q

‖gt‖Lq(Q?0,ω0) .
1

ω0(Q?0)
1
q

‖g‖Lq(Q?0,ω0) ≈ ‖g‖Lq(Q?0,ω?0) = 1.

Thus we conclude that |ut?(X?) − ut0(X?)| . ε
1
2
0 ‖h(· ;L?1, L0, X?)‖Lq′ (Q?0,ω?0), hence, using the

definitions of ut0 and ut? we arrive at∣∣∣ ∫
∂Ω
g(y)dω?(y)−

∫
∂Ω
g(y)dω?0(y)

∣∣∣ ≤ |ut?(X?)−ut0(X?)|+ ‖g− gt‖L1(∂Ω,ω?0) + ‖g− gt‖L1(∂Ω,ω?)

. ε
1
2
0 ‖h(· ;L?1, L0, X?)‖Lq′ (Q?0,ω?0) + ‖g − gt‖L1(∂Ω,ω?0) + ‖g − gt‖L1(∂Ω,ω?).

Since g ∈ Lq(Q0, ω0) with supp(g) ⊂ Q?0, it follows that supp(g), supp(gt) ⊂ 2∆̃Q?0
. Hence,

Lemma 3.14, Harnack’s inequality and (2.65) give

‖g − gt‖L1(∂Ω,ω?0) = ‖g − Ptg‖L1(2∆̃Q?0
,ω?0)
≈ 1

ω0(Q?0)
‖g − Ptg‖L1(2∆̃Q?0

,ω0)
−→ 0, as t→ 0+.

Similarly, using that as mentioned above ω? � ω0 with h(· ;L?1, L0, X?) ∈ L∞loc(∂Ω, ω0)

‖g − gt‖L1(∂Ω,ω?) = ‖g − Ptg‖L1(2∆̃Q?0
,ω?)

≤ ‖h(· ;L?1, L0, X?)‖L∞(2∆̃Q?0
,ω?0)
‖g − Ptg‖L1(2∆̃Q?0

,ω?0)
−→ 0, as t→ 0+.

Combining the previous estimates and letting t→ 0+ we conclude that

0 ≤
∫
Q?0

h(y;L?1, L0, X?) g(y)dω?0(y) =

∫
∂Ω
h(y;L?1, L0, X?) g(y)dω?0(y)

=

∫
∂Ω
g(y)dω?(y) . ε

1
2
0 ‖h(· ;L?1, L0, X?)‖Lq′ (Q?0,ω0) +

∫
∂Ω
g(y)dω?0(y)

≤ ε
1
2
0 ‖h(· ;L?1, L0, X?)‖Lq′ (Q?0,ω?0) + ω?0(Q?0)

1
q′ .

Taking now the sup over all 0 ≤ g ∈ Lq(Q?0, ω?0) with ‖g‖Lq(Q?0,ω?0) = 1 we eventually get

(3.38) ‖h(· ;L?1, L0, X?)‖Lq′ (Q?0,ω?0) . ε
1
2
0 ‖h(· ;L?1, L0, X?)‖Lq′ (Q?0,ω?0) + ω?0(Q?0)

1
q′ .

Since h(· ;L1, L
?
0, X?) ∈ L∞loc(∂Ω, ω?0) (albeit with bounds which may depend on X? or j) we

can hide the first term on the right hand side and eventually obtain fixing ε0 small enough
(depending on n, the 1-sided NTA constants, the CDC constant, the ellipticity constants of L0

and L2, and on q),

(3.39) ‖h(· ;L?1, L0, X?)‖Lq′ (Q?0,ω?0) . ω
?
0(Q?0)

1
q′ .

Note then that by (3.36) we conclude that (3.39) holds for any Q?0 ∈ DQ0 . On the other
hand, using [29, Lemma 3.55] (which holds as well in our scenario), there exists 0 < κ̂1 < κ1 (see
(2.47)), depending only on the allowable parameters, such that κ̂1BQ?0∩ΩF ,Q0 = κ̂1BQ?0∩ΩF ,Q?0 ,
Hence L?1 ≡ L1 in κ̂1BQ?0∩Ω which, by Lemma 2.63 part (f) and Harnack’s inequality, gives that
ω? and ω?0 are comparable in η∆Q?0

with η = κ̂1/(2κ0), thus h(· ;L?1, L0, X?) ≈ h(· ;L1, L0, X?)
for ω?0-a.e. in η∆Q?0

(hence, also ω0-a.e.). This, Remark 2.64, Harnack’s inequality, and Lemma
2.63 part (c) yield

h(· ;L1, L0, X0) =
dωX0

L1

dωX0
L0

=
dωX0

L1

dωX?L1

dωX?L1

dωX?L0

dωX?L0

dωX0
L0

≈ ω1(Q?0)

ω0(Q?0)
h(· ;L1, L0, X?)

≈
ω1(η∆Q?0

)

ω0(η∆Q?0
)
h(· ;L?1, L0, X?),
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and these hold ω0-a.e. in η∆Q?0
an ∀Q?0 ∈ DQ0 (recall that ω1 and ω0 are mutually absolutely

continuous). Eventually, (3.39), Remark 2.64 and Harnack’s inequality allow us to conclude
that for all Q?0 ∈ DQ0

(3.40)

(
−
∫
η∆Q?0

h(y;L1, L0, X0)q
′
dω0(y)

) 1
q′

≈
ω1(η∆Q?0

)

ω0(η∆Q?0
)

(
−
∫
η∆Q?0

h(y;L?1, L0, X?)
q′dω?0(y)

) 1
q′

.
ω1(η∆Q?0

)

ω0(η∆Q?0
)

= −
∫
η∆Q?0

h(y;L1, L0, X0)dω0(y).

Our next goal is to show that the latter implies that ω1 ∈ Adyadic
∞ (Q0, ω0) and to show that

we use an argument similar to [8, Lemma 3.1]. Let Q ∈ DQ0 and a Borel set F ⊂ η∆Q and note
that by (3.40) applied to Q

ω1(F )

ω0(η∆Q)
= −
∫
η∆Q

1F (y)h(y;L1, L0, X0)dω0

≤
(

ω0(F )

ω0(η∆Q)

) 1
q

(
−
∫
η∆Q

h(y;L1, L0, X0)q
′
dω0(y)

) 1
q′

= C1

(
ω0(F )

ω0(η∆Q)

) 1
q ω1(η∆Q)

ω0(η∆Q)
,

hence

(3.41)
ω1(F )

ω1(η∆Q)
≤ C1

(
ω0(F )

ω0(η∆Q)

) 1
q

, ∀F ⊂ η∆Q, Q ∈ DQ0 .

On the other hand, by Lemma 2.63 part (c), ω0(Q) ≤ C2ω0(η∆Q) for all Q ∈ DQ0 . Fix then
α, 0 < α < (C2C

q
1)−1, and take F ⊂ Q such that ω0(F ) > (1−α)ω0(Q). Writing F0 = η∆Q∩F

and F1 = η∆Q \ F , it is clear that

(1− α)
ω0(Q)

ω0(η∆Q)
<

ω0(F )

ω0(η∆Q)
≤ ω0(F0)

ω0(η∆Q)
+
ω0(Q \ η∆Q)

ω0(η∆Q)
=

ω0(F0)

ω0(η∆Q)
+

ω0(Q)

ω0(η∆Q)
− 1.

As a result,

(3.42)
ω0(F1)

ω0(η∆Q)
= 1− ω0(F0)

ω0(η∆Q)
< α

ω0(Q)

ω0(η∆Q)
≤ C2 α.

Combining (3.41) and (3.42) applied to F1 we obtain ω1(F1)/ω1(η∆Q) < C1

(
C2α

) 1
q . This and

the fact that ω1(Q) ≤ C3ω1(η∆Q), by Lemma 2.63 part (c), yield

ω1(F )

ω1(Q)
≥
ω1(η∆Q)

ω1(Q)

ω1(F0)

ω1(η∆Q)
≥ 1

C3

(
1− ω1(F1)

ω1(η∆Q)

)
>

1− C1(C2α)
1
q

C3
=: 1− β,

with 0 < β < 1 by our choice of α. This eventually shows that ω1 ∈ Adyadic
∞ (Q0, ω0) (see

Definition (2.25)) as desired. This with the help of Lemma 2.28 allows us to obtain that

Pω0
F ω1 ∈ Adyadic

∞ (Q0, ω0), which is the conclusion of Step 1.

3.2.3. Step 2. We next define a new operator L2u = −div(A2∇u) where (see Figure 3):

A2(Y ) :=

{
Ã(Y ) if Y ∈ TQ0 \ ΩF ,Q0 ,

A1(Y ) if Y ∈ Ω \ (TQ0 \ ΩF ,Q0).

The goal of this step is to show that Pω0
F ω2 ∈ Adyadic

∞ (Q0, ω0), where much as before let

ω2 = ωX0
L2

.

We apply Lemma 2.66 to obtain YQ0 ∈ Ω ∩ ΩF ,Q0 satisfying (2.67). For k = 1, 2 we write

ω
YQ0
k = ω

YQ0
Lk,Ω

a for the elliptic measures associated with Lk for the domain Ω and with pole at
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x0

∂Ω 2−j

ΩF ,Q0

A0

A0A0

A
A0 A0

A0

TQ0

ΩF ,Q0

A
0 A0

AA

Figure 3. Definition of matrix A2 in Ω.

YQ0 . Likewise, let ω
YQ0
k,∗ = ω

YQ0
Lk,ΩF,Q0

be the elliptic measures associated with Lk for the domain

ΩF ,Q0 and with pole at YQ0 . By definition A2 = Ã in TQ0 , A2 = A0 in Ω \ TQ0 , and A2 = A1

in ΩF ,Q0 . Hence L2 ≡ L1 in ΩF ,Q0 , and thus ω
YQ0
2,∗ ≡ ω

YQ0
1,∗ . If we now consider the associated

measures ν
YQ0
L1

and ν
YQ0
L2

in (2.70) from Lemma 2.69 it follows from (2.71) (with µ = ω0 which

is clearly (dyadically) doubling in Q0 by Lemma 2.63 part (c)) that Pω0
F ν

YQ0
L1

= Pω0
F ν

YQ0
L2

as
measures on Q0.

In Step 1 we showed that Pω0
F ω1 ∈ Adyadic

∞ (Q0, ω0), then there is 1 < q̃ < ∞ such that

Pω0
F ω1 ∈ RHdyadic

q̃ (Q0, ω0). Note that by Remark 2.64 and Harnack’s inequality we have that

Pω0
F ω

YQ0
k ≈ Pω0

F ωk/ω1(Q0) for k = 1, 2. Then given Q ∈ DQ0 and a Borel set F ⊂ Q we have
that all these yield

Pω0
F ω2(F )

Pω0
F ω2(Q)

≈
Pω0
F ω

YQ0
L2

(F )

Pω0
F ω

YQ0
L2

(Q)
.

Pω0
F ν

YQ0
L2

(F )

Pω0
F ν

YQ0
L2

(Q)

 1
θ2

=

Pω0
F ν

YQ0
L1

(F )

Pω0
F ν

YQ0
L1

(Q)

 1
θ2

.

Pω0
F ω

YQ0
L1

(F )

Pω0
F ω

YQ0
L1

(Q)

 1
θ2

.

(
Pω0
F ω1(F )

Pω0
F ω1(Q)

) 1
θ2

.

(
ω0(F )

ω0(Q)

) 1
θ2q̃
′

where in the second and third estimates we have invoked Lemma 2.69 respectively for L2

(with parameter θ2) and L1, and the last estimate follows easily from the fact that Pω0
F ω1 ∈

RHdyadic
q̃ (Q0, ω0) and Hölder’s inequality. This, the fact that Pω0

F ω2 is dyadic doubling in Q0

by Lemma 2.28 part (a) since ω2 is indeed doubling in 4∆̃Q0 by Lemma 2.63 part (c), and [29,
Lemma B.7] (which is a purely dyadic result and hence applies in our setting) gives that there
exists θ, θ′ > 0 such that(

ω0(F )

ω0(Q)

)θ
.
Pω0
F ω2(F )

Pω0
F ω2(Q)

.

(
ω0(F )

ω0(Q)

)θ′
, ∀F ⊂ Q, Q ∈ DQ0 .(3.43)

3.2.4. Step 3. In this part, we change the operator outside of TQ0 to complete the process. To
this end, let L3u = −div(A3∇u), where

A3(Y ) :=

{
A2(Y ) if Y ∈ TQ0 ,

Ã(Y ) if Y ∈ Ω \ TQ0 ,

and note that L3 ≡ L̃ in Ω (see Figure 4). Let wX0
3 := ωX0

L3
be the elliptic measure of Ω

associated with the operator L3 ≡ L̃ with pole at X0.
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x0

∂Ω 2−j

ΩF ,Q0

A

AA
A

A0 A0

A0
A

0 A0

AA

TQ0

ΩF ,Q0

Figure 4. Definition of the matrix A3 in Ω.

In this step we are going to need the following property: if τ > 0 is small enough, there exists
Cτ > 1 such that

(3.44) C−1
τ

ω3(E)

ω3(Q0)
≤ ω2(E)

ω2(Q0)
≤ Cτ

ω3(E)

ω3(Q0)
, ∀E ⊂ Q0 \ Στ ,

where Στ :=
{
x ∈ Q0 : dist(x, ∂Ω \Q0) < τ`(Q0)

}
.

Assuming this momentarily, our final goal is to prove that for every ζ, 0 < ζ < 1, there exists
Cζ > 1 such that

F ⊂ Q0,
ω0(F )

ω0(Q0)
≥ ζ =⇒

Pω0
F ω3(F )

Pω0
F ω3(Q0)

≥ 1

Cζ
.(3.45)

Fix then ζ ∈ (0, 1), and F ⊂ Q0 with ω0(F ) ≥ ζω0(Q0). Consider first the case on which
F = {Q0}, in which case

Pω0
F ω3(F )

Pω0
F ω3(Q0)

=

ω0(F )
ω0(Q0)ω3(Q0)

ω0(Q0)
ω0(Q0)ω3(Q0)

=
ω0(F )

ω0(Q0)
≥ ζ,

which is the desired estimate with Cζ = ζ. Thus we may assume that F ⊂ DQ0 \ {Q0}. Let
τ � 1 small enough to be chosen and let Qτ0 := Q0 \

⋃
Q′∈Iτ Q

′, where

Iτ =
{
Q′ ∈ DQ0 : τ`(Q0) < `(Q′) ≤ 2τ`(Q0), Q′ ∩ Στ 6= Ø

}
.

By construction, Στ ⊂
⋃
Q′∈Iτ Q

′, and by (2.36) every Q′ ∈ Iτ satisfies Q′ ⊂ Σ(1+4Ξ)τ . Using

Lemma 2.34 (see [3, Remark 2.19]), along with the fact that ω0 is doubling in 4∆0 with a
constant which does not depend on ∆0 (see Lemma 2.63 part (c)), if τ = τ(ζ) > 0 is sufficiently
small then

ω0(Q0 \Qτ0) ≤ ω0(Σ(1+4Ξ)τ ) . τηω0(Q0) ≤ ζ

2
ω0(Q0).

Letting F ′ = F ∩Qτ0 , it follows that

ζω0(Q0) ≤ ω0(F ) ≤ ω0(F ′) + ω0(Q0 \Qτ0) ≤ ω0(F ′) +
ζ

2
ω0(Q0).

Hence ω0(F ′)/ω0(Q0) ≥ ζ/2 and by (3.43), we conclude that

(3.46)
Pω0
F ω2(F ′)

Pω0
F ω2(Q0)

&

(
ω0(F ′)

ω0(Q0)

)θ
≥
(ζ

2

)θ
.

Our next goal is to show that there is cζ > 0 such that Pω0
F ω3(F ′) ≥ cζPω0

F ω2(F ′). To see
this let Qk ∈ F be such that F ′ ∩Qk 6= Ø. We consider two cases. If Qk ⊂ Qτ0 , we can invoke
(3.44) since Qτ0 ⊂ Q0 \ Στ , to conclude that

(3.47)
ω2(Qk)

ω2(Q0)
≈τ

ω3(Qk)

ω3(Q0)
.

Otherwise, Qk \ Qτ0 6= Ø, and there exists Q′ ∈ Iτ such that Qk ∩ Q′ 6= Ø. Then necessarily
Q′ ( Qk —if Qk ⊂ Q′ then Qk ⊂ Q0 \Qτ0 , contradicting that F ′ ∩Qk 6= Ø and F ′ ⊂ Qτ0— and,
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in particular, `(Qk) > τ`(Q0). Take Q̂k ∈ DQk with xQk ∈ Q̂k, `(Q̂k) = 2−M`(Qk) and M > 1

to be chosen. Note that diam(Q̂k) ≈ 2−M`(Qk) (see Remark 2.13) and clearly

`(Qk) ≈ rQk ≤ dist(xQk , ∂Ω \∆Qk) ≤ diam(Q̂k) + dist(Q̂k, ∂Ω \∆Qk)

≈ 2−M`(Qk) + dist(Q̂k, ∂Ω \∆Qk).

Taking M � 1 large enough, we conclude that

cτ`(Q0) < c`(Qk) ≤ dist(Q̂k, ∂Ω \∆Qk) ≤ dist(Q̂k, ∂Ω \Q0)

and hence Q̂k ⊂ Q0 \ Σcτ . Using again (3.44) (with cτ in place of τ) and Lemma 2.63 part (c)
we obtain

(3.48)
ω3(Qk)

ω3(Q0)
≥ ω3(Q̂k)

ω3(Q0)
≈τ

ω2(Q̂k)

ω2(Q0)
&
ω2(Qk)

ω2(Q0)
.

Combining (3.47), (3.48) and invoking (3.44), since F ′ ⊂ Qτ0 ⊂ Q0 \ Στ , we conclude that

Pω0
F ω3(F )

Pω0
F ω3(Q0)

≥
Pω0
F ω3(F ′)

Pω0
F ω3(Q0)

=
ω3(F ′ \

⋃
Qk∈F Qk)

ω3(Q0)
+
∑
Qk∈F

ω0(Qk ∩ F ′)
ω0(Qk)

ω3(Qk)

ω3(Q0)

&ζ
ω2(F ′ \

⋃
Qk∈F Qk)

ω2(Q0)
+
∑
Qk∈F

ω0(Qk ∩ F ′)
ω0(Qk)

ω2(Qk)

ω2(Q0)
=
Pω0
F ω2(F ′)

Pω0
F ω2(Q0)

&
(ζ

2

)θ
,

where we have used that τ = τ(ζ), that Pω0
F ωi(Q0) = ωi(Q0) for i = 2, 3, and the last estimate

follows from (3.46). This eventually proves (3.45) in the present case and it remains to establish
our claim (3.44).

To show (3.44) write r = τ`(Q0)/(8κ0) (see (2.48)) and find a maximal collection of points
{xk}k∈K ⊂ Q0 \ Στ with respect to the property that |xk − xk′ | > 2r/3 for every k, k′ ∈ K
with k 6= k′. Write ∆k = ∆(xk, r) and observe that {1

3∆k}k∈K is a family of pairwise disjoint

surface balls such that Q0 \ Στ ⊂
⋃
k∈K∆k. Note that by (2.36), we have 1

3∆k ⊂ 2∆̃Q0 ⊂
∆(xk, 3Ξ`(Q0)), for every k ∈ K, hence Lemma 2.63 part (c) yields

#KC−1
τ ω0(2∆̃Q0) ≤

∑
k∈K

ω0(1
3∆k) = ω0

( ⋃
k∈K

1
3∆k

)
≤ ω0(2∆̃Q0),

which eventually gives #K ≤ Cτ .

We claim that B∗k ∩Ω ⊂ TQ0 , with B∗k := B∗∆k
= B(xk, 2κ0r) and κ0 as in (2.48). To see this

let Y ∈ B∗k∩Ω and take I ∈ W such that Y ∈ I. Pick yk ∈ ∂Ω verifying dist(I, ∂Ω) = dist(I, yk)
and let Rk ∈ D be the unique dyadic cube such that yk ∈ Rk and `(Rk) = `(I), thus I ∈ W∗Rk .

Let us see that Rk ∈ DQ0 . First, by (2.39) and our choice of M

`(Rk) = `(I) ≤ dist(I, ∂Ω) ≤ |xk − Y | < 2κ0r =
1

4
τ`(Q0) <

1

4
`(Q0).

Also, since xk ∈ Q0 \ Στ , we can write by (2.39)

τ`(Q0) ≤ dist(xk, ∂Ω \Q0) ≤ |xk − Y |+ diam(I) + dist(I, yk) + dist(yk, ∂Ω \Q0)

<
1

4
τ`(Q0) +

5

4
dist(I, ∂Ω) + dist(yk, ∂Ω \Q0) ≤ 9

16
τ`(Q0) + dist(yk, ∂Ω \Q0),

and hence yk ∈ int(Q0). Since yk ∈ Q0 ∩ Rk and `(Rk) < `(Q0)/4 it follows that Rk ∈ DQ0 .
This and the fact that Y ∈ I ∈ W∗Rk allow us to conclude that Y ∈ TQ0 . Consequently, we have
shown that B∗k ∩ Ω ⊂ TQ0 and thus L2 ≡ L3 in B∗k ∩ Ω for every k ∈ K.

Next, we observe that δ(XQ0) ≈ `(Q0), δ(X∆k
) ≈ τ`(Q0), and |XQ0 −X∆k

| . `(Q0). Hence,
we can use Harnack’s inequality to move from XQ0 to X∆k

with constants depending on τ ,
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Lemma 2.63 part (f) and Remark 2.64 to obtain that if Fj ⊂ ∆j ∩Qj
ω2(Fk)

ω2(Q0)
≈ ωXQ0

2 (Fk) ≈τ ω
X∆j

2 (Fk) ≈ ω
X∆j

3 (Fk) ≈τ ω
XQ0
3 (Fk) ≈

ω3(Fk)

ω3(Q0)
.

This and the fact Q0 \ Στ ⊂
⋃
k∈K∆k readily give (3.44) and we finish Step 3.

3.2.5. Step 4. Let us recap what we have obtained so far. Fixed x0 ∈ ∂Ω and 0 < r0 <
diam(∂Ω)/2, we set B0 = B(x0, r0), ∆0 = B0 ∩ ∂Ω, X0 = X∆0 , and ω0 = ωX0

L0
, in Step 0 we

took an arbitrary j and wrote L̃ = Lj , (see (3.22)) and ω̃ = ωX0

L̃
. For an arbitrary Q0 ∈ D∆0

∗
(see (3.11)), and for any given Q0 ∈ DQ0 we let F = {Qi} ⊂ DQ0 be a family of pairwise
disjoint dyadic cubes such that (3.35) holds with ε0 small enough to be chosen. Combining
Step 1–Step 3 we have shown that if ε0 is small enough (depending only in the allowable
parameters) then (3.45) is satisfied. Note that keeping track of the constants one can easily

see that Cζ does not depend on j, x0, r0, Q0 and Q0 —the fact that L̃ = Lj , which agrees
with L0 in small boundary strip, was mainly used, and only in a qualitative fashion, in (3.38)
in Step 1 to a priori know that some term is finite so that it can be hidden. We can then
invoke Lemma 2.33 with the dyadically doubling measures (see Lemma 2.63 part (c)) µ = ω0

and ν = ω̃ to eventually show that (3.45) (recalling that L3 ≡ L̃ as mentioned in Step 3) yields

ω̃ ∈ Adyadic
∞ (Q0, ω0) (uniformly on the implicit j and Q0), that is, there exist 1 < q <∞ and C

(independent of j an Q0) such that for every Q ∈ DQ0 with Q0 ∈ D∆0
∗

(3.49)

(
−
∫
Q
h(y; L̃, L0, X0)qdω0(y)

) 1
q

≤ C−
∫
Q
h(y; L̃, L0, X0)dω0(y) = C

ω̃(Q)

ω0(Q)
.

Our next goal is to see that ω̃ ∈ RHq(
5
4∆0, ω0) (uniformly in j). To do this let ∆ = B ∩ ∂Ω

with B = B(x, r) ⊂ 5
4B0 such that x ∈ ∂Ω. Write r̃ = min{ r4Ξ ,

c0r0
32κ0
}, where Ξ is the constant

in (2.36), and let

D̃∆ =
{
Q ∈ D : Q ∩∆ 6= Ø, r̃ ≤ `(Q) < 2r̃

}
.

Clearly, D̃∆ is a family of pairwise disjoint cubes such that ∆ ⊂
⋃
Q∈D̃∆ Q ⊂ 2∆. Note that if

Q ∈ D̃∆ then Ø 6= Q∩∆ ⊂ Q∩ 5
4∆0 ⊂ Q∩ 3

2∆0, thus Q∩Q0 6= Ø for some Q0 ∈ D∆0
∗ . Besides,

`(Q) < 2r̃ < c0r0/(16κ0) ≤ `(Q0). Consequently, Q ∈ DQ0 and (3.49) applies to each Q ∈ D̃∆.
All in one we have(
−
∫

∆
h(y; L̃, L0, X0)qdω0(y)

) 1
q

.
∑
Q∈D̃∆

(
−
∫
Q
h(y; L̃, L0, X0)qdω0(y)

) 1
q

.
∑
Q∈D̃∆

ω̃(Q)

ω0(Q)
.

1

ω0(∆)
ω̃
( ⋃
Q∈D̃∆

Q
)
.
ω̃(2∆)

ω0(∆)
.

ω̃(∆)

ω0(∆)
,

where we have used that ω0(∆) ≈ ω0(Q) for every Q ∈ D̃∆, and also that ω̃(2∆) ≈ ω̃(∆). These
in turn follow from Lemma 2.63 part (c) and the facts that Q meets ∆ and `(Q) ≈ r̃ ≈ r since

0 < r < r0. This eventually establishes that ωX0

Lj
= ω̃ ∈ RHq(

5
4∆0, ω0) with a constant that

depends only on the allowable parameters and which is ultimately independent of j and ∆0.
This, as explained in Step 0, allows us to conclude that ωL ∈ RHq(∆0, ω0) with the help of
Lemma 3.23, completing the proof of Proposition 3.1, part (a). �

3.3. Proof Proposition 3.1, part (b). We start assuming that Ω is a bounded 1-sided
NTA domain satisfying the CDC and whose boundary ∂Ω is bounded. We fix D = D(∂Ω)
the dyadic grid from Lemma 2.34 with E = ∂Ω. As in the statement of Proposition 3.1 let
Lu = −div(A∇u) and L0u = −div(A0∇u) be two real (non-necessarily symmetric) elliptic
operators. Fix x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω) and let B0 = B(x0, r0), ∆0 = B0 ∩ ∂Ω. From
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now on X0 := X∆0 , ω0 := ωX0
L0

and ω := ωX0
L . As observed in the proof of part (a), without loss

of generality we may assume that 0 < r0 < diam(∂Ω)/2.

We fix 1 < p <∞ and assume that |||%(A,A0)|||B0
< ε, where ε is a small enough parameter

to be chosen. Our goal is to obtain that ω ∈ RHp(∆0, ω0).

We split the proof in several steps.

3.3.1. Step 0. Much as before Lemma 3.23 guarantee that just need to see that for every j large

enough ωLj ∈ RHp(
5
4∆0, ω0) uniformly in j and in ∆0. Thus we fix j ∈ N and let L̃ = Lj

be the operator defined by L̃u = −div(Ã∇u), with Ã = Aj (see (3.22)), and set ω̃ := ωX0

L̃
.

As mentioned above Ã is uniformly elliptic with constant Λ0 = max{ΛA,ΛA0}. Also, since

L̃ ≡ L0 in {Y ∈ Ω : δ(Y ) < 2−j}, the analogous step in part (a) showed, ω0 � ω
L̃
� ω0 and

h(· ; L̃, L0, X) ∈ L∞loc(∂Ω, ωYL0
) for every X,Y ∈ Ω —the actual norm will depend on X, Y and

j, but we will use this fact in a qualitative fashion. This qualitative control will be essential in
the following steps. At the end of Step 3 we will have obtained the desired conclusion for the

operator L̃ = Lj , with constants independent of j ∈ N, which as observed above will allow us
to complete the proof by Lemma 3.23.

3.3.2. Step 1. Consider an arbitrary surface ball ∆1 = ∆(x1, r1) with x1 ∈ 5
4∆0 and 0 < r1 ≤

c0
105κ3

0
r0, and let B1 = B(x1, r1). Set ∆? := B? ∩ ∂Ω with B? := B(x?, r?) where x? = x1 and

r? = 2κ0r1 (hence ∆? = 2κ0∆1) satisfy x? ∈ 5
4∆0 and 0 < r? ≤ 2c0

105κ2
0
r0. By (2.48), (2.49) we

have

(3.50) X? = Xc−1
0 ∆∗?

∈ Ω \B∗∆?
⊂ Ω \ 1

2B
∗
∆?
⊂ Ω \ T ∗∗∆?

.

Note also that 2κ0r? ≤ δ(X?) < r0. We claim that D∆? ⊂ D∆0
∗∗ :=

⋃
Q0∈D∆0

∗
DQ0 (see (2.45) and

(3.11)). To see this, let Q0 ∈ D∆? and pick y? ∈ Q0 ∩ 2∆?. Then

|y? − x0| ≤ |y? − x?|+ |x? − x0| < 2r? +
5

4
r0 ≤

( 4c0

105κ2
0

+
5

4

)
r0 <

3

2
r0,

hence y? ∈ 3
2∆0 and there exists a unique Q0 ∈ D∆0

∗ such that y? ∈ Q0. Moreover, by construc-
tion

`(Q0) = 2−k(∆?) < 400r? ≤
c0

125κ2
0

r0 <
c0

16κ0
r0 < `(Q0),

and therefore Q0 ∈ DQ0 as desired.

Set E(Y ) := A(Y )−A0(Y ), Y ∈ Ω, and consider γ = {γQ}Q∈D∆0
∗∗

(3.51) γQ = γX0,Q := ω0(Q)
∑
I∈W∗Q

sup
Y ∈I∗

‖E‖2L∞(I∗), whenever Q ∈ D∆0
∗∗ .

Lemma 3.19 yields that for every Q0 ∈ D∆? , if Q0 ∈ D∆0
∗ is selected so that Q0 ∈ DQ0

(3.52) ‖mγ‖C(Q0,ω0) ≤ ‖mγ‖C(Q0,ω0) . |||%(A,A0)|||B0
< ε,

where the last inequality is our main assumption in the current scenario and ε is to be chosen.

We also set ω?0 = ωX?0 and γ? = {γ?Q}Q∈D∆? where

γ?Q := ω?0(Q)
∑
I∈W∗Q

sup
Y ∈I∗

‖E‖2L∞(I∗), whenever Q ∈ D∆? .

Using (2.65) and Harnack’s inequality we have that ω?0(Q) ≈ ω0(Q)/ω0(Q?0). Hence, by (3.51)

γ?Q ≈
ω0(Q)

ω0(Q?0)

∑
I∈W∗Q

sup
Y ∈I∗

‖E‖2L∞(I∗) =
γQ

ω0(Q?0)
, Q ∈ D∆? .
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and, by (3.52),

(3.53) ‖mγ?‖C(Q?0,ω?0) = sup
Q∈DQ?0

mγ?(DQ)

ω?0(Q)
≈ sup

Q∈DQ?0

mγ(DQ)

ω?0(Q)ω0(Q?0)

≈ sup
Q∈DQ?0

mγ(DQ)

ω0(Q)
≤ ‖mγ‖C(Q0,ω0) . ε.

We modify the operator L̃ inside the region T∆? (see (2.46)), by defining L1 = L∆?
1 as

L1u = −div(A1∇u), where

A1(Y ) :=

{
Ã(Y ) if Y ∈ T∆? ,

A0(Y ) if Y ∈ Ω \ T∆? .

See Figure 5. Write ωX1 = ωXL1
for every X ∈ Ω and ω? = ωX?L1

.

x?
∂Ω 2−j

T∆?

A0

A0A0

A0

A0

A

A
0 A0

Figure 5. Definition of A1 in Ω.

Recalling that Ã = Aj (see (3.22)), it is clear that E1 := A1 − A0 verifies |E1| ≤ |E|1T∆?
and

also E1(Y ) = 0 if δ(Y ) < 2−j (this latter condition will be used qualitatively). Hence much as
before if write ωX1 = ωXL1

for every X ∈ Ω we have that ωX1 � ωX0 for every X ∈ Ω and hence

we can write h(· ;L1, L0, X) = dωX1 /dω
X
0 which is well-defined ωX0 -a.e. Also, as shown in Step

0 we have that h(· ;L1, L0, X) ∈ L∞loc(∂Ω, ωY0 ) for every X,Y ∈ Ω (the bound depends on X,Y
and the fixed j but we will use this qualitatively).

In order to simplify the notation, we recall (2.48), (2.49), and set ∆̂? := 1
2∆∗? = ∆(x?, κ0r?)

and let 0 ≤ g ∈ Lp′(∆̂?, ω
?
0) with ‖g‖

Lp′ (∆̂?,ω?0)
= 1. Extend g by 0 in ∂Ω \ ∆̂?. Set gt = Ptg

with 0 < t < κ0r1/3 (see (3.12)). It is easy to see that ∆̂? ⊂ 3
2∆0, hence ∆̂? can be covered

by the cubes in D∆0
∗ . This and the fact that r?/3 < c0r0/(16κ0) guarantee that Lemma 3.14

applies to give gt ∈ Lip(∂Ω) with supp(gt) ⊂ ∆∗?. We then consider

ut0(X) =

∫
∂Ω
gt(y)dωX0 (y) and ut1(X) =

∫
∂Ω
gt(y)dωX1 (y), X ∈ Ω.

Since Ω is bounded, we can use Lemma 3.7 (slightly moving X? if needed). This, Lemma 3.9
with F = Ø, (3.53), and Hölder’s inequality yield

|ut1(X?)− ut0(X?)| =
∣∣∣∣∫∫

Ω
(A0 −A1)>(Y )∇YGL>1 (Y,X?) · ∇ut0(Y )dY

∣∣∣∣(3.54)

≤
∫∫

T∆?

|E(Y )| |∇YGL>1 (Y,X?)| |∇ut0(Y )| dY

≤
∑

Q0∈D∆?

∫∫
TQ0

|E(Y )| |∇YGL>1 (Y,X?)| |∇ut0(Y )| dY
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≤
∑

Q0∈D∆1

‖mγ?‖
1
2

C(Q0,ω?0)

∫
Q0

Md
Q?0,ω

?
0
(ω?)(x)SQ?0u

t
0(x)dω?0(x)

≤ ε
1
2

∑
Q0∈D∆?

∫
Q0

Md
Q0,ω?0

(ω?)(x)SQ0u
t
0(x)dω?0(x)

. ε
1
2

∑
Q0∈D∆?

‖Md
Q0,ω?0

(ω?)‖Lp(Q0,ω?0) ‖SQ0u
t
0(x)‖Lp′ (Q0,ω?0).

Using the well-known fact that Md
Q0,ω?0

is bounded on Lp(Q0, ω
?
0) and that, as mentioned before

ω? � ω?0 with h(· ;L?1, L0, X?) = dω?/dω
?
0, it readily follows that

‖Md
Q0,ω?0

(ω?)‖Lp(Q0,ω?0) . ‖h(· ;L1, L0, X?)‖Lp(Q0,ω?0).

On the other hand, given Q0 ∈ D∆? , let Q0 ∈ D∆0
∗ be such that Q0 ⊂ Q0. We claim that

∆∗? ⊂ 2∆̃Q0 and hence supp gt ⊂ 2∆̃Q0 . Indeed, if y ∈ ∆∗? and we recall that y? ∈ Q0 ∩ 2∆? we
obtain

|y − xQ0 | ≤ |y − x?|+ |x? − y?|+ |y? − xQ0 | < 2(κ0 + 1)r? + CrQ0

≤ 8c0

105κ0
r0 + ΞrQ0 <

128

105
`(Q0) + ΞrQ0 < 2ΞrQ0 ,

thus y ∈ 2∆̃Q0 as desired. On the other hand, observe that X0 ∈ Ω \ 2κ0B
∗
∆?

= B(x?, 2κ
2
0r?),

for otherwise we would get a contradiction:

c0r0 ≤ δ(X0) ≤ |X0 − x?| < 2κ2
0r? ≤

4c0

105
r0.

Hence Lemma 2.63 part (d) and Harnack’s inequality to pass from X? to X∆∗?

(3.55)
dω?0
dω0
≈ 1

ω0(∆∗?)
, ω0-a.e. in ∆∗?.

After all these observations we use Harnack’s inequality to pass from X? to XQ0 and from
XQ0 to X0, Remark 2.64, the square-function non-tangential estimates from [3, Theorem 1.5,
Proposition 2.57], and Lemmas 3.14 and 2.63 to conclude

ω0(Q0)
1
p′ ‖SQ0u

t
0(x)‖Lp′ (Q0,ω?0) . ‖SQ0ut0(x)‖

Lp′ (Q0,ω
X
Q0

0 )
. ‖gt‖

Lp′ (Q0,ω
X
Q0

0 )
≈ ‖gt‖Lp′ (Q0,ω0)

. ‖g‖
Lp′ (3∆̃Q0 ,ω0)

= ‖g‖
Lp′ (∆̂?,ω0)

≈ ω0(∆∗?)
1
p′ ‖g‖

Lp′ (∆̂?,ω?0)
≈ ω0(Q0)

1
p′ .

Plugging the obtained estimates into (3.54) we conclude that

|ut1(X?)− ut0(X?)| . ε
1
2

∑
Q0∈D∆?

‖h(· ;L1, L0, X?)‖Lp(Q0,ω?0) . ε
1
2 ‖h(· ;L1, L0, X?)‖Lp(∆̂?,ω?0)

,

where we have used (2.49) and that D∆? has bounded cardinality, which follows from ω0(Q0) ≈
ω0(∆̂?) for every Q0 ∈ D∆? and (2.49). Using then the definitions of ut0 and ut1 we conclude
that

(3.56)
∣∣∣ ∫

∂Ω
g dω? −

∫
∂Ω
g dω?0

∣∣∣ ≤ |ut1(X?)− ut0(X?)|+ ‖g − gt‖L1(∂Ω,ω?0) + ‖g − gt‖L1(∂Ω,ω?)

. ε
1
2 ‖h(· ;L1, L0, X?)‖Lp(∆̂?,ω?0)

+ ‖g − gt‖L1(∂Ω,ω?0) + ‖g − gt‖L1(∂Ω,ω?).

Fix Q0 ∈ D∆? , we showed before that if we pick Q0 ∈ D∆0
∗ so that Q0 ⊂ Q0, then ∆∗? ⊂ 2∆̃Q0 .

Recalling that 0 ≤ g ∈ Lp′(∆̂?, ω
?
0), with supp(g), supp(gt) ⊂ ∆∗?, then (3.55) and Lemma 3.14

give
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(3.57) ‖g − gt‖L1(∂Ω,ω?0) = ‖g − gt‖L1(∆∗?,ω
?
0) ≈

1

ω0(∆∗?)
‖g − gt‖L1(∆∗?,ω0)

≤ 1

ω0(∆∗?)
‖g − Ptg‖L1(2∆̃Q0 ,ω0)

−→ 0, as t→ 0+.

Similarly, using also that as mentioned above ω1 � ω0 with h(· ;L1, L0, X?) ∈ L∞loc(∂Ω, ω0)

(3.58) ‖g − gt‖L1(∂Ω,ω?) = ‖g − Ptg‖L1(∆∗?,ω?)

≤ ‖h(· ;L1, L0, X?)‖L∞(∆∗?,ω
?
0)‖g − Ptg‖L1(∆∗?,ω

?
0) −→ 0, as t→ 0+.

Combining (3.56), (3.57), (3.58) and letting t→ 0+ we conclude that

0 ≤
∫

∆̂?

g(y)dω?(y) =

∫
∂Ω
g(y)dω?(y) =

∫
∂Ω
g(y)h(y;L1, L0, X?) dω

?
0(y)

≤ ε
1
2 ‖h(· ;L1, L0, X?)‖Lp(∆̂?,ω?0)

+

∫
∂Ω
g(y)dω?0(y)

≤ ε
1
2 ‖h(· ;L1, L0, X?)‖Lp(∆̂?,ω?0)

+ ω?0(∆̂?)
1
p .

Taking now the sup over all 0 ≤ g ∈ Lp′(∆̂?, ω
?
0) with ‖g‖

Lp′ (∆̂?,ω?0)
= 1 we eventually get

(3.59) ‖h(· ;L1, L0, X?)‖Lp(∆̂?,ω?0)
. ε

1
2 ‖h(· ;L1, L0, X?)‖Lp(∆̂?,ω?0)

+ ω?0(∆̂?)
1
p .

Since h(· ;L1, L0, X?) ∈ L∞loc(∂Ω, ω?0) (albeit with bounds which may depend on X? or j) we can
hide the first term on the right hand side and eventually obtain fixing ε small enough (depending
on n, the 1-sided NTA constants, the CDC constant, the ellipticity constants of L0 and L2, and
on p)

(3.60) ‖h(· ;L1, L0, X?)‖Lp(∆̂?,ω?0)
. ω?0(∆̂?)

1
p .

3.3.3. Step 2. Let us next define

A2(Y ) :=

{
A1(Y ) if Y ∈ T∆? ,

Ã(Y ) if Y ∈ Ω \ T∆? ,

and set L2u := −div(A2∇u). Note that L2 ≡ L̃ in Ω (see Figure 6). Since L̃ ≡ L0 in
{Y ∈ Ω : δ(Y ) < 2−j} we have already mentioned in Step 0 that ωL2 = ω

L̃
and ωL0 are

mutually absolutely continuous with h(· ; L̃, L0, X) ∈ L∞loc(∂Ω, ωYL0
) for every X,Y ∈ Ω.

x?
∂Ω 2−j

T∆?

A

AA

A0

A0

A

A
0 A0

Figure 6. Definition of A2 in Ω.

Note that by construction B1 = 1
2κ0

B?. Besides, by (2.48), 2κ0B1 ∩Ω ⊂ 5
4B? ∩Ω ⊂ T∆? and

since L̃ ≡ L2 ≡ L1 in T∆0 , Lemma 2.63 part (f) and Harnack’s inequality give that ωX?
L̃

and

ωX?L1
= ω? are comparable in ∆1, thus h(· ;L1, L0, X?) ≈ h(· ; L̃, L0, X?) for ω?0-a.e. y ∈ ∆1 (and
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also ω0-a.e.). On the other hand using that as shown above X0 ∈ Ω \ 2κ0B
∗
∆?
⊂ Ω \ 2κ0B1 we

can invoke Lemma 2.63 part (d) and Harnack’s inequality to see that

h(· ; L̃, L0, X0) =
dωX0

L̃

dωX0
L0

=
dωX0

L̃

dωX?
L̃

dωX?
L̃

dωX?L0

dωX?L0

dωX0
L0

≈ ω1(∆1)

ω0(∆1)
h(· ; L̃, L0, X?)

≈ ω̃(∆1)

ω0(∆1)
h(· ;L1, L0, X?),

for ω0-a.e. y ∈ ∆1 (recall that ω
L̃

and ω0 are mutually absolutely continuous). This, the fact

that ∆1 ⊂ ∆̂?, (3.60) and Lemma 2.63 part (d) yield(
−
∫

∆1

h(y; L̃, L0, X0)pdω0(y)

) 1
p

≈ ω̃(∆1)

ω0(∆1)

(
−
∫

∆1

h(y; L̃, L0, X?)
pdω?0(y)

) 1
p

.
ω̃(∆1)

ω0(∆1)
.(3.61)

3.3.4. Step 3. Let us summarize what we have obtained up to this point. We fixed x0 ∈ ∂Ω and
0 < r0 < diam(∂Ω)/2, we set B0 = B(x0, r0), ∆0 = B0 ∩ ∂Ω, X0 = X∆0 , and ω0 = ωX0

L0
. We

also fix 1 < p <∞ and assumed that |||%(A,A0)|||B0
< ε with ε small enough at our disposal. In

Step 0 we took an arbitrary j and wrote L̃ = Lj , (see (3.22)) and ω̃ = ωX0

L̃
. For an arbitrary

surface ball ∆1 = ∆(x1, r1) with x1 ∈ 5
4∆0 and 0 < r1 ≤ c0

105κ3
0
r0 we have obtained, combining

Step 1 and Step 2, that provided ε is small enough (independently of j and ∆1) then (3.61)
holds.

Our next goal is to see that (3.61) holds as well with 5
4∆0 replacing ∆1. To do this r = c0

105κ3
0
r0

and find a maximal collection of points {xk}k∈K ⊂ 5
4∆0 with respect to the property that

|xk−xk′ | > 2r/3 for every k, k′ ∈ K with k 6= k′. Write ∆k = ∆(xk, r) and note that {1
3∆k}k∈K

is a family of pairwise disjoint surface balls such that 5
4∆0 ⊂

⋃
k∈K∆k ⊂ 3

2∆0. Note that

since r ≈ r0 and xk ∈ 5
4∆0 it follows from Lemma 2.63 part (c) that ω0(5

4∆0) ≈ ω0(∆k) and

ω̃(3
2∆0) ≈ ω̃(5

4∆0) ≈ ω̃(∆k) ≈ ω̃(1
3∆k) for every k ∈ K. Thus using (3.61) for every ∆k (whose

applicability is ensure by the facts that xk ∈ 5
4∆0 and r∆k

= r = c0
105κ3

0
r0) it follows that

(3.62)

(
−
∫

5
4

∆0

h(y; L̃, L0, X0)pdω0(y)

) 1
p

.
∑
k∈K

(
−
∫

∆k

h(y; L̃, L0, X0)pdω0(y)

) 1
p

.
∑
k∈K

ω̃(∆k)

ω0(∆k)
≈ 1

ω0(5
4∆0)

ω̃
( ⋃
k∈K

1
3∆k

)
≤

ω̃(3
2∆0)

ω0(5
4∆0)

≈
ω̃(5

4∆0)

ω0(5
4∆0)

.

We now have all the ingredients to show that ω̃ ∈ RHp(
5
4∆0, ωL0) (uniformly in j) and to do

this we let ∆ = B ∩ ∂Ω with B = B(x, r) ⊂ 5
4B0 and x ∈ ∂Ω. If r∆ < 1 < c0

105κ3
0
r0 then we

can invoke (3.61) with ∆1 = ∆ and this gives us the desired estimate. Assume otherwise that
r∆ ≥ 1 c0

105κ3
0
r0, hence r∆ ≈ r0 since B ⊂ 5

4B0 implies that r∆ < 5
4r0. In that scenario using that

∆ ⊂ 5
4∆0 and that ω0(∆) ≈ ω0(5

4∆0), ω̃(∆) ≈ ω̃(5
4∆0) by Lemma 2.63 part (c) we obtain that

(3.62) gives as desired(
−
∫

∆
h(y; L̃, L0, X0)pdω0(y)

) 1
p

.

(
−
∫

5
4

∆0

h(y; L̃, L0, X0)pdω0(y)

) 1
p

.
ω̃(5

4∆0)

ω0(5
4∆0)

≈ ω̃(∆)

ω0(∆)
.

All in one, we have shown that ω̃ ∈ RHp(
5
4∆0, ωL0), where the implicit constant depends only

on the allowable parameters and which is ultimately independent of j and ∆0. This, as argued
in Step 0, permits us to show that ωL ∈ RHp(∆0, ωL0) with the help of Lemma 3.23. The
proof of Proposition 3.1, part (b) is then complete. �
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4. Domains with Ahlfors-regular boundary

Throughout this section we assume that Ω ⊂ Rn+1, n ≥ 2, is a 1-sided CAD (cf. Definition
2.9). This means that Ω is a 1-sided NTA domain (it satisfies the Corkscrew and Harnack
Chain conditions) and ∂Ω is AR. As mentioned in Section 2.2, the latter condition implies that
Ω satisfies the CDC, hence the theory we have developed in this paper applies to Ω. On the other
hand, the fact that Ahlfors regularity condition says that the surface measure σ := Hn|∂Ω is a
well-behaved object. The goal of this section is to show how some earlier perturbation results,
valid in Lipschitz, NTA or 1-sided NTA settings, can be obtained easily from our results. Before
giving the precise statements let us present some definition:

Definition 4.1 (Reverse Hölder and A∞ classes with respect to surface measure). Given p,
1 < p <∞, we say that ωL ∈ RHp(∂Ω, σ), provided that ωL � σ on ∂Ω, and there exists C ≥ 1

such that, writing kL = dωL
dσ for the associated Radon-Nikodym, for every ∆0 = B0 ∩ ∂Ω where

B0 = B(x0, r0) with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω)(
−
∫

∆
k
X∆0
L (y)p dσ(y)

) 1
p

≤ C−
∫

∆
k
X∆0
L dσ(y) = C

ω
X∆0
L (∆)

σ(∆)

for every ∆ = B ∩ ∂Ω where B ⊂ B0, B = B(x, r) with x ∈ ∂Ω, 0 < r < diam(∂Ω). The
infimum of the constants C as above is denoted by [ωL]RHp(∂Ω,σ).

We also define
A∞(∂Ω, σ) =

⋃
p>1

RHp(∂Ω, σ).

These are the results that we can reprove with our methods:

Corollary 4.2. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD. Consider Lu = −div(A∇u) and
L0u = −div(A0∇u) two real (non-necessarily symmetric) elliptic operators. Define the dis-
agreement between A and A0 in Ω by

(4.3) %(A,A0)(X) := ‖A−A0‖L∞(B(X,δ(X)/2)), X ∈ Ω,

where δ(X) := dist(X, ∂Ω), and

(4.4) |||%(A,A0)|||σ := sup
B

1

σ(∆)

∫∫
B∩Ω

%(A,A0)(X)2

δ(X)
dX,

where ∆ = B ∩ ∂Ω, and the sup is taken over all balls B = B(x, r) with x ∈ ∂Ω and 0 < r <
diam(∂Ω).

(a) Assume that |||%(A,A0)|||σ < ∞. If ωL0 ∈ A∞(∂Ω, σ), then ωL ∈ A∞(∂Ω, σ). More
precisely, if ωL0 ∈ RHp(∂Ω, σ) for some p, 1 < p < ∞, then ωL ∈ RHq(∂Ω, σ) for some
q, 1 < q < ∞. Here, q and [ωL]RHq(∂Ω,σ) depend only on dimension, the 1-sided CAD
constants, the ellipticity constants of L0 and L, |||%(A,A0)|||σ, p, and [ωL0 ]RHp(∂Ω,σ).

(b) If ωL0 ∈ RHp(∂Ω, σ), for some p, 1 < p < ∞, there exists εp > 0 (depending only
on dimension, the 1-sided CAD constants, the ellipticity constants of L0 and L, p, and
[ωL0 ]RHp(∂Ω,σ)) such that if |||%(A,A0)|||σ ≤ εp, then ωL ∈ RHp(∂Ω, σ). Here, [ωL]RHq(∂Ω,σ)

depends only on dimension, the 1-sided CAD constants, the ellipticity constants of L0 and
L, p, and [ωL0 ]RHp(∂Ω,σ).

Corollary 4.5. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD. Consider Lu = −div(A∇u) and
L0u = −div(A0∇u) two real (non-necessarily symmetric) elliptic operators, and recall the def-
inition of Aα(%(A,A0)) in (1.11) for any given α > 0.

(a) Assume that Aα(%(A,A0)) ∈ L∞(σ). If ωL0 ∈ A∞(∂Ω, σ), then ωL ∈ A∞(∂Ω, σ). More
precisely, if ωL0 ∈ RHp(∂Ω, σ) for some p, 1 < p < ∞, then ωL ∈ RHq(∂Ω, σ) for
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some q, 1 < q < ∞. Here, q and [ωL]RHq(∂Ω,σ) depend only on dimension, the 1-sided
CAD constants, the ellipticity constants of L0 and L, α, ‖Aα(%(A,A0))‖L∞(σ), p, and
[ωL0 ]RHp(∂Ω,σ).

(b) If ωL0 ∈ RHp(∂Ω, σ), for some p, 1 < p < ∞, there exists εp > 0 (depending only
on dimension, the 1-sided CAD constants, the ellipticity constants of L0 and L, p, and
[ωL0 ]RHp(∂Ω,σ)), such that if Aα(%(A,A0)) ∈ L∞(σ) with ‖Aα(%(A,A0))‖L∞(σ) ≤ εp, then
ωL ∈ RHp(∂Ω, σ). Here, [ωL]RHp(∂Ω,σ) depends only on dimension, the 1-sided CAD
constants, the ellipticity constants of L0 and L, α, p, and [ωL0 ]RHp(∂Ω,σ).

In the case of symmetric operators, part (b) of Corollary 4.2 has been proved for the unit ball
in [13], for bounded CAD in [39], and for 1-sided CAD domains in [8]. On the other hand, part
(a) of Corollary 4.2 can be found for Lipschitz domains in [19] and for bounded CAD in [39],
both in the case of symmetric operators (but we would expect that similar arguments could
be carried over to the non-symmetric case as well). The corresponding result in the setting of
1-sided CAD has been obtained in [8] for symmetric operators and then extended to the general
case in [9]. Note then that Corollary 4.2 part (b) seems to be new in the case of non-symmetric
operators in 1-sided CAD. Regarding Corollary 4.5, part (a) for symmetric operators was proved
in [18] in the unit ball and in [39] in the setting of bounded CAD.

Before proving the previous results we need the following auxiliary lemma:

Lemma 4.6. Let Ω ⊂ Rn+1 be a 1-sided CAD and consider Lu = −div(A∇u) and L0u =
−div(A0∇u) two real (non-necessarily symmetric) elliptic operators. If ωL0 ∈ A∞(∂Ω, σ) and
ωL ∈ A∞(∂Ω, ωL0) then ωL ∈ A∞(∂Ω, σ). More precisely, if ωL0 ∈ RHp(∂Ω, σ), 1 < p < ∞,
and ωL ∈ RHq(∂Ω, ωL0), 1 < q < ∞, then ωL ∈ RHr(∂Ω, σ) with r = p q

p+q−1 ∈ (1,min{p, q})
and, moreover,

[ωL]RHr(∂Ω,σ) ≤ [ωL]RHq(∂Ω,ω0) [ωL0 ]
1
q′

RHp(∂Ω,σ).

Proof. Fix ∆0 = B0 ∩ ∂Ω where B0 = B(x0, r0) with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω). Write

ω0 = ω
X∆0
L0

and ω = ω
X∆0
L . By definition ω0 � σ and ω � ω0, hence ω � σ. Given ∆ = B∩∂Ω

where B ⊂ B(x0, r0), B = B(x, r) with x ∈ ∂Ω, 0 < r < diam(∂Ω), by Hölder’s inequality with
exponent q

r > 1 we obtain(
−
∫

∆

(
dω

dσ

)r
dσ

) 1
r

=

(
−
∫

∆

(
dω

dω0

dω0

dσ

)r
dσ

) 1
r

=

(
−
∫

∆

(
dω

dω0

)r (dω0

dσ

) r
q
(
dω0

dσ

) r
q′

dσ

) 1
r

≤
(
ω0(∆)

σ(∆)

) 1
q
(
−
∫

∆

(
dω

dω0

)q
dω0

) 1
q

(
−
∫

∆

(
dω0

dσ

) r
q′ ( q

r
)′

dσ

) 1
r (
q
r )′

=

(
ω0(∆)

σ(∆)

) 1
q
(
−
∫

∆

(
dω

dω0

)q
dω0

) 1
q
(
−
∫

∆

(
dω0

dσ

)p
dσ

) 1
q′ p

≤ [ωL]RHq(∂Ω,ω0) [ωL0 ]
1
q′

RHp(∂Ω,σ)

(
ω0(∆)

σ(∆)

) 1
q
(
−
∫

∆

dω

dω0
dω0

)(
−
∫

∆

dω0

dσ
dσ

) 1
q′

= [ωL]RHq(∂Ω,ω0) [ωL0 ]
1
q′

RHp(∂Ω,σ)

ω(∆)

σ(∆)
.

Thus we conclude that ωL ∈ RHr(∂Ω, σ) with

[ωL]RHr(∂Ω,σ) ≤ [ωL]RHq(∂Ω,ω0) [ωL0 ]
1
q′

RHp(∂Ω,σ),
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and the proof is complete. �

Proof of Corollary 4.2. Assume that ωL0 ∈ A∞(∂Ω, σ). Our first goal is to show that using the
notation in (1.7) we have

(4.7) |||%(A,A0)||| . |||%(A,A0)|||σ.

To see this we take some ideas from the proof of Theorem 1.10. Let D = D(∂Ω) be the dyadic
grid from Lemma 2.34 with E = ∂Ω. For any Q ∈ D we set

γQ =
1

σ(Q)

∫∫
UQ

%(A,A0)(X)2

δ(X)
dX.

Fix B0 = B(x0, r0) with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω). Let ∆ = B∩∂Ω with B = B(x, r),

x ∈ 2∆0, and 0 < r < r0c0/4, here c0 is the Corkscrew constant. Write X0 = X∆0 and ω0 = ωX0
L0

.

Note that this choice guarantees that X0 /∈ 4B. Define

WB = {I ∈ W : I ∩B 6= Ø}
and for every I ∈ WB let XI ∈ I ∩ B so that 4 diam(I) ≤ dist(I, ∂Ω) ≤ δ(XI) < r and hence
I ⊂ 5

4B. Pick xI ∈ ∂Ω such that |XI − xI | = δ(XI) ≤ diam(I) + dist(I, ∂Ω) and let QI ∈ D be
such that xI ∈ QI and `(I) = `(QI). By Lemma 2.63 parts (a)–(c), Harnack’s inequality and
the fact that ∂Ω is AR one has

GL0(X0, Y )

δ(Y )
≈ GL0(X0, XI)

`(I)
≈ ω0(QI)

`(I)n
≈ ω0(QI)

σ(QI)
, ∀Y ∈ I.

Using this

IB :=

∫∫
B∩Ω

%(A,A0)(Y )2GL0(X0, Y )

δ(Y )2
dY .

∑
I∈WB

∫∫
I

%(A,A0)(Y )2

δ(Y )
dY

ω0(QI)

σ(QI)

≤
∑
I∈WB

∫∫
UQI

%(A,A0)(Y )2

δ(Y )
dY

ω0(QI)

σ(QI)
=
∑
I∈WB

γQI ω0(QI),

where we have used that by construction I ⊂ UQI ∈ WQI .

Note that `(QI) = `(I) < diam(QI) < r/4. Also if z ∈ QI , then by (2.36) and (2.39)

|z − x| ≤ |z − xI |+ |xI −XI |+ |XI − x|

≤ Ξ`(QI) + δ(XI) +
r

4
< Ξ`(QI) + diam(I) + dist(I, ∂Ω) +

r

4
< 12 Ξ r

and therefore QI ⊂ 12 Ξ∆. Write then F∆ = {Q ∈ D : r
4 ≤ `(Q) < r

2 , Q ∩ 12 Ξ∆ 6= Ø}, so
that F∆ is a family of pairwise disjoint dyadic cubes with uniformly bounded cardinality and so
that 12 Ξ∆ ⊂ ∪Q∈F∆

Q ⊂ 13 Ξ∆. By construction, if I ∈ WB, then QI ⊂ Q for some Q ∈ F∆.
Introducing the notation

|||γ|||ω0,∆
:= sup

Q∈F∆

sup
Q′∈DQ

1

ω0(Q′)

∑
Q′′∈DQ′

γQ′′ ω0(Q′′),

it follows that

(4.8) IB ≤
∑
Q∈F∆

∑
Q′∈DQ

γQ′ ω0(Q′) ≤ |||γ|||ω0,∆

∑
Q∈F∆

ω0(Q)

≤ |||γ|||ω0,∆
ω0(13 Ξ∆) . |||γ|||ω0,∆

ω0(∆),

where we have used Lemma 2.63.

We next estimate |||γ|||ω0,∆
. Since we have assumed that ωL0 ∈ A∞(∂Ω, σ), it follows that

ωL0 ∈ RHp(∂Ω, σ) for some p, 1 < p < ∞, then it is straightforward to see using Lemma
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2.63 that ω
XQ
L0
∈ RHdyadic

p (Q, σ) for every Q ∈ D (cf. Definition 2.25). In particular, for every

Q′ ∈ DQ with Q ∈ D and for every F ⊂ Q′ we have

ω
XQ
L0

(F )

σ(Q′)
= −
∫
Q′

1F k
XQ
L0

dσ(y) ≤
(
σ(F )

σ(Q′)

) 1
p′
(
−
∫
Q′
k
XQ
L0

(y)p dσ(y)

) 1
p

≤ [ωL0 ]RHp(∂Ω,σ)

(
σ(F )

σ(Q′)

) 1
p′ ω

XQ
L0

(Q′)

σ(Q′)
,

where C > 1 is a uniform constant. Take then α = 1
2 , β = (2C [ωL0 ]RHp(∂Ω,σ))

−p′ ∈ (0, 1), and

apply Lemma 2.20 with µ = ω
XQ
L0

and ν = σ to obtain

sup
Q′∈DQ

1

ω
XQ
L0

(Q′)

∑
Q′′∈DQ′

γQ′′ ω
XQ
L0

(Q′′) . sup
Q′∈DQ

1

σ(Q′)

∑
Q′′∈DQ′

γQ′′ σ(Q′′)

= sup
Q′∈DQ

1

σ(Q′)

∑
Q′′∈DQ′

∫∫
UQ

%(A,A0)(X)2

δ(X)
dX

. sup
Q′∈DQ

1

σ(∆∗Q)

∫∫
B∗Q

%(A,A0)(X)2

δ(X)
dX ≤ |||%(A,A0)|||σ,

where we have used that the family {UQ′}Q′∈D has bounded overlap, (2.47), the AR property
of σ and (4.4). Invoke once again Lemma 2.63 and Harnack’s inequality to conclude that (4.8)
along with the previous estimate readily yield

IB . ω0(∆) sup
Q∈F∆

sup
Q′∈DQ

1

ω
X′Q
L0

(Q′)

∑
Q′′∈DQ′

γQ′′ ω
X′Q
L0

(Q′′) . ω0(∆) |||%(A,A0)|||σ,

Taking then the sup over all B and B0 as above we have shown that (4.7) holds.

With (4.7) at hand we are now ready to prove (a) and (b) in the statement. To prove (a)
note that by assumption |||%(A,A0)|||σ < ∞ and ωL0 ∈ A∞(∂Ω, σ). Hence, (4.7) says that
|||%(A,A0)||| < ∞ and Theorem 1.5 part (a) yields ωL ∈ A∞(∂Ω, ωL0). In turn, Lemma 4.6
implies that ωL ∈ A∞(∂Ω, σ) as desired.

To prove (b) we proceed as follows. Assume that ωL0 ∈ RHp(∂Ω, σ). By Gehring’s lemma

[22] (see also [11]) there exists s > 1 such that ωL0 ∈ RHp s(∂Ω, σ). Set q := s p−1
s−1 > 1 and

note that by (4.7) and Theorem 1.5 part (b) we can find εp > 0 sufficiently small (depending
only on dimension, the 1-sided CAD constants, the ellipticity constants of L0 and L, p, and
[ωL0 ]RHp(∂Ω,σ)) so that if |||%(A,A0)|||σ < εp then ωL ∈ RHq(∂Ω, ωL0). If we apply Lemma 4.6

with p s and our choice of q we conclude that ωL ∈ RHr(∂Ω, σ) where r = p s q
p s+q−1 = p. This

completes the proof. �

Proof of Corollary 4.5. Note first that in both cases (a) and (b), the fact that ωL0 ∈ A∞(∂Ω, σ)
implies ωL0 � σ. On the other hand, since the A∞ property is symmetric we clearly have that
σ � ωL0 . It is important to emphasize that by Harnack’s inequality ωXL � ωYL for every X,Y ∈
Ω, hence we do not need to specify the pole in ωL. All these show that ‖ · ‖L∞(σ) = ‖ · ‖L∞(ωL0

).

To prove (a) we then observe that the assumption Aα(%(A,A0)) ∈ L∞(σ) gives at once that
Aα(%(A,A0)) ∈ L∞(ωL0) and by Theorem 1.10 part (a) we conclude that ωL ∈ A∞(∂Ω, ωL0).
This, the fact that ωL0 ∈ A∞(∂Ω, σ), and Lemma 4.6 readily gives that ωL ∈ A∞(∂Ω, σ) as
desired.

To prove (b) we proceed much as in the corresponding case in the proof of Corollary 4.2.
Assume that ωL0 ∈ RHp(∂Ω, σ) and invoke once again Gehring’s lemma to find s > 1 such

that ωL0 ∈ RHp s(∂Ω, σ). Set q := s p−1
s−1 > 1 and note that if ‖Aα(%(A,A0))‖L∞(σ) =
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‖Aα(%(A,A0))‖L∞(ωL0
) is sufficiently small, Theorem 1.10 part (b) says that ωL ∈ RHq(∂Ω, ωL0).

We next apply Lemma 4.6 with p s and our choice of q to conclude that ωL ∈ RHp(∂Ω, σ) much
as we did before. �
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