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A B S T R A C T

For multibody dynamics simulation using the Absolute Nodal Coordinate Formulation, multiple strategies are
reported in the linear elastic material literature for calculating the generalized internal force and its Jacobian
matrix. When examining the presentation of these strategies, which are all sound, it is difficult to assess which
method is more efficient. We seek to clarify this issue by reporting the results of a comprehensive study
that included five different ANCF solution strategies discussed in the literature. To increase the relevance
of the study, we first extended these methods to incorporate a linear viscoelastic material model to account
for damping effects within the elements. A beam, a shell, and a hexahedral element are each examined to
provide a broader comparison. Both simple hand calculations and actual timing comparisons on a multi-core
CPU architecture are investigated. For the simple beam element, only small differences manifest among the
methods studied. However, for the shell and hexahedral elements, we noticed pronounced performance and
storage cost differences among the methods.
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1. Introduction

In virtual prototyping, the speed of simulation is crucial. It is not
uncommon for a model to be run tens of thousands of times to identify
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a solution that is optimal under design constraints. For nonlinear
finite element analysis as enabled by the Absolute Nodal Coordinate
Formulation (ANCF), different numerical solution methodologies can
https://doi.org/10.1016/j.ijnonlinmec.2022.104308
Received 11 April 2022; Received in revised form 5 November 2022; Accepted 15
Available online 25 November 2022
0020-7462/© 2022 Elsevier Ltd. All rights reserved.
November 2022

https://doi.org/10.1016/j.ijnonlinmec.2022.104308
https://www.elsevier.com/locate/nlm
http://www.elsevier.com/locate/nlm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2022.104308&domain=pdf
mailto:negrut@wisc.edu
https://https://sbel.wisc.edu/
https://doi.org/10.1016/j.ijnonlinmec.2022.104308


M. Taylor, R. Serban and D. Negrut International Journal of Non-Linear Mechanics 149 (2023) 104308

e
S
n
S
t
t
p
T
i
S

2

G
f
c
f
a
c
t
J
a
m
l

s
n
e
a
t
u
s
t
i

a
s

implement the same ANCF method at different memory and execution
speed costs. The situation is further complicated by the fact that the
underlying hardware used to run the simulation does come into play.
Ultimately, when examining various calculation methods for the gen-
eralized internal force and its Jacobian matrix within ANCF [1,2], it
is unclear which method should be chosen [3–6]. This paper dwells
on this observation, as it aims to provide a comparison of several
ANCF implementation methods from multiple perspectives, including
execution speed and memory footprint. For completeness, we utilize a
beam, a shell, and a hexahedral element in this study.

Each of the compared methods adopts a different strategy for cal-
culating the same generalized internal force and generalized internal
force Jacobian matrix. While theoretical comparisons and back-of-the-
envelope calculations to estimate performance can be made, as shown
in [6] and later in this paper, the architecture of the target computer
hardware cannot be ignored when examining execution performance.
We factor in this aspect by choosing for our study the most com-
mon computer hardware architecture, i.e., multicore CPUs. We focus
on Computer Aided Engineering-grade CPUs, which typically support
vectorized AVX2 and FMA3 instruction sets that perform multiple
floating-point operations in parallel.

While both structural mechanics and continuum mechanics ap-
proaches exist within ANCF [7], the methods herein utilize the contin-
uum mechanics-based approach. Although [8] provided a calculation
method for a linear viscoelastic material model with two coefficients for
the damping contribution of the model, all implementations used in this
comparison were modified to utilize the straightforward viscoelastic
material presented in [9]. This material model only requires a single
coefficient to approximate the damping mechanism within the material
and it integrates easily with each of the methods.

The paper is organized as follows. Section 2 provides details on
ach of the ANCF implementation methods included in this comparison.
ection 3 discusses the ANCF elements considered and clarifies how the
umber of Gauss quadrature points was selected for each element type.
ection 4 reports on the hand-calculated memory footprint and compu-
ational cost for each solution approach. While it might seem that these
heoretical comparisons should be sufficient to gauge implementation
erformance, it will be shown in Section 5 that this is not the case.
herein, we provide detailed timing information for the generalized
nternal force and Jacobian evaluation including roofline analyses [10].
ection 6 summaries the findings across this study.

. Methods compared

The oldest method included in this comparison was proposed by
arcía-Vallejo et al. [3]. They described an implementation method
or both the generalized internal force and its Jacobian in which the
omputational effort was reduced by separating the nodal coordinates
rom the required integral across the volume of the element. Their
pproach results in numerous constant matrices that only need to be
omputed once, prior to the start of the simulation. The matrices can
hen be reused as needed during the generalized internal force and
acobian evaluations that occur throughout the simulation. While the
uthors presented the methodology using large sparse precomputed
atrices, they did note that symmetry and sparsity patterns could be
everaged to improve the performance of the method.
The next oldest method in this comparison was proposed by Ger-

tmayr and Shabana [4]. Instead of attempting to separate out the
odal coordinates from the required integral across the volume of the
lement, the authors focused on making this integration as efficient
s possible for each generalized internal force evaluation throughout
he simulation. They presented efficiency gains associated with the
se of the First Piola–Kirchoff Stress Tensor; elimination of unneces-
ary multiplications by zeros; precomputing terms that are constant
hroughout the simulation; and reducing of the number of numerical

ntegration points employed. The authors did not provide an analytical f

2

expression for the Jacobian matrix, but noted that the Jacobian could
be calculated using numeric differentiation or it could be approximated
by a co-rotated linear stiffness matrix.

The third oldest method in this comparison was proposed by Liu
et al. [5]. The authors returned to the strategy of separating the
nodal coordinates from the required integral across the volume of
the element. They started from the expression for the generalized
internal force in terms of the First Piola–Kirchoff Stress Tensor as
presented in [4]. They then leveraged tensor notation to separate out
the nodal coordinates from the integral. During their presentation,
they also described an analytical calculation method for the Jacobian,
highlighting the common terms between the generalized internal force
and Jacobian calculations. Instead of the numerous constant matrices
required in [3], only three larger precomputed matrices were needed.
Since their work focused on modeling multi-layer shell elements, they
pointed out that unlike the method presented in [4], the computational
cost within a simulation for their method was independent of the
number of numerical integration points used across the volume of the
element. This is an important consideration when modeling shells with
many discrete layers.

The last two ANCF implementations included in the comparison
are variations of the approach presented in [6]. Therein, we proposed
a modification of the generalized internal force method presented
in [4]. The computational flow was reordered in an attempt to improve
the memory alignment associated with the underlying computational
hardware. A new calculation method for the analytical expression
of the Jacobian matrix was also presented that embraced the same
philosophy adopted for the generalized internal force calculation. The
only difference between the two implementations discussed in [6] was
whether or not intermediate calculations from the generalized internal
force evaluation were saved and then reused as part of the analytical
Jacobian calculation.

To help simplify the presentation, each of the ANCF implementation
strategies discussed herein is assigned a letter identification. Methods
‘‘C’’, ‘‘D’’, and ‘‘E’’ are the exact same methods as ‘‘C’’, ‘‘D’’, and ‘‘E’’
of [6]. The generalized internal force calculation for method ‘‘C’’ is
based on [4] and is performed using a loop over one Gauss quadrature
point at a time. Instead of using a numeric Jacobian as in [4], we use
our analytical expression for the Jacobian developed in [6]. The analyt-
ical Jacobian for method ‘‘C’’ is calculated one Gauss quadrature point
at a time as well, thus keeping with the structure of the generalized
internal force calculation.

We developed ‘‘D’’ using the same number of required operations
as method ‘‘C’’. We only changed the order, that is, sequence, in which
the computation was carried out at each time step to calculate the
generalized internal force and its Jacobian matrix across all the Gauss
quadrature points during each step of the calculations. This was done in
an attempt to better align the computations with the constraints of the
hardware as well as to leverage existing efficient matrix multiplication
routines.

Method ‘‘E’’ is a variation of method ‘‘D’’. During the generalized
internal force calculation, certain intermediate quantities, e.g., the
value of the deformation gradient at each Gauss quadrature point,
are calculated and subsequently reused in the Jacobian evaluation.
Implementations ‘‘C’’ and ‘‘D’’ do not save these intermediate results,
yet ‘‘E’’ does. While this leads to a smaller number of floating-point
operations for the Jacobian evaluation, it increases the code complex-
ity, the memory footprint per element, the memory transfers, and the
internal force evaluation execution time. A choice between ‘‘D’’ and
‘‘E’’ represents a trade-off between increasing the execution time of the
Jacobian or the generalized internal force evaluation.

Method ‘‘G’’ is based on the strategies presented by García-Vallejo
et al. in [3] and it is discussed in detail in Appendices A and B. In ‘‘G’’,
large number of constant matrices are evaluated once prior to the
tart of the simulation and then reused during each generalized internal

orce and Jacobian evaluation. Like method ‘‘E’’, intermediate results
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s-
from the generalized internal force evaluation are stored and then
reused during the Jacobian evaluation. While developing the imple-
mentation of this method, additional efficiency gain opportunities that
went beyond the methodology in [3] were identified and implemented.
Specifically, the repetitive nature of the shape function matrices lever-
aged in [4] can also be accounted for here to condense the required
calculations. While this slightly changes how the generalized internal
force and Jacobian are calculated, the concept of multiple constant
matrices that can be computed prior to the start of the simulation is
still retained.

Method ‘‘L’’ is largely based on the strategies presented by Liu
et al. [5] and it is discussed in detail in Appendices C and D. In ‘‘L’’,
only three large constant matrices are computed prior to the start of the
simulation. In fact, the two largest matrices are simply reordered forms
of each other. While only one of these two reordered matrices needs to
be saved, the execution cost for doing so was found to be quite high.
As a result, all three large matrices were stored and utilized for this
method. Like in methods ‘‘E’’ and ‘‘G’’, intermediate results from the
generalized internal force evaluation are stored and reused during the
Jacobian evaluation.

Note that for ‘‘C’’, ‘‘D’’, and ‘‘E’’, which belong to the class of ‘‘Con-
tinuous Integration’’ methods, the number of floating-point operations
for the generalized internal force and Jacobian evaluations depends on
the number of Gauss quadrature points used for the element. In ‘‘G’’
and ‘‘L’’, which belong to the class of ‘‘Pre-Integration’’ methods, there
is no dependency on the number of integration points used during the
generalized internal force and Jacobian evaluations. This difference is
important to keep in mind for applications with shell elements with
multiple discrete layers, which was of interest in [5].

Since many of the implementation details for ‘‘C’’, ‘‘G’’, and ‘‘L’’ were
not spelled out when these methods were proposed in [3–5], we made
a best attempt to implement each method as efficiently as possible. It
is important to point out three aspects when engaging in an effort to
assess the relative performance of ‘‘C’’, ‘‘D’’, ‘‘E’’, ‘‘G’’, and ‘‘L’’: the
methods need to be implemented in the same code to draw on the
same software infrastructure; the simulations need to run on the same
hardware; and it is highly desirable to use a compiled language like C or
C++, as opposed to an interpreted language such as Python or Matlab.
This effort to gauge relative performance was motivated by the need to
understand which implementation should be used in our Chrono open
source solver [11,12] to make it as fast as possible. As such, to the best
of our abilities, we tried to identify the fastest implementation out of
the ones considered herein. Finally, we believe it is next to impossible
to compare the performance of these methods by simply reading a
paper that describes them.

3. ANCF elements used for the comparisons

For thoroughness, three different existing ANCF continuum mechanic
based elements with increasing complexity will be used within this
study. Using the element identification scheme proposed in [13], the
simplest element considered is the fully parameterized 2-node Beam
3243 element [4]. It is implemented herein with the Enhanced Con-
tinuum Mechanics method [7], and has two nodes with a full set of
three position vector gradients at each node for a total of 24 degrees of
freedom per element. For the ‘‘medium complexity’’ category, we used
the fully parameterized 4-node Shell 3443 element [14]. It has four
nodes with a full set of three position vector gradients at each node for a
total of 48 degrees of freedom per element. Finally, as an illustration of
a complex element, we used the fully parameterized 8-node Hexahedral
3843 element [15]. It has eight nodes with a full set of three position
vector gradients at each node for a total of 96 degrees of freedom per
element. While other more accurate ANCF elements exist [16,17], these
particular elements were selected since they provide consistent steps of
increasing complexity for the comparisons.

While the number of unique shape functions for each element is
determined by the number of nodes and the degrees of freedom at each
3

node, there is leeway in relation to the number of numeric integration
points that should be used for the generalized internal force and its
Jacobian matrix. Assuming a straight and undistorted reference config-
uration, one can precisely determine the number of Gauss quadrature
points required to exactly integrate the partial derivative of the strain
energy density across the volume of the element. However, as has
already been shown [4,18,19], a smaller number of Gauss quadrature
points can be used without significantly affecting the results of the
calculations. To determine the number of Gauss quadrature points
required for a fair comparison of the ‘‘Continuous Integration’’ methods
with the ‘‘Pre-Integration’’ methods, we carried out for each element a
series of static tests typically utilizing realistic material properties with
moderately large strains; each test used a different but fixed number of
Gauss quadrature points.

The first test was a simple axial pull test that involved a slender
beam. The properties for the beam were taken from [20]. A 0.508 m
(20 in) long by 0.0127 m (0.5 in) wide by 0.003175 m (0.125 in) thick
aluminum 7075-T651 cantilever beam is fixed on one end and a 15 kN
axial load is applied to the center of the free cross-section of the beam.
To model the beam, we used a mesh of 20 identical elements along
the beam axis. At the fixed end, all the position and position vector
gradient coordinates were held constant. Young’s modulus was 71.7
GPa; Poisson’s ratio was 0.33; gravity was ignored. Plasticity was not
included, but the peak stresses can be put into context by keeping in
mind that the yield strength for this material is approximately 500 MPa.
Both the axial displacement of the tip and the maximum von Mises
stress in the beam were used as the outputs of interest.

The second test was a cantilever beam bending test. The same
model, mesh, setup, and properties were used as in the first test.
However, instead of an axial tip load, a 6.6723 N (1.5 lbf) vertical
tip load was applied along the thickness direction at the center of
the tip of the beam. This corresponds to the peak load for the 90
degree orientation from the physical experiments in [20]. The vertical
displacement of the tip and the maximum von Mises stress in the beam
were used as the outputs of interest.

The third test was a combined bending load case with the same
cantilever beam. For this test, the width direction of the beam was
rotated so that it pointed 30 degrees from vertical and a point load
of −17.7929 N (4 lbf) was applied at the center of the tip of the
beam in the vertical direction. This corresponds to the peak load for
the +30 degree orientation from the physical experiments in [20].
Both the vertical displacement and lateral displacement of the tip in
global coordinates and the maximum von Mises stress in the beam were
used as the outputs of interest. The sign of the vertical displacement
is opposite compared to the space-fixed coordinates reported in the
physical experiment.

The fourth test was an axial twist load case with the same cantilever
beam. For this test, a moment of 10 N m was applied at the center of
the tip of the beam. Like the axial displacement test, this axial twist
test was not conducted as part of the physical experiments in [20]. It
is simply used to examine the twist characteristics of the elements with
different numbers of Gauss quadrature points.

All four tests above utilized a uniform mesh where the reference
configuration of each element was straight and undistorted. This al-
lowed for the exact integration of the partial derivative of the strain
energy density across the element volume, which defines the expression
of the generalized internal force. To examine the case of non-straight
reference configurations, a test was created for the beam element and
a separate existing test was used for the shell and hexahedral elements.

For the Beam 3243 element, a uniform mesh of 30 aluminum 7075-
T651 beam elements with a cross-section width of 0.01 m and thickness
of 0.005 m was created such that the beam axis of the elements formed
a complete circle of radius 0.1 m. Over the course of the circumference
of the circle, the position vector gradients were linearly rotated about
the beam axis to create one full twist of the cross-section. The thickness

direction of the beam was vertical at both the beginning and end of the
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Fig. 1. Beam 3243 twisted split circle test showing the initial reference configuration
f the mesh in dotted lines and the final loaded position of the mesh along with the
alculated von Mises stresses for the case with 3 × 2 × 2 𝐃0 and 3 × 1 × 1 𝐃𝜈 Gauss
quadrature points.

Fig. 2. Hexahedral 3843 thin split annular plate test showing the initial reference
configuration of the mesh in dotted lines and the final loaded position of the mesh along
with the calculated von Mises stresses for the case with 4 × 4 × 4 Gauss quadrature
points.

circle. The position vector and position vector gradients at the first node
were fixed and a 130 N point load was applied in the vertical direction
at the center of the free cross-section. The global displacement of the
center of the free cross-section in all three directions and the maximum
von Mises stress across all the beam elements were used as the outputs
of interest. For reference, the initial configuration is plotted with dotted
lines, and the final loaded position for the mesh is plotted with solid
lines along with the final von Mises stresses in Fig. 1.

For the Shell 3443 and Hexahedral 3843 elements, we adopted the
hin slit annular plate test from [21]. We used a mesh of 30 elements in
he circumferential direction, 5 elements in the radial direction, and 1
lement through the thickness. The annular plate has an outer radius of
0 m, an inner radius of 6 m, a thickness of 0.03 m, a Young’s modulus
f 21 MPa, and a Poisson’s ratio of 0. The gravitational pull is ignored.
ll the position vector and position vector gradients along the fixed
lit edge of the thin annular plate are held constant. A distributed line
oad of 0.8 N/m, 3.2 N total, is applied to the free end of the slit. The
utput of interest was the vertical displacement of the points on the
nner radius, Point A, and outer radius, Point B, in the mid-surface
t the free end of the slit, as well as the maximum von Mises stress
cross all the elements. Fig. 2 shows the initial reference configuration
n dotted lines, the final loaded position for the mesh, and the von Mises
tresses.
For all these tests, the objective was to gauge how the number

f Gauss quadrature points used in the solution influenced its quality
4

relative to using the full number of Gauss quadrature points. While it
may be desirable to choose fewer Gauss quadrature points than selected
for this study to soften the elements and help alleviate some of the
known locking concerns [5,7], this path was not taken here so that a
conservative timing comparison between methods ‘‘C’’, ‘‘D’’, and ‘‘E’’
could be performed relative to methods ‘‘G’’ and ‘‘L’’. If fewer Gauss
quadrature points are used, then the execution performance of methods
‘‘C’’, ‘‘D’’, and ‘‘E’’ should all improve while the execution performance
of methods ‘‘G’’ and ‘‘L’’ should stay constant.

Examining the test results for the Beam 3243 element shown in
Table 1, where 5 × 3 × 3 Gauss quadrature points are required to
exactly integrate across the volume of the element for the generalized
internal force evaluation, it can be seen that nearly identical results for
each test can be achieved with as few as 3 × 2 × 2 Gauss quadrature
points for the 𝐃0 terms and 3 × 1 × 1 Gauss quadrature points for
he 𝐃𝜈 terms within the Enhanced Continuum Mechanics method [7]
used for comparisons with this element. However, when using only
2 × 2 × 2 Gauss quadrature points for the 𝐃0 terms and 2 × 1 × 1
Gauss quadrature points for the 𝐃𝜈 terms, the maximum von Mises
stress increases by 23% for the axial pull test. For the twisted split
circle test, the maximum von Mises stress increases by 9% and there
are notable changes in the tip Y displacement and to a lesser extent the
tip Z displacement.

Examining the test results for the Shell 3443 element shown in
Table 2, where 7 × 7 × 3 Gauss quadrature points are required to ex-
actly integrate across the volume of the element during the generalized
internal force evaluation, it can be seen that nearly identical results for
each test can be achieved with as few as 4 × 4 × 2 Gauss quadrature
points. When using only 3 × 3 × 2 Gauss quadrature points, the results
for all the tests except for the thin slit annular plate test are very close.
Since the locking behavior of this element has been noted in existing
studies in the literature [16], an argument could easily be made for
using 3 × 3 × 2 Gauss quadrature points to slightly soften the element
to help address this locking behavior. However, to keep the generalized
internal force results very close to those calculated with 7 × 7 × 3 Gauss
quadrature points, 4 × 4 × 2 Gauss quadrature points are used for all
the comparisons in this paper.

Finally, examining the test results for the Hexahedral 3843 element
shown in Table 3, where 7 × 7 × 7 Gauss quadrature points are
required to exactly integrate across the volume of the element during
the generalized internal force evaluation, it can be seen that nearly
identical results for each test can be achieved with as few as 4 × 4 × 4
Gauss quadrature points. When using only 3 × 3 × 3 Gauss quadrature
points, notable differences crop up in the results from the axial twist
test and the thin slit annular plate test. Similar to Shell 3443, an
argument could be made for softening this element and using 3 × 3 × 3
Gauss quadrature points instead of the 4 × 4 × 4 Gauss quadrature
points that were selected for the comparisons. However, this was not
done since it can result in some over softening of this element.

4. Theoretical comparisons

4.1. Data storage aspects

The memory footprint required by each implementation is dictated
by the need to store: the constant mass matrix; precomputed values
used for the generalized internal force evaluation and its Jacobian; and
values saved during the internal force evaluation that are later reused
for the Jacobian computation. The memory storage requirements of the
implementations are compared below in the context of the three ANCF
comparison elements.

For the ‘‘Continuous Integration’’ methods ‘‘C’’ and ‘‘D’’, (3𝑁 + 1)𝑁𝑄
values specific to these implementations need to be stored in memory.
Here 𝑁 is the number of unique shape functions for the given element,
and 𝑁𝑄 is the number of integration points used during the generalized
internal force and Jacobian evaluations. For method ‘‘E’’, which saves
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Table 1
Gauss quadrature point test summary for the Beam 3243 element.
𝐃0 Gauss quadrature points (𝜉, 𝜂, 𝜁): 5 × 3 × 3 5 × 2 × 2 4 × 2 × 2 3 × 2 × 2 2 × 2 × 2
𝐃𝜈 Gauss quadrature points (𝜉, 𝜂, 𝜁): 5 × 1 × 1 5 × 1 × 1 4 × 1 × 1 3 × 1 × 1 2 × 1 × 1

Axial pull test:
Tip axial displacement (m) 2.5926E−03 2.5926E−03 2.5926E−03 2.5926E−03 2.6030E−03
Max Von Mises Stress (MPa) 397.92 397.92 397.92 397.92 488.71

Simple bending test:
Tip vertical displacement (m) −1.1351E−01 −1.1351E−01 −1.1351E−01 −1.1351E−01 −1.1368E−01
Max Von Mises Stress (MPa) 117.39 117.39 117.39 117.39 117.64

Combined bending test:
Tip lateral displacement (m) 1.1804E−01 1.1804E−01 1.1804E−01 1.1804E−01 1.1833E−01
Tip vertical displacement (m) −8.8948E−02 −8.8948E−02 −8.8948E−02 −8.8948E−02 −8.9128E−02
Max Von Mises Stress (MPa) 222.66 222.66 222.66 222.66 223.27

Axial twist test:
Tip Angle (deg) 18.91 18.91 18.91 18.91 18.91
Max Von Mises Stress (MPa) 198.83 198.83 198.83 198.83 198.89

Twisted split circle test:
Tip X displacement (m) −1.5303E−02 −1.5303E−02 −1.5312E−02 −1.5311E−02 −1.5762E−02
Tip Y displacement (m) −1.9225E−02 −1.9224E−02 −1.9232E−02 −1.9243E−02 −1.6695E−02
Tip Z displacement (m) 1.0984E−01 1.0984E−01 1.0987E−01 1.0987E−01 1.1471E−01
Max Von Mises Stress (MPa) 492.19 492.19 492.43 492.23 537.68
Table 2
Gauss quadrature point test summary for the Shell 3443 element.
Gauss quadrature points (𝜉, 𝜂, 𝜁): 7 × 7 × 3 7 × 7 × 2 6 × 6 × 2 5 × 5 × 2 4 × 4 × 2 3 × 3 × 2

Axial pull test:
Tip axial displacement (m) 2.6009E−03 2.6009E−03 2.6009E−03 2.6009E−03 2.6009E−03 2.6012E−03
Max Von Mises Stress (MPa) 435.66 435.66 435.66 435.66 435.66 437.08

Simple bending test:
Tip vertical displacement (m) −1.0093E−01 −1.0093E−01 −1.0093E−01 −1.0093E−01 −1.0093E−01 −1.0093E−01
Max Von Mises Stress (MPa) 135.93 135.93 135.93 135.93 135.93 135.91

Combined bending test:
Tip lateral displacement (m) 1.0691E−01 1.0691E−01 1.0691E−01 1.0691E−01 1.0691E−01 1.0692E−01
Tip vertical displacement (m) −8.5095E−02 −8.5095E−02 −8.5095E−02 −8.5095E−02 −8.5095E−02 −8.5139E−02
Max Von Mises Stress (MPa) 268.50 268.50 268.50 268.50 268.50 268.29

Axial twist test:
Tip Angle (deg) 80.47 80.47 80.47 80.47 80.47 80.53
Max Von Mises Stress (MPa) 431.02 431.03 431.03 431.03 431.02 434.12

Thin slit annular plate test:
Point A vertical displacement (m) 5.7467E+00 5.7467E+00 5.7469E+00 5.7472E+00 5.7920E+00 6.1776E+00
Point B vertical displacement (m) 6.8873E+00 6.8873E+00 6.8875E+00 6.8888E+00 6.9360E+00 7.4343E+00
Max Von Mises Stress (MPa) 0.06 0.06 0.06 0.06 0.06 0.05
Table 3
Gauss quadrature point test summary for the Hexahedral 3843 element.
Gauss quadrature points (𝜉, 𝜂, 𝜁): 7 × 7 × 7 6 × 6 × 6 5 × 5 × 5 4 × 4 × 4 3 × 3 × 3

Axial pull test:
Tip axial displacement (m) 2.6091E−03 2.6091E−03 2.6091E−03 2.6091E−03 2.6099E−03
Max Von Mises Stress (MPa) 517.08 517.08 517.08 517.08 516.23

Simple bending test:
Tip vertical displacement (m) −1.1000E−01 −1.1000E−01 −1.1000E−01 −1.1000E−01 −1.1024E−01
Max Von Mises Stress (MPa) 176.78 176.78 176.78 176.78 174.96

Combined bending test:
Tip lateral displacement (m) 1.1768E−01 1.1768E−01 1.1768E−01 1.1768E−01 1.1828E−01
Tip vertical displacement (m) −9.4273E−02 −9.4273E−02 −9.4273E−02 −9.4273E−02 −9.5533E−02
Max Von Mises Stress (MPa) 322.10 322.10 322.10 322.09 319.02

Axial twist test:
Tip Angle (deg) 90.76 90.76 90.76 90.76 99.91
Max Von Mises Stress (MPa) 569.52 569.52 569.52 569.56 715.50

Thin slit annular plate test:
Point A vertical displacement (m) 10.6700 10.6612 10.7862 10.5396 10.7862
Point B vertical displacement (m) 11.7355 11.7253 11.8719 11.5803 11.8719
Max Von Mises Stress (MPa) 0.06 0.06 0.06 0.06 0.06
select data from the generalized internal force calculation for later use,
an additional 24𝑁𝑄 values need to be stored for a typical element. For
he ‘‘Pre-Integration’’ method ‘‘G’’, 0.5𝑁4+0.5𝑁3+18𝑁2 values need to
5

be stored for the generalized internal force and Jacobian evaluations.
For the ‘‘Pre-Integration’’ method ‘‘L’’, the number of values that needs
to be stored scales like 2

(

𝑁4 +𝑁2). This can be condensed to 𝑁4+2𝑁2
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Table 4
Number of bytes of required storage per element for the precomputed terms for the
generalized internal force evaluation, the Jacobian evaluation, the mass matrix, and
any intermediate calculations during the generalized internal force evaluation for each
of the different implementation methods assuming double precision (8 bytes per value)
and a single layer Shell 3443 element.

Beam 3243 Shell 3443 Hexa 3843

𝑁 8 16 32
𝑁𝑄 15 32 64

Mass matrix 288 1,088 4,224

Method
C and D 3,000 12,544 49,664
E 5,880 18,688 61,952
G 27,648 315,392 4,472,832
L 66,560 1,052,672 16,793,600

Table 5
Amount of elements that can be stored in 16 GiB of RAM approximated by assuming
that only the values in Table 4 need to be stored.
Method Beam 3243 Shell 3443 Hexa 3843

C and D 5,225,021 1,260,260 318,806
E 2,785,322 868,723 259,608
G 614,972 54,284 3,837
L 256,999 16,303 1,022

by generating the
[

𝑁2 ×𝑁2] matrix 𝜣(2) from 𝜣(1) as part of the
acobian evaluation since 𝜣(2) is just a reordered form of 𝜣(1) (see
ppendix C). However, it was found that there is a significant increase
n the execution cost of the Jacobian evaluation for generating 𝜣(2)

rom 𝜣(1) on the fly.
Next, since the mass matrix stays the same across all implementa-

ions, its memory footprint only depends on the DOF of the element.
ue to the symmetry and repetitive pattern of the mass matrix [6], only
he diagonal and upper or lower triangular terms of the compact mass
atrix shown in Eq. (1) need to be stored, that is, 𝑁 (𝑁 + 1) ∕2 values.

𝑐𝑜𝑚𝑝𝑎𝑐𝑡 = ∫𝑉𝜉

(

𝜌 𝐒̄𝐒̄𝖳
)

det
(

𝐉0𝜉
)

𝑑𝑉𝜉 . (1)

Table 4 summarizes the storage cost for each of the three elements
or each of the five methods. The ‘‘Continuous Integration’’ meth-
ds (‘‘C’’, ‘‘D’’, and ‘‘E’’) have significantly smaller memory footprints
ompared to either of the ‘‘Pre-Integration’’ methods (‘‘G’’ and ‘‘L’’).
or instance, for the Hexahedral 3843 element, the ‘‘Continuous In-
egration’’ methods require approximately two orders of magnitude
ess storage than the ‘‘Pre-Integration’’ methods. To put the memory
equirements listed in Table 4 in perspective, the number of elements
hat can be stored in 16GiB of RAM (the amount of RAM on the laptop
tilized in Section 5), is shown in Table 5. These element counts are
n fact slightly overestimated given that only the entries in the mass
atrix, values saved from the generalized internal force evaluation, and
he pre-computed values are factored in.

.2. FLOP estimates

The focus in this subsection is on providing an approximate count
f the number of floating-point operations (FLOPs) required by the
NCF implementations of interest. Please note the distinction between
LOPs and FLOPS, the latter referring to the number of floating point
perations per second. In this exercise, we will differentiate between
ultiplication and addition operations. Moreover, while more sophis-
icated matrix multiplication methods exist that can use fewer opera-
ions [22], the direct formula for matrix multiplication will be assumed
ere. Specifically, two matrices of size [𝑎 × 𝑏] and [𝑏 × 𝑐] require 𝑎×𝑏×𝑐
ultiplications and 𝑎 × (𝑏 − 1) × 𝑐 additions. Using this formula, the
pproximate FLOP counts for the generalized internal force evaluation
re shown in Table 6. The corresponding values for the Jacobian matrix

valuation are shown in Table 7.

6

Table 6
Hand calculated number of floating-point operations, in thousands (kFLOPs), for each
of the implementation methods for the generalized internal force calculation (assuming
a single layer for the Shell 3443 element).

Beam 3243 Shell 3443 Hexa 3843

𝑁 8 16 32
𝑁𝑄 15 32 64

Method
C, D, and E 8.2 34 123
G 20.7 252 3539
L 8.9 134 2109

Table 7
Hand calculated number of floating-point operations, in thousands (kFLOPs), for each
of the implementation methods for the Jacobian calculation (assuming a single layer
for the Shell 3443 element).

Beam 3243 Shell 3443 Hexa 3843

𝑁 8 16 32
𝑁𝑄 15 32 64

Method
C and D 112 1014 7,664
E 106 990 7,581
G 47 633 9,247
L 74 1181 18,878

Numeric (C, D, or E) 403 3294 23,781

While the data in Tables 6 and 7 is informative by itself, greater
nsights can be gained by examining the major contributors to these
LOP counts. We will probe deeper by considering the ANCF shell 3443
lement with a single layer. Starting with methods ‘‘C’’, ‘‘D’’, and ‘‘E’’,
oughly 50% of the FLOPs for the generalized internal force evaluation
ome from calculating the deformation gradient and the time derivative
f the deformation gradient for each of the required Gauss quadrature
oints. With methods ‘‘D’’ and ‘‘E’’, this calculation is expressed as a
ingle matrix multiplication of size [6 ×𝑁] ×

[

𝑁 × 3𝑁𝑄
]

= [6 × 16] ×
16 × 96]. With method ‘‘C’’, these same calculations are performed
sing many smaller matrix multiplications over the course of looping
hrough all the Gauss quadrature points. Another roughly 25% of the
LOPs comes from multiplying the shape function derivative matrix,
̄𝐷 by the transpose of the First Piola Kirchhoff stress tensor, 𝐏. With
ethods ‘‘D’’ and ‘‘E’’, this calculation is written as a single matrix
ultiplication of size

[

𝑁 × 3𝑁𝑄
]

×
[

3𝑁𝑄 × 3
]

= [16 × 96] × [96 × 3]
ersus many smaller matrix multiplications with method ‘‘C’’. The final
oughly 25% of the FLOPs for the generalized internal force evaluation
re due to the smaller calculations required to generate the First
iola Kirchhoff Stress Tensor from the deformation gradient and the
ime derivative of the deformation gradient at each of the required
auss quadrature points. Based on this analysis, approximately 3/8 of
he total FLOPs are required to include the simple linear viscoelastic
aterial law when going beyond a purely linear elastic law.
Examining the Jacobian matrix evaluation for method ‘‘E’’, which

tores and reuses intermediate calculations from the generalized inter-
al force evaluation, roughly 90% of the required FLOPs are due to
he

[

3𝑁 × 6𝑁𝑄
]

×
[

6𝑁𝑄 × 3𝑁
]

= [48 × 192] × [192 × 48] multiplication
𝜕𝜺𝑉 𝑒𝑐

𝜕𝐞

)𝖳
H which is performed as 6 relatively square

[

3𝑁 ×𝑁𝑄
]

×

𝑁𝑄 × 3𝑁
]

= [48 × 32] × [32 × 48] multiplications in the actual imple-
ented code. While it seems like not reusing roughly 75% of the FLOPs
rom the generalized internal force calculation for methods ‘‘C’’ and ‘‘D’’
s significant, this only increases their Jacobian matrix FLOP counts
y about 2% versus method ‘‘E’’. Like the generalized internal force
valuation, the inclusion of the simple linear viscoelastic material law
dds significant overhead to methods ‘‘C’’, ‘‘D’’, and ‘‘E’’ over a purely
inear elastic material law since it breaks the symmetry of the product
rom

(

𝜕𝜺𝑉 𝑒𝑐

𝜕𝐞

)𝖳
H. As a result, all the terms in this product need to be

calculated instead of just the diagonal and upper or lower triangular
terms required with a purely linear elastic material law.
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For method ‘‘G’’, 99% of the FLOPs for the force evaluation come
from the 𝑁 (𝑁 + 1) ∕2 = 136 smaller matrix multiplications of size
[3 ×𝑁] [𝑁 ×𝑁] [𝑁 × 3] = [3 × 16] [16 × 16] [16 × 3] required to gener-
ate the matrix 𝐊2, see Appendix A. For the Jacobian evaluation, the
majority of the FLOPs come from the steps required to calculate the
matrix 𝐊3 defined in Appendix A. Out of these steps, approximately
22% of the total FLOPs come from calculating the 𝑁2 = 256 matrix-
vector products of size [𝑁 ×𝑁] [𝑁 × 1] = [16 × 16] [16 × 1] required to
produce the vectors 𝐆 defined in Appendix B. Another 67% of the
total FLOPs come from the 𝑁2 = 256 matrix multiplications of size
[3 ×𝑁] [𝑁 ×𝑁] = [3 × 16] [16 × 16] required to calculate the terms 𝐋
defined in Appendix B. For method ‘‘G’’, the change from a simple
linear elastic material to the simple linear viscoelastic material used in
this paper adds less than 200 FLOPs to the generalized internal force
evaluation. However, for the Jacobian matrix evaluation, the inclusion
of the simple linear viscoelastic material significantly increases the
computational cost since 𝐊3 is no longer symmetric. As a result, each
entry in 𝐊3 must now be calculated.

Examining the FLOP counts for method ‘‘L’’, 98% of the FLOPs for
the generalized internal force evaluation are due to the

[

𝑁2 ×𝑁2] ×
[

𝑁2 × 1
]

= [256 × 256] × [256 × 1] matrix–vector product 𝜣(1)𝜫 (1). For
the Jacobian matrix evaluation, almost 100% of the FLOPs are due to
the

[

9 ×𝑁2]×
[

𝑁2 ×𝑁2] = [9 × 256] × [256 × 256] matrix multiplication
of 𝜫 (2)𝜣(2). It is important to note that a significant reordering of
the terns from the product of this matrix multiplication is required
afterward which does not appear as required FLOPs. For this method,
the inclusion of the simple linear viscoelastic material adds less than
approximately 200 FLOPs to both force and Jacobian evaluations.

4.3. Computations per stored byte

The arithmetic intensity, defined as the ratio of the number of
floating-point operations per number of bytes of data accessed to com-
pute the internal force and Jacobian, provides early insights into the
expected performance of each ANCF implementation. This subsection
reports on a succinct analysis that produces for each implementation
an estimate of its arithmetic intensity. This value provides an early
indication of how memory-bound each implementation is, at least on
paper. In Section 5.2, it will also be used when the implementations are
compared via a roofline analysis, which represents the ultimate test for
assessing whether the execution is memory-bound or compute-bound.

Table 8 reports estimated arithmetic intensities for the generalized
internal force calculations. Note that for all implementations, they
stay relatively constant as the complexity of the element increases,
with the exception of ‘‘E’’ which gradually approaches methods ‘‘C’’
and ‘‘D’’. The estimated arithmetic intensity for the ‘‘Continuous In-
tegration’’ methods (‘‘C’’, ‘‘D’’, and ‘‘E’’) are all higher than the two
‘‘Pre-Integration’’ methods. The ratio for method ‘‘L’’ is quite low due to
the nature of the matrix–vector multiplication that contains most of the
required operations. In general, it is desirable to have high arithmetic
intensity, since one memory access can take from four compute cycles
when hitting L1 cache, to about 20 clock cycles when hitting L2 cache,
to 70 clock cycles when serviced by L3 cache, to 150 and above
upon cache miss and a trip to main memory [23]. When pipelined,
an arithmetic instruction, e.g., fused multiply-add, can be done on a
modern architecture in one clock cycle. As such, it is advantageous to
have many calculations (which can be done one per one clock cycle),
as opposed to data movement, which might require up to hundreds of
clock cycles.

The ratios for the Jacobian matrix evaluations shown in Table 9
are all significantly higher than the corresponding entries for the
generalized internal force calculations. Unlike the generalized internal
force ratios, these ratios notably increase with element complexity for
the three ‘‘Continuous Integration’’ methods. This indicates that these
three calculation methods may be less and less memory-bound as the
complexity of the element increases, and start to be compute-bound.
While these ratios do increase for the two ‘‘Pre-Integration’’ methods,
they do so at a much slower rate than for the three ‘‘Continuous
Integration’’ methods.
7

Table 8
The ratio of the number of calculated floating-point operations to the required
amount stored data for the generalized internal force calculation along with the nodal
coordinates, time derivative of the nodal coordinates, and the resulting generalized
internal force vector for each of the methods.
Method Beam 3243 Shell 3443 Hexa 3843

C and D 2.28 2.47 2.37
E 1.26 1.71 1.91
G 0.74 0.80 0.79
L 0.26 0.25 0.25

Table 9
The ratio of the number of calculated floating-point operations to the required amount
stored data for the generalized internal force calculation along with the unique
compact entries in the mass matrix, the nodal coordinates, time derivative of the nodal
coordinates, and the resulting Jacobian matrix for each of the methods.
Method Beam 3243 Shell 3443 Hexa 3843

C and D 13.51 30.87 59.34
E 9.54 25.41 53.60
G 1.42 1.88 2.03
L 1.92 2.16 2.23

5. Implementation comparisons

While back-of-the-envelope calculations and metrics can be insight-
ful when comparing competing implementations, the ultimate compar-
ison metric goes back to running the implementations on an actual
compute hardware. Herein, we are using multicore CPUs supporting
vectorized AVX2 and FMA3 instructions. The use of vectorized AVX2
instructions enables four double-precision additions or multiplications
to be computed in one clock cycle; vectorized FMA3 instructions can
compute four double-precision fused multiply-adds, like 𝑥 = 𝛼𝑦+𝑥, per
clock cycle when pipelined. To tap these instructions, memory must be
properly aligned and the compiler must deem these instructions safe to
issue.

As discussed in Section 4.3, there are two sides of the performance
coin: speed of floating point operations, and speed of memory/data
access. For the latter, the required data may travel all the way from
main memory and through three CPU cache levels before it lands in
a register for processing. The lower the cache level that services a
memory operation, the lower the latency of the request. It can be one
hundred times faster to access from L1 cache than from main memory.
The constraint faced though is that L1 cache is very small—of the order
of 32 KiB. For L2 cache, one can count on roughly 256 KiB. Level 3
caches are typically of the order 10–20 MiB, with recent chips sporting
as much as 256 MiB. This is important to keep in mind, since implemen-
tations ‘‘G’’ and ‘‘L’’ are memory hungry, and therefore bound to make
less efficient use of L1 and L2 caches. However, this argument is not
definitive, since modern architectures have very strong instruction level
parallelism support that engages in data prefetching, which alleviates
some of the memory pressure manifest in ‘‘G’’ and ‘‘L’’. In general, it
is rare that an implementation can reach its maximum compute limit.
Almost always, the applications are in fact memory-bound, which does
not bode well for ‘‘G’’ and ‘‘L’’.

Due to the complexity and variety of modern processors, the per-
formance of the implementations of each method will be examined
in multiple stages. First, in Section 5.1, the execution performance
outside the context of a simulation is presented for one generalized in-
ternal force evaluation and one Jacobian matrix evaluation. Section 5.2
provides a more in-depth analysis of the execution performance by
taking into account the limitations of the underlying hardware. Finally,
Section 5.3 presents timing results for actual dynamic simulations to
gain additional insights into how other components of the simulation,
e.g., solution of the linear system and matrix factorization, play into the
overall performance equation. To compare the implementations against
each other, each element and method was implemented in C++ as an

extension of the Chrono v7.0.1 multi-physics engine [11]. The source
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Fig. 3. Mean times for a single generalized internal force evaluation for a fully parameterized ANCF beam 3243 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272
right) processors, with error bars showing the minimum and maximum measured times.
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Table 10
Mean times for a single generalized internal force evaluation for a fully parameterized
ANCF beam 3243 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
processors for different numbers of OpenMP threads for each of the five methods.
Threads C D E G L

1 0.77 0.95 1.23 2.77 2.82
2 0.50 0.57 0.68 1.67 1.88
4 0.32 0.44 0.57 1.37 1.59
8 0.21 0.27 0.38 1.26 1.44

1 0.80 1.02 1.11 3.16 3.18
2 0.41 0.52 0.57 1.76 1.67
4 0.24 0.29 0.34 0.86 0.89
8 0.15 0.16 0.19 0.22 0.20
16 0.11 0.14 0.15 0.17 0.17
24 0.08 0.10 0.11 0.11 0.07
48 0.15 0.17 0.17 0.18 0.14

code for all of these implementations and associated examples can be
found at [24].

Two different processors are used in the comparisons that follow.
The first processor, referred to as ‘‘Intel i7-7700HQ’’, is an Intel®

Core™ i7-7700HQ processor hosted on a laptop. Intel i7-7700HQ has
four physical cores with Hyper-Threading, which turns the laptop into
an eight virtual core machine. The code was compiled using LLVM
Clang 12.0.1 running on Ubuntu within Windows 10 Subsystem for
Linux 2 (WSL2) using the {-O3 -DNDEBUG} compiler flags. The second
processor is a second-generation AMD EPYC™ 7272 CPU. Note that two
uch processors are hosted on one workstation; this configuration will
e identified below as ‘‘AMD EPYC 7272’’. Each AMD EPYC™ 7272
rocessor has 12 physical cores with simultaneous multithreading, for a
otal of 24 physical cores and 48 virtual cores on the workstation used
recall there are two AMD processors involved). The source code for
omputer AMD EPYC 7272 was compiled using LLVM Clang 13 running
n Fedora using the {-O3 -DNDEBUG} compiler flags.

.1. Average generalized internal force and Jacobian execution times

First, we present the results of repeated force and Jacobian eval-
ations. This exercise eliminates from the performance equation the
hoice of numerical integrator, linear solver, etc. Thus, for each element–
mplementation pair, a simple mesh of elements was created and then
he time to evaluate the generalized internal force and the Jacobian
atrix for all the elements in the mesh was measured for the imple-
entation considered. This time was then normalized by the number
f elements in the mesh. This process was repeated multiple times
ith different random nodal locations to generate a range and mean
f normalized times for each element-implementation pair.
The Beam 3243 element benchmark test used a mesh of 1024
qual elements arranged in a line and 1000 iterations of small random p

8

Table 11
Mean times for a single Jacobian matrix evaluation for a fully parameterized ANCF
beam 3243 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
processors for different numbers of OpenMP threads for each of the five methods.
Threads C D E G L

1 7.76 5.18 4.96 10.48 5.53
2 4.35 2.82 2.79 5.72 3.28
4 3.32 2.21 1.93 4.46 2.34
8 2.03 1.35 1.27 2.69 1.70

1 8.43 6.99 6.44 8.97 6.98
2 4.22 3.50 3.23 4.47 3.57
4 2.15 1.80 1.65 2.20 1.78
8 1.09 0.92 0.84 0.98 0.63
16 0.94 0.66 0.60 0.81 0.51
24 0.66 0.48 0.44 0.57 0.33
48 0.70 0.52 0.49 0.63 0.38

changes in the nodal coordinates to generate the timing statistics.
Examining the results shown in Fig. 3 and Table 10, it can be seen
that all three of the ‘‘Continuous Integration’’ methods (‘‘C’’, ‘‘D’’, and
‘‘E’’) have lower execution times than either of the ‘‘Pre-Integration’’
methods (‘‘G’’ and ‘‘L’’) for the Intel i7-7700HQ processor. Both ‘‘Pre-
Integration’’ methods have similar execution times even though method
‘‘G’’ has over twice the calculated number of required operations. For
the AMD EYPC 7272 workstation, this same trend continues through
16 OpenMP [25] threads. If additional threads are used, then method
‘‘L’’ appears to perform the best. To investigate this difference, a series
of dynamic simulations were conducted with a uniform mesh of either
48 or 1024 beam elements based on the three-dimensional pendulum
discussed in [26]. The average time to evaluate the generalized internal
force, normalized per element, was generated over the course of a 1 s
simulation with a fixed time step of 10−3 s. Comparing the results from
he mesh of 48 beam elements shown in Fig. 4 against the mesh of 1024
eam elements shown in Fig. 5, the relative performance of method ‘‘L’’
is quite different. For the smaller mesh, method ‘‘L’’ generally has one
of the shortest execution times. However, with the larger mesh, method
‘‘L’’ generally has one of the longest execution times. This difference in
relative timing highlights the complexity of comparing and studying
the expected performance of different ANCF implementations.

It is also interesting to note that for just the generalized inter-
nal force evaluation for the Beam 3243 element, method ‘‘C’’, which
calculates the generalized internal force utilizing a loop over each
Gauss quadrature point, is slightly faster than both method ‘‘D’’ and
‘‘E’’, which utilize larger matrix multiplications in an attempt to better
align with the constraints of the hardware. The likely reason for this
difference is discussed in [6].

Examining the Jacobian matrix evaluation times in Fig. 6 and Ta-
le 11, methods ‘‘D’’ and ‘‘E’’ perform the best on the Intel i7-7700HQ
rocessor followed by methods ‘‘L’’, ‘‘C’’, and ‘‘G’’ respectively. Looking



M. Taylor, R. Serban and D. Negrut International Journal of Non-Linear Mechanics 149 (2023) 104308

(

o

e
s
s

Fig. 4. Mean times for a single generalized internal force evaluation for a fully parameterized ANCF beam 3243 element onthe Intel i7-7700HQ (left) and the AMD EYPC 7272
(right) processors measured during a 1 s dynamic simulation with a mesh of 48 elements.
Fig. 5. Mean times for a single generalized internal force evaluation for a fully parameterized ANCF beam 3243 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272
right) processors measured during a 1 s dynamic simulation with a mesh of 1024 elements.
Fig. 6. Mean times for a single Jacobian matrix evaluation for a fully parameterized ANCF beam 3243 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
processors with error bars showing the minimum and maximum measured times.
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at the AMD EYPC 7272 processor, the Jacobian matrix evaluation times
are closer together, especially among methods ‘‘D’’, ‘‘E’’, and ‘‘L’’. While
method ‘‘L’’ does become slightly faster as more threads are used, as
with the generalized internal force evaluations, this is likely a result
of the size of the test setup. This conclusion is based on the relative
differences in the mean Jacobian evaluation times for the dynamic
simulation with a mesh of 48 elements in Fig. 7 compared to the mesh
f 1024 elements in Fig. 8.
The Shell 3443 element benchmark tests used a mesh of 1024 equal

lements connected edge to edge in a single line and 100 iterations of
mall random changes in the nodal coordinates to generate the timing
tatistics. Examining the generalized internal force evaluation times
 m

9

n Fig. 9 and Table 12, the ‘‘Continuous Integration’’ methods ‘‘C’’,
‘D’’, and ‘‘E’’ have notably lower evaluation times than either of the
wo ‘‘Pre-Integration’’ methods, with method ‘‘D’’ generally being the
astest. Looking at the case of 24 threads on the AMD EYPC 7272
rocessors, methods ‘‘D’’ and ‘‘E’’ have the same lowest generalized
nternal force evaluation time. Method ‘‘C’’ requires approximately 3
imes as much time and methods ‘‘G’’ and ‘‘L’’ both require approxi-
ately 37 times as much time per evaluation. This timing difference
s much larger than the calculated difference in required FLOPs shown
n Table 6 where method ‘‘L’’ only requires approximately 3 times as
any operations and method ‘‘G’’ requires approximately 7 times as
any operations as methods ‘‘C’’, ‘‘D’’, and ‘‘E’’.
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Fig. 7. Mean times for a single Jacobian matrix evaluation for a fully parameterized ANCF beam 3243 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
processors measured during a 1 s dynamic simulation with a mesh of 48 elements.
Fig. 8. Mean times for a single Jacobian matrix evaluation for a fully parameterized ANCF beam 3243 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
processors measured during a 1 s dynamic simulation with a mesh of 1024 elements.
Fig. 9. Mean times for a single generalized internal force evaluation for a fully parameterized ANCF shell 3443 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272
(right) processors with error bars showing the minimum and maximum measured times.
Examining the Jacobian matrix evaluation times for the Shell 3443
element in Fig. 10 and Table 13, a similar ordering of the comparison
ethods can be seen except where method ‘‘E’’ is generally the fastest
nstead of method ‘‘D’’ as expected due to its lower FLOP count. The
ifference among the methods is much smaller than it is with the
eneralized internal force evaluations. Looking again at the case of 24
hreads on the AMD EYPC 7272 processors, method ‘‘C’’ only requires
pproximately 1.5 times as much time as method ‘‘E’’ and methods ‘‘G’’
nd ‘‘L’’ both require approximately 3 times as much time as method
‘E’’. As again, this ordering does not align with the calculated number
f required FLOPs as shown in Table 7 where method ‘‘G’’ was predicted
to be the fastest method by a factor of 1.5 to 2.
10
When examining these results, it is important to keep in mind that
these tests assume a single-layer shell element and not the discrete mul-
tilayer shell element discussed by Liu et al. [5]. If a single equivalent
layer could not be used, then the evaluation time for methods ‘‘C’’, ‘‘D’’,
and ‘‘E’’ would need to be multiplied by the number of discrete layers,
whereas the evaluation times for methods ‘‘G’’ and ‘‘L’’ would remain
constant. In the worst-case ratio of a pure Newton–Raphson method
where the number of generalized internal force and Jacobian matrix
evaluations are identical, a five-layer shell would have similar total
times for methods ‘‘D’’, ‘‘E’’, ‘‘G’’, and ‘‘L’’. If the ratio of generalized
internal force evaluations was higher, the break-even point between
the methods would occur with a much larger number of layers. For the
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Fig. 10. Mean times for a single Jacobian matrix evaluation for a fully parameterized ANCF shell 3443 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
rocessors with error bars showing the minimum and maximum measured times.
Table 12
Mean times for a single generalized internal force evaluation for a fully parameterized
ANCF shell 3443 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
processors for different numbers of OpenMP threads for each of the five methods.
Threads C D E G L

1 13.49 3.55 3.90 56.43 36.89
2 7.16 2.31 2.20 33.18 25.08
4 5.45 1.26 1.68 24.98 22.96
8 3.53 1.03 1.32 16.80 21.60

1 11.60 4.03 4.67 59.56 36.59
2 5.79 2.03 2.37 30.64 20.00
4 2.89 0.90 1.05 16.00 15.62
8 1.47 0.46 0.45 9.93 11.70
16 1.19 0.36 0.35 10.34 10.17
24 0.83 0.25 0.25 9.25 9.18
48 0.91 0.32 0.32 10.02 9.22

Table 13
Mean times for a single Jacobian matrix evaluation for a fully parameterized ANCF
shell 3443 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
processors for different numbers of OpenMP threads for each of the five methods.
Threads C D E G L

1 62.25 34.59 32.76 113.43 73.41
2 33.68 19.40 19.42 63.17 42.92
4 24.69 15.98 14.36 47.60 34.96
8 16.08 9.04 8.77 30.28 31.52

1 63.01 51.20 47.53 126.32 89.10
2 31.43 25.35 23.40 63.49 45.39
4 15.51 12.45 11.58 32.09 24.21
8 7.73 6.20 5.69 16.27 14.11
16 6.93 4.52 4.17 13.66 11.69
24 4.99 3.31 3.05 9.98 9.95
48 5.08 3.39 3.14 10.31 9.87

dynamic simulation shown later in Section 5.3 that still has a relatively
low ratio of 7.5 generalized internal force evaluations per Jacobian
evaluation due to recalculating the Jacobian once every time step, the
break-even point is around 15 to 16 layers.

The Hexahedral 3843 element benchmark test used a mesh of 512
equal elements connected face to face in a single line and 100 iterations
of small random changes in the nodal coordinates to generate the
statistics. Examining the generalized internal force evaluation times in
Fig. 11 and Table 14, like the Shell 3443 element, the ‘‘Continuous
Integration’’ methods ‘‘C’’, ‘‘D’’, and ‘‘E’’ have notably lower evaluation
times that either of the ‘‘Pre-Integration’’ methods, where again method
‘‘D’’ is generally the fastest. Looking once more at the case of 24 threads
on the AMD EYPC 7272 processors, method ‘‘C’’ still requires about
3.6 times as much time as method ‘‘D’’ but methods ‘‘G’’ and ‘‘L’’
have grown to 180 and 210 times the evaluation time of method ‘‘D’’,
respectively.
11
Table 14
Mean times for a single generalized internal force evaluation for a fully parameterized
ANCF hexahedral 3843 element on the Intel i7-7700HQ (left) and the AMD EYPC
7272 (right) processors for different numbers of OpenMP threads for each of the five
methods.
Threads C D E G L

1 45.47 11.07 11.58 564.57 430.28
2 25.34 5.59 6.57 330.95 361.66
4 17.11 5.32 5.53 257.47 338.87
8 10.15 3.62 4.26 207.45 346.96

1 37.11 12.28 13.09 809.54 330.79
2 18.30 6.23 6.81 417.99 247.24
4 9.15 3.05 3.46 223.41 239.47
8 4.56 1.24 1.37 149.48 185.06
16 3.53 0.96 1.04 135.38 160.60
24 2.51 0.69 0.70 124.50 145.42
48 2.63 0.80 0.83 128.76 145.36

Table 15
Mean times for a single Jacobian matrix evaluation for a fully parameterized ANCF
hexahedral 3843 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
processors for different numbers of OpenMP threads for each of the five methods.
Threads C D E G L

1 356.44 216.68 214.41 1559.98 1057.25
2 200.01 118.65 115.59 877.43 715.87
4 146.09 91.84 93.66 610.53 586.50
8 95.11 59.16 58.15 448.39 530.30

1 378.72 347.43 357.55 2487.82 1097.11
2 188.05 174.12 179.97 1244.72 608.21
4 94.18 87.05 89.91 623.97 401.58
8 47.10 43.48 44.89 316.54 278.21
16 45.01 29.55 29.93 271.38 258.56
24 32.40 22.32 22.55 207.78 243.83
48 32.77 22.48 22.77 209.07 250.29

Similar trends are visible for the Jacobian matrix evaluation times
shown in Fig. 12 and Table 15. The evaluation times for methods ‘‘D’’
and ‘‘E’’ are very similar. The Jacobian matrix evaluation for method
‘‘C’’ requires approximately 1.5 times as much time as method ‘‘E’’,
method ‘‘G’’ requires approximately 9 times as much time as method
‘‘E’’, and method ‘‘L’’ requires approximately 11 times as much time as
method ‘‘E’’.

5.2. Roofline analysis

Additional insight into the timing comparisons shown in Section 5.1
can be gained through a roofline analysis of the implemented code [10].
Each of the standalone timing comparisons was profiled with Intel®

Advisor on the Intel i7-7700HQ processor to generate cache-aware
roofline plots [27] and other fine-grain performance statistics with a
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Fig. 11. Mean times for a single generalized internal force evaluation for a fully parameterized ANCF hexahedral 3843 element on the Intel i7-7700HQ (left) and the AMD EYPC
7272 (right) processors with error bars showing the minimum and maximum measured times.
Fig. 12. Mean times for a single Jacobian matrix evaluation for a fully parameterized ANCF hexahedral 3843 element on the Intel i7-7700HQ (left) and the AMD EYPC 7272
(right) processors with error bars showing the minimum and maximum measured times.
Fig. 13. Intel® Advisor cache-aware roofline plot for the ANCF beam 3243 element generalized internal force evaluation (left) and Jacobian matrix evaluation (right) on the Intel
i7-7700HQ processor using a single thread.
variety of different mesh sizes. Since this profiling adds additional
overhead, the resulting evaluation times are slightly different than
those shown in Section 5.1.

For the roofline plots shown in Figs. 13, 14, and 15, the arithmetic
intensity, defined as the number of floating-point operations per byte
of data transferred, is plotted against the computational execution rate
in GFLOPs/s as measured by Intel® Advisor. This is done for each
implementation and mesh size. Along the vertical axis, which lists
12
GFLOPs/second execution speeds, the roofline plot also displays with
dotted horizontal lines the measured maximum attainable rates for
scalar addition, vectorized addition, and vectorized fused multiply-
add (FMA) instructions. For double precision on the Intel i7-7700HQ
architecture, as expected, the attainable rate for vectorized additions
is four times that of scalar operations; the rate for vectorized FMA
instructions is eight times higher than that of scalar operations. To
seize these speed gains, the implementation must be designed such
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Fig. 14. Intel® Advisor cache-aware roofline plot for the ANCF shell 3243 element generalized internal force evaluation (left) and Jacobian matrix evaluation (right) on the Intel
i7-7700HQ processor using a single thread.
Fig. 15. Intel® Advisor cache-aware roofline plot for the ANCF hexahedral 3843 element generalized internal force evaluation (left) and Jacobian matrix evaluation (right) on the
ntel i7-7700HQ processor using a single thread.
hat the compiler can issue these AVX2 and/or FMA instructions,
hich mostly has to do with paying attention to memory alignment
f data arrays, and avoiding vector aliasing, recursions, and conditional
tatements. The diagonal rooflines are set by the bandwidth limitations
rom main memory and each of the different CPU cache levels. For
his computer, the bandwidth of the L1 cache is 17 times larger than
hat of the main memory. However, L1’s size per core is approximately
00,000 times smaller than that of the main memory. As these roofline
lots show, both the memory and FLOPs/s limitations of the hardware
ictate upper bounds on the performance that can be achieved by an
mplementation. As a rule of thumb, if the implementation hits the
lanted line in the plot, the execution is memory-bound; if one hits
‘the ceiling’’, that is, the horizontal part of the plot, the execution
s compute-bound. If the execution is neither memory- nor compute-
ound, there is internal overhead in the implementation, e.g., thread
ynchronization, abundance of conditionals, input/output operations,
tc. As it is well known and confirmed by these roofline plots, the
2 is faster than L3 (about 60% increase in bandwidth) but it is also
ignificantly smaller – for i7-7700HQ one has 32 KiB of L1 data cache
er core, 256 KiB of L2 cache per core, and 6 MiB of L3 cache per
rocessor. As such, ‘‘G’’ and ‘‘L’’, which have a very large memory
13
footprint will exhaust for sure L2 and even the L3 cache and engage
in transactions with the main memory. As the roofline plot shows,
while a memory transaction from L1 cache is serviced at 272.4 GiB/s,
it only clocks in at 15.88 GiB/s if serviced by the main memory. What
obfuscates the performance analysis is the fact that each core engages
in prefetching, which relieves some of the cache pressure.

Looking first at the generalized internal force evaluations in Figs. 13,
14, and 15 along with Tables 22, 24, and 26, the execution speed of
method ‘‘L’’ is likely limited by the speed of main memory since its
average execution rate is below the scalar addition roof for all but
a few of the test cases. This is likely due to the inherent limitations
of the matrix–vector product that composes the majority of these
computations. This aligns with the ratios previously shown in Table 8.
For methods ‘‘C’’ and ‘‘G’’, which both contain a fairly large number of
smaller matrix multiplications, the compiler is able to better optimize
these implementations for the Beam 3243 element than for the Shell
3443 or Hexahedral 3843 elements. The execution rates of methods ‘‘D’’
and ‘‘E’’ stay relatively constant with only a slight increase in speed as
the complexity of the element increases. Looking at the tables, the large
amount of stored data can be seen in the transfers from main memory

through cache, especially for the Shell 3443 and Hexahedral 3843
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Table 16
Intel® Advisor measured summary results for the ANCF beam 3243 generalized internal force evaluation on the Intel i7-7700HQ processor. The results are averaged for a single
lement calculated using different mesh sizes with a single thread for each of the five example methods.
Average evaluation time (μs)

Method 8 16 32 64 128 256 512 1024 2048 4096 8192

C 0.69 0.67 0.66 0.71 0.71 0.72 0.70 0.78 1.07 1.02 1.04
D 1.03 0.92 0.89 0.85 0.87 0.96 0.88 0.91 1.09 1.15 1.22
E 1.20 0.90 0.89 0.92 0.93 0.97 0.98 1.17 1.40 1.40 1.44
G 1.57 1.57 1.58 1.62 1.68 2.26 2.74 2.92 2.95 3.01 2.95
L 0.91 0.92 0.92 0.92 1.22 1.97 2.48 2.66 2.77 2.82 2.81

Average total arithmetic intensity

C 0.203 0.203 0.203 0.203 0.203 0.203 0.203 0.203 0.203 0.203 0.203
D 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136
E 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133
G 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170
L 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157

Average total GFLOP/s

C 12.0 12.4 12.6 11.7 11.8 11.5 12.0 10.7 7.8 8.1 8.0
D 8.9 10.0 10.3 10.8 10.5 9.6 10.5 10.1 8.4 8.0 7.5
E 7.7 10.2 10.4 10.0 9.9 9.5 9.4 7.8 6.6 6.6 6.4
G 13.9 13.9 13.8 13.5 13.0 9.7 8.0 7.5 7.4 7.3 7.4
L 10.3 10.2 10.3 10.2 7.7 4.8 3.8 3.5 3.4 3.3 3.3

DRAM memory transfers (MB)

C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.004
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.004
E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.011 0.011 0.011
G 0.000 0.000 0.000 0.000 0.000 0.021 0.033 0.033 0.033 0.033 0.033
L 0.000 0.000 0.000 0.000 0.002 0.034 0.035 0.036 0.035 0.036 0.036
Table 17
Intel® Advisor measured summary results for the ANCF beam 3243 Jacobian matrix evaluation on the Intel i7-7700HQ processor. The results are averaged for a single element
alculated using different mesh sizes with a single thread for each of the five example methods.
Average evaluation time (μs)

Method 8 16 32 64 128 256 512 1024 2048 4096 8192

C 8.0 7.2 7.2 7.3 7.3 7.3 7.3 7.5 7.9 8.0 8.0
D 5.8 5.0 4.9 4.9 4.9 4.9 4.9 5.0 5.2 5.4 5.2
E 5.5 4.4 4.4 4.4 4.4 4.6 4.5 4.7 4.9 4.9 4.9
G 9.0 9.1 9.0 9.0 9.1 10.1 10.3 10.4 10.4 10.4 10.4
L 3.9 3.8 3.7 3.7 4.2 4.7 5.2 5.4 5.6 5.4 5.5

Average total arithmetic intensity

C 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232
D 0.272 0.272 0.272 0.272 0.272 0.272 0.272 0.272 0.272 0.272 0.272
E 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271
G 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094
L 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278

Average total GFLOP/s

C 16.3 18.3 18.2 18.1 18.1 17.9 17.9 17.4 16.7 16.4 16.4
D 20.0 23.4 23.7 23.8 23.7 23.7 23.6 23.2 22.2 21.7 22.2
E 20.0 25.1 24.9 24.8 24.8 24.0 24.4 23.5 22.7 22.7 22.3
G 5.7 5.6 5.7 5.7 5.6 5.0 5.0 4.9 4.9 4.9 4.9
L 19.4 19.9 20.5 20.5 18.2 16.1 14.5 14.2 13.6 14.0 13.9

DRAM memory transfers (MB)

C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.005 0.005
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.005
E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.007 0.008 0.007
G 0.000 0.000 0.000 0.000 0.000 0.020 0.029 0.029 0.029 0.029 0.029
L 0.000 0.000 0.000 0.000 0.002 0.033 0.035 0.035 0.035 0.035 0.035
elements. The measured number of FLOPs is also listed in the tables
and all these values are just slightly higher than the hand-calculated
values shown in Table 6.

Looking at the Jacobian matrix evaluations in Figs. 13, 14, and 15
along with Tables 23, 25, and 27, with the exception of method ‘‘G’’,
both the arithmetic intensity and computational rates for the Jacobians
are higher than those of the force evaluations. Note that for the Shell
3443 and Hexahedral 3843 elements, ‘‘D’’ and ‘‘E’’ are clearly using
vectorized FMA instructions since the average computational rate is
above the double precision vectorized arithmetic roof. The arithmetic
intensity of ‘‘G’’ is by comparison low owing to how data is accessed
14
in this implementation, and the increase in the amount of memory
access offsets the lower number of required FLOPs. The approximately
five-fold difference in computational rates seen in Table 27 between
method ‘‘D’’ and ‘‘G’’ is an example of why FLOP counts alone should
not be used to gauge the performance of implementations with similar
orders of magnitude of operations. Finally, note that as was the case for
the force calculations, the actual FLOP counts for the Jacobian are just
slightly higher than the hand-calculated estimates provided in Table 7.

As discussed in Section 5.1, the effect of using different mesh
sizes is clearly seen in the roofline plots shown in Figs. 13, 14, and
15 and the tabular form of the data in Tables 16, 17, 18, 19, 20,
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Table 18
Intel® Advisor measured summary results for the ANCF shell 3443 generalized internal force evaluation on the Intel i7-7700HQ processor. The results are averaged for a single
element calculated using different mesh sizes with a single thread for each of the five example methods.
Average evaluation time (μs)

Method 8 16 32 64 128 256 512 1024 2048 4096 8192

C 12.9 12.9 12.9 13.0 13.0 13.1 13.1 13.3 13.5 13.5 13.5
D 2.7 2.8 2.9 2.8 2.9 3.0 3.2 3.3 3.6 3.6 3.6
E 2.7 2.8 2.8 2.8 2.8 3.1 3.8 3.7 3.9 3.9 3.9
G 50.6 51.4 53.7 56.7 58.7 56.3 56.7 56.9 56.7 56.8 56.8
L 11.7 27.7 29.8 33.6 33.7 34.0 34.5 34.5 35.3 38.0 38.1

Average total arithmetic intensity

C 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062
D 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146
E 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148
G 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082
L 0.159 0.159 0.158 0.158 0.158 0.159 0.159 0.159 0.158 0.158 0.158

Average total GFLOP/s

C 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.7 2.7 2.7
D 13.4 13.0 12.8 13.0 12.9 12.3 11.4 11.0 10.3 10.3 10.2
E 13.5 13.2 13.0 13.3 13.2 11.9 9.6 9.9 9.4 9.4 9.4
G 5.4 5.4 5.1 4.9 4.7 4.9 4.9 4.8 4.9 4.9 4.9
L 11.5 4.9 4.6 4.0 4.0 4.0 3.9 3.9 3.8 3.6 3.6

DRAM memory transfers (MB)

C 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.014 0.015 0.015 0.015
D 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.014 0.015 0.015 0.015
E 0.000 0.000 0.000 0.000 0.000 0.008 0.027 0.027 0.027 0.027 0.027
G 0.000 0.098 0.332 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335
L 0.027 0.528 0.532 0.532 0.532 0.532 0.532 0.532 0.532 0.532 0.532
Table 19
Intel® Advisor measured summary results for the ANCF shell 3443 Jacobian matrix evaluation on the Intel i7-7700HQ processor. The results are averaged for a single element
calculated using different mesh sizes with a single thread for each of the five example methods.
Average evaluation time (μs)

Method 8 16 32 64 128 256 512 1024 2048 4096 8192

C 61 60 60 60 61 60 61 60 61 60 61
D 33 34 32 33 33 33 34 33 34 33 34
E 31 31 31 31 32 32 33 32 32 32 32
G 141 110 108 110 110 112 110 109 110 111 111
L 50 68 70 71 70 70 70 70 70 73 73

Average total arithmetic intensity

C 0.232 0.232 0.232 0.232 0.232 0.233 0.232 0.233 0.232 0.233 0.232
D 0.324 0.324 0.324 0.325 0.324 0.324 0.324 0.325 0.324 0.324 0.326
E 0.332 0.332 0.332 0.332 0.332 0.331 0.332 0.332 0.332 0.332 0.331
G 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099
L 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.328 0.328

Average total GFLOP/s

C 19.1 19.5 19.4 19.5 19.2 19.3 19.2 19.3 19.3 19.3 19.3
D 31.9 31.2 32.3 32.0 31.6 31.5 31.1 31.3 30.8 31.7 31.0
E 32.9 33.0 32.9 32.9 32.4 32.3 31.4 31.7 31.6 31.9 31.6
G 5.2 6.7 6.8 6.7 6.7 6.6 6.7 6.7 6.7 6.6 6.6
L 23.9 17.6 17.2 16.8 17.2 17.1 17.1 17.1 17.0 16.3 16.3

DRAM memory transfers (MB)

C 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.016 0.016 0.016 0.016
D 0.000 0.000 0.000 0.000 0.000 0.001 0.012 0.016 0.016 0.016 0.016
E 0.000 0.000 0.000 0.000 0.000 0.009 0.021 0.021 0.022 0.021 0.022
G 0.000 0.109 0.316 0.319 0.318 0.319 0.318 0.318 0.319 0.318 0.318
L 0.041 0.524 0.530 0.529 0.530 0.529 0.529 0.529 0.529 0.529 0.529
and 21. As the mesh sizes increase, the amount of required memory
transactions also increases while the number of required FLOPs remains
constant. These increased memory transactions can significantly affect
the overall execution performance, especially as data is evicted from
additional cache levels. This is clearly highlighted by the transition in
the execution times for the beam element generalized internal force
calculations for method ‘‘L’’ where data starts to be evicted out of L3
cache with a mesh size of 128 elements or larger. With this dependency
on memory, it is important to note that the results presented here
are measured outside of the context of a simulation. As such, memory
15
demands from the rest of the simulation computations dictating what
data can remain in cache at any given time are not accounted for here.

5.3. Relative simulation step execution times

To put the timing results shown earlier in this section into context,
a series of dynamic simulations were run with each implementation
within Project Chrono [11]. The Hilber–Hughes–Taylor (HHT) [28]
implicit integrator was used along with the Eigen [29] SparseLU linear
solver to execute one-second long simulations with a fixed time step
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Table 20
Intel® Advisor measured summary results for the ANCF hexahedral 3843 generalized internal force evaluation on the Intel i7-7700HQ processor.
The results are averaged for a single element calculated using different mesh sizes with a single thread for each of the five example methods.
Average evaluation time (μs)

Method 8 16 32 64 128 256 512

C 46 50 44 44 45 45 45
D 8 8 8 8 9 10 10
E 8 9 8 8 9 10 11
G 592 563 565 578 601 655 640
L 381 368 373 372 373 382 405

Average total arithmetic intensity

C 0.070 0.070 0.070 0.070 0.070 0.069 0.070
D 0.177 0.177 0.177 0.177 0.177 0.177 0.177
E 0.181 0.181 0.181 0.181 0.181 0.181 0.181
G 0.111 0.111 0.111 0.111 0.111 0.111 0.111
L 0.165 0.165 0.165 0.166 0.165 0.166 0.165

Average total GFLOP/s

C 2.8 2.6 2.9 2.9 2.8 2.8 2.8
D 16.6 15.1 16.9 16.6 14.2 13.1 12.3
E 16.3 14.7 16.7 16.3 13.9 12.1 11.7
G 6.3 6.6 6.6 6.4 6.2 5.7 5.8
L 5.5 5.7 5.6 5.7 5.6 5.5 5.2

DRAM memory transfers (MB)

C 0.000 0.000 0.000 0.000 0.032 0.053 0.053
D 0.000 0.000 0.000 0.000 0.029 0.053 0.053
E 0.000 0.000 0.000 0.000 0.069 0.078 0.078
G 4.539 4.543 4.544 4.543 4.543 4.543 4.544
L 8.412 8.437 8.416 8.441 8.447 8.438 8.454
Table 21
Intel® Advisor measured summary results for the ANCF hexahedral 3843 Jacobian matrix evaluation on the Intel i7-7700HQ processor. The
results are averaged for a single element calculated using different mesh sizes with a single thread for each of the five example methods.
Average evaluation time (μs)

Method 8 16 32 64 128 256 512

C 351 406 351 350 356 350 352
D 212 225 215 215 218 216 215
E 209 226 209 211 214 211 212
G 1575 1560 1573 1565 1570 1565 1765
L 1196 915 934 933 906 942 1003

Average total arithmetic intensity

C 0.276 0.276 0.276 0.276 0.276 0.276 0.276
D 0.421 0.421 0.421 0.421 0.421 0.421 0.421
E 0.425 0.424 0.425 0.425 0.425 0.424 0.425
G 0.107 0.107 0.107 0.107 0.107 0.107 0.107
L 0.344 0.344 0.344 0.344 0.344 0.344 0.344

Average total GFLOP/s

C 25.3 21.8 25.3 25.3 24.9 25.3 25.2
D 36.7 34.6 36.3 36.2 35.7 36.1 36.3
E 36.9 34.1 36.8 36.4 36.1 36.6 36.4
G 6.4 6.4 6.4 6.4 6.4 6.4 5.7
L 15.9 20.8 20.3 20.4 21.0 20.2 18.9

DRAM memory transfers (MB)

C 0.003 0.000 0.002 0.001 0.045 0.058 0.058
D 0.000 0.000 0.000 0.000 0.043 0.057 0.057
E 0.000 0.000 0.000 0.002 0.066 0.068 0.068
G 4.539 4.515 4.535 4.521 4.492 4.519 4.496
L 8.782 8.812 8.881 8.848 8.850 8.825 8.833
Table 22
Intel® Advisor measured summary results for the ANCF beam 3243 generalized internal force evaluation on the Intel i7-7700HQ processor. The results are averaged for a single
lement calculated using a mesh of 1024 elements with a single thread for each of the five example methods.
Method Internal force

evaluation time (μs)
Total arithmetic
intensity

Total
kFLOP

Total
GFLOP/s

L1 memory
transfers (MB)

L2 memory
transfers (MB)

L3 memory
transfers (MB)

DRAM memory
transfers (MB)

Avg memory
speed (GB/s)

C 0.8 0.203 8.3 10.7 0.041 0.004 0.004 0.000 52
D 0.9 0.136 9.2 10.1 0.068 0.005 0.004 0.000 74
E 1.2 0.133 9.2 7.8 0.069 0.015 0.011 0.008 59
G 2.9 0.170 21.8 7.5 0.128 0.035 0.033 0.033 44
L 2.7 0.157 9.4 3.5 0.060 0.037 0.036 0.036 22
16
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Table 23
Intel® Advisor measured summary results for the ANCF beam 3243 Jacobian matrix evaluation on the Intel i7-7700HQ processor. The results are averaged for a single element
alculated using a mesh of 1024 elements with a single thread for each of the five example methods.

Method Jacobian evalu-
ation time (μs)

Total arithmetic
intensity

Total
kFLOP

Total
GFLOP/s

L1 memory
transfers (MB)

L2 memory
transfers (MB)

L3 memory
transfers (MB)

DRAM memory
transfers (MB)

Avg memory
speed (GB/s)

C 7.5 0.232 131 17.4 0.566 0.012 0.004 0.000 75
D 5.0 0.272 117 23.2 0.429 0.249 0.004 0.000 85
E 4.7 0.271 110 23.5 0.406 0.237 0.007 0.006 86
G 10.4 0.094 51 4.9 0.541 0.040 0.029 0.029 52
L 5.4 0.278 76 14.2 0.274 0.230 0.035 0.035 51
Table 24
Intel® Advisor measured summary results for the ANCF shell 3443 generalized internal force evaluation on the Intel i7-7700HQ processor. The results are averaged for a single
element calculated using a mesh of 1024 elements with a single thread for each of the five example methods.
Method Internal force eval-

uation time (μs)
Total arithmetic
intensity

Total
kFLOP

Total
GFLOP/s

L1 memory
transfers (MB)

L2 memory
transfers (MB)

L3 memory
transfers (MB)

DRAM memory
transfers (MB)

Avg memory
speed (GB/s)

C 13.3 0.062 37 2.8 0.596 0.014 0.014 0.014 45
D 3.3 0.146 37 11.0 0.252 0.082 0.014 0.014 76
E 3.7 0.148 37 9.9 0.248 0.092 0.027 0.027 67
G 56.9 0.082 276 4.8 3.346 0.393 0.345 0.335 59
L 34.5 0.159 136 3.9 0.854 0.551 0.550 0.532 25
Table 25
Intel® Advisor measured summary results for the ANCF shell 3443 Jacobian matrix evaluation on the Intel i7-7700HQ processor. The results are averaged for a single element
calculated using a mesh of 1024 elements with a single thread for each of the five example methods.
Method Jacobian evalua-

tion time (μs)
Total arithmetic
intensity

Total
kFLOP

Total
GFLOP/s

L1 memory
transfers (MB)

L2 memory
transfers (MB)

L3 memory
transfers (MB)

DRAM memory
transfers (MB)

Avg memory
speed (GB/s)

C 60 0.233 1167 19.3 5.017 1.372 0.015 0.016 83
D 33 0.325 1046 31.3 3.221 1.274 0.016 0.016 96
E 32 0.332 1022 31.7 3.082 1.267 0.022 0.021 95
G 109 0.099 734 6.7 7.419 0.670 0.374 0.318 68
L 70 0.328 1194 17.1 3.637 2.743 0.714 0.529 52
Table 26
Intel® Advisor measured summary results for the ANCF hexahedral 3843 generalized internal force evaluation on the Intel i7-7700HQ processor. The results are averaged for a
ingle element calculated using a mesh of 512 elements with a single thread for each of the five example methods.
Method Internal force Total arithmetic Total Total L1 memory L2 memory L3 memory DRAM memory Avg memory

evaluation
time (μs)

intensity kFLOP GFLOP/s transfers
(MB)

transfers
(MB)

transfers
(MB)

transfers (MB) speed (GB/s)

C 45 0.070 127 2.8 1.827 0.056 0.052 0.053 41
D 10 0.177 127 12.3 0.718 0.564 0.086 0.053 70
E 11 0.181 127 11.7 0.701 0.519 0.110 0.078 64
G 640 0.111 3706 5.8 33.339 5.760 4.754 4.544 52
L 405 0.165 2108 5.2 12.758 12.905 8.470 8.454 32
Table 27
Intel® Advisor measured summary results for the ANCF hexahedral 3843 Jacobian matrix evaluation on the Intel i7-7700HQ processor. The results are averaged for a single element
alculated using a mesh of 512 elements with a single thread for each of the five example methods.
Method Jacobian evaluation Total arithmetic Total kFLOP Total L1 memory L2 memory L3 memory DRAM memory Avg memory

time (μs) intensity GFLOP/s transfers (MB) transfers (MB) transfers (MB) transfers (MB) speed (GB/s)

C 352 0.276 8 860 25.2 32.153 13.240 0.100 0.058 91
D 215 0.421 7 791 36.3 18.507 9.801 2.817 0.057 86
E 212 0.425 7 704 36.4 18.146 9.481 2.709 0.068 86
G 1765 0.107 10 040 5.7 93.963 27.741 5.881 4.496 53
L 1003 0.344 18 998 18.9 55.187 38.606 10.188 8.833 55
of 10−3 s. A modified Newton–Raphson method was used where the
Jacobian matrix was evaluated and factorized once per time step. While
other techniques exist to reduce the number of Jacobian evaluations
and factorizations, the focus here is on gauging the relative cost of the
ANCF calculations versus the cost of the linear algebra required to solve
the system of equations of motion.
17
For the Beam 3243 element, a uniform mesh of 1024 beam elements
was generated based on the three-dimensional pendulum discussed
in [26], where a spherical joint was used to attach the square cross-
section pendulum to ground. Examining the contributions to total wall
times for each of the methods shown in Fig. 16, the largest portion
of time is due to the LU factorization of the Jacobian and not the
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Fig. 16. Wall clock times for a 1 s simulations with a constant time step of 10−3 s
for a 3D pendulum with a linear mesh composed of 1024 ANCF Beam 3243 elements
conducted on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right) processors
using a single OpenMP thread.

Fig. 17. Wall clock times for a 1 s simulations with a constant time step of 10−3 s for
a 3D simple plate pendulum with a mesh composed of 800 ANCF Shell 3443 elements
conducted on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right) processors
using a single OpenMP thread.

ANCF Jacobian matrix evaluations. For the generalized internal force
evaluations, the cost of the ANCF calculations is higher than those for
the linear solver back substitution step. While it may appear from the
figure that the generalized internal force evaluations are more costly
than the Jacobian evaluations, this is because on average 4.9 gener-
alized internal force evaluations were required per Jacobian matrix
evaluation.

For the Shell 3443 element, the plate pendulum described in [14]
is used with a mesh of 20 by 40 elements and a fixed time step of
10−3 s. Examining the relative execution time contributions for each
method shown in Fig. 17, the Jacobian LU factorization once again
composes the largest percent of the overall time even though on av-
erage 7.5 generalized internal force evaluations occurred per Jacobian
evaluation. For all the methods, the ANCF Jacobian evaluation times
are notably shorter than the LU factorizations. For methods ‘‘C’’, ‘‘G’’,
and ‘‘L’’, the generalized internal force evaluation times are longer than
the linear solver back-substitution step, while for methods ‘‘D’’ and
‘‘E’’, the back-substitution step is longer. Even though the generalized
18
Fig. 18. Wall clock times for a 1 s simulations with a constant time step of 10−3 s
for a 3D simple plate pendulum with a mesh composed of 200 ANCF Hexahedral 3843
elements conducted on the Intel i7-7700HQ (left) and the AMD EYPC 7272 (right)
processors using a single OpenMP thread.

internal force and Jacobian evaluations for methods ‘‘C’’, ‘‘D’’, and ‘‘E’’
are notably shorter, the simulations for methods ‘‘G’’ and ‘‘L’’ only
take about 1.5 times as long since the linear algebra steps compose a
significant portion of the overall simulation time and eclipse gains in
force/Jacobian calculations.

For the Hexahedral 3843 element, the same plate pendulum from
the Shell 3443 simulations was reused here. The mesh had 10 by 20 by
1 elements, and the spherical joint was relocated from the midsurface
to the bottom corner of the plate. On average 7.6 generalized internal
force evaluations occurred per Jacobian evaluation for this simulation.
Examining the relative execution time contributions for each method
shown in Fig. 18, the solution component with the longest execution
time depends on the method. For methods ‘‘G’’ and ‘‘L’’, the generalized
internal force evaluations require the most time. For method ‘‘G’’,
the Jacobian matrix evaluation time is longer than the Jacobian LU
factorization. Looking at methods ‘‘C’’, ‘‘D’’, and ‘‘E’’, the Jacobian LU
factorization again has the largest contribution to the overall execution
time. For methods ‘‘D’’ and ‘‘E’’ the linear solver back substitution step
is still longer than the generalized internal force evaluation. For this
element, larger differences in the total simulation times can be seen
with method ‘‘G’’ requiring roughly 5 times longer than methods ‘‘D’’
or ‘‘E’’.

6. Conclusions

The main conclusion of this work is that significant differences
in terms of performance exist among the methods proposed in the
literature to solve the same nonlinear flexible body dynamics problem
within the ANCF framework. The three ‘‘Continuous Integration’’ imple-
mentations focused on making the integration across the volume of the
element during each generalized internal force evaluation as efficient as
possible. The two ‘‘Pre-Integration’’ methods mathematically separated
out the nodal coordinates from the integration across the volume of
the element. As a result, the integration across the volume of the
element is only required once prior to the start of the simulation.
While on the surface this may sound advantageous, it was demon-
strated that the ‘‘Pre-Integration’’ methods were more sluggish both
for the generalized internal force and its Jacobian matrix. Moreover,
the ‘‘Continuous Integration’’ methods generally require significantly
less storage than either of the two ‘‘Pre-Integration’’ methods, which
enables simulations with much larger mesh sizes. As the complexity of
an ANCF element increases, the relative advantages of the ‘‘Continuous

Integration’’ methods also increase. For the Shell 3443 element used in
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this comparison, a conservative number of Gauss quadrature points was
chosen for this study. If a slightly smaller number of Gauss quadrature
points was chosen for this element as discussed in Section 3, the
relative advantages of the ‘‘Continuous Integration’’ methods over the
‘‘Pre-Integration’’ methods would increase even more. Additionally, as
discussed in Section 4.2, if a purely linear elastic material law was
used instead of the linear viscoelastic material law, then the relative
advantages of the ‘‘Continuous Integration’’ methods would again in-
crease. Although not discussed further in this paper, it was found that
especially for the more complex elements, both of the ‘‘Pre-Integration’’
methods require a significantly larger amount of calculations during
the initialization phase of a simulation. While for longer simulations
this increased initialization time is likely not problematic, it could be
detrimental for shorter simulations.

While the ‘‘Continuous Integration’’ methods were generally shown
to have both the lowest execution times and the lowest required
memory storage cost, there are cases in which the ‘‘Pre-Integration’’
style methods have the upper hand. Since both the evaluation times and
memory storage costs for the ‘‘Continuous Integration’’ methods scale
with the number of Gauss quadrature points used to integrate across
the volume of the element, complex beam cross-sections or shells with
many discrete layers could shift the advantage to the ‘‘Pre-Integration’’
style methods. However, for the case of the Shell 3443 element where a
single equivalent layer could not be used, the number of layers required
to shift the advantage to the ‘‘Pre-Integration’’ style methods was quite
large.

We also noted that characteristics of the target compute hardware,
e.g., cache sizes and bandwidths, AVX and FMA support, instruc-
tion level parallelism as reflected in pre-fetching and pipelining, play
a critical role in defining the implementation’s speed of execution.
The approximately five-fold difference in FLOP rates shown in Sec-
tion 5.2 highlights that while back-of-the-envelope estimations of FLOP
counts provide some information, performance comparisons should be
conducted by running on actual hardware. This is because the opti-
mizations taking place on the processor, under the hood and with the
possible participation of the compiler, are too complex to be factored
in when one simply reads about an algorithm in a paper.

For the implementations compared, different trends could poten-
tially exist under other comparison conditions and/or compute hard-
ware. With this caveat, as shown in these comparisons with multicore
CPU architectures, the generalized internal force and Jacobian evalu-
ation implementation ‘‘D’’ and ‘‘E’’ introduced in [6] emerged as the
more competitive ones both for execution speeds and the required
amount of data storage per element.

CRediT authorship contribution statement

Michael Taylor: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Writing – original draft, Visu-
alization. Radu Serban: Methodology, Software, Writing – review &
editing, Supervision. Dan Negrut: Methodology, Writing – review &
editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.

19
Acknowledgments

This material is based upon work that was financially supported
by: (a) the U.S. National Science Foundation (NSF) under Grants
CISE1835674 OAC2209791 and (b) the U.S. Department of Defense
(DoD) High Performance Computing Modernization Program (HPCMP)
under Contract W56HZV-17-C-0095. The work was done to support:
(a) the NSF project ‘‘Chrono - An Open-Source Simulation Platform
for Computational Dynamics Problems’’ and (b) the HPCMP CREATE™-
Ground Vehicles (CREATE-GV) portion of the Computational Research
and Engineering Acquisition Tools and Environments (HPCMP CRE-
ATE™) Portfolio being executed by the DoD HPCMP Office. The views
and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S. DoD or the NSF.

Appendix A. Math behind implementation ‘‘G’’

While García-Vallejo et al. [3] originally presented their calculation
method with a simple linear elastic material model and later on with a
viscoelastic material model with two coefficients to control the damp-
ing effects [8], this presentation will demonstrate how to adapt this
method for use with the simple linear viscoelastic material model used
for the comparisons in this paper. This simpler viscoelastic material
model, presented by Zhao et al. [9], only requires a single coefficient
for the damping contribution. Local nodal coordinates will be assumed
for this presentation, but these equations can easily be adapted to use
global nodal coordinates as shown for methods ‘‘C’’, ‘‘D’’, and ‘‘E’’ in [6]
to account for mesh discontinuities as described in [30].

The starting point is the equation defining the position of a material
point within the ANCF element

𝑟(𝜉, 𝜂, 𝜁 , 𝑡) = 𝐒 (𝜉, 𝜂, 𝜁 ) 𝐞 (𝑡) , (2)

where it has been assumed that the shape function matrix 𝑆 has been
written in terms of normalized element coordinates that each span from
−1 to 1. The shape function matrix is composed of the 𝑁 unique shape
functions each multiplied by the 3 × 3 identity matrix

𝐒 =
[

𝑆1𝐈3×3 𝑆2𝐈3×3 … 𝑆𝑁 𝐈3×3
]

, (3)

where 𝑁 is dependent on the specific element being implemented.
Using the equation for the position within the element, the deformation
gradient, 𝐅 within the element can be written as

𝐅 = 𝜕𝐫
𝜕𝐫0

= 𝜕𝐫
𝜕𝝃

(

𝜕𝐫0
𝜕𝝃

)−1
= 𝜕𝐫

𝜕𝝃

(

𝐉−10𝜉
)

=
[

𝜕𝐒
𝜕𝜉 𝐞

𝜕𝐒
𝜕𝜂 𝐞

𝜕𝐒
𝜕𝜁 𝐞

] [

𝜕𝐒
𝜕𝜉 𝐞0

𝜕𝐒
𝜕𝜂 𝐞0

𝜕𝐒
𝜕𝜁 𝐞0

]−1

=
[

𝐒,1𝐞 𝐒,2𝐞 𝐒,3𝐞
]

,

(4)

where

𝐒,𝑖 =
(

𝐉−10𝜉
)

1𝑖

𝜕𝐒
𝜕𝜉

+
(

𝐉−10𝜉
)

2𝑖

𝜕𝐒
𝜕𝜂

+
(

𝐉−10𝜉
)

3𝑖

𝜕𝐒
𝜕𝜁

. (5)

Using the expression for the deformation gradient, the Green–
Lagrange strain tensor, 𝐄, can be written in Voigt notation as
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Next, the time derivative of the Green–Lagrange strain tensor, 𝐄, can
e written in Voigt notation as
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The last term needed before defining the expression for the generalized
internal force is the partial derivative of the Green–Lagrange strains
with respect to the nodal coordinates, which can be written as
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Applying the material law, the expression for the generalized inter-
nal force can be written as

𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = −∫𝑉𝜉
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Examining the definition of these terms, the Green–Lagrange strains
nd the time derivative of the Green–Lagrange strains can be combined
s

+ 𝜏𝜺̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2 𝐞

𝖳𝐒(1) (𝐞 + 2𝜏 𝐞̇) − 1
2

1
2 𝐞

𝖳𝐒(2) (𝐞 + 2𝜏 𝐞̇) − 1
2

1
2 𝐞

𝖳𝐒(3) (𝐞 + 2𝜏 𝐞̇) − 1
2

1
2 𝐞

𝖳𝐒(4) (𝐞 + 2𝜏 𝐞̇)

1
2 𝐞

𝖳𝐒(5) (𝐞 + 2𝜏 𝐞̇)

1
2 𝐞

𝖳𝐒(6) (𝐞 + 2𝜏 𝐞̇)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (10)

sing this expression, the generalized internal force can be written as
he combination of two summations:

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = −∫𝑉𝜉

( 𝜕𝜺
𝜕𝐞

)𝖳
(𝐃) (𝜺 + 𝜏𝜺̇) det

(

𝐉0𝜉
)

𝑑𝑉𝜉

= −∫𝑉𝜉

(

1
2

6
∑

𝑡

6
∑

𝑣
𝐷𝑡𝑣𝐒(𝑡)𝐞𝐞𝖳𝐒(𝑣) (𝐞 + 2𝜏 𝐞̇)

−1
2

6
∑

𝑡

3
∑

𝑣
𝐷𝑡𝑣𝐒(𝑡)𝐞

)

det
(

𝐉0𝜉
)

𝑑𝑉𝜉 .

(11)

oting that the nodal coordinates or the combination of nodal co-
rdinates can be pulled out of the integral from the right side, the
eneralized internal force can simply be written as the sum of two
atrix vector products
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ̇ (12)
= 𝐊2 (𝐞 + 2𝜏𝐞) +𝐊1𝐞 .

20
here

2 = −∫𝑉𝜉

(

1
2

6
∑

𝑡

6
∑

𝑣
𝐷𝑡𝑣𝐒(𝑡)𝐞𝐞𝖳𝐒(𝑣)

)

det
(

𝐉0𝜉
)

𝑑𝑉𝜉 (13)

and

𝐊1 = ∫𝑉𝜉

(

1
2

6
∑

𝑡

3
∑

𝑣
𝐷𝑡𝑣𝐒(𝑡)

)

det
(

𝐉0𝜉
)

𝑑𝑉𝜉 . (14)

Examining these matrices, 𝐊1 is constant throughout the simulation
and has no dependency on the nodal coordinates. As such, this integral
can be computed once prior to the start of the simulation and then
reused when needed. However, 𝐊2 has a clear dependency on the
nodal coordinates. As shown in [3], it is still possible to pull the nodal
coordinates out of the integral of 𝐊2 even though they are in the
iddle of matrix multiplications on either side. Using tensor notation
or the ‘‘matrix times a vector times a vector transposed times a matrix’’
tructure of the terms in 𝐊2, it can be shown that each individual entry
n 𝐊2 can be written as the product of the nodal coordinates transposed
imes a new matrix times the nodal coordinates as
(

𝐀𝐞𝐞𝖳𝐁
)

𝑖𝑗 = 𝐴𝑖𝑘𝑒𝑘𝑒𝑙𝐵𝑙𝑗 = 𝑒𝑘𝐴𝑖𝑘𝐵𝑙𝑗𝑒𝑙 = 𝐞𝖳𝐂𝑖𝑗𝐞 , (15)

where the matrix can be calculated by

𝐂𝑖𝑗 = 𝐴𝖳
𝑟𝑜𝑤 𝑖𝐵

𝖳
𝑐𝑜𝑙 𝑗 . (16)

While this technique results in a large number of sparse ‘‘𝐂𝑖𝑗
𝐊2
’’ matrices,

all of these matrices can be integrated prior to the start of the simula-
tion. As a result, the in-simulation generalized internal force evaluation
is completely independent of the number of Gauss quadrature points
required to integrate across the volume of the element. As discussed
during the computer implementation of this method in Appendix B,
there are properties that can be leveraged to reduce both the number
and size of the constant matrices that need to be stored and used for
computations.

When using an implicit integrator, the partial derivative of the
generalized internal force with respect to the nodal coordinates and the
time derivative of the nodal coordinates is needed. Using Eq. (12), the
partial derivative with respect to the nodal coordinates can be written
as
𝜕𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝜕𝐞
=

𝜕𝐊2
𝜕𝐞

(𝐞 + 2𝜏 𝐞̇) +𝐊2 +𝐊1 = 𝐊3 +𝐊2 +𝐊1 , (17)

here all of the terms except for 𝐊3 are also needed for the generalized
nternal force evaluation. This final term can be written as
(

𝐊3
)

𝑖𝑘 =
∑

𝑗

∑

𝑠

(

𝑒𝑠

(

𝐶 𝑖𝑗
𝐊2

+
(

𝐶 𝑖𝑗
𝐊2

)𝖳
)

𝑠𝑘

(

𝑒𝑗 + 2𝜏𝑒̇𝑗
)

)

. (18)

The partial derivative of the generalized internal force with respect
o the time derivative of the nodal coordinates contains no new terms
nd can simply be written as

𝜕𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝜕𝐞̇
= 2𝜏𝐊2 . (19)

Appendix B. Implementation details, method ‘‘G’’

The presentation in [3] focused on the mathematical details of the
computational method and did not provide many specific implemen-
tation details. The authors did provide several high level observations
that they stated could be used to improve the efficiency of their method.
First the 𝐊2 matrix is symmetric so only the diagonal and upper or
lower triangular terms need to be calculated. Second, the 𝐂𝑖𝑗

𝐊2
matrices

are sparse, which both reduces the number of required calculations and
the amount of data that needs to be stored.

Focusing on the 𝐂𝑖𝑗
𝐊2

matrices, while there is a sparsity pattern to
them, there is a repetitive pattern that can be leveraged as well. This
pattern is a direct result of the structure of the shape function matrix
used for this method as shown in Eq. (3), where each individual unique
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shape function is multiplied by the [3 × 3] identity matrix. The identity
matrix carries through to each of the six 𝐒(𝑡) matrices which all have
the symmetric structure

𝐒(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎𝐈3×3 𝑏𝐈3×3 … 𝑐𝐈3×3
𝑏𝐈3×3 𝑑𝐈3×3 … 𝑒𝐈3×3
⋮ ⋮ ⋱ ⋮

𝑐𝐈3×3 𝑒𝐈3×3 … 𝑓 𝐈3×3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (20)

As a result, each [3 × 3] block of 𝐂𝑖𝑗
𝐊2
matrices contains the same values,

ust with a different sparsity pattern. For example, if

11
𝐊2

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔 0 0 ℎ 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
𝑘 0 0 𝑙 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (21)

hen

12
𝐊2

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 𝑔 0 0 ℎ 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
0 𝑘 0 0 𝑙 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22)

nd

33
𝐊2

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 …
0 0 0 0 0 0 …
0 0 𝑔 0 0 ℎ …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
0 0 𝑘 0 0 𝑙 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)

ontain the same values as shown, just in different positions. If only
he non-zero entries in the pattern are stored, this reduces the size of
ach 𝐂𝑖𝑗

𝐊2
matrix from [3𝑁 × 3𝑁] to [𝑁 ×𝑁]. Additionally, this reduces

he number of 𝐂𝑖𝑗
𝐊2

matrices that must be stored from [3𝑁 × 3𝑁] to
(𝑁 + 1) ∕2 also accounting for the symmetric property of 𝐊2.
Since 𝐊1 and the compacted 𝐂𝑚𝑛

𝐊2
matrices are constant throughout

he simulation (they have no dependency on the nodal coordinates or
he time derivative of the nodal coordinates), they only need to be
alculated once prior to the start of the simulation. Matrix 𝐊1 can be
alculated from Eq. (14), typically using Gauss quadrature to approxi-
ate the integral. The compacted 𝐂𝑚𝑛

𝐊2
matrices can be calculated from

q. (13) and (16) using a matrix of just the coefficients of the identity
atrices for the 𝐒(𝑡) matrices or by using the 𝐒(𝑡) matrices in sparse form
nd then compacting the 𝐂𝑖𝑗

𝐊2
matrices to 𝐂𝑚𝑛

𝐊2
afterwards.

For the generalized internal force evaluations during the simula-
ion, the compacted 𝐂𝑚𝑛

𝐊2
matrices could be expanded out to their full

3𝑁 × 3𝑁] size and multiplied by the vector of nodal coordinates on
ach side. However, this would result in a large number of unnecessary
ultiplications by known zeros. Instead, 𝐊2 can be calculated in [3 × 3]
locks using the 𝐂𝑚𝑛

𝐊2
matrices in compact form. For this process, the

odal coordinates, 𝐞, are written in the [3 ×𝑁] matrix form presented
n [4] as

̄ =
⎡

⎢

⎢

⎣

𝑒1 𝑒4 … 𝑒𝑛−2
𝑒2 𝑒5 … 𝑒𝑛−1
𝑒3 𝑒6 … 𝑒𝑛

⎤

⎥

⎥

⎦

. (24)

hen the [3 × 3] blocks of 𝐊2 can be calculated as
( )

̄ 𝑚𝑛 (̄𝖳
)

𝐊2 ((1∶3)+3(𝑚−1)) ((1∶3)+3(𝑛−1)) = 𝐞𝐂𝐊2
𝐞 . (25)

21
ince only the diagonal and upper or lower triangular compact 𝐂𝑚𝑛
𝐊2

atrices were stored, the transpose of the [3 × 3] blocks can be stored
n the corresponding symmetric locations in 𝐊2. After calculating all of
he entries in 𝐊2, the generalized internal force vector can be computed
sing Eq. (12).
When using an implicit integrator, the contributions to the Jacobian
atrix from the partial derivatives of the generalized internal force
ith respect to the nodal coordinates and time derivative of the nodal
oordinates need to be combined together with appropriate scaling
actors that depend on the specific integrator and time step being used.
sing 𝐾𝐾 as the scale factor on the partial derivative with respect to
he nodal coordinates and 𝐾𝑅 on the partial derivative with respect to
he time derivative of the nodal coordinates, the combined Jacobian
atrix contribution, 𝐉 can be written as

= 𝐾𝐾 (

𝐊3 +𝐊2 +𝐊1
)

+𝐾𝑅 (

2𝜏𝐊2
)

= 𝐾𝐾𝐊3 +
(

𝐾𝐾 + 2𝜏𝐾𝑅)𝐊2 +𝐾𝐾𝐊1 .
(26)

hile 𝐊2 was calculated during the generalized internal force eval-
ation and 𝐊1 was calculation prior to the start of the simulation,
3 needs to be computed during the Jacobian matrix evaluation.
xamining the subscripts, this can be partially rewritten using matrix
ultiplications as

(

𝐊3
)

(1∶3)+3(𝑚−1) , (1∶3)+3(𝑘−1) =
∑

𝑛

[

𝐞̄
(

𝐂𝑚𝑛
𝐊2

)

𝑐𝑜𝑙 𝑘

(

𝐞̄ + 2𝜏 ̇̄𝐞
)𝖳

𝑐𝑜𝑙 𝑛

+
((

𝐂𝑚𝑛
𝐊2

)

𝑟𝑜𝑤𝑘
𝐞̄𝖳

(

𝐞̄ + 2𝜏 ̇̄𝐞
)

𝑐𝑜𝑙 𝑛

)

𝐈3×3
]

.
(27)

ince this summation can be implemented using ‘‘for -loops’’, the num-
er of required calculations can be reduced by calculating

(

𝐞̄ + 2𝜏 ̇̄𝐞
)

and
(

𝐞̄𝖳
(

𝐞̄ + 2𝜏 ̇̄𝐞
))

prior to the loops and selecting the required columns
where needed in the summation. Based on this, the following algorithm
can be used to calculate the Jacobian contribution from the generalized
internal force where only the diagonal and upper triangular compact
𝐂𝑚𝑛
𝐊2
matrices are needed:

𝐉 ←
(

𝐾𝐾 + 2𝜏𝐾𝑅)𝐊2 +𝐾𝐾𝐊1
𝐀 ←

(

𝐞̄ + 2𝜏 ̇̄𝐞
)

𝐁 ← 𝐞̄𝖳𝐴
for 𝑚 = 1 to N do
for 𝑛 = 𝑚 to N do

𝐆 ← 𝐂𝑚𝑛
𝐊2

𝐁𝑐𝑜𝑙 𝑛
𝐋 ← 𝐞̄𝐂𝑚𝑛

𝐊2
for 𝑘 = 1 to N do

𝐖 ← 𝐋𝑐𝑜𝑙 𝑘𝐀𝖳
𝑐𝑜𝑙 𝑛

𝐖11 ← 𝐖11 +𝐆𝑘
𝐖22 ← 𝐖22 +𝐆𝑘
𝐖33 ← 𝐖33 +𝐆𝑘
𝐉(1∶3)+3(𝑚−1) , (1∶3)+3(𝑘−1) ← 𝐉(1∶3)+3(𝑚−1) , (1∶3)+3(𝑘−1) +𝐾𝐾𝐖

end for
if 𝑚 ≠ 𝑛 then

𝐆 ←
(

𝐂𝑚𝑛
𝐊2

)𝖳
𝐁𝑐𝑜𝑙 𝑚

𝐋 ← 𝐞̄
(

𝐂𝑚𝑛
𝐊2

)𝖳

for 𝑘 = 1 to N do
𝐖 ← 𝐋𝑐𝑜𝑙 𝑘𝐀𝖳

𝑐𝑜𝑙 𝑚
𝐖11 ← 𝐖11 +𝐆𝑘
𝐖22 ← 𝐖22 +𝐆𝑘
𝐖33 ← 𝐖33 +𝐆𝑘
𝐉(1∶3)+3(𝑛−1) , (1∶3)+3(𝑘−1) ← 𝐉(1∶3)+3(𝑛−1) , (1∶3)+3(𝑘−1) +𝐾𝐾𝐖

end for
end if

end for
end for
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Appendix C. Math behind implementation ‘‘L’’

While Liu et al. [5] presented their calculation method with a
linear elastic material model, their approach can be extended to in-
corporate the simple linear viscoelastic material model used for the
comparisons in this paper. This viscoelastic material model, presented
by Zhao et al. [9], only requires a single coefficient to be defined for
the damping contribution of the material. A similar presentation to
that provided by Liu et al. will be given here using tensor notation.
The common case of local nodal coordinates is assumed, but these
equations can be modified for global nodal coordinates to account for
mesh discontinuities as described in [30]. A detailed description for
converting methods ‘‘C’’, ‘‘D’’, and ‘‘E’’ is given in [6]; a similar process
can also be used for implementation ‘‘L’’.

Liu et al. started their presentation with the expression for the
generalized internal force presented in [4], except written in tensor no-
tation. Using the First Piola–Kirchhoff stress tensor, 𝐏, the generalized
internal force was written as

𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
3(𝑘−1)+𝑚 = −∫𝑉0

𝑃𝑚𝑛𝑆̄
𝐷
𝑘𝑛 𝑑𝑉0 , (28)

where 𝑚 and 𝑛 range from 1 to 3, 𝑘 ranges from 1 to𝑁 ,𝑁 is the number
f unique shape functions for the element, and 𝑆̄𝐷 is the modified
atrix of shape function derivatives as discussed in [6] and briefly in
ppendix D. The nodal coordinates and their time derivatives can be
xpanded out of this integral through the following series of steps. For
hese steps, the subscripts 𝑓 , 𝑘, 𝑡, and 𝑣 range from 1 to 𝑁 and 𝑎, 𝑏, 𝑐,
𝑑, 𝑚, and 𝑛 range from 1 to 3.

First, the first Piola–Kirchhoff stress tensor, 𝐏, can be written as the
roduct of the deformation gradient, 𝐅, and the second Piola–Kirchhoff
tress tensor 𝐒𝑃𝐾2.

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
3(𝑘−1)+𝑚 = −∫𝑉0

𝐹𝑚𝑎𝑆
𝑃𝐾2
𝑎𝑛 𝑆̄𝐷𝑝

𝑘𝑛 𝑑𝑉0 . (29)

ext the deformation gradient can be written as the product of the
odal coordinate in matrix form, 𝐞̄, and the modified matrix of shape
unction derivatives, 𝑆̄𝐷, as

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
3(𝑘−1)+𝑚 = −∫𝑉0

𝑒𝑚𝑡𝑆̄
𝐷
𝑡𝑎𝑆

𝑃𝐾2
𝑎𝑛 𝑆̄𝐷

𝑘𝑛 𝑑𝑉0 . (30)

he second Piola–Kirchhoff stress tensor can be written in terms of the
ssumed material law as

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
3(𝑘−1)+𝑚 = −∫𝑉0

𝑒𝑚𝑡𝑆̄
𝐷
𝑡𝑎

(

𝐃4𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 ∶ 1
2
(

𝐅𝖳𝐅 − 𝐈3×3

+𝜏
(

𝐅̇𝖳𝐅 + 𝐅𝖳𝐅̇
)))

𝑎𝑛 𝑆̄
𝐷
𝑘𝑛 𝑑𝑉0 ,

(31)

where 𝐃4𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 is the elasticity tensor written in its 4th order tensor
ormat, 𝐅̇ is the time derivative of the Deformation Gradient, and 𝐈3×3
s the 3 × 3 identity matrix. The resulting terms from the double dot
roduct with the elasticity tensor can be written as the summation of
our different integrals as

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
3(𝑘−1)+𝑚 = − 1

2 ∫𝑉0
𝑒𝑚𝑡𝑆̄

𝐷
𝑡𝑎𝐷𝑎𝑛𝑏𝑐𝐹𝑑𝑏𝐹𝑑𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

+ 1
2 ∫𝑉0

𝑒𝑚𝑡𝑆̄
𝐷
𝑡𝑎𝐷𝑎𝑛𝑏𝑐𝐼𝑏𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

− 𝜏
2 ∫𝑉0

𝑒𝑚𝑡𝑆̄
𝐷
𝑡𝑎𝐷𝑎𝑛𝑏𝑐 𝐹̇𝑑𝑏𝐹𝑑𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

− 𝜏
2 ∫𝑉0

𝑒𝑚𝑡𝑆̄
𝐷
𝑡𝑎𝐷𝑎𝑛𝑏𝑐𝐹𝑑𝑏𝐹̇𝑑𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 .

(32)

Expressing the deformation gradient as the product of 𝐞̄ and 𝑆̄𝐷 and
the time derivative of the deformation gradient as the product of ̇̄𝐞 and
𝑆̄𝐷, the explicit dependency on the nodal coordinates and their time
22
derivatives can be obtained as

𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
3(𝑘−1)+𝑚 = − 1

2 ∫𝑉0
𝑒𝑚𝑡𝑆̄

𝐷
𝑡𝑎𝐷𝑎𝑛𝑏𝑐𝑒𝑑𝑓 𝑆̄

𝐷
𝑓𝑏𝑒𝑑𝑣𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

+ 1
2 ∫𝑉0

𝑒𝑚𝑡𝑆̄
𝐷
𝑡𝑎𝐷𝑎𝑛𝑏𝑐𝐼𝑏𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

− 𝜏
2 ∫𝑉0

𝑒𝑚𝑡𝑆̄
𝐷
𝑡𝑎𝐷𝑎𝑛𝑏𝑐 ̇̄𝑒𝑑𝑓 𝑆̄

𝐷
𝑓𝑏𝑒𝑑𝑣𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

− 𝜏
2 ∫𝑉0

𝑒𝑚𝑡𝑆̄
𝐷
𝑡𝑎𝐷𝑎𝑛𝑏𝑐𝑒𝑑𝑓 𝑆̄

𝐷𝑝
𝑓𝑏

̇̄𝑒𝑑𝑣𝑆̄
𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 .

(33)

Since the nodal coordinates and their time derivatives only depend on
time and not the position within the element, they can be pulled out of
the integrals as

𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
3(𝑘−1)+𝑚 = − 1

2
𝑒𝑚𝑡𝑒𝑑𝑓 𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

+ 1
2
𝑒𝑚𝑡 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑘𝑛𝐼𝑏𝑐 𝑑𝑉0

− 𝜏
2
𝑒𝑚𝑡 ̇̄𝑒𝑑𝑓 𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

− 𝜏
2
𝑒𝑚𝑡𝑒𝑑𝑓 ̇̄𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 ,

(34)

where the fact that the terms in tensor notation can be reordered
without affecting the equations was also used.

To simplify this equation, the last listed integral can be rewritten.
Since subscripts in tensor notation can be renamed without affecting
the results, the subscript 𝑓 is swapped with subscript 𝑣 and the subscript
𝑏 is swapped with subscript 𝑐 to yield

− 𝜏
2
𝑒𝑚𝑡𝑒𝑑𝑓 ̇̄𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 →

− 𝜏
2
𝑒𝑚𝑡𝑒𝑑𝑣 ̇̄𝑒𝑑𝑓 ∫𝑉0

𝐷𝑎𝑛𝑐𝑏𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 .

(35)

Utilizing one of the symmetries of the 4th order elasticity tensor

𝐷𝑎𝑛𝑏𝑐 = 𝐷𝑎𝑛𝑐𝑏 (36)

and reordering terms, this integral can be written as

− 𝜏
2
𝑒𝑚𝑡𝑒𝑑𝑣 ̇̄𝑒𝑑𝑓 ∫𝑉0

𝐷𝑎𝑛𝑐𝑏𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 →

− 𝜏
2
𝑒𝑚𝑡 ̇̄𝑒𝑑𝑓 𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 .

(37)

Since Eq. (37) exactly matches the third integral in Eq. (34), Eq. (34)
can be simplified to

𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
3(𝑘−1)+𝑚 = − 1

2
𝑒𝑚𝑡𝑒𝑑𝑓 𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

+ 1
2
𝑒𝑚𝑡 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑘𝑛𝐼𝑏𝑐 𝑑𝑉0

− 𝜏𝑒𝑚𝑡 ̇̄𝑒𝑑𝑓 𝑒𝑑𝑣 ∫𝑉0
𝐷𝑎𝑛𝑏𝑐 𝑆̄

𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 .

(38)

This can be further simplified by combining the first and third integrals
as

𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
3(𝑘−1)+𝑚 = − 𝑒𝑚𝑡

( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓
𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

+ 1
2
𝑒𝑚𝑡 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑘𝑛𝐼𝑏𝑐 𝑑𝑉0 .

(39)

Since there are common terms between the expression for the
generalized internal force vector shown in Eq. (39) and its Jacobian
matrix, the next step is to take the partial derivatives of Eq. (39) with
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respect to the nodal coordinates
(

𝜕𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝜕𝐞

)

𝑖𝑗
=

𝜕𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑖
𝜕𝑒𝑗

=

−
𝜕𝑒𝑚𝑡
𝜕𝑒𝑗

( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓
𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

− 𝑒𝑚𝑡
𝜕
(

1
2 𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓

𝜕𝑒𝑗
𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

− 𝑒𝑚𝑡
( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓

𝜕𝑒𝑑𝑣
𝜕𝑒𝑗 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

+ 1
2
𝜕𝑒𝑚𝑡
𝜕𝑒𝑗 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑘𝑛𝐼𝑏𝑐 𝑑𝑉0 ,

(40)

here the subscripts 𝑖 = 3 (𝑘 − 1) + 𝑚 and 𝑗 ranges from 1 to 3𝑁 . Each
f these terms can simplified. Starting with the first one,

(1)
𝑖𝑗 = −

𝜕𝑒𝑚𝑡
𝜕𝑒𝑗

( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓
𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

= −
( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓
𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 ,

(41)

where for 𝐊(1), 𝑖 = 3 (𝑘 − 1) + 𝑚 and 𝑗 = 3 (𝑡 − 1) + 𝑚. Grouping terms,
this can be expressed as

𝐊(1)
𝑖𝑗 = 𝛩(1)

(𝑁(𝑡−1)+𝑘) (𝑁(𝑓−1)+𝑣)𝛱
(1)
𝑁(𝑓−1)+𝑣 , (42)

where

𝛩(1)
𝑁(𝑡−1)+𝑘 , 𝑁(𝑓−1)+𝑣 = ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 (43)

and

𝛱 (1)
𝑁(𝑓−1)+𝑣 = −

( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓
𝑒𝑑𝑣 . (44)

As a result, 𝐊(1) can be generated by first calculating the
[

𝑁2 ×𝑁2]

[

𝑁2 × 1
]

matrix–vector product 𝜣(1)𝜫 (1) and then rearranging terms as
needed.

Next, the second term can be written as

𝐊(2𝐴)
𝑖𝑗 = −𝑒𝑚𝑡

𝜕
(

1
2 𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓

𝜕𝑒𝑗
𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

= −1
2
𝑒𝑚𝑡𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 ,

(45)

where for 𝐊(2𝐴), 𝑖 = 3 (𝑘 − 1) + 𝑚 and 𝑗 = 3 (𝑓 − 1) + 𝑑.
The third term can be written as

𝐊(2𝐵)
𝑖𝑗 = −𝑒𝑚𝑡

( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓

𝜕𝑒𝑑𝑣
𝜕𝑒𝑗 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0

= −𝑒𝑚𝑡
( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓 ∫𝑉0
𝐷𝑎𝑛𝑏𝑐 𝑆̄

𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 ,

(46)

where for 𝐊(2𝐵), 𝑖 = 3 (𝑘 − 1) + 𝑚 and 𝑗 = 3 (𝑣 − 1) + 𝑑. Within 𝐊(2𝐵), if
he subscripts 𝑓 and 𝑣 are swapped with each other and the subscripts
and 𝑐 are swapped with each other, this yields

(2𝐵)
𝑖𝑗 = −𝑒𝑚𝑡

( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑣 ∫𝑉0
𝐷𝑎𝑛𝑐𝑏𝑆̄

𝐷
𝑡𝑎 𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 , (47)

where now 𝑗 = 3 (𝑓 − 1) + 𝑑. Applying the symmetry of the 4th order
lasticity tensor shown in Eq. (36) and reordering terms, 𝐊(2𝐵) can be
ritten as
(2𝐵)
𝑖𝑗 = −𝑒𝑚𝑡

( 1
2
𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑣 ∫𝑉0
𝐷𝑎𝑛𝑏𝑐 𝑆̄

𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 . (48)

Based on the common terms in Eqs. (45) and (48), these equations can
be added together

𝐊(2)
𝑖𝑗 = 𝐊(2𝐴)

𝑖𝑗 +𝐊(2𝐵)
𝑖𝑗 = −𝑒𝑚𝑡

(

𝐞̄ + 𝜏 ̇̄𝐞
)

𝑑𝑣 ∫𝑉0
𝐷𝑎𝑛𝑏𝑐 𝑆̄

𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 . (49)

Similar to 𝐊(1), terms within the equation for 𝐊(2) can be grouped as

𝐊(2) = 𝛱 (2) 𝛩(2) , (50)
𝑖𝑗 3(𝑑−1)+𝑚 , 𝑁(𝑡−1)+𝑣 𝑁(𝑡−1)+𝑣 , 𝑁(𝑓−1)+𝑘

23
where

𝛱 (2)
3(𝑑−1)+𝑚 , 𝑁(𝑡−1)+𝑣 = −𝑒𝑚𝑡

(

𝐞̄ + 𝜏 ̇̄𝐞
)

𝑑𝑣 (51)

and

𝛩(2)
𝑁(𝑡−1)+𝑣 , 𝑁(𝑓−1)+𝑘 = ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 . (52)

The matrix 𝐊(2) can be calculated by first evaluating product of the
[

9 ×𝑁2] [𝑁2 ×𝑁2] matrix multiplication 𝜫 (2)𝜣(2) and then by rear-
ranging terms as needed. It should also be noted that 𝜣(1) and 𝜣(2)

are simply reordered forms of each other.
The fourth and final term can be written as

𝐊(3)
𝑖𝑗 = 1

2
𝜕𝑒𝑚𝑡
𝜕𝑒𝑗 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑘𝑛𝐼𝑏𝑐 𝑑𝑉0

= 1
2 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑘𝑛𝐼𝑏𝑐 𝑑𝑉0

= 1
2 ∫𝑉0

𝐷𝑎𝑛𝑏𝑏𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 ,

(53)

where for 𝐊(3), 𝑖 = 3 (𝑘 − 1) + 𝑚 and 𝑗 = 3 (𝑡 − 1) + 𝑚.
Since the partial derivative of the generalized internal force shown

n Eq. (39) is also needed with respect to the time derivative of the
odal coordinates for use with an implicit integrator. This equation can
e written as
(

𝜕𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝜕𝐞̇

)

𝑖𝑗
=

𝜕𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑖
𝜕𝑒̇𝑗

= 𝐊(4)
𝑖𝑗 =

− 𝑒𝑚𝑡
𝜕
(

1
2 𝐞̄ + 𝜏 ̇̄𝐞

)

𝑑𝑓

𝜕𝑒̇𝑗
𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 ,

(54)

where the subscripts 𝑖 = 3 (𝑘 − 1) + 𝑚 and 𝑗 range from 1 to 3𝑁 . It can
then be simplified as

𝐊(4)
𝑖𝑗 = −𝜏𝑒𝑚𝑡𝑒𝑑𝑣 ∫𝑉0

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 𝑑𝑉0 , (55)

where 𝑗 = 3 (𝑓 − 1) + 𝑑. Grouping terms within the equation yields

𝐊(4)
𝑖𝑗 = 𝛱 (𝐷)

3(𝑑−1)+𝑚 , 𝑁(𝑡−1)+𝑣𝛩
(2)
𝑁(𝑡−1)+𝑣 , 𝑁(𝑓−1)+𝑘 , (56)

where

𝛱 (𝐷)
3(𝑑−1)+𝑚 , 𝑁(𝑡−1)+𝑣 = −𝜏𝑒𝑚𝑡𝑒𝑑𝑣 (57)

and 𝜣(2) is defined in Eq. (52).
Returning to the expression for the generalized internal force in

q. (39), the generalized internal force shares several of the same quan-
ities as the Jacobian matrices. Utilizing the common terms, Eq. (39)
an simply be written as
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑖 = 𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙

3(𝑘−1)+𝑚 = 𝐊(1)
𝑖𝑗 𝑒𝑗 +𝐊(3)

𝑖𝑗 𝑒𝑗 =
(

𝐊(1) +𝐊(3))
𝑖𝑗 𝑒𝑗 , (58)

here 𝑗 = 3 (𝑡 − 1) + 𝑚.

ppendix D. Implementation details, method ‘‘L’’

Based on the equations presented in Appendix C and discussed
n [5], three constant matrices can be calculated once prior to the start
f the simulation and then reused as needed during the generalized
nternal force and Jacobian matrix evaluations. Focusing first on 𝜣(1)

hown in Eq. (43), 𝜣(1) is a
[

𝑁2 ×𝑁2] matrix, where 𝑁 is the number
of unique shape functions for the particular ANCF element being im-
plemented. While symbolic integration could be used to evaluate this
matrix, number integration using Gauss quadrature is assumed here.
The first step is to transform the integral from being computed over the
volume of the element in its reference configuration, 𝑉0, to an integral
over the straight and normalized element coordinates (𝜉, 𝜂, 𝜁 ) as

(1)
𝑁(𝑡−1)+𝑘 , 𝑁(𝑓−1)+𝑣 = 𝐷𝑎𝑛𝑏𝑐 𝑆̄

𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 det

(

𝐉0𝜉
)

𝑑𝑉𝜉 , (59)
∫𝑉𝜉
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where 𝜉, 𝜂, and 𝜁 each range from −1 to 1 and 𝐉0𝜉 is the element
Jacobian between the reference and normalized volumes. The element
Jacobian between the reference and normalized volumes is defined as

𝐉0𝜉 =
𝜕𝐫0
𝜕𝝃

= 𝐞̄0
(

𝜕𝐒̄ (𝜉, 𝜂, 𝜁 )
𝜕𝝃

)

= 𝐞̄0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑆1
𝜕𝜉

𝜕𝑆1
𝜕𝜂

𝜕𝑆1
𝜕𝜁

𝜕𝑆2
𝜕𝜉

𝜕𝑆2
𝜕𝜂

𝜕𝑆2
𝜕𝜁

𝜕𝑆3
𝜕𝜉

𝜕𝑆3
𝜕𝜂

𝜕𝑆3
𝜕𝜁

⋮ ⋮ ⋮
𝜕𝑆𝑁
𝜕𝜉

𝜕𝑆𝑁
𝜕𝜂

𝜕𝑆𝑁
𝜕𝜁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (60)

where 𝐫0 is the position of a material points within the element in
the unstressed reference configuration, 𝐞̄0 are the nodal coordinates
defining the reference configuration written in the [3 ×𝑁] matrix form
presented in [4], and 𝑆1 …𝑆𝑁 are the unique shape function for the
articular element being implemented. Next, 𝜣(1) can be approximated
by Gauss quadrature as

𝛩(1)
𝑁(𝑡−1)+𝑘 , 𝑁(𝑓−1)+𝑣 ≊

∑

𝑁𝑄

𝑊
(

𝐷𝑎𝑛𝑏𝑐 𝑆̄
𝐷
𝑡𝑎 𝑆̄

𝐷
𝑓𝑏𝑆̄

𝐷
𝑣𝑐 𝑆̄

𝐷
𝑘𝑛 det

(

𝐉0𝜉
)

)

, (61)

where the Gauss quadrature weight, 𝑊 , and all of the other terms are
calculated at each specific Gauss quadrature point. Using the definition
of the modified matrix of shape function derivatives,

𝐒̄𝐷 =
(

𝜕𝐒̄ (𝜉, 𝜂, 𝜁 )
𝜕𝝃

)

𝐉0𝜉−1 , (62)

(1) can then be calculated by looping over all of the subscripts and
auss quadrature points.
When examining the expression for 𝜣(2) given in Eq. (52), it can be

een that it is simply a reordered form of the terms in 𝜣(1). As such, it
an easily be calculated using the following algorithm where [𝑁 ×𝑁]
locks of 𝜣(1) are transposed and placed into the correct locations in
(2):

for f = 1 to N do
for t = 1 to N do

𝜣(2)
𝑁(𝑡−1)+(1∶𝑁) , 𝑁(𝑓−1)+(1∶𝑁) ←

(

𝜣(1)
𝑁(𝑡−1)+(1∶𝑁) , 𝑁(𝑓−1)+(1∶𝑁)

)𝖳

end for
end for

Moving to the third matrix, 𝐊(3), it can be seen that there is a
regular sparsity pattern within this entire [3𝑁 × 3𝑁] matrix due to
the subscript 𝑚 and that only a [𝑁 ×𝑁] matrix actually needs to be
computed. As shown later, this compact [𝑁 ×𝑁] form of 𝐊(3), denoted
as 𝐊(3𝐶𝑜𝑚𝑝𝑎𝑐𝑡), can be directly leveraged in the generalized internal force
calculations. Therefore, it only needs to be computed and stored in this
form. Additionally, noting the symmetry 𝐷𝑎𝑛𝑏𝑐 = 𝐷𝑛𝑎𝑏𝑐 in the fourth
order elasticity tensor, it can also be shown that 𝐊(3) is symmetric.
Leveraging these characteristic and switching to Gauss quadrature over
the normalized element volume, 𝐊(3𝐶𝑜𝑚𝑝𝑎𝑐𝑡) can be calculated as

𝐊(3𝐶𝑜𝑚𝑝𝑎𝑐𝑡) = 1
2
∑

𝑁𝑄

3
∑

𝑏
𝑊

(

𝐒̄𝐷𝐃𝑎𝑛𝑏𝑏
(

𝐒̄𝐷
)𝖳
)

det
(

𝐉0𝜉
)

, (63)

here all of the terms are calculated for each specific Gauss quadrature
oint and 𝐃𝑎𝑛𝑏𝑏 are [3 × 3] matrix slices of the fourth order elasticity
ensor with the last two subscripts set to the value of 𝑏.
While 𝜣(1), 𝜣(2), and 𝐊(3𝐶𝑜𝑚𝑝𝑎𝑐𝑡) can be calculated once prior to

he start of the simulation, the remainder of the steps required to
alculate the generalized internal force and its Jacobian matrix must
e performed during each evaluation within the simulation. As the first
n-simulation step for generalized internal force evaluation, the vector
(1) can be calculated as the reshaped matrix product

(1) = −𝑅𝑒𝑠ℎ𝑎𝑝𝑒
(

( 1 𝐞̄ + 𝜏 ̇̄𝐞
)𝖳

𝐞̄
)

, (64)

2

24
here the 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝐗) function defined in [6] is used that stacks the
ranspose of the rows of the argument matrix on top of each other in
rder to form a column vector. If row major memory storage is used, the
𝑒𝑠ℎ𝑎𝑝𝑒 (𝐗) function is simply a reinterpretation of the data in memory
ather than a true manipulation of the data. Since 𝐊(1) has the same
parsity and repetitive pattern as 𝐊(3), it can be calculated in a compact
𝑁 ×𝑁] form using the inverse of the 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 () operator on the simple
atrix product

𝑒𝑠ℎ𝑎𝑝𝑒
(

𝐊(1𝐶𝑜𝑚𝑝𝑎𝑐𝑡)) = 𝜣(1)𝜫 (1) . (65)

ext 𝐊(1𝐶𝑜𝑚𝑝𝑎𝑐𝑡) and 𝐊(3𝐶𝑜𝑚𝑝𝑎𝑐𝑡) are combined as
(13𝐶𝑜𝑚𝑝𝑎𝑐𝑡) = 𝐊(1𝐶𝑜𝑚𝑝𝑎𝑐𝑡) +𝐊(3𝐶𝑜𝑚𝑝𝑎𝑐𝑡) , (66)

hich is also stored for later reuse in the Jacobian calculation. Finally,
he generalized internal force can be calculated as
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒

(

𝐊(13𝐶𝑜𝑚𝑝𝑎𝑐𝑡)𝐞̄𝖳
)

. (67)

When using an implicit integrator, the Jacobian of the generalized
nternal force also needs to be calculated. Since a viscoelastic mate-
ial law has been assumed, the partial derivative of the generalized
nternal force with respect to both the nodal coordinates and their time
erivative needs to be computed and combined into the total Jacobian
ontribution, 𝐉, from the generalized internal force. Using the scaling
actors 𝐾𝐾 and 𝐾𝑅 that depend on the implicit integration scheme used
nd the size of the current time step, the total Jacobian contribution can
e written as

= 𝐾𝐾
(

𝜕𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝜕𝐞

)

+𝐾𝑅
(

𝜕𝑄𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝜕𝐞̇

)

= 𝐾𝐾 (

𝐊(1) +𝐊(2) +𝐊(3)) +𝐾𝑅𝐊(4) .
(68)

ocusing first on 𝐾𝐾𝐊(2) +𝐾𝑅𝐊(4), this can simply be written as
(

𝐾𝐾𝐊(2) +𝐾𝑅𝐊(4))
𝑖𝑗 =

(

𝐾𝐾𝜫 (2) +𝐾𝑅𝜫 (𝐷))
𝑎𝑏 𝛩

(2)
𝑏𝑐 = 𝛱 (𝐵)

𝑎𝑏 𝛩(2)
𝑏𝑐 , (69)

where 𝑖 = 3 (𝑘 − 1)+𝑚, 𝑗 = 3 (𝑓 − 1)+𝑑, 𝑎 = 3 (𝑑 − 1)+𝑚, 𝑏 = 𝑁 (𝑡 − 1)+𝑣,
and 𝑐 = 𝑁 (𝑓 − 1) + 𝑘. While 𝜣(2) was calculated prior to the start of
the simulation,

𝛱 (𝐵)
𝑎𝑏 = −𝑒𝑚𝑡

((

𝐾𝐾 +𝐾𝑅𝜏
)

𝐞̄ +𝐾𝐾𝜏 ̇̄𝐞
)

𝑑𝑣 = −𝑒𝑚𝑡𝐞̄𝐶𝑑𝑣 (70)

needs to be calculated during every Jacobian evaluation. The matrix
𝜫 (𝐵) can be assembled in blocks from a series of matrices that are
generated from outer products as

𝜫 (𝐵) = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐞̄𝑐𝑜𝑙1𝐞̄𝐶𝑟𝑜𝑤1 𝐞̄𝑐𝑜𝑙2𝐞̄𝐶𝑟𝑜𝑤1 … 𝐞̄𝑐𝑜𝑙𝑁 𝐞̄𝐶𝑟𝑜𝑤1

𝐞̄𝑐𝑜𝑙1𝐞̄𝐶𝑟𝑜𝑤2 𝐞̄𝑐𝑜𝑙2𝐞̄𝐶𝑟𝑜𝑤2 … 𝐞̄𝑐𝑜𝑙𝑁 𝐞̄𝐶𝑟𝑜𝑤2

𝐞̄𝑐𝑜𝑙1𝐞̄𝐶𝑟𝑜𝑤3 𝐞̄𝑐𝑜𝑙2𝐞̄𝐶𝑟𝑜𝑤3 … 𝐞̄𝑐𝑜𝑙𝑁 𝐞̄𝐶𝑟𝑜𝑤3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (71)

sing𝜫 (𝐵), the product
(

𝜫 (𝐵)𝜣(2))
𝑎𝑐 can then be calculated. Examining

ubscripts, the
[

9 ×𝑁2] result of this product needs to be reordered into
he correct [3𝑁 × 3𝑁] form for the Jacobian matrix, 𝐉. This step, as well
s combining in the remaining terms calculated during the generalized
nternal force evaluation, can be performed by the following algorithm
o generate the complete Jacobian matrix, 𝐉:

for 𝑓 = 1 to N do
for 𝑘 = 1 to N do

𝐉3(𝑘−1)+(1∶3)) , 3(𝑓−1)+1 ←
(

𝜫 (𝐵)𝜣(2))
(1∶3) , 𝑁(𝑓−1)+𝑘

𝐉3(𝑘−1)+(1∶3) , 3(𝑓−1)+2 ←
(

𝜫 (𝐵)𝜣(2))
(4∶6) , 𝑁(𝑓−1)+𝑘

𝐉3(𝑘−1)+(1∶3) , 3(𝑓−1)+3 ←
(

𝜫 (𝐵)𝜣(2))
(7∶9) , 𝑁(𝑓−1)+𝑘

end for
end for
for 𝑤 = 1 to N do
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for 𝑣 = 1 to N do
𝐽(3𝑤+1) (3𝑣+1) ← 𝐉(3𝑤+1) (3𝑣+1) +𝐾𝐾𝐾 (13𝐶𝑜𝑚𝑝𝑎𝑐𝑡)

𝑤𝑣
𝐽(3𝑤+2) (3𝑣+2) ← 𝐉(3𝑤+2) (3𝑣+2) +𝐾𝐾𝐾 (13𝐶𝑜𝑚𝑝𝑎𝑐𝑡)

𝑤𝑣
𝐽(3𝑤+3) (3𝑣+3) ← 𝐉(3𝑤+3) (3𝑣+3) +𝐾𝐾𝐾 (13𝐶𝑜𝑚𝑝𝑎𝑐𝑡)

𝑤𝑣
end for

end for
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