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This work highlights the use of half-implicit numerical integration
in the context of the index three differential algebraic equations
(DAEs) of multibody dynamics. Although half-implicit numerical
integration is well established for ordinary differential equations
problems, to the best of our knowledge, no formal discussion cov-
ers its use in the context of index three DAEs of multibody dynam-
ics. We wish to address this since when compared to fully implicit
methods, half-implicit integration has two attractive features: (i)
the solution method does not require the computation of the
Jacobian associated with the constraint, friction, contact, or user-
defined applied forces; and (ii) the solution is simpler to imple-
ment. Moreover, for nonstiff problems, half-implicit numerical
integration yields a faster solution. Herein, we outline the numeri-
cal method and demonstrate it in conjunction with three mecha-
nisms. We report on convergence order behavior and solution
speed. The Python software developed to generate the results
reported is available as open in a public repository for reproduci-
bility studies. [DOI: 10.1115/1.4056183]

1 Introduction

Complex multibody systems, e.g., cars, rovers, space structures
and robots, often lead to multibody models with topologies that
display closed loops. When using absolute Cartesian generalized
coordinates, the numerical solution of the index three differential
algebraic equations (DAEs) problem associated with these sys-
tems has relied on implicit numerical integrators, see, for instance
[1-4]; for an overview of the topic, see Ref. [5]. The contribution
made herein is the use of half-implicit methods to directly solve
the index three DAEs problem; i.e., produce a solution that satis-
fies the kinematic constraint equations while being compatible
with a discretized form of the equations of motion. In the most
simple case of a half-implicit integration formula, and the most
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simple case of a one degree-of-freedom system, the position x|
and velocity v, are obtained at time #,,; from the acceleration
a, as

Vil = Vn + han (1a)

Xnyl = Xn +hvn+1 (lb)

This is the half-implicit, symplectic Euler method [6]; it is explicit
at the velocity level (level one “L1”), but implicit at the position
level (level zero “L0”); and, it is a first-order method, but higher
order methods can be obtained by combining a suitable explicit
integrator for the L1 update, with a suitably chosen implicit inte-
grator for the LO update. Higher order integrators fall outside the
scope of this technical note. Our contribution is with outlining
how integrators like the one in Eq. (1) can be used to directly
solve the index three DAEs of multibody dynamics.

Several attractive aspects are noted when using a half-implicit
solver to handle the index three DAEs of multibody dynamics.
First, when using in conjunction with the Absolute Nodal Coordi-
nate Formulation [7], the Jacobian of the internal forces does not
need to be evaluated. Additionally, if no kinematic constraints are
present in the system, the mass matrix is constant and only needs
to be factored once and used throughout the simulation to com-
pute the analog of a, in Eq. (1). Second, the solution does not
require the Jacobian of some hard-to-handle forces that might
appear in the model, e.g., friction, contact, impact, constraint,
user-defined. The latter are particularly difficult to handle, since in
many cases user-defined forces do not have closed-form expres-
sion and are provided as a black box, in a user subroutine. Finally,
the solution process for half-implicit integrators is straightfor-
ward. The Jacobian is easy to assemble and has a sparsity pattern
that can be leveraged for linear-time solution [8,9].

This Technical Note is organized as follows. Section 2.1 states
the index three DAEs problem of interest; Sections 2.2 and 2.3
outline the half- and fully-implicit schemes, respectively; Section 3
reports convergence and timing results. We close with a discussion
of the main highlights and directions of future work.

2 Solution Approach

Herein, we assume the use of absolute coordinates. The location,
r, of each body is with respect to a global reference frame. The ori-
entation, or pose, of each rigid body is also with respect to the
global reference frame, captured by Euler angles ¢ = [¢ — 0 — w]T
or Euler parameters (quaternions) p = [eg, e1,e2,e3]". However,
herein we use Lie-group integration to produce the orientation
matrix A directly, since this approach is more attractive than using
Euler parameters or Euler angles [10]. The discussion herein
focuses on rigid body dynamics but the conclusions carry over to
absolute nodal coordinate formulation (ANCF)-based flex body
dynamics. Finally, the local reference frame (LRF) associated with
each body is assumed to be central and principal, so that the gener-
alized mass matrix is constant and diagonal.

2.1 The Constrained Equations of Motion. The state of a
system of nb rigid bodies, each of mass m; and inertia matrix J,,
can be described by translational and angular acceleration, 7; and
o velocity, 7; and @;; and position r; and orientation matrix A;,
where i = 1,2,...,nb. Herein, a letter with a bar - represents a
geometric quantity expressed in the body’s LRF.

For a constrained problem that describes the relative motion
among bodies connected via lower-pair joints, e.g., revolute joint,
spherical joint and translational joint, the state of the system needs
to satisfy a set of nonlinear equations, described as
D(r, 1y, ... Fob, A1, Az, .y App, 1) = 0y, Where nc is the total
number of constraints, and ¢ is time. By applying D’Alembert’s
principle, one can derive the constrained equations of motion [11]
in matrix form as

My + @) =f Qa)
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Jo +1I'(®)i=7 (2b)
D(r,A, 1) = 0y (2¢)
where M = diag{m 15, .. man3} J =diag{J1,...., I},

=1t L), and 7 = [z7,...,77.]". Here, M# and J & are the
inertia force and torque, respectively; f; is the external force on
body i; the external torque #z; appears in 7; = ii; — &,J;®;; G)T,A
and l:[T((I))l are the reaction forces and torques from the joints,
with Lagrange multipliers 4 € R"™ associated with the kinematic
constraints ®, and @, and fI(CD) being the first-order variations
of ® with respect to r and A. Note that in @, the orientation
matrix A only shows up in the form of As, with § being a vector in
the local body frame. As shown in Ref. [10], IT1(®) has cleaner
formulations compared to taking the partial derivatives of ® with
respect to Euler angles or Euler parameters.

2.2 The Half-Implicit Approach. At time t=1,, the discre-
tized equations of motion are

Mizn + P;r((l))lﬂ :fn (3(1)
Jo, + Pl (®)h, =7, (3b)

where P,(®)=®, and P4(®)=TI(®). The half-implicit
scheme becomes

Fup1 = Fp + hify (4a)
O = @y + hd, (4b)
Fup1 =Ty + W gy (4c)

A1 =A,exp(hd, 1) (4d)

Here, Eq. (4d) is a first-order Lie-group integration scheme for the
orientation matrix A. From Egs. (4a) and (4c)
i;n :(rn+1 _rn_h’:n)/hzv é)n - (&)I‘I‘Fl _(Dn)/h

which upon plugging back into Eq. (3) leads to the following non-
linear system of equations

Mr, | + P“ Wb, =0 (5a)
J0,1 + P,LAAn +e =0 (5b)
D(ry1,An1, i) = 0 (5¢)
Apir = Anexp(0,41) (5d)

The unknowns are r;,1,80,.1,A,:1, and 4,, where

0,11 = hdyin, Ay =12, (6)

and both b, and ¢, are evaluated with quantities from the previous
time-step 7,
b, = —(Mr, + hM¥, + I*f,) (Ta)
Ccp, = ((?) j n) - hjd)n (7b)

To solve the nonlinear system in Eq. (5) using the
Newton—Raphson approach, we need to evaluate the Jacobian
matrix N*®) for each iteration (k), and solve for the corrections oq

—eﬁ” or
)og = e, b = _e§k> . og= |50 (8)
e o
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Then, at the next iteration (k + 1)

rflkfl') = rfﬁl + or (9a)
S(k1) (K -
0\ =0, + o0 (9h)
R L) 90)
. = (k+1)

Ait]:—ll) = A" €xXp (071+1 ) (9d)

We derive the Jacobian matrix as

M 0 P! (®)
NO=| 0 I P (10)
PL@) PHL @) 0
and the residual as
eV =M+ PT (@)i 1 b, (11a)
O —70Y, + PT (@i 1o, (11b)
eé” = o(r), Al ) (11¢)

Instead of evaluating N® at each iteration, computation cost is
reduced by using the approximations P,7/, PR P,, and
Pfl A~ P,4, to yield a quasi-Newton symmetric matrix com-
puted only once at each time-step,

M 0 PT (®)

N = 0 J Py (@) 12)

P, (@) P,a(®) 0

Then, Nog = e is solved iteratively until the correction g
meets the stopping criteria [|d¢g|| < €. Once the solver con-
verges, the solution 4, is plugged back in Eq. (3) to compute the
accelerations #, and @,. Note that the Jacobians P,,, and P, 4 in
Eq. (12) are derived for all lower-pair joints in Ref. [10]. Thus,
the solution approach can be effectively used in conjunction with
any constrained multibody system.

2.3 The Fully-Implicit Approach. The fully-implicit inte-
gration scheme used is described in Ref. [10], and only summarily
presented here. At time ¢ = 7,4, the discretized constrained equa-
tions of motion

Mrn+1 + Pn+lr n+1 :fn+l (130)
jé)n+l + Pn+1>A}vn+1 = Tptl (13b)
1
ﬁq)(rn+lvAn+lvtn+l) =0 (13¢)

are solved iteratively using the Newton—Raphson method to pro-
duce #,.1, @,11, and 4,.,. The scaling factor 1/4% in Eq. (13c) is
for improving the condition number of the Newton iteration
matrix. The velocity- and position-level quantities are updated
using the Backward Euler scheme (compare Eqgs. (4a) and (4b) to
(14a) and (14D)),

Fup1 = Fp + i (14a)
Opit = O + hid 14 (14b)
Fust = o+ i (140)
A=A, eXp(hi)nﬂ) (14d)

Transactions of the ASME

d-ajone/1esuluoujeuoneindwos B0 swse uonods|odjenbipawse//:dny woly papeojumoq

0 L0 8L0 PU9/GGGLG69/L0SYLO/L/8LAP

€202 dUnf O U JUBBN Ueq ‘UOSIPE|\ UISUCDSIM JO AsioAun Aq Jpd-L oGy L



When assembling the Newton iteration matrix for solving
Eq. (13), the Jacobians of the reaction forces and torques,
P"+17rln+l .and PLLAMH, with respect to r, i, A and @ are
dropped to improve the solver’s efficiency.

3 Numerical Experiments

The software implemented to generate the results reported
herein is available in a public repository for reproducibility stud-
ies and further development [12]. Three systems: a double pendu-
lum, a slider—crank, and a four-link mechanism are investigated
to compare the performance of the fully- and half-implicit
approaches.

The double pendulum is composed of 4m and 2m long rectan-
gular bars, connected via revolute joints. The system is released
from the configuration shown in Fig. 1(a) and swings owing to the
gravitational pull. Both bars have the same square-shaped cross
section and density of 7.8 g cm .

The slider—crank and four—link systems are kinematically
driven. The mass and inertia properties of the slider—crank mecha-
nism are in Table 1. We prescribe the crank (body 1 in Fig. 1(b))
to rotate about its negative x-axis at a rate of 27 rad s~ '. The

(c)

Fig. 1 Mechanisms used in the numerical experiments:
(a) double pendulum (b) slider—crank (c) four-link

Journal of Computational and Nonlinear Dynamics

Table 1 Mass and inertia properties of the slider—crank mecha-
nism (Sl units), adopted from Haug [11]

Body Mass Iix Ly I

1 0.12 1x107* 1 %107 1x107*
2 0.5 4x1073 4% 107 4%1073
3 2 1x107* 1x107* 1x107*

Table2 Properties of the four-link mechanism (Sl units).

Rotor radius Bar 2 length Bar 3 length Bar width

2 12.2 7.4 0.1

four—link setup consists of a rotor disk and two bars of the
same square-shaped cross section. The density of each body is
1.5g cm ™. The rotor (body 1 in Fig. 1(c)) is prescribed to rotate
about its z-axis at a rate of m rad s~ . More parameters are given
in Table 2. All simulations were run for 8 s, which allowed for at
least three full rotations for the slider—crank and four—link
mechanisms.

3.1 Convergence Order Analysis. The convergence order
analysis starts with producing a reference solution. The position,
velocity, and acceleration of the double pendulum were obtained
by integrating a set of ordinary differential equations that describe
the system in 2D using two coordinates. To that end, we use a
highly accurate, 8th-order Runge—Kutta solver — DoPri853 [13]—
and a constant step size of & =1 x 107%s. For the slider—crank
and four-link mechanisms, the reference solution was generated
by posing the problem as a kinematic one. To this end, only
Eq. (2¢) and its time derivatives were solved using the
Newton—Raphson method, which allowed for the reference solu-
tion to be obtained within machine precision.

Figure 2 shows on a log—log scale the difference between the
fully- and half-implicit integrators and the reference solution plot-
ted over a range of step sizes. Labels “HI” and “FI” stand for
“Half Implicit” and “Fully Implicit,” respectively. The tolerance
of the fully-implicit approach is set to o = 1071 /h?*; for the
half-implicit, 10~'°. The scaling factor 1/A? is from Eq. (13c¢), in
comparison to Eq. (2¢). The error relative to the reference solution

was calculated as /37| (zPAE — z)? /i, where n is the total

1
number of time steps in each simulation and zPAE and z'°f are

quantities at time-step ¢; produced by the DAE solvers and the ref-
erence solution, respectively.

Figure 2(a) plots the z-position error for bar 2. The most impor-
tant feature noted is a slope of 1.0 for both integrators. In other
words, if the step size is reduced by a factor of 10, the error will
decrease by a factor of 10. Figures 2(b) and 2(c) plot the velocity
order analysis for the slider of the slider—crank mechanism and
link body 2 of the four-link mechanism, respectively. All three
figures show first-order convergence for both methods, thus meet-
ing expectations. Finally, since the half-implicit integrator is sym-
plectic, it conserves a numerical Hamiltonian, which leads to
superior performance in terms of long-term energy preservation
[6]. This is evident in Fig. 3—the total energy of the system drains
over time using a fully-implicit approach, a highly-damped Back-
ward Euler integrator, but holds steady for the symplectic half-
implicit approach.

3.2 Performance Analysis. For a fair timing comparison,
each integrator had its own ¢, to ensure that they achieved simi-
lar quality of the solution (relative to the reference solution).
More plots of how ¢, affects the solution quality are available in
Ref. [14]. Note that both solvers use SciPy’s built-in sparse solver.
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double pendulum convergence analysis
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Fig. 2 Order analysis, half-implicit (HI) and fully-implicit
solutions (Fl): (a) Double pendulum, (b) slider—crank, and (c)
four-link

Each timing test was run five times and the average CPU time was
recorded for three different step sizes, h =1 x 10’4,1 X 10’3,
and 1 x 102, as shown in Figs. 4(a), 5(a), and 6(a). The average
number of iterations for the Newton solver to converge is illus-
trated in Figs. 4(b), 5(b), and 6(b). A larger step size results in
more iterations because the initial starting point for the Newton
method is less accurate. The half-implicit approach is faster for all
mechanisms and step sizes. This is a direct consequence of the
fact that the Newton iteration matrix is easier to evaluate and

014501-4 / Vol. 18, JANUARY 2023
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0 2 4 6 8 10
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Fig. 3 Energy of double pendulum system over time

more accurate. Indeed, the Newton iteration matrix of the fully-
implicit approach requires the computation of the partial deriva-
tive of the constraint reaction forces and torques, yet in practice
these partial derivatives are ignored since they are exceedingly
expensive to evaluate. However, for the half-implicit approach,
the constraint reaction forces and torques are expressed at time-
step t,, independent of the position or orientation at #,, |, resulting
in a simpler and better approximation of the Newton iteration
matrix.

3.3 Scaling Analysis. A scaling analysis was carried out to
confirm that the speed-up observed in Sec. 3.2 translates to larger
problems. As shown in Fig. 7, N rigid links were connected by
spherical joints and released under gravity g pointing in a random
direction (not vertically down). At time =0, the bars were
assigned an angular velocity of random magnitude ®,; around
their  longitudinal  axis. Tests were conducted for
N=1,2,4,6,8, 16, 32. The timing results reported in Fig. 8
indicate that the half-implicit approach is consistently faster than
the fully-implicit one.

3.4 An Example With Joint Friction. To demonstrate the
versatility of the half-implicit scheme, the slider-crank model is
enhanced to include joint friction; thus, the external force f in
Eq. (2a) changes over time. Herein, Coulomb friction is applied in
the translational joint between the slider and the ground. The
direction of the friction force opposes the relative motion of the
slider with respect to the ground; its magnitude is the product of
the friction coefficient, p, and the reaction force in the normal-to-
the-motion direction (herein, the z direction). No distinction is
made between static and kinetic friction. Keeping with the half-
implicit nature of the discretization scheme, the friction force at
the current time-step is evaluated explicitly based on the joint nor-
mal force from the previous step. Three simulations were carried
out using a prescribed motion of the crank, but various friction coeffi-
cients — u =0, 0.2, and 0.4. In all cases the step size was 1 X 1073 s.
Figure 9 shows the torques required to enforce the prescribed
crank motion, in each of the three cases. With increasing u (and
thus joint friction force), the driving torque used to drive the crank
experiences larger swings. The sudden jump in the driving torque
value results from the change of the slider velocity direction (and
that of the friction force).

4 Discussion

The half-implicit integrator for index three DAEs advances the
simulation from ¢, to #,,; by computing at 7, a set of Lagrange
multipliers 4, that enforce the kinematic constraints equations at
thr1; 1€, ®(rp1,Aprt, tyrr) = 0. With 4, in hand, the accelera-
tion at 7, can be obtained by solving a linear system of equations
whose matrix is diagonal and constant throughout the simulation.
Once the acceleration at 7, is known, one uses an explicit integra-
tor to compute the velocities at #,.; (see Egs. (4a) and (4b)). The
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Fig. 7 Problem setup, scaling analysis
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Fig. 9 Driving torque applied to the crank with and without
friction at the translational joint of the slider

new position and orientation can be computed using an implicit
formula with the new velocities (see Egs. (4¢) and (4d)).

The method works for arbitrary multibody systems: with open
and closed loops, arbitrary number of bodies, any collection of
joints (lower-pair constraints) or bilateral kinematic constraints.
Although not discussed herein, the presence of nonholonomic
constraints poses no additional challenges, as derived in Sec. 3.4
in Ref. [14]. In terms of the convergence of the Newton solver,
the half-implicit method performs slightly better than the fully-
implicit one. This can be traced back to the fact that some entries
in the Jacobian matrix of the fully-implicit integrator were
dropped—they are both expensive to compute and challenging to
produce, e.g., Jacobian of constraint forces, friction forces and
contact forces. Should one use the exact Jacobian, convergence
can improve; however, the fully-implicit solver will be computa-
tionally more expensive. Note that since the half-implicit formula-
tion uses reaction forces and torques from the previous time-step,
P! 4, and P! , 4,, it does not require the Jacobian of external or

014501-6 / Vol. 18, JANUARY 2023

internal generalized forces. Consequently, a simpler yet more
accurate Newton matrix is obtained, leading to faster
convergence.

Finally, the half-implicit approach is expected to work equally
well for the index three DAEs problem formulated using Euler
angles or Euler parameters as generalized coordinates. However,
as shown in Ref. [10], the fully-implicit 7A approach is faster than
these alternatives, which justified the choice for Lie-integration in
this technical note.

5 Conclusions and Future Work

We discuss the use of a half-implicit integration method for the
solution of the index three DAEs of multibody dynamics. The
approach stands to benefit the simulation of multibody systems
that are not exceedingly stiff. In the case of stiff problems, a fully
implicit DAE solution is expected to be superior. We demonstrate
the half-implicit approach in conjunction with a first-order Lie-
group integrator, yet the method can be equally applied to solu-
tions that rely on Euler parameters or Euler angles. The half-
implicit scheme treats the reaction forces and torque explicitly in
time, leading to a simpler and better approximation of the Jaco-
bian matrix in the Newton step and a more expeditious solution.
The scaling analysis demonstrated that the conclusion above car-
ries to larger systems. Finally, the numerical solution is straight-
forward to implement, see Ref. [12].

There are two things that remain to be investigated. First, pro-
vide a formal proof that the half-implicit approach has a guaran-
teed convergence order when used in the context of index three
DAEs of multibody dynamics. Second, we are currently working
on a second-order half-implicit integration formula that relies on
Lie-group integration in multibody dynamics. Adaptive step size
should be considered to further improve the efficiency of the
numerical solution.
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