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We establish higher-order nonasymptotic expansions for a difference be-
tween probability distributions of sums of i.i.d. random vectors in a Euclidean
space. The derived bounds are uniform over two classes of sets: the set of all
Euclidean balls and the set of all half-spaces. These results allow to account
for an impact of higher-order moments or cumulants of the considered dis-
tributions; the obtained error terms depend on a sample size and a dimension
explicitly. The new inequalities outperform accuracy of the normal approxi-
mation in existing Berry—Esseen inequalities under very general conditions.
Under some symmetry assumptions on the probability distribution of random
summands, the obtained results are optimal in terms of the ratio between
the dimension and the sample size. The new technique which we developed
for establishing nonasymptotic higher-order expansions can be interesting by
itself. Using the new higher-order inequalities, we study accuracy of the non-
parametric bootstrap approximation and propose a bootstrap score test under
possible model misspecification. The results of the paper also include explicit
error bounds for general elliptic confidence regions for an expected value of
the random summands, and optimality of the Gaussian anticoncentration in-
equality over the set of all Euclidean balls.

1. Introduction. The Edgeworth series had been introduced by Edgeworth [16, 17] and
Chebyshev [41], and developed by Cramér [15] (see Section 2.9 by Hall [24] for a detailed
overview of early works about the Edgeworth series). Since that time, the Edgeworth expan-
sion has become one of the major asymptotic techniques for approximation of a c.d.f. or a
p.d.f. In particular, the Edgeworth expansion is a powerful instrument for establishing rates
of convergence in the CLT and for studying accuracy of the bootstrap.

In this paragraph, we recall a basic form of the Edgeworth series and their properties that
are useful for comparison with the proposed results; this statement can be found in Chapter 5
by Hall [24] (see also Bhattacharya and Rao [7], Kolassa [27], Skovgaard [40]). Let S, :=
n—1/2 Yo' X foriid. R4 -valued random vectors {X;}!_, withEX; =0, ¥ := Var(X;), and
E|X ;@(k+2) | < 0o. Let o7 denote a class of sets A C R satisfying

(L.1) sup p(x)dx=0(), ¢]0,

Aed/ J(0A)®
where ¢(x) is the p.d.f. of N'(0, 1), and (9 A)¢ denotes the set of points distant no more than
& from the boundary d A of A. This condition holds for any measurable convex set in R?. Let

also ¥ (t) := Ee!"" X1 1f the Cramér condition

(1.2) limsup|y (1) < 1

7] =00
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is fulfilled, then

k
(13)  P(S,ed)= /A {fpz @)+ > n/?Pi(—ps : {x,-})(x)} dx + o(n=*/?)
j=1

for n — oo. The remainder term equals o(n=k/?) uniformly in A € &7, ¢y (x) denotes the
p.d.f. of N (0, 2); kj are cumulants of Xy, and P;(—g¢yx : {«;})(x) is a density of a signed
measure, recovered from the series expansion of the characteristic function of X; using the
inverse Fourier transform. In the multivariate case, a calculation of an expression for P;
for large j is rather involved since the number of terms included in it grows with j (see
McCullagh [33]).

Expansion (1.3) does not hold for arbitrary random variables, in particular, Cramér’s condi-
tion (1.2) holds if a probability distribution of X has a nondegenerate absolutely continuous
component. Condition (1.1) does not take into account dependence on dimension d. Indeed,
if d is not reduced to a generic constant, then the right-hand side of (1.1) depends on d in
different ways for major classes of sets. Let us refer to the works of Ball [2], Bentkus [5],
Klivans, O’Donnell and Servedio [26], Chernozhukov, Chetverikov and Kato [13], Belloni,
Bugni and Chernozhukov [4], where the authors established anticoncentration inequalities
for important classes of sets.

Due to the asymptotic form of the Edgeworth series (1.3) for probability distributions, this
kind of expansions is typically used in the asymptotic framework (for n — oo) without tak-
ing into account dependence of the remainder term o(n /) on the dimension. To the best of
our knowledge, there have been no studies on accuracy of the Edgeworth expansions in finite
sample multivariate setting so far. In this paper, we consider this framework and establish
approximating bounds of type (1.3) with explicit dependence on dimension d and sample
size n; this is useful for numerous contemporary applications, where it is important to track
dependence of error terms on d and n. Furthermore, these results allow to account for an im-
pact of higher-order moments of the considered distributions, which is important for deriving
approximation bounds with higher-order accuracy. In order to derive the explicit multivari-
ate higher-order expansions, we propose a novel proof technique that can be interesting and
useful by itself.

One of the major applications of the proposed approximation bounds is the study of a
performance of bootstrapping procedures in the nonasymptotic multivariate setting. In sta-
tistical inference, the bootstrap is one of the basic methods for estimation of probability
distributions and quantiles of various statistics. Bootstrapping is well known for its good
finite sample performance (see, e.g., Horowitz [25]), for this reason it is widely used in ap-
plications. However, a majority of theoretical results about the bootstrap are asymptotic (for
n — 00), and most of the existing works about bootstrapping in the nonasymptotic high-
dimensional/multivariate setting are quite recent. Arlot, Blanchard and Roquain [1] studied
generalized weighted bootstrap for construction of nonasymptotic confidence bounds in £,-
norm for r € [1, 400) for the mean value of high dimensional random vectors with a symmet-
ric and bounded (or with Gaussian) distribution. Chernozhukov, Chetverikov and Kato [12]
established results about accuracy of Gaussian approximation and bootstrapping for maxima
of sums of high-dimensional vectors in a very general set-up. In [14] the authors extended
and improved the results from maxima to general hyperractangles and sparsely convex sets.
Bootstrap approximations can provide faster rates of convergence than the normal approx-
imation (see Prastgaard and Wellner [36], Barbe and Bertail [3], Liu [30], Mammen [32],
Lahiri [28], and references therein), however most of the existing results on this topic had
been established in an asymptotic framework. In 2016, in Zhilova [46], we derived higher-
order properties of the nonparametric and multiplier bootstrap. Those results were the first
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progress made on the higher-order accuracy of the bootstrap in the nonasymptotic (and mul-
tivariate) framework. In the present paper we derive new and much more general results.
In particular, one of the implications of the proposed approximation bounds is an improve-
ment of the Berry—Esseen inequality by Bentkus [5]. In Section 1.1 below, we summarize the
contribution and the structure of the paper.

1.1. Contribution and structure of the paper. In Section 2, we establish expansions for
the difference between probability distributions of §,, := n—1/2 Z?:] X; fori.i.d. random vec-
tors {X;}"_, and N(0, ), ¥ := Var(S,). The bounds are uniform over two classes of subsets
of R¥: the set Z of all £,-balls, and the set # of all half-spaces. These classes of sets are
useful when one works with linear or quadratic approximations of a smooth function of S,;
they are also useful for construction of confidence sets based on linear contrasts, for elliptic
confidence regions, and for x2-type approximations in various parametric models where a
multivariate statistic is asymptotically normal. In Sections 6 and 7 we consider examples of
elliptic confidence regions, Rao’s score test for a simple null hypothesis, and its bootstrap
version that remains valid even in case of a misspecified parametric model.

In Theorem 2.1, where we study higher-order accuracy of the normal approximation of

S, over the class 4, the approximation error is < Cn— 2Ry + C,/d*/n + Cdz/n. R3 is

a sublinear function of the third moment E(X~1/2X)®3, and |R3| < |E(Z~V2X)®3 | for
the Frobenius norm || - ||g. The derived expressions for the error terms as well as the numerical
constants are explicit. One of the implications of this result is an improvement of the Berry—
Esseen inequality by Bentkus [5] that has the best known error rate for the class % (Remark
2.1 provides a detailed comparison between these results).

The proposed approximation bounds are not restricted to the normal approximation. In
Theorems 2.2, 2.4, we consider the uniform bounds between the distributions of §,, and
St.ni= n=1/2 >, T; for ii.d. random vectors {T,-}l’.’:1 with the same expected value as X;
but possibly different covariance matrices. Here the error terms include a sublinear function
of the differences E(X /) — B(T}%/) for j =2, 3.

Let us also emphasize that the derived expansions impose considerably weaker conditions
on probability distributions of X; and 7; than the Edgeworth expansions (1.3) since our results
do not require the Cramér condition (1.2) to be fulfilled, and they assume a smaller number
of finite moments. Furthermore, the constants in our results do not depend on d and n, which
allows to track dependence of the error terms on them. To the best of our knowledge, there
have been no such results obtained so far.

In Section 3, we describe key steps of the proofs and the new technique which we devel-
oped for establishing the nonasymptotic higher-order expansions.

In Section 4, we consider the case of symmetrically distributed X;. The error term in
the normal approximation bound is < C(d/?/n)'/?, which is smaller than the error term
< C(d*/n)'/? provided by Theorem 2.1 for the general case. Furthermore, we construct a
lower bound, based on the example by Portnoy [35], showing that in this case the relation
d3/? /n — 0 is required for consistency of the normal approximation.

In Section 5, we study accuracy of the nonparametric bootstrap approximation over set %,
using the higher-order methodology from Section 2. The resulting error terms depend on the
quantities that characterize the sub-Gaussian tail behavior of X; (proportional to their Orlicz
Yr-norms) explicitly.

In Section 8, in the Supplementary Material [47], we collect statements from the earlier
paper [46] which are used in the proofs of main results; we also provide improved bounds for
constants in these statements and show optimality of the Gaussian anticoncentration bound
over set . Proofs of the main results are presented in Sections 9 and 10 in [47].
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1.2. Notation. For a vector X = (x1,...,x47)T € R%, | X| denotes the Euclidean norm,
E|X®k| < oo denotes that E|x;, - - - x;, | < oo for all integer iy, ..., i € {1, ..., d}. For tensors

..........

clidean norm is denoted by [|A]| :=sup{(A, 1 ®@--- Q@ w) : llyjll=1,y; € R, j=1,...,k}
(see Wang et al. [43]). The Frobenius norm is ||A||r = +/(A, A). The maximum norm is
| Allmax := max{la;, . il :i1,....i € {1,...,d}}. For a function f : R > R and h € RY,
F® (x)h* denotes the higher-order directional derivative (k7 V)* f (x). ¢(x) denotes the p.d.f.
of the standard normal distribution in R?. C, ¢ denote positive generic constants. The abbrevi-
ations p.d. and p.s.d. denote positive definite and positive semi-definite matrices correspond-

ingly.
2. Higher-order approximation bounds. Denote for random vectors X, ¥ in R?

2.1) Agp(X,Y):= sup |P(IX —t]<r)=P(|Y —t]| <r)]|.

r>0,reRd
Introduce the following functions:
(2.2) ) =h@+01-p)""87" @)= (1-p) 8"

for B € (0,1). Let {X;}!_, be ii.d. R?-valued random vectors with E|X;®4| < o0 and
p.d. covariance matrix X := Var(X;). Without loss of generality, assume that EX; = 0.

The following theorem provides the higher-order approximation bounds between S, :=

n—1/2 "_, X; and the multivariate normal random vector Zy ~ N(0, £) in terms of the

distance A%(S,, Zx).

THEOREM 2.1. Suppose that the conditions above are fulfilled, then it holds for any
pe(©.1)

Az(Sn, Zs) < (V683 ' Ran~1/2
+2Cp 4| STIZI{(1(B) + (@BY) HE[ =712 X1 |* + d? + 24} Pn =12
+ Ve Hh(BE|S 12X |* + ha(B)(d? +2d)}n ",

where Cp 4 > 9.5 is a constant independent from d, n, and from a probability distribution of
X; (see the definition of Cp 4 in the proof after formula (9.18) in the Supplementary Material
[47]); R3 is a sublinear function 0fE(Z’1/2X1)®3 such that, in general,

IR3| < |E(Z72X1) e < [B(=712X)® .

Furthermore, if N is the number of nonzero elements in E(E_1/2X1)®3 and N < d?, m3 .=
IE(E Y2 X 1)®3 (| max. then

R3] <m3v/N < m3d
(a detailed definition of R3 is given in (9.12) in the Supplementary Material [47]).
COROLLARY 1. Let B =0.829, close to the local minimum of h1(f), then
Az(Su, Zx) <0.T17|E(S 12X ) ®3 | dn =2
+2Cp 4| IS T SIE| =2 X |* + d? + 24} 2/
+ {143E|= 712X |* +0.043(d> + 2d) }n .
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Let also my := |E(Z 72X 1)®*|| max, then
Az(Sn, Zs) <0.T17|E(= 712 X) 23| dn~!/?
2.3) +2C3.4| S IS I{(7.51my + 1)d? +2d)}'*n=1/?
+ {(1.425m4 + 0.043)d* 4 0.086d }n "

Hence, if all the terms in (2.3) except d and n are bounded by a generic constant C > 0, then
(2.4) Az (Su, Zs) < C{\Jd?/n +d*/n).

REMARK 2.1. The Berry-Esseen inequality by Bentkus [5] shows that for £ = I
and E|| X |? < 00, Az(S,, Zs) < cE|X1|Pn~ /2. The term (v/68%)"'n~1/2R3 in Theo-
rem 2.1 has an explicit constant and, since this is a sublinear function of the third mo-
ment of ¥~1/2X, it can be considerably smaller than the third moment of the ¢>-norm
|=~12X1||. Corollary 1 shows that the error term in Theorem 2.1 depends on d and n as
C(,/d?/n+d?/n), which improves the Berry—Esseen approximation error C+/d3 /n in terms
of the ratio between d and n. Theorem 2.1 imposes a stronger moment assumption than the
Berry-Esseen bound by Bentkus [5], since the latter inequality assumes only 3 finite mo-
ments of || X;||. However, the theorems considered here require much weaker conditions than
the Edgeworth expansions (1.3) that would assume in general at least 5 finite moments of
| X;|| and the Cramér condition (1.2).

REMARK 2.2. Since functions &1(8), ha(B) are known explicitly (2.2), the expression
of the approximation error term in Theorem 2.1 contains explicit constants and it even allows
to optimize the error term (w.r.t. parameter 8 € (0, 1)), depending on Rz, E||=~1/2X |4,
and other terms as well. Therefore, the results in this paper allow to address the problem of
finding an optimal constant in Berry—Esseen inequalities (see, e.g., Shevtsova [39]).

The following statement is an extension of Theorem 2.1 to a general (not necessarily nor-
mal) approximating distribution. Let {7;}?_; be i.i.d random vectors in R?, with ET; = 0,
p-d. covariance matrix Var(7;) = X7, and E|Ti®4| < 0o. Letalso S, := n—1/2 T

THEOREM 2.2. Let {X;}?_, satisfy conditions of Theorem 2.1. First, consider the case
Var(T;) = Var(X;) = X. Denote

Vo =E|=72x, " + B2 ",
It holds for any B € (0, 1)
As(Sns ST.0) < (V6B?) ™ Rarn™ 2+ 2V6) " hi (B)Van ™",
+V8CE 4| ETIZI{(h1(B) + (48%) ") V4 + 242 + 4d}) ' *n 12,
where 1?3,T is a sublinear function 0fIEl(2]_1/2X1)®3 —EEY21)®3 such that, in general,
|Rsrl < [E(272x)® —E(2721)%
< |E(EV2x)® —E(z7V21)®| .

Furthermore, if Nt is the number of nonzero elements in I[*E(E_l/zXl)®3 — E(E_l/2T1)®3,
and Ny <d?, m3 1 = |[E(E7'2X)® —E(Z72T1)®? || max, then

|R3, 7| <m371vNr <m37d.
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Now consider the case when Var X; = ¥ and VarT; = X1 are not necessarily equal to
each other. Let )»(2) > 0 denote the minimum of the smallest eigenvalues of ¥ and Xt . Denote

Ve=EIXiI* +EITi Y, va=IZ12+ 1200
It holds for any B € (0, 1)

Az (Sn. St.0) < (V2B223) T IZ = Trle+ (V6BY) T Ry rn /2
+4V2Cp 405 {1 (B)Va + (4% +2d) (va + 1/2)} P12
+2(V63) " {h1(B)Va + (d® + 2d)va}n",

where R3 1 is a sublinear function of E(X ?3) — E(Tl®3) such that, in general,
-3 3 3 -3 3 3
R, 7| < hg  [E(XT?) —E(T7) g < 29 ° | E(XT?) —E(T7°) | d
(a detailed definition of R3 1 is given in (9.24) in the Supplementary Material [47]).

Below we consider the uniform distance between the probability distributions of S, and
Zs. over the set of all half-spaces in R?:

(2.5) Aw(Sp,Zs):= sup [P(yTS, <x)—P(yTZx <x)|.
xeR,yeRd

Denote h3(B) := 3741 — (1 — )2} for B € (0, 1) (similarly to k1, hy introduced in (2.2)).
THEOREM 2.3.  Given the conditions of Theorem 2.1, it holds ¥ € (0, 1)
Ae(Sn, Z3) < (V6B T (2 712x)) P [n 712
+ Cral (B + B EET2x) % | +hs(B)} a2
+ V6 R (B |E(Z12X)® + 3ha(B)}n !,

where Cy 4 > 9.5 is a constant independent from d, n, and a probability distribution of X;
(see the definition of Cy 4 in the proof after formula (9.28) in [47]).

COROLLARY 2. Let B =0.829, close to the local minimum of h1(f), then
A (Sn, Zs) <0.T1T|E(=712X )& |0~ 1/2
+ Cy.4{9.10|E(= 12X )®*| +5.731} /2~ 1/2
+{1.425|E(z 12X ) ®* | +0.127}n .

REMARK 2.3. The inequalities that we establish for the class .7Z are dimension-free. In-
deed, the approximation errors in Theorems 2.3, 2.4 and Corollary 2 depend only on numer-

ical constants, on n~1/2, n~! and on the operator norms of the third and the fourth moments
of 212X :
||E(2_1/2X1)®j [= sup E(yTE_I/ZXl)j for j =3,4.
yeRY, |ly =1

REMARK 2.4. Recalling the arguments in Remark 2.1, [|[E(Z~'/2X)®3| in the lat-
ter statement depends on the third moment of X sublinearly. Furthermore, the classical
Berry-Esseen theorem by Berry [6] and Esseen [20] (that requires E|Xl-®3| < 00) gives
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an error term < c||E(X~12X)®*|3/4n=1/2 which is > \/||E(E—1/2X1)®4||/n because
IE(=~12X1)®*|| > 1. This justifies that Theorem 2.3 can have a better accuracy than the re-
sult for A s implied by the classical Berry—Esseen inequality when, for example, EX ‘12’3 =0
and |E(Z~1/2X,)®4| is rather big (e.g., for the logistic or von Mises distributions).

The following statement extends Theorem 2.3 to the case of a general (not necessarily nor-
mal) approximating distribution, similarly to Theorem 2.2. Recall that v4 = | Z||% + || =72
and denote

Vra:=EE2x0)% |+ [EET P Vg = [EGE)] + [E(TEY)].

THEOREM 2.4. Given the conditions of Theorem 2.2, it holds VB € (0, 1)
Ao (Su, St.a) < (V6BY) T E(ET2X)) B — E(Z121) % 012
+ Cra{(h1(B) + B~ Vr.a+2h3(B)} P12
+@V6) T hi(B)Vran~.

Consider the case when Var X; = X and VarT; = X1 are not necessarily equal to each
other. Let A(Z) > 0 denote the minimum of the smallest eigenvalues of ¥ and Y. It holds
VB e (0,1)

A (Su. St.) < (V26223 11D — o7
+ (Vop3) N E(X ) — B(T) |12
+4V2CH a0y { (B)Vra +3(vs + 1/2)} /2012
+ 2(\/5)»3)_1 [m(B)Vr.a4+3vg)n L.

3. New proof technique. In this section, we describe the key steps and ideas that we
develop in the proofs of Theorems 2.1 and 2.2 for the class %. Theorems 2.3 and 2.4 about
half-spaces are derived in an analogous way.

First, we use the triangle inequality

(3.1 Az(Sn, Z5) < Ag(Su, Sn) + Az (S, Zs),

where S'n =n~1/2 Y7, Y; for ii.d. random summands Y; constructed in a special way (see
definitions (9.3), (9.4) in [47]). We define Y; such that they have matching moments of or-
ders 1, 2, 3 with the original random vectors X;, and at the same time they have a normal
component which plays crucial role in the smoothing technique that we describe below.

To the term A (S, S,) in (3.1) we apply the Berry—Esseen type inequality from [46]
(this result is discussed in more detail in Section 8 in the Supplementary Material [47]),
which yields

Az (Sn, Sn)
(3.2)

<2Cp4| SISV [(h1(B) +0.25/84HE|S-1/2X, |* +d? +2d) /n.

Here the error rate C/d?/n comes from the higher-order moment matching property between

the random summands of S, and S'n, which improves the ratio C,/d3/n between dimension
d and sample size n in the classical Berry—Esseen result by Bentkus [5] (in the classical
Berry—Esseen theorem one uses, in general, only first two matching moments which is smaller
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than first three moments). Also the square root in this expression naturally comes from the
smoothing argument used for derivation of the Berry—Esseen inequality with the best-known
rate w.r.t. d and n, and it is unavoidable for the distance A (S, S,;) under the mild conditions
on X; imposed here. The proof of the result in [46] is based on an extension of the proof of
the Berry—Esseen inequaliy by Bentkus [5]. _

For the term A (S, Zx) in (3.1), we exploit the structure of S, in order to construct the
higher-order expansion that allows to compare moments of X; and Zy. It holds

n
(3.3) $:£7Z+n7 7Y U,
i=1

where Z ~ N (0, B2X) for B € (0, 1) that enters the resulting bounds as a free parameter and
can be used for optimizing the approximation error terms w.r.t. it. Random vectors {U;}}_,

are i.i.d. and independent from Z, and {Xi}"_,, hence the expression in (3.3) has multivariate
normal distribution, conditionally on {U;}. Also

(3.4) EU; =EX; =0,  VarU;=(1—-%)%, EU® =EX®.
We introduce the following representation of the probability distribution functions of S, and

Zs.Let Be B and B :={x e R?: Bx1/2x € B}, and Zo:= B~'=1/2Z ~ N(0, 1), then
it holds

P(S, € B) :IE{]P’(Z +n 23 U e B|{U,~}?:1)}

i=l

(3.5) =E{]P’(Zo+n_1/2ﬁ_122_1/2U,- eB/|{Ui}l’~’:1)}

i=1
n
= IE/B/ go(t —n 127Ny E_l/zUi) dt,
i=1

for (z) denoting the p.d.f. of Zy. In this way, we use the normal component of S, to rep-
resent P(S,, € B) as an expectation of a smooth function of the sum if i.i.d. random vec-
tors n=1/2p~1 i . ~1/2y; that have matching moments with the original samples X;. The
same representation holds for the approximating distribution Z5. Let Z; ~ N (0, (1 — 82 %)
be i.i.d., independent from all other random vectors with the same first two moments as Uj;,

then Zs £ 7 4 n=1/2 Y Zi,

P(Zs, € B) :IE{IP(Z +n 1237 € B|{Zi}§’:1>}

i=I

(3.6) =E{]P>(zo+n—1/25—122—1/2zi eB’|{Zi}§’:l>}

i=1
n

= Ef ¢<z —n12p7Y z—‘/zzl) dt.
B’ i=1

Now we represent the difference IP’(Sn € B) —P(Zx € B) as the following telescoping sum
(the general telescopic sum principle or the swapping method is due to Lindeberg [29]; see
also Trotter [42] and Chatterjee [11]):

P(S, € B) —P(Zx € B)

(3.7 =ZE//{(p(t_(nl/Zﬂzl/Z)—lUi —si)
i=1
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1/2 1/2\—1
—(p(l— (n / ,32 / ) Zl' —Si)}dl,

where s; = n~1/2p71 Z};l] 2127 + 012871 D heit 12y, for i =1,...,n, the
sums are taken equal zero if index k runs beyond the specified range. Random vectors s;
are independent from U; and Z; which is used in the proof together with the Taylor expan-
sion of ¢(¢) and the matching moments property (3.4). Further details of the calculations are
available in Section 9 in the Supplementary Material [47]. The resulting error bound

Az(S, Zs) < (V6B°) " Ran~
+ VO (BE|Z2X\ | + ha(B) (d? + 2d) }n ",

is fully explicit, nonasymptotic, and is analogous to the terms in the classical Edgeworth
series.

The proof of Theorem 2.2 uses an analogous approach. First, we write the triangle inequal-
ity
(3.8) Az (Sus ST.0) < D (Sny Sp) + Aa(ST00 S7.0) + Bz (S, S1.0),

where S’Tﬂ =n-1/2 Z?:1 Y7, is constructed similarly to the approximating sum Sn (see
(9.19)~(9.21) in [47] for their explicit definitions). The terms A (S, S,), Az (ST, ST.0)
are bounded similarly to Az(S,, Sn) in (3.2), and the term Agg(S‘n, S‘T,n) is expanded in
the same way as A @(gn, Zy) using the smooth normal components, the telescoping sum
representations, and the Taylor series expansions.

Let us emphasize that the proposed proof technique is much more simple than many exist-
ing methods of deriving rates of convergence in the normal approximation. Furthermore, it is
not restricted to the case when an approximation distribution is normal and it allows to obtain
explicit error terms and constants under very mild conditions. To the best of our knowledge,
this is a novel technique and it has not been used in earlier literature.

REMARK 3.1. [ submitted the first version of this paper containing the new proof tech-
nique to The Annals of Statistics on June 5, 2020 (submission number AOS2006-011). In
about 3 months after that Lopes [31] (see https://arxiv.org/abs/2009.06004v1) used a very
similar approach and labeled it as “implicit Gaussian smoothing.” Lopes [31] considered the
problem of bounding the distance

(3.9) A%#(Sy, Zs) = sup|P(S, € R) — P(Zx € R)
Rex

’

where Z is a set of all hyperrectagles in R¢. The approach used by Lopes [31] has major
similarities with the approach that we present here. These ideas play crucial role for my
solution in the present paper as well as for the proofs in Lopes [31]. Below we describe these
similarities:

(i) Lopes [31] uses the normal part of a random sum similarly to (3.3) in order to repre-
sent its probability distribution of a sum of independent random vectors as an expected value
of a smooth function (via the Gaussian distribution) similarly to (3.5), (3.6).

(i) The smooth function obtained via the Gaussian distribution in part (i) is expanded
using the Taylor series as in (3.7) (see also (9.7)—(9.9) in Section 9 in the Supplementary
Material [47]); Lopes [31] uses the second-order Taylor expansion with the remainder in the
same form as here (see (9.15), (9.6)). The Taylor expansion is applied to the differences in
the telescoping sum similarly to (3.7) and (9.7)—(9.9).

(iii) The expansion in (ii) allows to apply the moment matching strategy as in (9.11),
(9.13).
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(iv) Lopes [31] uses the induction technique based on the proof by Bentkus [5], similarly
to our approach for (3.2).

I would like to emphasize that the approach presented here as well as the ideas from our 2016
paper [46] are new and first appeared in my work, previous to Lopes [31].

4. Approximation bounds for symmetric distributions and optimality of the error
rate. In this section, we consider the case when the probability distribution of X; —EX; has
some symmetry properties this assumption can be formulated in terms of the condition (4.1)
on moments of X;. Suppose for i.i.d. R?-valued random vectors {X i}i_, that E|X ;.8)6| <00
and their covariance matrix X := Var(X;) is p.d. Without loss of generality, assume that
EX; =0.Let X = (x1, ..., xg) be an i.i.d. copy of X;, we assume that

4.1 Ep(xi,...,xq)=0

for any monomial p : R? - R that has degree < 5 and contains an odd power of x j for at
least one j € {1, ..., d}. In addition, we assume that there exist a random vector Uy, in R?
with E| Ui®6| < 00 and a p.d. covariance matrix £; € R?*“ such that the following moment
matching property holds for Zx 1 ~ N (0, £1) independent from Uy, and L := Zx, + Uy:

4.2) E(L®)=E(x®) Vje(l,...,5)

We introduced this condition in an earlier paper [46]; Lemmas 3.1, 3.2 in that paper show
that under certain conditions on the support of X; there exists a probability distribution £(L)
which complies with these conditions (see Lemma 8.2 in Section 8 in [47] for further details).
Also, because of property (4.1), it is sufficient to assume that there exist only 6 finite absolute
moments (instead of 7 finite absolute moments as stated in Lemma 3.1 in [46] for the general
case).

THEOREM 4.1. Let {X;}!_, follow the conditions above, take )»% > 0 equal to the small-
est eigenvalue of X1, and Zx ~ N (0, X) in R4, then it holds

Ap(Su, Zs) < Cro{ A E(IX11° 4 1 L1]%)}/*n 172
+ @) A E(X ) — E(ZE) |
+ () VAT ENULIC + B Z5 |00,

where Cp 6 =2.9Cy,Cy 6 > 2.9 is a constant independent from d, n, and probability distri-
bution of X; (it is discussed in detail in Section 8 in [47]). Let m¢ sym denote the maximum of
the 6-th moments of the coordinates of X1, L1, Zyx,, then the above inequality implies

Ap(Sn. Zx) < @7 E(XPY) —E(ZE) !
+ CB,6()\Z_6””6,sym)1/4d3/4”l_1/2 + (6!)_1/2 ()‘;6m6,sym)d3n_2
<8 VAHEXPY) — E(ZY) | axdn ™!

max

4.3)

+ Cp (A Omesym) a0V 4 (61) T2 (A Ome sym)dn 2.

Below we consider the example by Portnoy [35] (Theorem 2.2 in [35]), using the notation
in the present paper, and we derive a lower bound for A z(S,,, Zx) with the ratio between d
and n similar to the error term in Theorem 4.1. Proposition 4.1 and Lemma 4.1 imply that for
{Xi}'_,, Z as in Theorem 4.2, and for sufficiently large d, n

i=1

Cd>?/n < Ay(Sy, Z) < C(d*?/n)' /2.
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THEOREM 4.2 (Portnoy [35]). Let i.i.d. random vectors X; have the following mixed
normal distribution:

Xi{Ziy ~N(0,Z;Z2F) foriid. Z; ~N(0, I).
Let also S, =n~1/?2 :’ZlX,-,ZNJ\/’(O,Id).Ifd—>oosuchthatd/n—>0asn—>oo,then
I1SaI> = 1ZI* + Du, Dy = 0p(d*/n).

PROPOSITION 4.1.  Let {X;}?_, and Z be as in Theorem 4.2. If d — oo such that d /n —
0 as n — oo, then

Az(Su, 2) = AL(I1S: 1%, 1 Z11%) = O(d*/*/n),

where Ap(X,Y) :=infle >0:G(x —¢) —e < F(x) < G(x +¢) + ¢ for all x € R} denotes
the Lévy distance between the c.d.f.-s of X and Y, equal F(x) and G(x), respectively.

LEMMA 4.1. {X;}!_, in Theorem 4.2 satisfy conditions of Theorem 4.1 for A, = (1 —

V27512,

5. Bootstrap approximation. Here we consider the nonparametric or Efron’s bootstrap-
ping scheme for S,, (by Efron [18], Efron and Tibshirani [19]) and study its accuracy in the
framework of Theorems 2.1 and 2.2. Let {X;}"_; be i.i.d. R4-valued random vectors with
E|X;-X’4| < 00, p.d. ¥ :=VarX; and u := EX;. Introduce resampled variables X7, ..., X
with zero mean, according to the nonparametric bootstrapping scheme

5.1 P*(Xf=X;—X)=1/n Vi,j=1,...,n,

where X =n~! iz Xi and P*() :=PC{X: 1), E* () :=E([{X;}?_,). Hence, {X}‘f ’]’-:1
are i.i.d. and

n
E* (X)) =EX; —w) =0,  E*(X3®)=n"13"(X; - X)® ~p E(X; — )®*
i=1
for k > 1; the sign ~p denotes “closeness” with high probability. Denote the centered sum
S, and its bootstrap approximation as follows:

n n
Son = n1/2 Z(Xi -, Sy :=n_1/ZZX;".
i=1 i=1

In order to quantify the accuracy of the bootstrap approximation of the probability distribu-
tion of Sp ,, we compare the empirical moments n_IZ?zl (X; — X)®* and the population
moments E(X; — u)®F for k = 2, 3, using exponential concentration bounds. For this pur-
pose, we introduce condition (5.2) on tail behavior of coordinates of X; — . Here we follow
the notation from Section 2.3 by Boucheron, Lugosi and Massart [9]. A random real-valued
variable x belongs to class G(62) of sub-Gaussian random variables with variance factor
02> 0if

(5.2) Efexp(yx)} <exp(y’0?/2) VyeR.

We assume that every coordinate of random vectors X; — u, i =1, ..., n belongs to the class
G(o?) for some o2 > 0. Let also

Ci(r) :=2{4V2t +3tn™ 2}, Co(t) := 4v2(V/8t + 1320~ 1/2),

(5.3)
1« :=logn + log(2dn + d> + 3d), Cjw:=Cj(ty) for j=1,2.
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Amin(2) > 0 denotes the smallest eigenvalue of the covariance matrix X. We consider d and
n such that

(5.4) 02Crad /1 < Amin(Z).

This condition allows to ensure that the approximation bound in Theorem 5.1 holds with high
probability. Recall that 1 (8) = (1 — B2)2B~*+ (1 — 2~ 1p~* for B € (0, 1).

THEOREM 5.1. If the conditions introduced above are fulfilled, then it holds with prob-
ability > 1 —n~!

Az(So.n, Sy) <84,
where §¢ = 8(d, n, L(X;)) is defined as follows:
(5.5)  8z:=(V2B%3) {02 Crud//n)

(5.6) + (V68313) [402dn =21, {2 |lp + 02 1ud /)

(5.7) +02d* 0 Cou {1 + 30712} + |E(X) — )& pn ™1/
+4V2CE 4052 B[EIX) — wl* +8(1 +n72){20%t.d /n)?]
+ (d? +2d) 3| 2| + 2{02Crad//n) + 1/2)} /20712
+2(v613) i B[EIX) — wll* +8(1 +n~2){20%t,d/n)*]
+ (@ +2d)[BIZ? 4+ 2[02Ciud//n) ]}

for arbitrary B € (0, 1) and for 2} := Amin(Z) — 02C14d //n.

REMARK 5.1. The explicit approximation error 5 in Theorem 5.1 allows to eval-
uate accuracy of the bootstrap in terms of d, n, o2, and moments of X;. In general,

8z < Cyl\/d*/n+ d? /n} (for C, depending on the log-term ¢, and moments of X;), however
the expression for §4 provides a much more detailed and accurate characterization of the ap-
proximation error. The proof of this result is based on the second statement in Theorem 2.2
(for £ and X7 not necessarily equal to each other). The first term on the right-hand side of
(5.5) and the summands in (5.6), (5.7) characterize the distances between the population mo-
ments E(X; — ;L)®k and their consistent estimators E* (X ’;®k) (for k = 2 and 3, respectively).
The rest of the summands in the expression for 6z correspond to the higher-order remainder
terms which leads to smaller error terms for a sufficiently large n.

6. Elliptic confidence sets. An elliptic confidence set is one of the major types of con-
fidence regions in statistical theory and applications. They are commonly constructed for
parameters of (generalized) linear regression models, in ANOVA methods, and in various
parametric models where a multivariate statistic is asymptotically normal. As for example,
in the case of the score function considered in Section 7. See, for instance, Friendly, Mon-
ette and Fox [22] for an overview of statistical problems and applications involving elliptic
confidence regions.

In this section, we construct confidence regions for an expected value of i.i.d. random
vectors {X;}7_,, using the bootstrap-based quantiles. Since the considered set-up is rather
general, the provided results can be used for various applications, where one is interested in
estimating a mean of an observed sample in a nonasymptotic and multivariate setting. See,
for example, Arlot, Blanchard and Roquain [1], where the authors constructed nonasymptotic
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confidence bounds in ¢,-norm for the mean value of high dimensional random vectors and
considered a number of important practical applications.

Let W € R4*? be a p.d. symmetric matrix. W is supposed to be known, it defines the
quadratic form of an elliptic confidence set: By (xg, r) :={x € RY : (x —x0) T W(x—xp) < r},
for xg € R?, r > 0. There are various ways of how one can interpret and use W in statistical
models. For example, W can serve for weighting an impact of residuals in linear regression
models in the presence of errors’ heteroscedasticity (cf. weighted least squares estimation);
for regularized least squares estimators in the linear regression model (e.g., ridge regression)
W denotes a regularized covariance matrix of the LSE; see [22] for further examples.

In Proposition 6.1 below, we construct an elliptic confidence region for EX; based on
the bootstrap approximation established in Section 5. Let X* :=n~! 2?21 Xj.‘ for the i.i.d.

bootstrap sample {X jf};?zl generated from the empirical distribution of {X; — X yi_, for X =
n~1Y" | X;. Letalso

gy =inf{t >0: (1 —a) <P*(n'?|W'2X*| <1)}

denote (1 — «)-quantile of the bootstrap statistic n' 2| W2 X*| for arbitrary o € (0, 1). We
assume that coordinates of vectors {W1/2(X; — EX i)}!_, are sub-Gaussian with variance
factor UVZV > 0 (i.e., condition (5.2) is fulfilled). Let also d, n be such that a%,Cl*d/\/ﬁ <
Amin(WY2Z W2 (for Cy, defined in (5.3)). Theorem 5.1 implies the following statement.

PROPOSITION 6.1. Ifthe conditions above are fulfilled, it holds
P2 | WX —EX))| <qf) — (1 —a)| < 8w.

dw is analogous to § z, where we take ¥ .= wWi2gwl/2 52 .= U%V, etc. A detailed definition
of 8w is given in (10.2) in the Supplementary Material [47], see also Remark 5.1 for the
discussion about its dependence on d and n.

7. Score tests. Let y = (y1,...,y,) be an i.i.d. sample from a p.d.f. or a p.m.f. p(x).
Let also P := {p(x;6) : 0 € ® C R} denote a known parametric family of probability dis-
tributions. The unknown function p(x) does not necessarily belong to the parametric family
‘P, in other words the parametric model can be misspecified. Following the renown aphorism
of Box [10] “All models are wrong, but some are useful,” it is widely recognized that in gen-
eral a (parametric) statistical model cannot be considered exactly correct. See, for example,
White [44], Gustafson [23], Wit, Heuvel and Romeijn [45], Section 1.1.4 by McCullagh and
Nelder [34], and p. 2 by Bickel and Doksum [8]. Hence, it is of particular importance to de-
sign methods of statistical inference that are robust to model misspecification. In this section,
we propose a bootstrap score test procedure which is valid even in case when the parametric
model P is misspecified.

Let s(6) = s(0, y) and I (8) denote the score function and the Fisher information matrix
corresponding to the introduced parametric model

s©):=Y dlogp(y;;6)/80,  1(8) := Var|s(6)}.
i=1

We suppose that the standard regularity conditions on the parametric family P are fulfilled.
Let 6y := argminggElog(p(y;)/p(yi; €)) denote the parameter which corresponds to the
projection of p(x) on the parametric family P w.r.t. the Kullback-Leibler divergence (also
known as the relative entropy).
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Consider a simple hypothesis Hy : 8y = 6. Rao’s score test (by Rao [37]) for testing Hy is
based on the following test statistic and its convergence in distribution to X53

(7.1) R(O) =50 {1(0))"s(0) L0 42, n— oo,

provided that matrix 7(6’) is p.d. The sign dﬁo denotes convergence in distribution under
Hy. Matrix I(6") can be calculated explicitly for a known 6’ if one assumes that p(x) € P,
that is, if the parametric model is correct. However, if p(x) does not necessarily belong to
the considered parametric class P, then neither 7 (6”) nor the probability distribution of s(8”)
can be calculated in an explicit way under the general assumptions considered here. In this
case, the Fisher information matrix 7 (0) is typically estimated using the Hessian of the log-
likelihood function )7, log p(y;; ). However, the standardization with an empirical Fisher
information may considerably reduce the power of the score test for a small sample size n
(see Rao [38] and Freedman [21]).

Below we consider a bootstrap score test for testing simple hypothesis Hp, under possible
misspecification of the parametric model. Denote

R(O') = [5(6")/ ]

One can consider s(0") = >_"_; X;, where random vectors X; := dlog p(y;; 0')/96" are i.i.d.
with EX; = 0 under Hy. Introduce the bootstrap approximations of s(#’) and R(H/ ):

=) X, RY0)=]s"()
i=l

where {X[}"_, are sampled according to Efron’s bootstrap scheme (5.1). Let also
13 :=inf{r >0: (1 —a) <P*(R*(9") <1)}

denote (1 — «)-quantile of the bootstrap score statistic for arbitrary « € (0, 1). Suppose that
coordinates of vectors X; = dlog p(y;; 0’)/36’ satisfy condition (5.2) with variance factor
ors2 > 0. Let also d and n be such that aszCl*d/\/ﬁ < Amin(Z(0"))/n. Then Theorem 5.1
implies the following statement, which characterizes accuracy of the bootstrap score test
under Hy.

THEOREM 7.1 (Bootstrap score test). If the conditions above are fulfilled, it holds
Pry(R(6') > 13) — | <k,

where 8 is analogous to 8z up to the terms o> and X. A detailed definition of 8 is given in
(10.3) in the Supplementary Material [47]; see also Remark 5.1 for the discussion about its
dependence on d and n.

The following statement provides a finite sample version of Rao’s score test based on (7.1)
for testing simple hypothesis Hy : 6y = 6’. Here we require also the finite 4-th moment of the
score in order to apply the higher-order approximation from Theorem 2.1.

THEOREM 7.2 (Nonasymptotic version of Rao’s score test). Suppose that p(x) =
p(x,6o) for some 6y € ©, that is, there is no misspecification in the considered paramet-
ric model. Let also X; = {0}~ 1/2810g p(yi; 0')/060" denote the marginal standard-
ized score for the i-th observation and ¥ :=n~'1(0’). Suppose that E|X ®4| < 00, then the
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asymptotic poperty (7.1) for testing Hy : 6y = 0’ can be represented in the finite sample form
as follows:

sup [Pry(R(6) > q(er: x7)) — e
ae(0,1)

< (V6B>) T B(XT?) [pn /2
+2Cp 4| ETISI{ (1 (B) + (48 EIX|* + a2 +2d} P12
+ VO (BEIX 1 + ha(B)(d* + 2d)}n ™,

where g(«; Xaz,) denotes the (1 — «)-quantile of x§ distribution. The inequality holds for
any B € (0, 1), functions hy, hy are defined in (2.2), constant Cp 4 > 9.5 is described in the
statement of Theorem 2.1.

Funding. Support by the National Science Foundation Awards CAREER DMS-2048028
and DMS-1712990 is gratefully acknowledged.

SUPPLEMENTARY MATERIAL

Supplement to ‘“New Edgeworth-type expansions with finite sample guarantees”
(DOI: 10.1214/22-A0S2192SUPP; .pdf). Supplementary material contains proofs of the
main results from Sections 2—7, statements from [46] which are used in the proofs of main
results, and the proof of optimality of the Gaussian anticoncentration bound over set 2.
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