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Abstract. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided non-tangentially accessible domain (aka uniform
domain), that is, Ω satisfies the interior Corkscrew and Harnack chain conditions, which are
respectively scale-invariant/quantitative versions of openness and path-connectedness. Let us
assume also that Ω satisfies the so-called capacity density condition, a quantitative version of
the fact that all boundary points are Wiener regular. Consider L0u = −div(A0∇u), Lu =
− div(A∇u), two real (non-necessarily symmetric) uniformly elliptic operators in Ω, and write
ωL0 , ωL for the respective associated elliptic measures. The goal of this program is to find
sufficient conditions guaranteeing that ωL satisfies an A∞-condition or a RHq-condition with
respect to ωL0 . In this paper we are interested in obtaining square function and non-tangential
estimates for solutions of operators as before. We establish that bounded weak null-solutions
satisfy Carleson measure estimates, with respect to the associated elliptic measure. We also
show that for every weak null-solution, the associated square function can be controlled by the
non-tangential maximal function in any Lebesgue space with respect to the associated elliptic
measure. These results extend previous work of Dahlberg-Jerison-Kenig and are fundamental
for the proof of the perturbation results in [2].
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1. Introduction and Main results

The purpose of this program is to study some perturbation problems for second order diver-
gence form real elliptic operators with bounded measurable coefficients in domains with rough
boundaries. Let Ω ⊂ Rn+1, n ≥ 2, be an open set and let Lu = −div(A∇u) be a second order
divergence form real elliptic operator defined in Ω. Here the coefficient matrix A = (ai,j(·))n+1

i,j=1

is real (not necessarily symmetric) and uniformly elliptic, with ai,j ∈ L∞(Ω), that is, there
exists a constant Λ ≥ 1 such that

Λ−1|ξ|2 ≤ A(X)ξ · ξ, |A(X)ξ · η| ≤ Λ|ξ| |η|(1.1)

for all ξ, η ∈ Rn+1 and for almost every X ∈ Ω. Associated with L one can construct a family
of positive Borel measures {ωXL }X∈Ω, defined on ∂Ω with ωX(∂Ω) ≤ 1 for every X ∈ Ω, so that
for each f ∈ Cc(∂Ω) one can define its associated weak-solution

(1.2) u(X) =

∫
∂Ω
f(z)dωXL (z), whenever X ∈ Ω,

which satisfies Lu = 0 in Ω in the weak sense. In principle, unless we assume some further
condition, u need not be continuous all the way to the boundary, but still we think of u as the
solution to the continuous Dirichlet problem with boundary data f . We call ωXL the elliptic
measure of Ω associated with the operator L with pole at X ∈ Ω. For convenience, we will
sometimes write ωL and call it simply the elliptic measure, dropping the dependence on the
pole.

Given two such operators L0u = −div(A0∇u) and Lu = −div(A∇u), one may wonder
whether one can find conditions on the matrices A0 and A so that some “good estimates” for
the Dirichlet problem or for the elliptic measure for L0 might be transferred to the operator
L. Similarly, one may try to see whether A being “close” to A0 in some sense gives some
relationship between ωL and ωL0 . In this direction, a celebrated result of Littman, Stampacchia,
and Weinberger in [27] states that the continuous Dirichlet problem for the Laplace operator
L0 = ∆, (i.e., A0 is the identity) is solvable if and only if it is solvable for any real elliptic
operator L. By solvability here we mean that the elliptic measure solutions as in (1.2) are
indeed continuous in Ω. It is well known that solvability in this sense is in fact equivalent to the
fact that all boundary points are regular in the sense of Wiener, a condition which entails some
capacitary thickness of the complement of Ω. Note that, for this result, one does not need to
know that L is “close” to the Laplacian in any sense (other than the fact that both operators
are uniformly elliptic).

On the other hand, if Ω = R2
+ is the upper-half plane and L0 = ∆, then the harmonic measure

associated with ∆ is mutually absolutely continuous with respect to the surface measure on
the boundary, and its Radon-Nykodym derivative is the classical Poisson kernel. However,
Caffarelli, Fabes, and Kenig in [3] constructed a uniformly real elliptic operator L in the plane
(the pullback of the Laplacian via a quasiconformal mapping of the upper half plane to itself)
for which the associated elliptic measure ωL is not even absolutely continuous with respect to
the surface measure (see also [29] for another example). Hence, in principle the “good behavior”
of harmonic measure does not always transfer to any elliptic measure even in a nice domain
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such as the upper-half plane. Consequently, it is natural to see if those good properties can be
transferred by assuming some conditions reflecting the fact that L is “close” to L0 or, in other
words, by imposing some conditions on the disagreement of A and A0.

The goal of this program is to solve some perturbation problems that go beyond [9, 11, 12,
28, 5, 6]. Our setting is that of 1-sided NTA domains satisfying the so called capacity density
condition (CDC for short), see Section 2 for the precise definitions. The latter is a quantitative
version of the well-known Wiener criterion and it is weaker than the Ahlfors regularity of the
boundary or the existence of exterior Corkscrews (see Definition 2.1). This setting guarantees
among other things that any elliptic measure is doubling in some appropriate sense, hence one
can see that a suitable portion of the boundary of the domain endowed with the Euclidean
distance and with a given elliptic measure ωL0 is a space of homogeneous type. In particular,
classes like A∞(ωL0) or RHp(ωL0) have the same good features of the corresponding ones in
the Euclidean setting. However, our assumptions do not guarantee that the surface measure
has any good behavior and it could even be locally infinite. In one of our main results, we
consider the case in which a certain disagreement condition, originating in [12], holds either
with small or large constant. The small constant case can be seen as an extension of [12, 28] to
a setting in which surface measure is not a good object. The large constant case is new even
in nice domains such as balls, upper-half spaces, Lipschitz domains or chord-arc domains. To
the best of our knowledge, our work is the first to establish perturbation results on sets with
bad surface measures, and our large perturbation results are the first of their type. Finally, we
do not require the operators to be symmetric. The precise results, along with its context in the
historical developments, will be stated in the sequel to the present paper [2].

In the present article we develop some of the needed tools, and present some other results
which are of independent interest. Key to our argument is the construction of certain sawtooth
domains adapted to a dyadic grid on the boundary and to the Whitney decomposition of the
domain. These domains are shown to inherit the main geometrical/topological features of
the original domain (see Proposition 2.37). With this in hand we obtain a discrete sawtooth
lemma for projections improving [10, Main Lemma], see Lemma 3.5 and Lemma 3.19. These
ingredients are crucial for the main results of the papers which we state next. First we establish
that bounded weak-solutions satisfy Carleson measure estimates adapted to the elliptic measure.

Theorem 1.3. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying
the capacity density condition (cf. Definition 2.10). Let Lu = −div(A∇u) be a real (not neces-
sarily symmetric) elliptic operator and write ωL and GL to denote, respectively, the associated
elliptic measure and the Green function. There exists C depending only on dimension n, the
1-sided NTA constants, the CDC constant, and the ellipticity constant of L, such that for every
u ∈W 1,2

loc (Ω) ∩ L∞(Ω) with Lu = 0 in the weak-sense in Ω there holds

(1.4) sup
B

sup
B′

1

ωX∆
L (∆′)

∫∫
B′∩Ω

|∇u(X)|2GL(X∆, X) dX ≤ C ‖u‖2L∞(Ω),

where ∆ = B∩∂Ω, ∆′ = B′∩∂Ω, X∆ is a corkscrew point relative to ∆ (cf. Definition 2.1), and
the sups are taken respectively over all balls B = B(x, r) with x ∈ ∂Ω and 0 < r < diam(∂Ω),
and B′ = B(x′, r′) with x′ ∈ 2∆ and 0 < r′ < rc0/4, and c0 is the Corkscrew constant.

This result is in turn the main ingredient to obtain that the conical square function can be
locally controlled by the non-tangential maximal function in norm with respect to the elliptic
measure, allowing us to extend some estimates from [10] to our general setting.

Theorem 1.5. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying
the capacity density condition (cf. Definition 2.10). Let Lu = −div(A∇u) be a real (non-
necessarily symmetric) elliptic operator and write ωL to denote the associated elliptic measure
and the Green function. For every 0 < q <∞, there exists Cq depending only on dimension n,
the 1-sided NTA constants, the CDC constant, the ellipticity constant of L, and q, such that for
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every u ∈W 1,2
loc (Ω) with Lu = 0 in the weak-sense in Ω, for every Q0 ∈ D, there holds

(1.6) ‖SQ0u‖
Lq(Q0,ω

XQ0
L )

≤ Cq ‖NQ0u‖
Lq(Q0,ω

XQ0
L )

,

where SQ0 and NQ0 are the localized dyadic conical square function and non-tangential maximal
function respectively (cf. (2.28) and (2.27)), and XQ0 is a corkscrew point relative to Q0 (see
Section 2.4).

We note that the estimate (1.6) is written for the localized dyadic conical square function
and non-tangential maximal function. It is not difficult to see that, as a consequence, one
can obtain a similar estimate for the regular localized (or truncated) conical square function
and non-tangential maximal function with arbitrary apertures (see [4, Lemma 4.8]), precise
statements are left to the interested reader.

The plan of this paper is as follows. Section 2 presents some of the preliminaries, definitions,
and tools which will be used throughout the paper. Section 3 contains a dyadic version of the
main lemma of [10]. In Section 4 we prove our main results, Theorem 1.3 and Theorem 1.5.

We would like to mention that after an initial version of this work was posted on arXiv [1],
Feneuil and Poggi in [13] obtained results related to ours, compare for instance Theorem 1.3
with [13, Theorem 1.27]. Also, the recent work [4] complements this paper and its companion
[2], see for instance [4, Corollary 1.4].

2. Preliminaries

2.1. Notation and conventions.

• We use the letters c, C to denote harmless positive constants, not necessarily the same at each
occurrence, which depend only on dimension and the constants appearing in the hypotheses
of the theorems (which we refer to as the “allowable parameters”). We shall also sometimes
write a . b and a ≈ b to mean, respectively, that a ≤ Cb and 0 < c ≤ a/b ≤ C, where
the constants c and C are as above, unless explicitly noted to the contrary. Unless otherwise
specified upper case constants are greater than 1 and lower case constants are smaller than
1. In some occasions it is important to keep track of the dependence on a given parameter
γ, in that case we write a .γ b or a ≈γ b to emphasize that the implicit constants in the
inequalities depend on γ.

• Our ambient space is Rn+1, n ≥ 2.

• Given E ⊂ Rn+1 we write diam(E) = supx,y∈E |x− y| to denote its diameter.

• Given a domain Ω ⊂ Rn+1, we shall use lower case letters x, y, z, etc., to denote points on
∂Ω, and capital letters X,Y, Z, etc., to denote generic points in Rn+1 (especially those in
Rn+1 \ ∂Ω).

• The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r) when the
center x lies on ∂Ω, or B(X, r) when the center X ∈ Rn+1 \ ∂Ω. A surface ball is denoted
∆(x, r) := B(x, r) ∩ ∂Ω, and unless otherwise specified it is implicitly assumed that x ∈ ∂Ω.

• If ∂Ω is bounded, it is always understood (unless otherwise specified) that all surface balls
have radii controlled by the diameter of ∂Ω, that is, if ∆ = ∆(x, r) then r . diam(∂Ω). Note
that in this way ∆ = ∂Ω if diam(∂Ω) < r . diam(∂Ω).

• For X ∈ Rn+1, we set δ(X) := dist(X, ∂Ω).

• We let Hn denote the n-dimensional Hausdorff measure.

• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e. 1A(X) = 1
if X ∈ A, and 1A(X) = 0 if X /∈ A.
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• We shall use the letter I (and sometimes J) to denote a closed (n+ 1)-dimensional Euclidean
cube with sides parallel to the coordinate axes, and we let `(I) denote the side length of I.
We use Q to denote dyadic “cubes” on E or ∂Ω. The latter exist as a consequence of Lemma
2.13 below.

2.2. Some definitions.

Definition 2.1 (Corkscrew condition). Following [25], we say that an open set Ω ⊂ Rn+1

satisfies the Corkscrew condition if for some uniform constant 0 < c0 < 1 and for every x ∈ ∂Ω
and 0 < r < diam(∂Ω), if we write ∆ := ∆(x, r), there is a ball B(X∆, c0r) ⊂ B(x, r) ∩Ω. The
point X∆ ⊂ Ω is called a Corkscrew point relative to ∆ (or, relative to B). We note that we
may allow r < C diam(∂Ω) for any fixed C, simply by adjusting the constant c0. We say that Ω
satisfies the exterior Corkscrew condition if Ωext := Rn+1 \Ω satisfies the Corkscrew condition.

Definition 2.2 (Harnack Chain condition). Again following [25], we say that Ω satisfies
the Harnack Chain condition if there are uniform constants C1, C2 > 1 such that for every pair
of points X,X ′ ∈ Ω there is a chain of balls B1, B2, . . . , BN ⊂ Ω with N ≤ C1(2+log+

2 Π) where

(2.3) Π :=
|X −X ′|

min{δ(X), δ(X ′)}
.

such that X ∈ B1, X ′ ∈ BN , Bk ∩Bk+1 6= Ø and for every 1 ≤ k ≤ N
(2.4) C−1

2 diam(Bk) ≤ dist(Bk, ∂Ω) ≤ C2 diam(Bk).

The chain of balls is called a Harnack Chain.

We note that in the context of the previous definition if Π ≤ 1 we can trivially form the
Harnack chain B1 = B(X, 3δ(X)/5) and B2 = B(X ′, 3δ(X ′)/5) where (2.4) holds with C2 = 3.
Hence the Harnack chain condition is non-trivial only when Π > 1.

Definition 2.5 (1-sided NTA and NTA). We say that a domain Ω is a 1-sided non-
tangentially accessible domain (1-sided NTA) if it satisfies both the Corkscrew and Harnack
Chain conditions. Furthermore, we say that Ω is a non-tangentially accessible domain (NTA
domain) if it is a 1-sided NTA domain and if, in addition, Ωext := Rn+1 \ Ω also satisfies the
Corkscrew condition.

Remark 2.6. In the literature, 1-sided NTA domains are also called uniform domains. We
remark that the 1-sided NTA condition is a quantitative form of path connectedness.

Definition 2.7 (Ahlfors regular). We say that a closed set E ⊂ Rn+1 is n-dimensional
Ahlfors regular (AR for short) if there is some uniform constant C1 > 1 such that

(2.8) C−1
1 rn ≤ Hn(E ∩B(x, r)) ≤ C1 r

n, x ∈ E, 0 < r < diam(E).

Definition 2.9 (1-sided CAD and CAD). A 1-sided chord-arc domain (1-sided CAD) is a
1-sided NTA domain with AR boundary. A chord-arc domain (CAD) is an NTA domain with
AR boundary.

We next recall the definition of the capacity of a set. Given an open set D ⊂ Rn+1 (where
we recall that we always assume that n ≥ 2) and a compact set K ⊂ D we define the capacity
of K relative to D as

Cap2(K,D) = inf

{∫∫
D
|∇v(X)|2dX : v ∈ C∞0 (D), v(x) ≥ 1 in K

}
.

Definition 2.10 (Capacity density condition). An open set Ω is said to satisfy the capacity
density condition (CDC for short) if there exists a uniform constant c1 > 0 such that

(2.11)
Cap2(B(x, r) \ Ω, B(x, 2r))

Cap2(B(x, r), B(x, 2r))
≥ c1
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for all x ∈ ∂Ω and 0 < r < diam(∂Ω).

The CDC is also known as the uniform 2-fatness as studied by Lewis in [26]. Using [15,
Example 2.12] one has that

(2.12) Cap2(B(x, r), B(x, 2r)) ≈ rn−1, for all x ∈ Rn+1 and r > 0,

and hence the CDC is a quantitative version of the Wiener regularity, in particular every x ∈ ∂Ω
is Wiener regular. It is easy to see that the exterior Corkscrew condition implies CDC. Also,
it was proved in [30, Section 3] and [16, Lemma 3.27] that a set with Ahlfors regular boundary
satisfies the capacity density condition with constant c1 depending only on n and the Ahlfors
regular constant.

2.3. Existence of a dyadic grid. In this section we introduce a dyadic grid along the lines
of that obtained in [7]. More precisely, we will use the dyadic structure from [23, 24], with a
modification from [22, Proof of Proposition 2.12]:

Lemma 2.13 (Existence and properties of the “dyadic grid”). Let E ⊂ Rn+1 be a closed
set. Then there exists a constant C ≥ 1 depending just on n such that for each k ∈ Z there is a
collection of Borel sets (called “cubes”)

Dk :=
{
Qkj ⊂ E : j ∈ Jk

}
,

where Jk denotes some (possibly finite) index set depending on k satisfying:

(a) E =
⋃
j∈Jk Q

k
j for each k ∈ Z.

(b) If m ≤ k then either Qkj ⊂ Qmi or Qmi ∩Qkj = Ø.

(c) For each k ∈ Z, j ∈ Jk, and m < k, there is a unique i ∈ Jm such that Qkj ⊂ Qmi .

(d) For each k ∈ Z, j ∈ Jk there is xkj ∈ E such that

B(xkj , C
−12−k) ∩ E ⊂ Qkj ⊂ B(xkj , C2−k) ∩ E.

Proof. We first note that E is geometric doubling. That is, there exists N depending just on n
such that for every x ∈ E and r > 0 one can cover the surface ball B(x, r) ∩E with at most N
surface balls of the form B(xi, r/2)∩E with xi ∈ E —observe that geometric doubling for E is
inherited from the corresponding property on Rn+1 and that is why N depends only on n and
it is independent of E. Besides, letting η = 1

16 , for every k ∈ Z it is easy to find a countable

collection {xkj }j∈Jk ⊂ E such that

|xkj − xkj′ | ≥ ηk, j, j′ ∈ Jk, j 6= j′; min
j∈Jk
|x− xj | < ηk, ∀x ∈ E.

Invoking then [23, 24] on E with the Euclidean distance and c0 = C0 = 1 one can construct a
family of dyadic cubes associated with these families of points, say Dk for k ∈ Z. These satisfy
(a)–(d) in the statement with the only difference that we have to replace 2−k by ηk in (d).

At this point we follow the argument in [22, Proof of Proposition 2.12] with η = 1
16 . For any

k ∈ Z we set Dj = Dk for every 4k ≤ j < 4(k+ 1). It is straightforward to show that properties
(a), (b) and (c) for the families Dk follow at once from those for the families Dk. Regarding (d),
let Qi ∈ Dj and let k ∈ Z such that 4k ≤ j < 4(k + 1) so that Qi ∈ Dj = Dk. Writing xi ∈ E
for the corresponding point associated with Qi ∈ Dk and invoking (d) for Dk we conclude

B(xi, C−12−j) ∩ E ⊂ B(xi, C−1ηk) ∩ E ⊂ Qi ⊂ B(xi, Cηk) ∩ E ⊂ B(xi, 16C2−j) ∩ E,

hence (d) holds. �
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A few remarks are in order concerning this lemma. Note that by construction, within the
same generation (that is, within each Dk) the cubes are pairwise disjoint (hence, there are no
repetitions). On the other hand, repetitions are allowed in the different generations, that is,
one could have that Q ∈ Dk and Q′ ∈ Dk−1 agree. Then, although Q and Q′ are the same
set, as cubes we understand that they are different. In short, it is then understood that D is
an indexed collection of sets where repetitions of sets are allowed in the different generations
but not within the same generation. With this in mind, we can give a proper definition of the
“length” of a cube (this concept has no geometric meaning for the moment). For every Q ∈ Dk,
we set `(Q) = 2−k, which is called the “length” of Q. Note that the “length” is well defined when
considered on D, but it is not well-defined on the family of sets induced by D. It is important
to observe that the “length” refers to the way the cubes are organized in the dyadic grid and
in general may not have a geometrical meaning. It is clear from (d) that diam(Q) . `(Q) (we
will see below that in our setting the converse hold, see Remark 2.56).

Let us observe that the generations run for all k ∈ Z. However, as we are about to see,
sometimes it is natural to truncate the generations. If E is bounded and k ∈ Z is such that
diam(E) < C−12−k, then there cannot be two distinct cubes in Dk. Thus, Dk = {Qk} with
Qk = E. Therefore, we are going to ignore those k ∈ Z such that 2−k & diam(E). Hence, we
shall denote by D(E) the collection of all relevant Qkj , i.e., D(E) :=

⋃
k Dk, where, if diam(E)

is finite, the union runs over those k ∈ Z such that 2−k . diam(E).

In what follows given B = B(x, r) with x ∈ E we will denote ∆ = ∆(x, r) = B ∩ E. We
write Ξ = 2C2, with C being the constant in Lemma 2.13, which is a purely dimensional. For
Q ∈ D(E) we will set k(Q) = k if Q ∈ Dk. Property (d) implies that for each cube Q ∈ D, there
exist xQ ∈ E and rQ, with Ξ−1`(Q) ≤ rQ ≤ `(Q) (indeed rQ = (2C)−1`(Q)), such that

(2.14) ∆(xQ, 2rQ) ⊂ Q ⊂ ∆(xQ,ΞrQ).

We shall denote these balls and surface balls by

(2.15) BQ := B(xQ, rQ), ∆Q := ∆(xQ, rQ),

(2.16) B̃Q := B(xQ,ΞrQ), ∆̃Q := ∆(xQ,ΞrQ),

and we shall refer to the point xQ as the “center” of Q.

Let Q ∈ Dk and consider the family of its dyadic children {Q′ ∈ Dk+1 : Q′ ⊂ Q}. Note
that for any two distinct children Q′, Q′′, one has |xQ′ − xQ′′ | ≥ rQ′ = rQ′′ = rQ/2, otherwise
xQ′′ ∈ Q′′ ∩∆Q′ ⊂ Q′′ ∩Q′, contradicting the fact that Q′ and Q′′ are disjoint. Also xQ′ , xQ′′ ∈
Q ⊂ ∆(xQ, rQ), hence by the geometric doubling property we have a purely dimensional bound
for the number of such xQ′ and hence the number of dyadic children of a given dyadic cube is
uniformly bounded.

Lemma 2.17. Let E ⊂ Rn+1 be a closed set and let D(E) be the dyadic grid as in Lemma 2.13.
Assume that there is a Borel measure µ which is doubling, that is, there exists Cµ ≥ 1 such that
µ(∆(x, 2r)) ≤ Cµµ(∆(x, r)) for every x ∈ E and r > 0. Then µ(∂Q) = 0 for every Q ∈ D(E).
Moreover, there exist 0 < τ0 < 1, C1, and η > 0 depending only on dimension and Cµ such that
for every τ ∈ (0, τ0) and Q ∈ D(E)

(2.18) µ
({
x ∈ Q : dist(x,E \Q) ≤ τ`(Q)

})
≤ C1τ

ηµ(Q).

Proof. The argument is a refinement of that in [17, Proposition 6.3] (see also [14, p. 403] where
the Euclidean case was treated). Fix an integer k, a cube Q ∈ Dk, and a positive integer m to
be chosen. Fix τ > 0 small enough to be chosen and write

Στ =
{
x ∈ Q : dist(x,E \Q) < τ`(Q)

}
.

We set

{Q1
i } := D1 := DQ ∩ Dk+m ,
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and make the disjoint decomposition Q =
⋃
Q1
i . We then split D1 = D1,1∪D1,2, where Q1

i ∈ D1,1

if Q1
i meets Στ , and Q1

i ∈ D1,2 otherwise. We then write Q = R1,1 ∪R1,2, where

R1,1 :=
⋃
D1,1

Q̂1
i , R1,2 :=

⋃
D1,2

Q1
i ,

and for each cube Q1
i ∈ D1,1, we construct Q̂1

i as follows. We enumerate the elements in D1,1 as
Q1
i1
, Q1

i2
, . . . , Q1

iN
, and then set (Q1

i )
∗ = Q1

i ∪ (∂Q1
i ∩ ∂Q) and

Q̂1
i1 := (Q1

i1)∗, Q̂1
i2 := (Q1

i2)∗ \ (Q1
i1)∗, Q̂1

i3 := (Q1
i3)∗ \ ((Q1

i1)∗ ∪ (Q1
i2)∗), . . .

so that R1,1 covers Στ and the modified cubes Q̂1
i are pairwise disjoint.

We also note from (2.14) that if 2−m < Ξ−2/4 then

dist
(
∆Q, E \Q

)
≥ rQ ≥ Ξ−1`(Q), diam(Q1

i ) ≤ 2ΞrQ1
i
≤ 2Ξ`(Q1

i ) <
Ξ−1

2
`(Q).

Then R1,1 misses ∆Q provided τ < Ξ−1/2. Otherwise, we can find x ∈ Q1
i ∩∆Q with Q1

i ∈ D1,1.

The latter implies that there is y ∈ Q1
i ∩ Στ . All these yield a contradiction:

Ξ−1`(Q) ≤ dist
(
∆Q, E \Q

)
≤ |x− y|+ dist

(
y,E \Q

)
≤ diam(Q1

i ) + τ`(Q) < Ξ−1`(Q).

Consequently, by the doubling property,

µ(Q) ≤ µ(2∆̃Q) ≤ C ′µ µ(∆Q) ≤ C ′µ µ(R1,2).

Since R1,1 and R1,2 are disjoint, the latter estimate yields

µ(R1,1) ≤
(

1− 1

C ′µ

)
µ(Q) =: θ µ(Q),

where we note that 0 < θ < 1.

Let us now repeat this procedure, decomposing Q̂1
i for each Q1

i ∈ D1,1. We set D2(Q1
i ) =

DQ1
i
∩ Dk+2m and split it into D2,1(Q1

i ) and D2,2(Q1
i ) where Q′ ∈ D2,1(Q1

i ) if Q′ meets Στ .

Associated to any Q′ ∈ D2,1(Q1
i ) we set (Q′)∗ = (Q′ ∩ Q̂1

i ) ∪ (∂Q′ ∩ (∂Q ∩ Q̂1
i )). Then we make

these sets disjoint as before and we have that R2,1(Q1
i ) is defined as the disjoint union of the

corresponding Q̂′. Note that Q̂1
i = R2,1(Q1

i ) ∪R2,2(Q1
i ) and this is a disjoint union. As before,

R2,1(Q1
i ) misses ∆Q1

i
provided τ < 2−mΞ−1/2 so that by the doubling property

µ(Q̂1
i ) ≤ µ(2∆̃Q1

i
) ≤ C ′µ µ(∆Q1

i
) ≤ C ′µ µ(R2,2(Q1

i ))

and then µ(R2,1(Q1
i )) ≤ θ µ(Q̂1

i ). Next we set R2,1 and R2,2 as the union of the corresponding
R2,1(Q1

i ) and R2,2(Q1
i ) with Q1

i ∈ D1,1. Then,

µ(R2,1) := µ
( ⋃
Q1
i∈D1,1

R2,1(Q1
i )
)

=
∑

Q1
i∈D1,1

µ
(
R2,1(Q1

i )
)
≤ θ

∑
Q1
i∈D1,1

µ(Q̂1
i ) = θ µ(R1,1) ≤ θ2 µ(Q).

Iterating this procedure we obtain that for every k = 0, 1, . . . , if τ < 2−kmΞ−1/2 then
µ(Rk+1,1) ≤ θk+1µ(Q). Let us see that this leads to the desired estimates. Fix τ < Ξ−1/2 and

find k ≥ 0 such that 2−(k+1)mΞ−1/2 ≤ τ < 2−kmΞ−1/2. By construction Στ ⊂ Rk+1,1 and then

µ(Στ ) ≤ µ(Rk+1,1) ≤ θk+1µ(Q) ≤ (2Ξ)
log2 θ

−1

m τ
log2 θ

−1

m µ(Q),
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which easily gives (2.18) with C1 = (2Ξ)
log2 θ

−1

m and η = log2 θ
−1

m . On the other hand, note that

∂Q ⊂
⋂

j:2−j<Ξ−1/2

Σ2−j ,

also Σ2−(j+1) ⊂ Σ2−j . Thus clearly,

0 ≤ µ(∂Q) ≤ lim
j→∞

µ(Σ2−j ) ≤ lim
j→∞

C12−jηµ(Q) = 0,

yielding that µ(∂Q) = 0. �

Remark 2.19. Note that the previous argument is local in the sense that if we just want to
obtain the desired estimates for a fixed Q0 we would only need to assume that µ is doubling in

2∆̃Q0 . Indeed we would just need to know that µ(∆(x, 2r)) ≤ C µ(∆(x, r)) for every x ∈ Q0

and 0 < r < Ξ`(Q0), and the involved constants in the resulting estimates will depend only on
dimension and Cµ. Further details are left to the interested reader.

We next introduce the “discretized Carleson region” relative to Q, DQ = {Q′ ∈ D : Q′ ⊂ Q}.
Let F = {Qi} ⊂ D be a family of pairwise disjoint cubes. The “global discretized sawtooth”
relative to F is the collection of cubes Q ∈ D that are not contained in any Qi ∈ F , that is,

DF := D \
⋃
Qi∈F

DQi .

For a given Q ∈ D, the “local discretized sawtooth” relative to F is the collection of cubes in
DQ that are not contained in any Qi ∈ F or, equivalently,

DF ,Q := DQ \
⋃
Qi∈F

DQi = DF ∩ DQ.

We also allow F to be the null set in which case DØ = D and DØ,Q = DQ.

With a slight abuse of notation, let Q0 be either E, and in that case DQ0 := D, or a fixed

cube in D, hence DQ0 is the family of dyadic subcubes of Q0. Let µ be a non-negative Borel

measure on Q0 so that 0 < µ(Q) <∞ for every Q ∈ DQ0 . For the rest of the section we will be

working with µ which is dyadically doubling in Q0. This means that there exists Cµ such that
µ(Q) ≤ Cµµ(Q′) for every Q,Q′ ∈ DQ0 with `(Q) = 2`(Q′).

Definition 2.20 (Adyadic
∞ ). Given Q0 and µ, a non-negative dyadically doubling measure in Q0,

a non-negative Borel measure ν defined on Q0 is said to belong to Adyadic
∞ (Q0, µ) if there exist

constants 0 < α, β < 1 such that for every Q ∈ DQ0 and for every Borel set F ⊂ Q, we have
that

(2.21)
µ(F )

µ(Q)
> α =⇒ ν(F )

ν(Q)
> β.

It is well known (see [8, 14]) that since µ is a dyadically doubling measure in Q0, ν ∈
Adyadic
∞ (Q0, µ) if and only if ν � µ in Q0 and there exists 1 < p < ∞ such that ν ∈

RHdyadic
p (Q0, µ), that is, there is a constant C ≥ 1 such that(

−
∫
Q
k(x)p dµ(x)

) 1
p

≤ C−
∫
Q
k(x) dµ(x) = C

ν(Q)

µ(Q)
,

for every Q ∈ DQ0 , and where k = dν/dµ is the Radon-Nikodym derivative.

For each F = {Qi} ⊂ DQ0 , a family of pairwise disjoint dyadic cubes, and each f ∈ L1
loc(µ),

we define the projection operator

PµFf(x) = f(x)1E\(
⋃
Qi∈F

Qi)(x) +
∑
Qi∈F

(
−
∫
Qi

f(y) dµ(y)
)
1Qi(x).
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If ν is a non-negative Borel measure on Q0, we may naturally then define the measure PµFν as
PµFν(F ) =

∫
E P

µ
F1F dν, that is,

(2.22) PµFν(F ) = ν
(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

µ(F ∩Qi)
µ(Qi)

ν(Qi),

for each Borel set F ⊂ Q0.

2.4. Sawtooth domains. In the sequel, Ω ⊂ Rn+1, n ≥ 2, will be a 1-sided NTA domain
satisfying the CDC. Write D = D(∂Ω) for the dyadic grid obtained from Lemma 2.13 with
E = ∂Ω. In Remark 2.56 below we shall show that under the present assumptions one has that
diam(∆) ≈ r∆ for every surface ball ∆. In particular diam(Q) ≈ `(Q) for every Q ∈ D in view
of (2.14). Given Q ∈ D we define the “Corkscrew point relative to Q” as XQ := X∆Q

. We note
that

δ(XQ) ≈ dist(XQ, Q) ≈ diam(Q).

As done above, given Q ∈ D and F a possibly empty family of pairwise disjoint dyadic cubes,
we can define DQ, the “discretized Carleson region”; DF , the “global discretized sawtooth”
relative to F ; and DF ,Q, the “local discretized sawtooth” relative to F . Note that if F to be
the null set in which case DØ = D and DØ,Q = DQ. We would like to introduce the “geometric”
Carleson regions and sawtooths.

Let W = W(Ω) denote a collection of (closed) dyadic Whitney cubes of Ω ⊂ Rn+1, so that
the cubes in W form a covering of Ω with non-overlapping interiors, and satisfy

(2.23) 4 diam(I) ≤ dist(4I, ∂Ω) ≤ dist(I, ∂Ω) ≤ 40 diam(I), ∀I ∈ W,

and

diam(I1) ≈ diam(I2), whenever I1 and I2 touch.

Let X(I) denote the center of I, let `(I) denote the side length of I, and write k = kI if
`(I) = 2−k.

Given 0 < λ < 1 and I ∈ W we write I∗ = (1 + λ)I for the “fattening” of I. By taking λ
small enough, we can arrange matters, so that, first, dist(I∗, J∗) ≈ dist(I, J) for every I, J ∈ W.
Secondly, I∗ meets J∗ if and only if ∂I meets ∂J (the fattening thus ensures overlap of I∗ and
J∗ for any pair I, J ∈ W whose boundaries touch, so that the Harnack Chain property then
holds locally in I∗ ∪ J∗, with constants depending upon λ). By picking λ sufficiently small, say
0 < λ < λ0, we may also suppose that there is τ ∈ (1

2 , 1) such that for distinct I, J ∈ W, we
have that τJ ∩ I∗ = Ø. In what follows we will need to work with dilations I∗∗ = (1 + 2λ)I or
I∗∗∗ = (1 + 4λ)I, and in order to ensure that the same properties hold we further assume that
0 < λ < λ0/4.

For every Q ∈ D we can construct a family W∗Q ⊂ W(Ω), and define

UQ :=
⋃

I∈W∗Q

I∗,

satisfying the following properties: XQ ∈ UQ and there are uniform constants k∗ and K0 such
that

k(Q)− k∗ ≤ kI ≤ k(Q) + k∗, ∀I ∈ W∗Q,

X(I)→UQ XQ, ∀I ∈ W∗Q,

dist(I,Q) ≤ K02−k(Q), ∀I ∈ W∗Q.

(2.24)

Here, X(I)→UQ XQ means that the interior of UQ contains all balls in a Harnack Chain (in Ω)
connecting X(I) to XQ, and moreover, for any point Z contained in any ball in the Harnack
Chain, we have dist(Z, ∂Ω) ≈ dist(Z,Ω \ UQ) with uniform control of the implicit constants.
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The constants k∗,K0 and the implicit constants in the condition X(I) →UQ XQ, depend on
the allowable parameters and on λ. Moreover, given I ∈ W(Ω) we have that I ∈ W∗QI , where

QI ∈ D satisfies `(QI) = `(I), and contains any fixed ŷ ∈ ∂Ω such that dist(I, ∂Ω) = dist(I, ŷ).
The reader is referred to [17, 20] for full details.

For a given Q ∈ D, the “Carleson box” relative to Q is defined by

TQ := int

( ⋃
Q′∈DQ

UQ′

)
.

For a given family F = {Qi} ⊂ D of pairwise disjoint cubes and a given Q ∈ D, we define the
“local sawtooth region” relative to F by

(2.25) ΩF ,Q = int

( ⋃
Q′∈DF,Q

UQ′

)
= int

( ⋃
I∈WF,Q

I∗
)
,

whereWF ,Q :=
⋃
Q′∈DF,QW

∗
Q. Note that in the previous definition we may allow F to be empty

in which case clearly ΩØ,Q = TQ. Similarly, the “global sawtooth region” relative to F is defined
as

(2.26) ΩF = int

( ⋃
Q′∈DF

UQ′

)
= int

( ⋃
I∈WF

I∗
)
,

whereWF :=
⋃
Q′∈DF W

∗
Q. If F is the empty set clearly ΩØ = Ω. For a given Q ∈ D and x ∈ ∂Ω

let us introduce the “truncated dyadic cone”

ΓQ(x) :=
⋃

x∈Q′∈DQ

UQ′ ,

where it is understood that ΓQ(x) = Ø if x /∈ Q. Analogously, we can slightly fatten the
Whitney boxes and use I∗∗ to define new fattened Whitney regions and sawtooth domains.
More precisely, for every Q ∈ D,

T ∗Q := int

( ⋃
Q′∈DQ

U∗Q′

)
, Ω∗F ,Q := int

( ⋃
Q′∈DF,Q

U∗Q′

)
, Γ∗Q(x) :=

⋃
x∈Q′∈DQ0

U∗Q′

where U∗Q :=
⋃
I∈W∗Q

I∗∗. Similarly, we can define T ∗∗Q , Ω∗∗F ,Q, Γ∗∗Q (x), and U∗∗Q by using I∗∗∗ in

place of I∗∗.

Given Q we next define the “localized dyadic non-tangential maximal function”

(2.27) NQu(x) := sup
Y ∈Γ∗Q(x)

|u(Y )|, x ∈ ∂Ω,

for every u ∈ C(T ∗Q), where it is understood that NQu(x) = 0 for every x ∈ ∂Ω \ Q (since

Γ∗Q(x) = Ø in such a case). Finally, let us introduce the “localized dyadic conical square
function”

(2.28) SQu(x) :=

(∫∫
ΓQ(x)

|∇u(Y )|2δ(Y )1−n dY

) 1
2

, x ∈ ∂Ω,

for every u ∈W 1,2
loc (TQ0). Note that again SQu(x) = 0 for every x ∈ ∂Ω \Q.

To define the “Carleson box” T∆ associated with a surface ball ∆ = ∆(x, r), let k(∆) denote
the unique k ∈ Z such that 2−k−1 < 200r ≤ 2−k, and set

(2.29) D∆ :=
{
Q ∈ Dk(∆) : Q ∩ 2∆ 6= Ø

}
.

We then define

(2.30) T∆ := int

( ⋃
Q∈D∆

TQ

)
.
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We can also consider fattened versions of T∆ given by

T ∗∆ := int

( ⋃
Q∈D∆

T ∗Q

)
, T ∗∗∆ := int

( ⋃
Q∈D∆

T ∗∗Q

)
.

Following [17, 20], one can easily see that there exist constants 0 < κ1 < 1 and κ0 ≥ 16Ξ
(with Ξ the constant in (2.14)), depending only on the allowable parameters, so that

κ1BQ ∩ Ω ⊂ TQ ⊂ T ∗Q ⊂ T ∗∗Q ⊂ T ∗∗Q ⊂ κ0BQ ∩ Ω =: 1
2B
∗
Q ∩ Ω,(2.31)

5
4B∆ ∩ Ω ⊂ T∆ ⊂ T ∗∆ ⊂ T ∗∗∆ ⊂ T ∗∗∆ ⊂ κ0B∆ ∩ Ω =: 1

2B
∗
∆ ∩ Ω,(2.32)

and also

(2.33) Q ⊂ κ0B∆ ∩ ∂Ω = 1
2B
∗
∆ ∩ ∂Ω =: 1

2∆∗, ∀Q ∈ D∆,

where BQ is defined as in (2.15), ∆ = ∆(x, r) with x ∈ ∂Ω, 0 < r < diam(∂Ω), and B∆ = B(x, r)
is so that ∆ = B∆∩∂Ω. From our choice of the parameters one also has that B∗Q ⊂ B∗Q′ whenever

Q ⊂ Q′.
In the remainder of this section we show that if Ω is a 1-sided NTA domain satisfying the

CDC then Carleson boxes and local and global sawtooth domains are also 1-sided NTA domains
satisfying the CDC. We next present some of the properties of the capacity which will be used
in our proofs. From the definition of capacity one can easily see that given a ball B and compact
sets F1 ⊂ F2 ⊂ B then

(2.34) Cap2(F1, 2B) ≤ Cap2(F2, 2B).

Also, given two balls B1 ⊂ B2 and a compact set F ⊂ B1 then

(2.35) Cap2(F, 2B2) ≤ Cap2(F, 2B1).

On the other hand, [15, Lemma 2.16] gives that if F is a compact with F ⊂ B then there is a
dimensional constant Cn such that

(2.36) C−1
n Cap2(F, 2B) ≤ Cap2(F, 4B) ≤ Cap2(F, 2B).

Proposition 2.37. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided NTA domain satisfying the CDC. Then
all of its Carleson boxes TQ and T∆, and sawtooth regions ΩF , and ΩF ,Q are 1-sided NTA
domains and satisfy the CDC with uniform implicit constants depending only on dimension and
on the corresponding constants for Ω.

Proof. A careful examination of the proofs in [17, Appendices A.1-A.2] reveals that if Ω is a
1-sided NTA domain then all Carleson boxes TQ and T∆, and local and global sawtooth domains
ΩF ,Q and ΩF inherit the interior Corkscrew and Harnack chain conditions, hence they are also
1-sided NTA domains. Therefore, we only need to prove the CDC. We are going to consider
only the case ΩF ,Q (which in particular gives the desired property for TQ by allowing F to be
the null set). The other proofs require minimal changes which are left to the interested reader.
To this end, fix Q ∈ D and F ⊂ DQ a (possibly empty) family of pairwise disjoint dyadic cubes.
Let x ∈ ∂ΩF ,Q and 0 < r < diam(ΩF ,Q) ≈ `(Q).

Case 1: δ(x) = 0. In that case we have that x ∈ ∂Ω and we can use that Ω satisfies the CDC
with constant c1, (2.34) and the fact that ΩF ,Q ⊂ Ω to obtain the desired estimate

c1r
n−1 . Cap2(B(x, r) \ Ω, B(x, 2r)) ≤ Cap2(B(x, r) \ ΩF ,Q, B(x, 2r)).

Case 2: 0 < δ(x) < r/M with M large enough to be chosen. In this case x ∈ Ω ∩ ∂ΩF ,Q and
hence there exist Q′ ∈ DF ,Q and I ∈ W∗Q′ such that x ∈ ∂I∗. Note that by (2.24)

|x− xQ′ | ≤ diam(I∗) + dist(I,Q′) + diam(Q′) . `(Q′) ≈ `(I) ≈ δ(x) .
r

M
.
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Let Q′′ ∈ DQ be such that xQ′ ∈ Q′′ and r
2M ≤ `(Q′′) < r

M < `(Q) provided that M is taken
large enough. If Z ∈ BQ′′ then taking M large enough

|Z − x| ≤ |Z − xQ′′ |+ |xQ′′ − xQ′ |+ |xQ′ − x| . `(Q′′) +
r

M
.

r

M
< r

and BQ′′ ⊂ B(x, r). On the other hand, if Z ∈ B(x, 2r), we analogously have provided M is
large enough

|Z − xQ′′ | ≤ |Z − x|+ |x− xQ′ |+ |xQ′ − xQ′′ | < 2r + C
r

M
+ ΞrQ′′ < 6MΞrQ′′

and thus B(x, 2r) ⊂ 6MΞBQ′′ . Once M has been fixed so that the previous estimates hold, we
use them in conjunction with the fact that Ω satisfies the CDC with constant c1, (2.34)–(2.36),
and that ΩF ,Q ⊂ Ω to obtain

c1

(2MΞ)n−1
rn−1 ≤ c1r

n−1
Q′′ . Cap2(BQ′′ \ Ω, 2BQ′′) . Cap2(BQ′′ \ Ω, 6MΞBQ′′)

≤ Cap2(BQ′′ \ Ω, B(x, 2r)) ≤ Cap2(B(x, r) \ ΩF ,Q, B(x, 2r)),

which gives us the desired lower bound in the present case.

∂Ω

Q

TQ

x ∂Ω

Q

TQ

x

BQ′′

Figure 1. Case 1 and Case 2 for TQ.

Case 3: δ(x) > r/M . In this case x ∈ Ω∩∂ΩF ,Q and hence there exists Q′ ∈ DF ,Q and I ∈ W∗Q′
such that x ∈ ∂I∗ and int(I∗) ⊂ ΩF ,Q. Also there exists J ∈ W, with J 3 x such that J /∈ W∗Q′′
for any Q′′ ∈ DF ,Q which implies that τJ ⊂ Ω\ΩF ,Q for some τ ∈ (1

2 , 1) (see Section 2.4). Note
that `(I) ≈ `(J) ≈ δ(x) & r, and more precisely r/M < δ(x) < 41 diam(J) by (2.23).

∂Ω

Q

TQ
B′

x

Figure 2. Case 3 for TQ.

Let B′ = B(x′, s) with s = r/(300M) and x′ being the point in the segment joining x and
the center of J at distance 2s from x. It is easy to see that B′ ⊂ B(x, r) ⊂ B(x, 2r) ⊂ 1000MB′

and also B′ ⊂ int(J) \ ΩF ,Q. We can then use (2.12) and (2.34)–(2.36) to obtain the desired
estimate:

1

(300M)n−1
rn−1 = sn−1 ≈ Cap2(B′, 2B′) . Cap2(B′, 1000MB′)

≤ Cap2(B′, B(x, 2r)) ≤ Cap2(B(x, r) \ ΩF ,Q, B(x, 2r)).

Collecting the 3 cases and using (2.12) we have been able to show that

(2.38)
Cap2(B(x, r) \ ΩF ,Q, B(x, 2r))

Cap2(B(x, r), B(x, 2r))
& 1, ∀x ∈ ∂ΩF ,Q, 0 < r < diam(ΩF ,Q),
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which eventually gives that ΩF ,Q satisfies the CDC. This completes the proof. �

Our next auxiliary result adapts [21, Lemma 4.44] to our current setting:

Lemma 2.39. Let Ω ⊂ Rn+1 be a 1-sided NTA domain satisfying the CDC. Given Q0 ∈ D and
N ≥ 4 consider the family of pairwise disjoint cubes FN = {Q ∈ DQ0 : `(Q) = 2−N `(Q0)} and
let ΩN := ΩFN ,Q0 and Ω∗N := Ω∗FN ,Q0

. There exists ΨN ∈ C∞c (Rn+1) and a constant C ≥ 1
depending only on dimension n, the 1-sided NTA constants, the CDC constant, and independent
of N and Q0 such that the following hold:

(i) C−1 1ΩN ≤ ΨN ≤ 1Ω∗N
.

(ii) supX∈Ω |∇ΨN (X)| δ(X) ≤ C.

(iii) Setting

(2.40) WN :=
⋃

Q∈DFN,Q0

W∗Q, WΣ
N :=

{
I ∈ WN : ∃ J ∈ W \WN with ∂I ∩ ∂J 6= Ø

}
.

one has

(2.41) ∇ΨN ≡ 0 in
⋃

I∈WN\WΣ
N

I∗∗

and there exists a family {Q̂I}I∈WΣ
N

so that

(2.42) C−1 `(I) ≤ `(Q̂I) ≤ C `(I), dist(I, Q̂I) ≤ C `(I),
∑
I∈WΣ

N

1
Q̂I
≤ C.

Proof. We proceed as in [21, Lemma 4.44]. Recall that given I, any closed dyadic cube in Rn+1,

we set I∗ = (1 + λ)I and I∗∗ = (1 + 2λ)I. Let us introduce Ĩ∗ = (1 + 3
2 λ)I so that

(2.43) I∗ ( int(Ĩ∗) ( Ĩ∗ ⊂ int(I∗∗).

Given I0 := [−1
2 ,

1
2 ]n+1 ⊂ Rn+1, fix φ0 ∈ C∞c (Rn+1) such that 1I∗0 ≤ φ0 ≤ 1

Ĩ∗0
and |∇φ0| . 1

(the implicit constant depends on the parameter λ). For every I ∈ W = W(Ω) we set φI(·) =

φ0

( · −X(I)
`(I)

)
so that φI ∈ C∞(Rn+1), 1I∗ ≤ φI ≤ 1

Ĩ∗
and |∇φI | . `(I)−1 (with implicit constant

depending only on n and λ).

For every X ∈ Ω, we let Φ(X) :=
∑

I∈W φI(X). It then follows that Φ ∈ C∞loc(Ω) since
for every compact subset of Ω, the previous sum has finitely many non-vanishing terms. Also,

1 ≤ Φ(X) ≤ Cλ for every X ∈ Ω since the family {Ĩ∗}I∈W has bounded overlap by our choice of
λ. Hence we can set ΦI = φI/Φ and one can easily see that ΦI ∈ C∞c (Rn+1), C−1

λ 1I∗ ≤ ΦI ≤ 1
Ĩ∗

and |∇ΦI | . `(I)−1. With this in hand set

ΨN (X) :=
∑
I∈WN

ΦI(X) =

∑
I∈WN

φI(X)∑
I∈W

φI(X)
, X ∈ Ω.

We first note that the number of terms in the sum defining ΨN is bounded depending on N .
Indeed, if Q ∈ DFN ,Q0 then Q ∈ DQ0 and 2−N`(Q0) < `(Q) ≤ `(Q0) which implies that DFN ,Q0

has finite cardinality with bounds depending only on dimension and N (here we recall that the
number of dyadic children of a given cube is uniformly controlled). Also, by construction W∗Q
has cardinality depending only on the allowable parameters. Hence, #WN . CN < ∞. This
and the fact that each ΦI ∈ C∞c (Rn+1) yield that ΨN ∈ C∞c (Rn+1). Note also that (2.43) and



ELLIPTIC OPERATORS ON ROUGH DOMAINS 15

the definition of WN give

supp ΨI ⊂
⋃

I∈WN

Ĩ∗ =
⋃

Q∈DFN,Q0

⋃
I∈W∗Q

Ĩ∗ ⊂ int
( ⋃
Q∈DFN,Q0

⋃
I∈W∗Q

I∗∗
)

= int
( ⋃
Q∈DFN,Q0

U∗Q

)
= Ω∗N

This, the fact that WN ⊂ W, and the definition of ΨN immediately give that ΨN ≤ 1Ω∗N
. On

the other hand if X ∈ ΩN = ΩFN ,Q0 then the exists I ∈ WN such that X ∈ I∗ in which case

ΨN (X) ≥ ΦI(X) ≥ C−1
λ . All these imply (i). Note that (ii) follows by observing that for every

X ∈ Ω

|∇ΨN (X)| ≤
∑
I∈WN

|∇ΦI(X)| .
∑
I∈W

`(I)−1 1
Ĩ∗

(X) . δ(X)−1

where we have used that if X ∈ Ĩ∗ then δ(X) ≈ `(I) and also that the family {Ĩ∗}I∈W has
bounded overlap.

To see (iii) fix I ∈ WN \ WΣ
N and X ∈ I∗∗, and set WX := {J ∈ W : φJ(X) 6= 0} so

that I ∈ WX . We first note that WX ⊂ WN . Indeed, if φJ(X) 6= 0 then X ∈ J̃∗. Hence
X ∈ I∗∗ ∩ J∗∗ and our choice of λ gives that ∂I meets ∂J , this in turn implies that J ∈ WN

since I ∈ WN \WΣ
N . All these yield

ΨN (X) =

∑
J∈WN

φJ(X)∑
J∈W

φJ(X)
=

∑
J∈WN∩WX

φJ(X)∑
J∈WX

φJ(X)
=

∑
J∈WN∩WX

φJ(X)∑
J∈WN∩WX

φJ(X)
= 1.

Hence ΨN

∣∣
I∗∗
≡ 1 for every I ∈ WN \WΣ

N . This and the fact that ΨN ∈ C∞c (Rn+1) immediately
give that ∇ΨN ≡ 0 in

⋃
I∈WN\WΣ

N
I∗∗.

We are left with showing the last part of (iv) and for that we borrow some ideas from
[18, Appendix A.2]. Fix I ∈ WΣ

N and let J be so that J ∈ W \ WN with ∂I ∩ ∂J 6= Ø,
in particular `(I) ≈ `(J). Since I ∈ WΣ

N there exists QI ∈ DFN ,Q0 (that is, QI ⊂ Q0 with

2−N `(Q0) < `(QI) ≤ `(Q0) so that I ∈ W∗QI ). Pick QJ ∈ D so that `(QJ) = `(J) and it

contains any fixed ŷ ∈ ∂Ω such that dist(J, ∂Ω) = dist(J, ŷ). Then, as observed in Section 2.4,
one has J ∈ W∗QJ . But, since J ∈ W \ WN , we necessarily have QJ /∈ DFN ,Q0 = DFN ∩ DQ0 .

Hence, WΣ
N =WΣ,1

N ∪WΣ,2
N ∪WΣ,3

N where

WΣ,1
N : = {I ∈ WΣ

N : Q0 ⊂ QJ},

WΣ,2
N : = {I ∈ WΣ

N : QJ ⊂ Q0, `(QJ) ≤ 2−N `(Q0)},

WΣ,3
N : = {I ∈ WΣ

N : QJ ∩Q0 = Ø}.

For later use it is convenient to observe that

(2.44) dist(QJ , I) ≤ dist(QJ , J) + diam(J) + diam(I) ≈ `(J) + `(I) ≈ `(I).

Let us first consider WΣ,1
N . If I ∈ WΣ,1

N we clearly have

`(Q0) ≤ `(QJ) = `(J) ≈ `(I) ≈ `(QI) ≤ `(Q0)

and since QI ∈ DQ0

dist(I, xQ0) ≤ dist(I,QI) + diam(QI) ≈ `(I).

In particular, #WΣ,1
N . 1. Thus if we set Q̂I := QJ it follows from (2.44) that the two first

conditions in (2.42) hold and also
∑

I∈WΣ,1
N

1
Q̂I
≤ #WΣ,1

N . 1.
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Consider next WΣ,2
N . For any I ∈ WΣ,2

N we also set Q̂I := QJ so that from (2.44) we clearly
see that the two first conditions in (2.42) hold. It then remains to estimate the overlap. With

this goal in mind we first note that if I ∈ WΣ,2
N , the fact that QI ∈ DFN ,Q0 yields

2−N `(Q0) < `(QI) ≈ `(I) ≈ `(J) ≈ `(QJ) ≤ 2−N `(Q0),

hence `(I) ≈ 2−N `(Q0). Suppose next that QJ ∩ Q′J = Q̂I ∩ Q̂I 6= Ø for I, I ′ ∈ WΣ,2
N . Then

since I touches J and I ′ touches J ′

dist(I, I ′) ≤ diam(J) + dist(J,QJ) + diam(QJ) + diam(Q′J) + diam(J ′)

≈ `(J) + `(J ′) ≈ 2−N `(Q0).

Hence fixed I ∈ WΣ,2
N there is a uniformly bounded number of I ′ ∈ WΣ,2

N with Q̂I ∩ Q̂I′ 6= Ø,
and, in particular,

∑
I∈WΣ,2

N
1
Q̂I
. 1.

We finally take into consideration the most delicate collection WΣ,3
N . In this case for every

I ∈ WΣ,3
N we pick Q̂I ∈ D so that Q̂I 3 xQJ and `(Q̂I) = 2−M

′
`(QJ) with M ′ ≥ 3 large enough

so that 2M
′ ≥ 2Ξ2 (cf. (2.14)). Note that since M ′ ≥ 3 we have that Q̂I ⊂ QJ which, together

with (2.44), implies

dist(I, Q̂I) ≤ dist(I,QJ) + diam(QJ) . `(I).

Hence the first two conditions in (2.42) hold in the current situation.

On the other hand, the choice of M ′ and (2.14) guarantee that

(2.45) diam(Q̂I) ≤ 2 Ξ r
Q̂I
≤ 2 Ξ `(Q̂I) = 2−M

′+1 Ξ `(QJ) ≤ Ξ−1 `(QJ).

Also, since 2∆QJ ⊂ QJ , it follows thatQ0∩2∆QJ = Ø and therefore 2Ξ−1 `(QJ) ≤ dist(xQJ , Q0).
Besides, since QI ⊂ Q0

dist(xQJ , Q0) ≤ diam(QJ) + dist(QJ , J) + diam(J)

+ diam(I) + dist(I,QI) + diam(QI) ≈ `(J) ≈ `(I).

Thus, 2 Ξ−1 `(QJ) ≤ dist(xQJ , Q0) ≤ C `(J). Suppose next that I, I ′ ∈ WΣ,3
N are so that

Q̂I ∩ Q̂I′ 6= Ø and assume without loss of generality that Q̂I′ ⊂ Q̂I , hence `(J ′) ≤ `(J). Then,

since xQJ ∈ Q̂I and xQJ′ ∈ Q̂I′ ⊂ Q̂I we get from (2.45)

2 Ξ−1 `(QJ) ≤ dist(xQJ , Q0) ≤ |xQJ − xQJ′ |+ dist(xQJ′ , Q0)

≤ diam(Q̂I) + C`(J ′) ≤ Ξ−1 `(QJ) + C`(J ′)

and therefore Ξ−1 `(QJ) ≤ C `(J) which in turn gives `(I) ≈ `(J) ≈ `(J ′) ≈ `(I ′). Note also

that since I touches J , I ′ touches J ′, and Q̂I ∩ Q̂I′ 6= Ø we obtain

dist(I, I ′) ≤ diam(J) + dist(J,QJ) + diam(QJ) + diam(QJ ′)

+ dist(QJ ′ , J
′) + diam(J ′) ≈ `(J) + `(J ′) ≈ `(I).

Consequently, fixed I ∈ WΣ,3
N there is a uniformly bounded number of I ′ ∈ WΣ,3

N with Q̂I∩Q̂I′ 6=
Ø. As a result,

∑
I∈WΣ,3

N
1
Q̂I
. 1. This clearly completes the proof of (iii) and hence that of

Lemma 2.39. �

2.5. Uniformly elliptic operators, elliptic measure and the Green function. Next, we
recall several facts concerning elliptic measure and the Green functions. To set the stage let
Ω ⊂ Rn+1 be an open set. Throughout we consider elliptic operators L of the form Lu =
−div(A∇u) with A(X) = (ai,j(X))n+1

i,j=1 being a real (non-necessarily symmetric) matrix such
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that ai,j ∈ L∞(Ω) and there exists Λ ≥ 1 such that the following uniform ellipticity condition
holds

Λ−1|ξ|2 ≤ A(X)ξ · ξ, |A(X)ξ · η| ≤ Λ|ξ| |η|(2.46)

for all ξ, η ∈ Rn+1 and for almost every X ∈ Ω. We write L> to denote the transpose of L, or,
in other words, L>u = −div(A>∇u) with A> being the transpose matrix of A.

We say that u is a weak solution to Lu = 0 in Ω provided that u ∈W 1,2
loc (Ω) satisfies∫∫

A(X)∇u(X) · ∇φ(X)dX = 0 whenever φ ∈ C∞0 (Ω).

Associated with L one can construct an elliptic measure {ωXL }X∈Ω and a Green function GL
(see [20] for full details). Sometimes, in order to emphasize the dependence on Ω, we will write
ωL,Ω and GL,Ω. If Ω satisfies the CDC then it follows that all boundary points are Wiener
regular and hence for a given f ∈ Cc(∂Ω) we can define

u(X) =

∫
∂Ω
f(z)dωXL (z), whenever X ∈ Ω,

so that u ∈W 1,2
loc (Ω)∩C(Ω) satisfies u = f on ∂Ω and Lu = 0 in the weak sense in Ω. Moreover,

if Ω is bounded and f ∈ Lip(Ω) then u ∈ W 1,2(Ω). In the same context the Green function
satisfies the following properties which will be used along the paper:

0 ≤ GL(X,Y ) ≤ C|X − Y |1−n, ∀X,Y ∈ Ω, X 6= Y ;(2.47)

GL(·, Y ) ∈W 1,2
loc (Ω \ {Y }) ∩ C

(
Ω \ {Y }

)
and GL(·, Y )|∂Ω ≡ 0 ∀Y ∈ Ω;(2.48)

GL(X,Y ) = GL>(Y,X), ∀X,Y ∈ Ω, X 6= Y ;(2.49) ∫∫
Ω
A(X)∇XGL(X,Y ) · ∇ϕ(X) dX = ϕ(Y ), ∀ϕ ∈ C∞c (Ω).(2.50)

We first define the reverse Hölder class and the A∞ classes with respect to fixed elliptic
measure in Ω. One reason we take this approach is that we do not know whether Hn|∂Ω is
well-defined since we do not assume any Ahlfors regularity. Hence we have to develop these
notions in terms of elliptic measures. To this end, let Ω satisfy the CDC and let L0 and L be
two real (non-necessarily symmetric) elliptic operators associated with L0u = −div(A0∇u) and
Lu = −div(A∇u) where A and A0 satisfy (2.46). Let ωXL0

and ωXL be the elliptic measures of Ω
associated with the operators L0 and L respectively with pole at X ∈ Ω. Note that if we further
assume that Ω is connected then ωXL � ωYL on ∂Ω for every X,Y ∈ Ω. Hence if ωX0

L � ωY0
L0

on ∂Ω for some X0, Y0 ∈ Ω then ωXL � ωYL0
on ∂Ω for every X,Y ∈ Ω and thus we can simply

write ωL � ωL0 on ∂Ω. In the latter case we will use the notation

(2.51) h(· ;L,L0, X) =
dωXL
dωXL0

to denote the Radon-Nikodym derivative of ωXL with respect to ωXL0
, which is a well-defined

function ωXL0
-almost everywhere on ∂Ω.

Definition 2.52 (Reverse Hölder and A∞ classes). Fix ∆0 = B0 ∩ ∂Ω where B0 = B(x0, r0)
with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω). Given p, 1 < p < ∞, we say that ωL ∈ RHp(∆0, ωL0),
provided that ωL � ωL0 on ∆0, and there exists C ≥ 1 such that(

−
∫

∆
h(y;L,L0, X∆0)pdω

X∆0
L0

(y)

) 1
p

≤ C−
∫

∆
h(y;L,L0, X∆0)dω

X∆0
L0

(y) = C
ω
X∆0
L (∆)

ω
X∆0
L0

(∆)
,

for every ∆ = B ∩ ∂Ω where B ⊂ B(x0, r0), B = B(x, r) with x ∈ ∂Ω, 0 < r < diam(∂Ω). The
infimum of the constants C as above is denoted by [ωL]RHp(∆0,ωL0

).
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Similarly, we say that ωL ∈ RHp(∂Ω, ωL0) provided that for every ∆0 = ∆(x0, r0) with
x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω) one has ωL ∈ RHp(∆0, ωL0) uniformly on ∆0, that is,

[ωL]RHp(∂Ω,ωL0
) := sup

∆0

[ωL]RHp(∆0,ωL0
) <∞.

Finally,

A∞(∆0, ωL0) =
⋃
p>1

RHp(∆0, ωL0) and A∞(∂Ω, ωL0) =
⋃
p>1

RHp(∂Ω, ωL0).

The following result lists a number of properties which will be used throughout the paper,
proofs may be found in [20]:

Lemma 2.53. Suppose that Ω ⊂ Rn+1, n ≥ 2, is a 1-sided NTA domain satisfying the CDC. Let
L0 = −div(A0∇) and L = −div(A∇) be two real (non-necessarily symmetric) elliptic operators,
there exist C1 ≥ 1, ρ ∈ (0, 1) (depending only on dimension, the 1-sided NTA constants, the
CDC constant, and the ellipticity of L) and C2 ≥ 1 (depending on the same parameters and on
the ellipticity of L0), such that for every B0 = B(x0, r0) with x0 ∈ ∂Ω, 0 < r0 < diam(∂Ω), and
∆0 = B0 ∩ ∂Ω we have the following properties:

(a) ωYL (∆0) ≥ C−1
1 for every Y ∈ C−1

1 B0 ∩ Ω and ω
X∆0
L (∆0) ≥ C−1

1 .

(b) If B = B(x, r) with x ∈ ∂Ω and ∆ = B∩∂Ω is such that 2B ⊂ B0, then for all X ∈ Ω\B0

we have that C−1
1 ωXL (∆) ≤ rn−1GL(X,X∆) ≤ C1ω

X
L (∆).

(c) If X ∈ Ω \ 4B0, then ωXL (2∆0) ≤ C1ω
X
L (∆0).

(d) For every X ∈ Ω \ 2κ0B0 with κ0 as in (2.32), we have that

1

C 1

1

ωXL (∆0)
≤
dω

X∆0
L

dωXL
(y) ≤ C1

1

ωXL (∆0)
, for ωXL -a.e. y ∈ ∆0.

(e) For every X ∈ B0 ∩ Ω and for any j ≥ 1

dωXL

dω
X

2j∆0
L

(y) ≤ C1

(
δ(X)

2j r0

)ρ
, for ωXL -a.e. y ∈ ∂Ω \ 2j ∆0.

Remark 2.54. We note that from (d) in the previous result, Harnack’s inequality, and (2.14)
one can easily see that

(2.55)
dω

XQ′
L

dω
XQ′′
L

(y) ≈ 1

ω
XQ′′
L (Q′)

, for ω
XQ′′
L -a.e. y ∈ Q′,whenever Q′ ⊂ Q′′ ∈ D.

Observe that since ω
XQ′′
L � ω

XQ′
L an analogous inequality for the reciprocal of the Radon-

Nikodym derivative follows immediately.

Remark 2.56. Given Ω, a 1-sided NTA domain satisfying the CDC, we claim that if ∆ = ∆(x, r)
with x ∈ ∂Ω and 0 < r < diam(∂Ω) then diam(∆) ≈ r. To see this we first observe that
diam(∆) ≤ 2r. If diam(∆) ≥ c0r/4 —c0 is the Corkscrew constant— then clearly diam(∆) ≈ r.
Hence, we may assume that diam(∆) < c0r/4. Let s = 2 diam(∆) so that diam(∆) < s < r
and note that one can easily see that ∆ = ∆′ := ∆(x, s). Associated with ∆ and ∆′ we can
consider X∆ and X∆′ the corresponding Corkscrew points. These are different, despite the fact
that ∆ = ∆(x, r). Indeed,

c0r ≤ δ(X∆) ≤ |X∆ −X∆′ |+ |X∆′ − x| ≤ |X∆ −X∆′ |+ s < |X∆ −X∆′ |+
c0

2
r
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which yields that |X∆−X∆′ | ≥ c0
2 r. Note that X∆ /∈ 2B′ := B(x, 2s) since otherwise we would

get a contradiction: c0r ≤ δ(X∆) ≤ |X∆ − x| < 2s < c0r. Hence we can invoke Lemma 2.53
parts (a) and (b) and (2.47) to see that

1 ≈ ωX∆
L (∆) = ωX∆

L (∆′) ≈ sn−1GL(X∆, X∆′) . s
n−1|X∆ −X∆′ |1−n . (s/r)n−1.

This and the fact that n ≥ 2 easily yields that r . s as desired.

We close this section by establishing an estimate for the non-tangential maximal function for
elliptic-measure solutions.

Proposition 2.57. Let Ω ⊂ Rn+1 be a 1-sided NTA domain satisfying the CDC. Given Q0 ∈ D
and f ∈ C(∂Ω) with supp f ⊂ 2∆̃Q0 let

u(X) =

∫
∂Ω
f(y) dωXL (y), X ∈ ∂Ω.

Then for every x ∈ Q0,

(2.58) NQ0u(x) . sup
∆3x

0<r∆<4ΞrQ0

−
∫

∆
|f(y)| dωXQ0

L (y),

and, as a consequence, for every 1 < q ≤ ∞
(2.59) ‖NQ0u‖

Lq(Q0,ω
XQ0
L )

. ‖f‖
Lq(2∆̃Q0

,ω
XQ0
L )

.

Moreover, the implicit constants depend just on dimension n, the 1-sided NTA constants, the
CDC constant, and the ellipticity constant of L and on q in (2.59).

Proof. By decomposing f into its positive and negative parts we may assume that f is non-

negative with supp f ⊂ 2∆̃Q0 and construct the associated u as in the statement which is
non-negative. Fix x ∈ Q0 and let X ∈ Γ∗Q0

(x). Then, by definition there are Q ∈ DQ0 and
I ∈ W∗Q such that x ∈ Q and X ∈ I∗∗. Hence using Harnack’s inequality and the notation

introduced in (2.14)–(2.16)

u(X) =

∫
∂Ω
f(y) dωXL (y) ≈

∫
∂Ω
f(y) dω

XQ
L (y)

≤
∫

4 ∆̃Q

f(y) dω
XQ
L (y) +

∞∑
j=3

∫
2j ∆̃Q\2j−1 ∆̃Q

f(y) dω
XQ
L (y) =:

∞∑
j=2

Ij .

Let k0 ≥ 0 be such that `(Q) = 2−k0`(Q0). Observe that for every j ≥ k0 + 3 one has that

2∆̃Q0 \ 2j−1∆̃Q = Ø. Otherwise there is z ∈ 2∆̃Q0 \ 2j−1∆̃Q and hence we get a contradiction:

4 Ξ rQ0 ≤ 2j−1−k0 Ξ rQ0 = 2j−1 Ξ rQ ≤ |z − xQ| ≤ |z − xQ0 |+ |xQ − xQ0 | ≤ 3 Ξ rQ0 .

With this in hand, and since supp f ⊂ 2∆̃Q0 , we clearly see that Ij = 0 for j ≥ k0 + 3.

In order to estimate the Ij ’s we need some preparatives. Note that for every 2 ≤ j ≤ k0 + 2

one has 2jB̃Q ⊂ 5B̃Q0 . We claim that

(2.60)
dω

X
2j∆̃Q

L

dω
XQ0
L

(y) .
1

ω
XQ0
L (2j∆̃Q)

, for ω
XQ0
L -a.e. y ∈ 2j ∆̃Q, 2 ≤ j ≤ k0 + 2.

Indeed, this estimate follows from Harnack’s inequality and Lemma 2.53 part (a) when j ≈ k0

since 2j `(Q) ≈ `(Q0), and from Lemma 2.53 part (d) whenever j � k0. We also observe that
Lemma 2.53 part (a) and Harnack’s inequality readily give that

(2.61) ω
X

2j∆̃Q

L (2j∆̃Q) ≈ 1, for every 2 ≤ j ≤ k0 + 2.
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Finally, by Lemma 2.53 part (e) and Harnack’s inequality it follows that

(2.62)
dω

XQ
L

dω
X

2j−1∆̃Q

L

(y) . 2−j ρ, for ω
XQ
L -a.e. y ∈ ∂Ω \ 2j−1 ∆̃Q, j ≥ 3.

Let us start estimating I2. Use Harnack’s inequality and (2.61), (2.60) with j = 2, to conclude
that

I2 ≈ −
∫

4 ∆̃Q

f(y) dω
X

∆̃Q

L (y) ≈ −
∫

4 ∆̃Q

f(y) dω
XQ0
L (y).

On the other hand, for 3 ≤ j ≤ k0 + 2, we employ (2.62), Harnack’s inequality, (2.61), and
(2.60)

Ij . 2−j ρ
∫

2j ∆̃Q\2j−1 ∆̃Q

f(y) dω
X

2j−1 ∆̃Q

L (y) . 2−j ρ−
∫

2j ∆̃Q

f(y) dω
X

2j ∆̃Q

L (y)

≈ 2−j ρ−
∫

2j ∆̃Q

f(y) dω
XQ0
L (y).

If we now collect all the obtained estimates we conclude as desired (2.58):

u(X) .
k0+2∑
j=2

Ij .
k0+2∑
j=2

2−j ρ−
∫

2j ∆̃Q

f(y) dω
XQ0
L (y)

≤ sup
∆3x

0<r∆<8ΞrQ0

−
∫

∆
|f(y)| dωXQ0

L (y)

∞∑
j=2

2−j ρ . sup
∆3x

0<r∆<4ΞrQ0

−
∫

∆
|f(y)| dωXQ0

L (y).

To complete the proof we just need to obtain (2.59) but this follows at once upon using
(2.58) and observing that the local Hardy-Littlewood maximal function on its right hand side

is bounded on Lq(20 ∆̃Q0 , ω
XQ0
L ) since ω

XQ0
L is a doubling measure in 20 ∆̃Q0 by Lemma 2.53

parts (a) and (c). �

3. Dyadic sawtooth lemma for projections

In this section, we shall prove two dyadic versions of the main lemma in [10]. To set the stage
we sate a result which is partially proved in [17, Proposition 6.7] under the further assumption
that ∂Ω is Ahlfors regular

Proposition 3.1. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided NTA domain satisfying the CDC. Fix
Q0 ∈ D and let F = {Qk}k ⊂ DQ0 be a family of pairwise disjoint dyadic cubes. There exists
YQ0 ∈ Ω ∩ ΩF ,Q0 ∩ Ω∗F ,Q0

so that

(3.2) dist(YQ0 , ∂Ω) ≈ dist(YQ0 , ∂ΩF ,Q0) ≈ dist(YQ0 , ∂Ω∗F ,Q0
) ≈ `(Q0),

where the implicit constants depend only on dimension, the 1-sided NTA constants, the CDC
constant, and is independent of Q0 and F . Additionally, for each Qj ∈ F , there is an n-
dimensional cube Pj ⊂ ∂ΩF ,Q0, which is contained in a face of I∗ for some I ∈ W, and which
satisfies

(3.3) `(Pj) ≈ dist(Pj , Qj) ≈ dist(Pj , ∂Ω) ≈ `(I) ≈ `(Qj),

and

(3.4)
∑
j

1Pj . 1,

where the implicit constants depend on allowable parameters.
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Proof. Note first that ΩF ,Q0 is a 1-sided NTA domain satisfying the CDC (see Proposition
2.37). Pick an arbitrary x0 ∈ ∂ΩF ,Q0 and let Y0 be a Corkscrew point relative to the sur-
face ball B(x0, diam(∂ΩF ,Q0)/2) ∩ ∂ΩF ,Q0 for the bounded domain ΩF ,Q0 (recall that one has
diam(∂ΩF ,Q0) ≈ `(Q0) < ∞ by (2.31)). Note that Y0 ∈ ΩF ,Q0 ⊂ Ω, which is comprised of
fattened Whitney boxes, then Y0 ∈ I∗∗ for some I ∈ W, with int(I∗∗) ⊂ ΩF ,Q0 . Let YQ0 = X(I)
be the center of I so that δ(Y0) ≈ `(I) ≈ δ(YQ0). Then,

`(Q0) ≈ diam(∂ΩF ,Q0) ≈ dist(Y0, ∂ΩF ,Q0) ≤ dist(Y0, ∂ΩF ,Q∗0) ≤ δ(Y0)

≈ δ(YQ0) ≈ `(I) ≤ diam(ΩF ,Q0) = diam(∂ΩF ,Q0) ≈ `(Q0).

To continue we note that the existence of the family {Pj}j so that (3.3) holds has been proved
in [17, Proposition 6.7] under the further assumption that ∂Ω is Ahlfors regular. However, a
careful examination of the proof shows that the same argument applies in our scenario. We are
left with showing (3.4). To see this, observe that as in [17, Remark 6.9] if Pj ∩ Pk 6= Ø then
`(Qj) ≈ `(Qk). Indeed from the previous result Pj ⊂ I∗j and Pk ⊂ I∗k for some Ij , Ik ∈ W. Thus

I∗j meets I∗k and by construction Ij and Ik meet. Using (3.3) and the nature of the Whitney

cubes we see that `(Qj) ≈ `(Ij) ≈ `(Ik) ≈ `(Qk). Using this and (3.3) one can also see that
dist(Qj , Qk) . `(Qj) ≈ `(Qk). Hence, fixing Pj0 and x ∈ Pj0 we have some constant k0 ≥ 1
(depending on the allowable parameters) such that∑

j

1Pj (x) ≤ #{Pk : Pk ∩ Pj0 6= Ø}

≤ #
{
Qk : 2−k0 ≤ `(Qk)

`(Qj0 ) ≤ 2k0 , dist(Qk, Qj0) ≤ 2k0`(Qj0)
}

=

k0∑
k=−k0

#
{
Qk : `(Qk) = 2k`(Qj0), dist(Qk, Qj0) ≤ 2k0`(Qj0)

}
=:

k0∑
k=−k0

Nk.

To estimate each of the terms in the last sum fix k and note that since the cubes belong to the
same generation then Qk’s involved are disjoint and hence so they are the corresponding ∆Qk ’s

which all have radius (2C)−12k`(Qj0). In particular, |xQk − xQ′k | & 2k`(Qj0) ≥ 2−k0`(Qj0) for

any such cubes Qk and Qk′ . Moreover,

|xQk − xQj0 | ≤ diam(Qk) + dist(Qk, Qj0) + diam(Qj0) . 2k0`(Qj0).

Thus it is easy to see (since Rn+1 is geometric doubling) that Nk . 22k0(n+1). All these together
gives us desired (3.4) —we note in passing that the argument in [17, Remark 6.9] used the fact
there ∂Ω is AR to estimate each Nk, while here we are invoking the geometric doubling property
of the ambient space Rn+1. �

We are now ready to state the first main result of this chapter which is a version of [17,
Lemma 6.15] (see also [10]) valid in our setting:

Lemma 3.5 (Discrete sawtooth lemma for projections). Suppose that Ω ⊂ Rn+1, n ≥ 2, is a
bounded 1-sided NTA domain satisfying the CDC. Let Q0 ∈ D, let F = {Qi} ⊂ DQ0 be a family
of pairwise disjoint dyadic cubes, and let µ be a dyadically doubling measure in Q0. Given two

real (non-necessarily symmetric) elliptic L0, L, we write ω
YQ0
0 = ω

YQ0
L0,Ω

, ω
YQ0
L = ω

YQ0
L,Ω for the

elliptic measures associated with L0 and L for the domain Ω with fixed pole at YQ0 ∈ ΩF ,Q0 ∩Ω

(cf. Lemma 3.1). Let ω
YQ0
L,∗ = ω

YQ0
L,ΩF,Q0

be the elliptic measure associated with L for the domain

ΩF ,Q0 with fixed pole at YQ0 ∈ ΩF ,Q0 ∩ Ω. Consider ν
YQ0
L the measure defined by

(3.6) ν
YQ0
L (F ) = ω

YQ0
L,∗

(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

ω
YQ0
L (F ∩Qi)

ω
YQ0
L (Qi)

ω
YQ0
L,∗ (Pi), F ⊂ Q0,
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where Pi is the cube produced in Proposition 3.1. Then PµFν
YQ0
L (see (2.22)) depends only on

ω
YQ0
0 and ω

YQ0
L,∗ , but not on ω

YQ0
L . More precisely,

(3.7) PµFν
YQ0
L (F ) = ω

YQ0
L,∗

(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

µ(F ∩Qi)
µ(Qi)

ω
YQ0
L,∗ (Pi), F ⊂ Q0.

Moreover, there exists θ > 0 such that for all Q ∈ DQ0 and all F ⊂ Q, we have

(3.8)

(
PµFω

YQ0
L (F )

PµFω
YQ0
L (Q)

)θ
.
PµFν

YQ0
L (F )

PµFν
YQ0
L (Q)

.
PµFω

YQ0
L (F )

PµFω
YQ0
L (Q)

.

Proof. Our argument follows the ideas from [17, Lemma 6.15] and we use several auxiliary
technical results from [17, Section 6] which were proved under the additional assumption that
∂Ω is AR. However, as we will indicate along the proof, most of them can be adapted to our
setting. Those arguments that require new ideas will be explained in detail.

We first observe that (3.7) readily follows from the definitions of PµF and ν
YQ0
L . We first

establish the second estimate in (3.8). With this goal in mind let us fix Q ∈ DQ0 and F ⊂ Q0.

Case 1: There exists Qi ∈ F such that Q ⊂ Qi. By (3.7) we have

PµFν
YQ0
L (F )

PµFν
YQ0
L (Q)

=

µ(F∩Qi)
µ(Qi)

ω
YQ0
L,∗ (Pi)

µ(Q∩Qi)
µ(Qi)

ω
YQ0
L,∗ (Pi)

=
µ(F )

µ(Q)
=

µ(F∩Qi)
µ(Qi)

ω
YQ0
L (Qi)

µ(Q∩Qi)
µ(Qi)

ω
YQ0
L (Qi)

=
PµFω

YQ0
L (F )

PµFω
YQ0
L (Q)

.

Case 2: Q 6⊂ Qi for any Qi ∈ F , that is, Q ∈ DF ,Q0 . In particular if Q ∩Qi 6= Ø with Qi ∈ F
then necessarily Qi ( Q. Let x?i denote the center of Pi and pick ri ≈ `(Qi) ≈ `(Pi) so that
Pi ⊂ ∆?(x

?
i , ri) := B(x?i , ri)∩ ∂ΩF ,Q0 . Note that by Proposition 2.37, Harnack’s inequality and

Lemma 2.53 parts (a) and (c) we have that ω
YQ0
L,∗ (Pi) ≈ ω

YQ0
L,∗ (∆?(x

?
i , ri)). On the other hand as

in [17, Proposition 6.12] one can see that

(3.9) ∆Q
? := B(x?Q, tQ) ∩ ∂ΩF ,Q0 ⊂

(
Q \

⋃
Qi∈F

Qi

)⋃( ⋃
Qi∈F :Qi(Q

∆?(x
?
i , ri)

)
with tQ ≈ `(Q), x?Q ∈ ∂ΩF ,Q0 and dist(Q,∆Q

? ) . `(Q) with implicit constants depending on

the allowable parameters. We note that the last expression is slightly different to that in [17,
Proposition 6.2], nonetheless the one stated here follows from the proof in account of [17, (6.14)
and Proposition 6.1] as ∂Qi is contained in TQi . Besides, Proposition 3.1 easily yields

(3.10)
(
Q \

⋃
Qi∈F

Qi

)⋃( ⋃
Qi∈F :Qi(Q

Pi

)
⊂
(
Q \

⋃
Qi∈F

Qi

)⋃( ⋃
Qi∈F :Qi(Q

∆?(x
?
i , ri)

)
⊂ C∆Q

? ,

hence

(3.11) ω
YQ0
L,∗

((
Q \

⋃
Qi∈F

Qi

)⋃( ⋃
Qi∈F :Qi(Q

∆?(x
?
i , ri)

))
. ω

YQ0
L,∗ (∆Q

? ).

Writing E0 = Q0 \
⋃
Qi∈F Qi ⊂ ∂Ω ∩ ∂ΩF ,Q (see [17, Proposition 6.1]) we have

(3.12) ω
YQ0
L,∗ (∆Q

? ) ≤ ωYQ0
L,∗ (Q ∩ E0) +

∑
Qi∈F :Qi(Q

ω
YQ0
L,∗ (∆?(x

?
i , ri))

. ω
YQ0
L,∗ (Q ∩ E0) +

∑
Qi∈F :Qi(Q

ω
YQ0
L,∗ (Pi) = PµFν

YQ0
L (Q)
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and, by (3.4),

(3.13) PµFν
YQ0
L (Q) = ω

YQ0
L,∗ (Q ∩ E0) +

∑
Qi∈F :Qi(Q

µ(Q ∩Qi)
µ(Qi)

ω
YQ0
L,∗ (Pi)

= ω
YQ0
L,∗ (Q ∩ E0) +

∑
Qi∈F :Qi(Q

ω
YQ0
L,∗ (Pi)

. ω
YQ0
L,∗

(
(Q ∩ E0)

⋃( ⋃
Qi∈F :Qi(Q

Pi

))
. ω

YQ0
L,∗ (∆Q

? ).

Since Q ∈ DF ,Q0 we can invoke [17, Proposition 6.4] (which also holds in the current setting)
to find YQ ∈ ΩF ,Q0 which serves as a Corkscrew point simultaneously for ΩF ,Q0 with respect to
the surface ball ∆?(yQ, sQ) for some yQ ∈ ΩF ,Q and some sQ ≈ `(Q), and for Ω with respect to
each surface ball ∆(x, sQ), for every x ∈ Q. Applying (2.55) and Harnack’s inequality to join
YQ with XQ and YQ0 with YQ we have

(3.14)
dω

YQ
L

dω
YQ0
L

≈ 1

ω
YQ0
L (Q)

, ω
YQ0
L -a.e. in Q.

On the other hand one can see that

(3.15) B̃Q
⋃( ⋃

Qi∈F :Qi(Q
B(x?i , ri)

)
⊂ B(yQ, ŝQ),

for some ŝQ ≈ sQ. Invoking then Proposition 2.37, and Lemma 2.53 parts (c) and (d) in the
domain ΩF ,Q0 we can analogously see

(3.16)
dω

YQ
L,∗

dω
YQ0
L,∗

≈ 1

ω
YQ0
L,∗ (∆(yQ, ŝQ))

≈ 1

ω
YQ0
L,∗ (∆Q

? )
, ω

YQ0
L,∗ -a.e. in ∆(yQ, ŝQ).

Next we invoke (3.12), (3.15), and (3.14) to obtain

(3.17)
PµFν

YQ0
L (F )

PµFν
YQ0
L (Q)

≈
ω
YQ0
L,∗ (F ∩ E0)

ω
YQ0
L,∗ (∆Q

? )
+

∑
Qi∈F :Qi(Q

µ(F ∩Qi)
µ(Qi)

ω
YQ0
L,∗ (Pi)

ω
YQ0
L,∗ (∆Q

? )

≈ ωYQL,∗(F ∩ E0) +
∑

Qi∈F :Qi(Q

µ(F ∩Qi)
µ(Qi)

ω
YQ
L,∗(Pi).

We claim the following estimates hold

(3.18) ω
YQ
L,∗(F ∩ E0) . ω

YQ
L (F ∩ E0), ω

YQ
L,∗(Pi) . ω

YQ
L (Qi).

The first estimate follows easily from the maximum principle since ΩF ,Q0 ⊂ Ω and F ∩ E0 ⊂
∂Ω∩∂ΩF ,Q0 . For the second one, by the maximum principle we just need to see that ωXL (Qi) & 1
for X ∈ Pi, but this follows from Lemma 2.53 part (a), (2.14), Harnack’s inequality, and (3.3).

With the previous estimates at our disposal we can the continue with our estimate (3.17):

PµFν
YQ0
L (F )

PµFν
YQ0
L (Q)

. ω
YQ
L (F ∩ E0) +

∑
Qi∈F :Qi(Q

µ(F ∩Qi)
µ(Qi)

ω
YQ
L (Qi)

≈
ω
YQ0
L (F ∩ E0)

ω
YQ0
L (Q)

+
∑

Qi∈F :Qi(Q

µ(F ∩Qi)
µ(Qi)

ω
YQ0
L (Qi)

ω
YQ0
L (Q)

=
PµFω

YQ0
L (F )

ω
YQ0
L (Q)

=
PµFω

YQ0
L (F )

PµFω
YQ0
L (Q)

,
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where we have used (3.15) and that PµFω
YQ0
L (Q) = ω

YQ0
L (Q). This proves the second estimate

in (3.8) in the current case.

Once we have shown the second estimate in (3.8) we can invoke [17, Lemma B.7] (which
is a purely dyadic result and hence applies in our setting) along with Lemma 3.22 below to
eventually obtain the first estimate in (3.8). �

As a consequence of the previous result we can easily obtain a dyadic analog of the main
lemma in [10].

Lemma 3.19 (Discrete sawtooth lemma). Suppose that Ω ⊂ Rn+1, n ≥ 2, is a bounded 1-
sided NTA domain satisfying the CDC. Let Q0 ∈ D and let F = {Qi} ⊂ DQ0 be a family of
pairwise disjoint dyadic cubes. Given two real (non-necessarily symmetric) elliptic L0, L, we

write ω
YQ0
0 = ω

YQ0
L0,Ω

, ω
YQ0
L = ω

YQ0
L,Ω for the elliptic measures associated with L0 and L for the

domain Ω with fixed pole at YQ0 ∈ ΩF ,Q0 ∩ Ω (cf. Lemma 3.1). Let ω
YQ0
L,∗ = ω

YQ0
L,ΩF,Q0

be the

elliptic measure associated with L for the domain ΩF ,Q0 with fixed pole at YQ0 ∈ ΩF ,Q0 ∩ Ω.

Consider ν
YQ0
L the measure defined by (3.6). Then, there exists θ > 0 such that for all Q ∈ DQ0

and all F ⊂ Q, we have

(3.20)

(
ω
YQ0
L (F )

ω
YQ0
L (Q)

)θ
.
ν
YQ0
L (F )

ν
YQ0
L (Q)

.
ω
YQ0
L (F )

ω
YQ0
L (Q)

.

In particular, if F ⊂ Q \
⋃
Qi∈F Qi, we have

(3.21)

(
ω
YQ0
L (F )

ω
YQ0
L (Q)

)θ
.

ω
YQ0
L,∗ (F )

ω
YQ0
L,∗ (∆Q

? )
.
ω
YQ0
L (F )

ω
YQ0
L (Q)

,

where ∆Q
? := B(x?Q, tQ) ∩ ∂ΩF ,Q0 with tQ ≈ `(Q), x?Q ∈ ∂ΩF ,Q0, and dist(Q,∆Q

? ) . `(Q) with

implicit constants depending on the allowable parameters (cf. [17, Proposition 6.12]).

Proof. Letting µ = ω
YQ0
L , which is dyadically doubling in Q0, one easily has PµFω

YQ0
L = ω

YQ0
L

and PµFν
YQ0
L = ν

YQ0
L . Thus (3.8) in Lemma 3.5 readily yields (3.20). Next, to obtain (3.21) we

may assume that F is non-empty. Observe that if F ⊂ Q\
⋃
Qi∈F Qi, then ν

YQ0
L (F ) = ω

YQ0
L,∗ (F ).

On the other hand, if F ⊂ Q \
⋃
Qi∈F Qi we must be in Case 2 of the proof of Lemma 3.5,

hence (3.12) and (3.13) hold. With all these we readily obtain (3.21). �

Our last result in this section establishes that both ν
YQ0
L and PµFν

YQ0
L are dyadically doubling

on Q0.

Lemma 3.22. Under the assumptions of Lemma 3.5, ν
YQ0
L and PµFν

YQ0
L are dyadically doubling

on Q0.

Proof. We follow the ideas in [17, Lemma B.2]. We shall first see ν
YQ0
L is dyadically doubling.

To this end, let Q ∈ DQ0 be fixed and let Q′ be one of its dyadic children. We consider three
cases:

Case 1: There exists Qi ∈ F such that Q ⊂ Qi. In this case we have

ν
YQ0
L (Q) =

ω
YQ0
L (Q)

ω
YQ0
L (Qi)

ω
YQ0
L,∗ (Pi) .

ω
YQ0
L (Q′)

ω
YQ0
L (Qi)

ω
YQ0
L,∗ (Pi) = ν

YQ0
L (Q′)

where we have used Harnack’s inequality and Lemma 2.53 parts and (a) and (c).
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Case 2: Q′ ∈ F . For simplicity say Q′ = Q1 ∈ F and in this case ν
YQ0
L (Q′) = ω

YQ0
L,∗ (P1). Note

that then Q ∈ DF ,Q0 and we let F1 be the family of cubes Qi ∈ F with Qi∩Q 6= Ø and observe
that if Qi ∈ F1 then Qi ( Q. Then by (3.4)

(3.23) ν
YQ0
L (Q) = ω

YQ0
L,∗

(
Q \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F1

ω
YQ0
L (Q ∩Qi)

ω
YQ0
L (Qi)

ω
YQ0
L,∗ (Pi)

= ω
YQ0
L,∗

(
Q \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F1

ω
YQ0
L,∗ (Pi) . ω

YQ0
L,∗

((
Q \

⋃
Qi∈F

Qi

)⋃( ⋃
Qi∈F1

Pi

))
.

Recall that in Case 2 in the proof of Lemma 3.5 we mentioned that P1 ⊂ ∆?(x
?
1, r1) with x?1

being the center of P1 and r1 ≈ `(P1) ≈ `(Q1) ≈ `(Q) since Q is the dyadic parent of Q1. Note
that since Qi ∈ F1 by (3.3)

`(Pi) ≈ dist(Pi, Q) ≈ `(Qi) . `(Q) = 2`(Q1) ≈ `(P1) ≈ dist(Q1, P1) ≈ r1.

Thus (
Q \

⋃
Qi∈F

Qi

)⋃( ⋃
Qi∈F1

Pi

)
⊂ ∆?(x

?
1, Cr1),

where we here and below we use the notation ∆? for the surface balls with respect to ∂ΩF ,Q0 .
Using this, (3.23), and Lemma 2.53 parts (a) and (c) and Harnack’s inequality we derive

ν
YQ0
L (Q) . ω

YQ0
L,∗ (∆?(x

?
1, Cr1)) . ω

YQ0
L,∗ (∆?(x

?
1, r1)) . ω

YQ0
L,∗ (P1) = ν

YQ0
L (Q′).

Case 3: None of the conditions in the previous cases happen, and necessarily Q,Q′ ∈ DF ,Q0 .
We take the same set F1 as in the previous case and again if Qi ∈ F1 then Qi ( Q (otherwise
we are driven to Case 1). Introduce F2, the family of cubes Qi ∈ F with Qi ∩Q′ 6= Ø. Again,
if Qi ∈ F2 we have Qi ( Q′; otherwise either Q′ = Qi which is Case 2, or Q′ ( Qi which
implies Q ⊂ Qi and we are back to Case 1.

Note that since Q is the dyadic parent of Q′, using the same notation as in (3.9) applied to
Q′ ∈ DF ,Q0 we have that

dist(x?Q′ , Q) ≤ dist(x?Q′ , Q
′) . `(Q′) ≈ `(Q) ≈ tQ′ .

Also by (3.3)

dist(x?Q′ , Pi) . dist(x?Q′ , Q) + `(Q) + dist(Q,Pi) . `(Q) + dist(Qi, Pi) . `(Q) ≈ tQ′ .

These readily give (
Q \

⋃
Qi∈F

Qi

)⋃( ⋃
Qi∈F1

Pi

)
⊂ ∆?(x

?
Q′ , CtQ′).

We can then proceed as in the previous case (see (3.23)) to obtain

ν
YQ0
L (Q) . ω

YQ0
L,∗

((
Q \

⋃
Qi∈F

Qi

)⋃( ⋃
Qi∈F1

Pi

))
. ω

YQ0
L,∗ (∆?(x

?
Q′ , CtQ′)) . ω

YQ0
L,∗ (∆Q′

? )

where ∆Q′
? = B(x?Q′ , tQ′) ∩ ∂ΩF ,Q0 (see (3.9)) and we have used Lemma 2.53 parts (a) and (c)

and Harnack’s inequality. On the other hand, proceeding as in (3.12) with Q′ in place of Q
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since Q′ ∈ DF ,Q0 :

ω
YQ0
L,∗ (∆Q′

? ) ≤ ωYQ0
L,∗ (Q′ ∩ E0) +

∑
Qi∈F2

ω
YQ0
L,∗ (∆?(x

?
i , ri))

. ω
YQ0
L,∗ (Q′ ∩ E0) +

∑
Qi∈F2

ω
YQ0
L,∗ (Pi)

= ω
YQ0
L,∗ (Q′ ∩ E0) +

∑
Qi∈F2

ω
YQ0
L (Q′ ∩Qi)

ω
YQ0
L (Qi)

ω
YQ0
L,∗ (Pi) = ν

YQ0
L (Q′).

Eventually we obtain that ν
YQ0
L (Q) . ν

YQ0
L (Q′), completing the proof of the dyadic doubling

property of ν
YQ0
L .

We next deal with PµFν
YQ0
L . We can simply follow the previous argument replacing ω

YQ0
L by

PµFν
YQ0
L to see that in Cases 2 and 3 we have that PµFν

YQ0
L (Q) = ν

YQ0
L (Q) and PµFν

YQ0
L (Q′) =

ν
YQ0
L (Q′), hence the doubling condition follows from the previous calculations and the constant

depend on that of ω
YQ0
L,∗ . With regard to Cases 1, on which Q ⊂ Qi for some Qi ∈ F , one can

easily see that

PµFν
YQ0
L (Q) =

µ(Q)

µ(Qi)
ω
YQ0
L,∗ (Pi) .

µ(Q′)

µ(Qi)
ω
YQ0
L,∗ (Pi) = PµFν

YQ0
L (Q′),

which uses that µ is dyadically doubling in Q0. Eventually we have seen that doubling constant

depend on that of ω
YQ0
L,∗ and µ as desired. This completes the proof. �

4. Proof of the main results

4.1. Proof of Theorem 1.3. By renormalization we may assume without loss of generality
that ‖u‖L∞(Ω) = 1. We will first prove a dyadic version of (1.4). Let D = D(∂Ω) the dyadic
grid from Lemma 2.13 with E = ∂Ω. Our goal is to show that

(4.1) M0 := sup
Q0∈D

sup
Q0∈DQ0

`(Q0)≤ `(Q
0)

M

1

ω
XQ0

L (Q0)

∫∫
TQ0

|∇u(X)|2GL(XQ0 , X) dX . 1

with M ≥ 4 large enough. Assuming this momentarily let us see how to derive (1.4). Fix B

and B′ as in the suprema in (1.4). Let k, k′ ∈ Z be so that 2k−1 < r ≤ 2k and 2k
′−1 < r′ ≤ 2k

′
,

and define k′′ := min{k′, k − 10kM} where kM ≥ 1 is large enough to be chosen depending on
M and the allowable parameters. Set

W ′ := {I ∈ W : I ∩B′ 6= Ø, `(I) < 2k
′′}
⋃
{I ∈ W : I ∩B′ 6= Ø, `(I) ≥ 2k

′′} =:W ′1 ∪W ′2.

Note that for every I ∈ W with I ∩B′ 6= Ø we have

`(I) < diam(I) ≤ dist(I, ∂Ω)

4
<
r′

4
≤ 2k

′−2.

As a consequence, if W ′2 6= Ø, then k′′ = k − 10 kM , and picking I ∈ W ′2 6= Ø one has

r ≈ 2k ≈M 2k
′′ ≤ `(I) ≤ 2k

′−2 ≈ r′ . r.

This gives r′ ≈M r and #W ′2 .M 1.
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To proceed, let us write∫∫
B′∩Ω

|∇u(X)|2GL(X∆, X) dX ≤
∫∫

⋃
I∈W′1

I
|∇u(X)|2GL(X∆, X) dX

+
∑
I∈W ′2

∫∫
I
|∇u(X)|2GL(X∆, X) dX =: I + II,

and we estimate each term in turn.

To estimate II we may assume that W ′2 6= Ø, hence k′′ = k − 10 kM , r′ ≈ r and #W ′2 .
1. Then Lemma 2.53, the fact that ω(∂Ω) ≤ 1, Caccioppoli’s inequality, the normalization
‖u‖L∞(Ω) = 1, and Harnack’s inequality give

II =
∑
I∈W ′2

∫∫
I
|∇u(X)|2GL(X∆, X) dX .

∑
I∈W ′2

`(I)1−n
∫∫

I
|∇u(X)|2 dX

. #W ′2 . 1 ≈ ωX∆
L (∆′).

Next we deal with I. Introduce the disjoint family F ′ = {Q ∈ D : `(Q) = 2k
′′−1, Q ∩ 3B′ 6=

Ø}. Given I ∈ W ′1, let XI ∈ B′ ∩ I, and QI ∈ D be so that `(QI) = `(I) and it contains some
fixed yI ∈ ∂Ω such that dist(I, ∂Ω) = dist(I, yI). Then, as observed in Section 2.4, one has
I ∈ W∗QI . Note that

|yI − x′| ≤ dist(yI , I) + diam(I) + |XI − x′| ≤
5

4
dist(I, ∂Ω) + |XI − x′| ≤

9

4
|XI − x′| < 3 r′,

hence yI ∈ QI ∩3 ∆′. This and the fact that, as observed before, `(QI) = `(I) < 2k
′′

imply that
QI ⊂ Q for some Q ∈ F ′. Hence, I ⊂ (1 + λ) I ⊂ UQI ⊂ TQ for some Q ∈ F ′. This eventually
show that

⋃
I∈W ′1

I ⊂
⋃
Q∈F ′ TQ and therefore

I ≤
∑
Q∈F ′

∫∫
TQ

|∇u(X)|2GL(X∆, X) dX.

For any Q ∈ F ′ pick the unique (ancestor) Q̂ ∈ D with `(Q̂) = 2k−1 and Q ⊂ Q̂. Note that

δ(X∆) ≈ r, δ(X
Q̂

) ≈ `(Q̂) = 2k−1 ≈ r. Also,

|X∆ −XQ̂
| ≤ |X∆ − x|+ |x− x′|+ |x′ − xQ|+ |xQ − xQ̂|+ |xQ̂ −XQ̂

|

< 3 r + 3 r′ + diam(Q) + diam(Q̂) + `(Q̂) . r + 2k
′′

+ 2k . r.

Hence by the Harnack chain condition one obtains that GL(X∆, X) ≈ GL(X
Q̂
, X) for every

X ∈ TQ (in doing that we need to make sure that kM is large enough so that the Harnack chain
joining X∆ and X

Q̂
, which is c r-away from ∂Ω, does not get near TQ, which is κ0 `(Q)-close to

∂Ω). Note also that `(Q)

`(Q̂)
= 2k

′′−k ≤ 2−kM < M−1, provided kM is large enough depending on

M . All theres and (4.1) yield

I .
∑
Q∈F ′

∫∫
TQ

|∇u(X)|2GL(X
Q̂
, X) dX .M0

∑
Q∈F ′

ω
X
Q̂

L (Q)

.M0

∑
Q∈F ′

ωX∆
L (Q) ≤M0 ω

X∆
L

( ⋃
Q∈F ′

Q
)
≤M0 ω

X∆
L (C∆′) .M0 ω

X∆
L (∆′),

where we have used Lemma 2.53. This completes the prof of the fact that (4.1) implies (1.4).

We next focus on showing (4.1). With this goal in mind we fix Q0 ∈ D = D(∂Ω) and let
Q0 ∈ DQ0 with `(Q0) ≤ `(Q0)/M with M large enough so that XQ0 /∈ 4B∗Q (cf. (2.31)). Write
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ωL = ω
XQ0

L and GL = GL(XQ0 , ·) and note that our choice of M , (2.49), and (2.50) guarantee

that L>GL = L>GL>(·, XQ0) = 0 in the weak sense in 4B∗Q.

Fix N � 1 and consider the family of pairwise disjoint cubes FN = {Q ∈ DQ0 : `(Q) =

2−N `(Q0)} and let ΩN = ΩFN ,Q0 (cf. (2.25)). Note that by construction ΩN ⊂ TQ0 is an
increasing sequence of sets converging to TQ0 . Our goal is to show that for every N � 1 there
holds

(4.2)

∫∫
ΩN

|∇u(X)|2 GL(X) dX ≤M0 ωL(Q0),

with M0 independent of Q0, Q0, and N . Hence the monotone convergence theorem yields∫∫
TQ0

|∇u(X)|2 GL(X) dX = lim
N→∞

∫∫
ΩN

|∇u(X)|2 GL(X) dX ≤M0 ωL(Q0),

which is (4.1).

Let us next start estimating (4.2). Using ΨN from Lemma 2.39 and the ellipticity of the
matrix A we have∫∫

ΩN

|∇u(X)|2 GL(X) dX .
∫∫

Rn+1

|∇u(X)|2 GL(X) ΨN (X) dX

.
∫∫

Rn+1

A(X)∇u(X) · ∇u(X)GL(X) ΨN (X) dX

=

∫∫
Rn+1

A(X)∇u(X) · ∇(uGL ΨN )(X) dX

− 1

2

∫∫
Rn+1

A(X)∇(u2 ΨN )(X) · ∇GL(X) dX

− 1

2

∫∫
Rn+1

A(X)∇(u2)(X) · ∇ΨN (X)GL(X) dX

+
1

2

∫∫
Rn+1

A(X)∇ΨN (X) · ∇GL(X)u(X)2 dX

=: I1 + I2 + I3 + I4.

We observe that uGL ΨN and u2 ΨN belong to W 1,2(Ω) since u ∈W 1,2
loc (Ω)∩L∞(Ω), supp ΨN ⊂

Ω∗N , δ(X) & 2−N `(Q0) for every X ∈ Ω∗N , the properties of GL, and the fact that XQ0 is away

from Ω∗N —δ(XQ0) ≈ `(Q0) and by (2.31) one has δ(X) . `(Q0) ≤ `(Q0)/M ≤ δ(XQ0)/2 for
every X ∈ Ω∗N and provided M is large enough. Using all these one can easily see via a limiting
argument that the fact that Lu = 0 in the weak sense in Ω implies that I1 = 0. Likewise, one
can easily show that I2 = 0 by recalling that supp ΨN ⊂ Ω∗N ⊂

1
2 BQ

∗ ∩Ω (see (2.31)) and that

as mentioned above L>GL = 0 in the weak sense in 4B∗Q. Thus we are left with estimating the

terms I3 and I4. By (iii) in Lemma 2.39 and the fact that ‖u‖L∞(Ω) = 1 we obtain

|I3|+ |I4| .
∫∫

⋃
I∈WΣ

N
I∗∗

(
|∇u| GL + |∇GL|

)
δ(·)−1 dX

.
∑
I∈WΣ

N

`(I)
n−1

2

((∫∫
I∗∗
|∇u|2 dX

) 1
2 GL(X(I)) +

(∫∫
I∗∗
|∇GL|2 dX

) 1
2
)

.
∑
I∈WΣ

N

`(I)
n−3

2

((∫
I∗∗∗
|u|2 dX

) 1
2

+ `(I)
n+1

2

)
GL(X(I))

.
∑
I∈WΣ

N

`(I)n−1 GL(X(I)),



ELLIPTIC OPERATORS ON ROUGH DOMAINS 29

where X(I) denotes the center of I, and we have used Harnack’s and Caccioppoli’s inequalities,
that L>GL = 0 and Lu = 0 in the weak sense in I∗∗∗ ⊂ 1

2 B
∗
Q∩Ω (see (2.31)). Invoking Lemmas

2.53 and Lemma 2.39 one can see that `(I)n−1 GL(X(I)) . ωL(Q̂I) for every I ∈ WΣ
N . This

together with Lemma 2.39 allows us to conclude

|I3|+ |I4| .
∑
I∈WΣ

N

ωL(Q̂I) . ωL
( ⋃
I∈WΣ

N

Q̂I

)
.

Note that if y ∈ Q̂I with I ∈ WΣ
N one has

|y − xQ0 | ≤ diam(Q̂I) + dist(Q̂I , I) + diam(I) + dist(I, xQ0) . `(I) + `(Q0) . `(Q0)

where we have used (2.42) and (2.31). Thus, Lemma 2.53 gives

|I3|+ |I4| . ωL(C ∆Q0) . ωL(Q0).

This allows us to complete the proof of Theorem 1.3. �

4.2. Proof of Theorem 1.5. We borrow some ideas from [19]. Given k ∈ N introduce the
truncated localized conical square function: for every Q ∈ DQ0 and x ∈ Q, let

SkQu(x) :=

(∫∫
ΓkQ(x)

|∇u(Y )|2δ(Y )1−n dY

) 1
2

, where ΓkQ(x) :=
⋃

x∈Q′∈DQ
`(Q′)≥2−k `(Q0)

UQ′ ,

where if `(Q) < 2−k `(Q0) it is understood that ΓkQ(x) = Ø and SkQu(x) = 0. Note that by the

monotone convergence theorem SkQu(x)↗ SQu(x) as k →∞ for every x ∈ Q.

Fixed k0 large enough (eventually, k0 → ∞), our goal is to show that we can find ϑ > 0
(independent of k0) such that for every β, γ, λ > 0 we have

(4.3) ω
XQ0
L

({
x ∈ Q0 : Sk0

Q0
u(x) > (1 + β)λ, NQ0u(x) ≤ γ λ

})
.
(γ
β

)ϑ
ω
XQ0
L

({
x ∈ Q0 : Sk0

Q0
u(x) > β λ

})
,

where the implicit constant depend on the allowable parameters and it is independent of k0. To
prove this we fix β, γ, λ > 0 and set

Eλ :=
{
x ∈ Q0 : Sk0

Q0
u(x) > λ

}
.

Consider first the case Eλ ( Q0. Note that if x ∈ Eλ, by definition Sk0
Q0
u(x) > λ. Let

Qx ∈ DQ0 be the unique dyadic cube such that Qx 3 x and `(Qx) = 2−k0`(Q0). Then it is clear
from construction that for every y ∈ Qx one has

Γk0
Q0

(x) =
⋃

Qx⊂Q⊂Q0

UQ = Γk0
Q0

(y) and λ < Sk0
Q0
u(x) = Sk0

Q0
u(y).

Hence, Qx ⊂ Eλ and we have shown that for every x ∈ Eλ there exists Qx ∈ DQ0 such that
Qx 3 x and Qx ⊂ Eλ. We then take the ancestors of Qx, and look for the one with maximal
side length Qmax

x ⊃ Qx which is contained in Eλ. That is, Q ⊂ Eλ for every Qx ⊂ Q ⊂ Qmax
x

and Q̂max
x ∩ Q0 \ Eλ 6= Ø where Q̂max

x is the dyadic parent of Qmax
x (during this proof we

will use Q̂ to denote the dyadic parent of Q, that is, the only dyadic cube containing it with
double side length). Note that the assumption Eλ ( Q0 guarantees that Qmax

x ∈ DQ0\{Q0}. Let
F0 = {Qj}j be the collection of such maximal cubes as x runs in Eλ and we clearly have that the

family is pairwise disjoint and also Eλ =
⋃
Qj∈F0

Qj . Also, by construction `(Qj) ≥ 2−k0`(Q0)

and by the maximality of each Qj we can select xj ∈ Q̂j \ Eλ.
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On the other hand, for any x ∈ Qj we have, using that xj ∈ Q̂j \ Eλ,

Γk0
Q0

(x) =
⋃

x∈Q∈DQ0

`(Q)≥2−k0 `(Q0)

UQ = Γk0
Qj

(x)
⋃( ⋃

Qj(Q⊂Q0

UQ

)
⊂ Γk0

Qj
(x)
⋃

Γk0
Q0

(xj)

and therefore

Sk0
Q0
u(x) ≤ Sk0

Qj
u(x) + Sk0

Q0
u(xj) ≤ Sk0

Qj
u(x) + λ.

As a consequence,{
x ∈ Qj : Sk0

Q0
u(x) > (1 + β)λ

}
⊂
{
x ∈ Qj : Sk0

Qj
u(x) > βλ

}
and{

x ∈ Q0 : Sk0
Q0
u(x) > (1 + β)λ

}
=
{
x ∈ Q0 : Sk0

Q0
u(x) > (1 + β)λ

}
∩ Eλ

=
⋃

Qj∈F0

{
x ∈ Qj : Sk0

Q0
u(x) > (1 + β)λ

}
⊂

⋃
Qj∈F0

{
x ∈ Qj : Sk0

Qj
u(x) > βλ

}
.

This has been done under the assumption that Eλ ( Q0. In the case Eλ = Q0 we set F0 = {Q0}.
Then in both cases we obtain{

x ∈ Q0 : Sk0
Q0
u(x) > (1 + β)λ

}
⊂

⋃
Qj∈F0

{
x ∈ Qj : Sk0

Qj
u(x) > βλ

}
.(4.4)

Thus, to obtain (4.3) it suffices to see that for every Qj ∈ F0

ω
XQ0
L

({
x ∈ Qj : Sk0

Qj
u(x) > β λ, NQ0u(x) ≤ γ λ

})
.
(γ
β

)ϑ
ω
XQ0
L (Qj).(4.5)

From this we just need to sum in Qj ∈ F0 to see that (4.4) together with the previous facts
yield the desired estimate (4.3):

ω
XQ0
L

({
x ∈ Q0 : Sk0

Q0
u(x) > (1 + β)λ, NQ0u(x) ≤ γ λ

})
≤
∑
Qj∈F0

ω
XQ0
L

({
x ∈ Qj : Sk0

Qj
u(x) > β λ, NQ0u(x) ≤ γ λ

})
.
(γ
β

)ϑ ∑
Qj∈F0

ω
XQ0
L (Qj) =

(γ
β

)ϑ
ω
XQ0
L

( ⋃
Qj∈F0

Qj

)
=
(γ
β

)ϑ
ω
XQ0
L (Eλ).

Let us then obtain (4.5). Fix Qj ∈ F0 and to ease the notation write P0 = Qj . Set

(4.6) Ẽλ =
{
x ∈ P0 : Sk0

P0
u(x) > β λ

}
, Fλ =

{
x ∈ P0 : NQ0u(x) ≤ γ λ

}
.

If ω
XQ0
L (Fλ) = 0 then (4.5) is trivial, hence we may assume that ω

XQ0
L (Fλ) > 0 so that P0∩Fλ =

Fλ 6= Ø. We subdivide P0 dyadically and stop the first time that Q∩Fλ = Ø. If one never stops
we write F∗P0

= {Ø}, otherwise F∗P0
= {Pj}j ⊂ DP0 \ {P0} is the family of stopping cubes which

is maximal (hence pairwise disjoint) with respect to the property Fλ ∩ Q = Ø. In particular,
Fλ ⊂ P0 \ (∪DF∗

P0
,P0
Pj).

Next we claim that

(4.7)
⋃
x∈Fλ

Γk0
P0

(x) ⊂
⋃

Q∈DF∗
P0
,P0

`(Q)≥2−k0 `(Q0)

UQ ⊂ int

( ⋃
Q∈DF∗

P0
,P0

U∗Q

)
= Ω∗F∗P0

,P0
=: Ω∗

To verify the first inclusion, we fix Y ∈ Γk0
P0

(x) with x ∈ Fλ. Then, Y ∈ UQ where x ∈ Q ∈ DP0 .

Since x ∈ Fλ we must have Q ∈ DF∗P0
(otherwise Q ⊂ Pj for some Pj ∈ F∗P0

and this would
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imply that x ∈ Pj ∩ Fλ = Ø) and therefore Q ∈ DF∗P0
,P0 which gives the first inclusion. The

second inclusion in (4.7) is trivial (since UQ ⊂ int(U∗Q)).

To continue we see that

(4.8) |u(Y )| ≤ γ λ, for all Y ∈ Ω∗.

Fix such a Y so that Y ∈ U∗Q for some Q ∈ DF∗P0
,P0 . If Q∩Fλ = Ø, by maximality of the cubes

in F∗P0
, it follows that Q ⊂ Pj for some Pj ∈ F∗P0

, which contradicts the fact Q ∈ DF∗P0
,P0 . Thus,

Q ∩ Fλ 6= Ø and we can select x ∈ Q ∩ Fλ so that by definition |u(Y )| ≤ NQ0u(x) ≤ γ λ since
Y ∈ U∗Q ⊂ Γ∗Q0

(x).

Apply Lemma 3.1 to find X∗ := YP0 ∈ Ω∗ ∩ Ω so that

`(P0) ≈ dist(X∗, ∂Ω∗) ≈ δ(X∗).(4.9)

Let ω∗L := ωX∗L,Ω∗ be the elliptic measure associated with L relative to Ω∗ with pole at X∗ and

write δ∗ = dist(·, ∂Ω∗). Given Y ∈ Ω∗, we choose yY ∈ ∂Ω∗ such that |Y − yY | = δ∗(Y ). By
definition, for x ∈ Fλ and Y ∈ ΓP0(x), there is a Q ∈ DP0 such that Y ∈ UQ and x ∈ Q. Thus,
by the triangle inequality, and the definition of UQ, we have that for Y ∈ ΓP0(x),

(4.10) |x− yY | ≤ |x− Y |+ δ∗(Y ) ≈ δ(Y ) + δ∗(Y ) ≈ δ∗(Y )

where in the last step we have used that

(4.11) δ(Y ) ≈ δ∗(Y ) for Y ∈
⋃

Q∈DF∗
P0
,P0

UQ.

On the other hand, as observed above Fλ ⊂ P0 \ (∪FQj) ⊂ ∂Ω∩ ∂Ω∗, see [17, Proposition 6.1].
Using this and the fact that if Q ∩ Fλ 6= Ø then Q ∈ DF∗P0

,P0 we have∫
Fλ

Sk0
P0
u(x)2 dω∗L(x) =

∫
Fλ

∫∫
Γ
k0
P0

(x)
|∇u(Y )|2 δ(Y )1−n dY dω∗L(x)(4.12)

≤
∫
Fλ

∑
x∈Q∈DP0

`(Q)≥2−k0 `(Q0)

∫∫
UQ

|∇u(Y )|2 δ(Y )1−n dY dω∗L(x)

.
∑

Q∈DF∗
P0
,P0

(∫∫
UQ

|∇u(Y )|2 dY
)
`(Q)1−n ω∗L(Q ∩ Fλ)

.
∑

Q∈DF∗
P0
,P0

`(Q)≥M−1`(P0)

· · ·+
∑

Q∈DF∗
P0
,P0

`(Q)<M−1`(P0)

. . .

=: Σ1 + Σ2,

where M is a large constant to be chosen.

We start estimating Σ1. Note first that #{Q :∈ DP0 : `(Q) ≥M−1`(P0)} ≤ CM , thus

Σ1 .
∑

Q∈DF∗
P0
,P0

`(Q)≥M−1`(P0)

`(Q)1−n
∑
I∈W∗Q

∫∫
I∗
|∇u(Y )|2 dY

.
∑

Q∈DF∗
P0
,P0

`(Q)≥M−1`(P0)

`(Q)1−n
∑
I∈W∗Q

`(I)−2

∫∫
I∗∗
|u(Y )|2 dY
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. (γ λ)2
∑

Q∈DP0

`(Q)≥M−1`(P0)

`(Q)1−n
∑
I∈W∗Q

`(I)n−1

.M (γ λ)2,

where we have used (4.8), along with the fact that int(I∗∗) ⊂ int(U∗Q) ⊂ Ω∗ for any I ∈ W∗Q
with Q ∈ DF∗P0

,P0 , and the fact that W∗Q has uniformly bounded cardinality. To estimate Σ2 we

note that picking yQ ∈ Q ∩ Fλ we have that Q ∩ Fλ ⊂ B(yQ, 2 diam(Q)) ∩ ∂Ω∗ =: ∆∗Q. Write

X∗Q for Corkscrew relative to ∆∗Q with respect to Ω∗ so that δ∗(X
∗
Q) ≈ diam(Q) . M−1`(P0).

Note that by (4.9), we clearly have X∗ ∈ Ω \B(yQ, 4 diam(Q)) provided M is sufficiently large.
Hence, by Lemma 2.53 part (b) applied in Ω∗, which is a 1-sided NTA domain satisfying the
CDC by Proposition 2.37, we obtain for every Y ∈ UQ
(4.13) `(Q)1−n ω∗L(Q ∩ Fλ) . diam(Q)1−nω∗L(∆∗Q) . GL,∗(X∗, X

∗
Q) ≈ GL,∗(X∗, Y ),

where GL,∗ is the Green function for the operator L relative to the domain Ω∗. Above the last
estimate uses Harnack’s inequality (we may need to tale M slightly larger) and the fact that by
(4.11), one has δ∗(Y ) ≈ `(Q) ≈ diam(Q) ≈ δ∗(X

∗
Q) (see Remark 2.56) and that if I 3 Y with

I ∈ W∗Q
|Y −X∗| ≤ diam(I) + dist(I,Q) + diam(Q) + |yQ −X∗| . diam(Q).

Write {P i0}i ⊂ DP0 for the collection of dyadic cubes with M `(P0) ≤ `(P i0) < 2M`(P0) which
has uniformly bounded cardinality depending on M . Note that

{Q ∈ DF∗P0
,P0 : `(Q) < M−1`(P0)} ⊂

⋃
i

DF∗P0
,P i0
.

For each i, if DF∗P0
,P i0
6= Ø then P i0 ∈ DF∗P0

,P0 and hence P i0 ∩ Fλ 6= Ø. Pick then yi ∈ P i0 ∩ Fλ
and note that for every Q ∈ DF∗P0

,P i0
by (2.31) it follows that

UQ ⊂ TP i0 ∩ Ω∗ ⊂ B∗P i0 ∩ Ω∗ ⊂ B(yi, C κ0 `(P
i
0)) ∩ Ω∗ =: Bi ∩ Ω∗.

Using then (4.13) we have

Σ2 .
∑

Q∈DF∗
P0
,P0

`(Q)<M−1`(P0)

∫∫
UQ

|∇u(Y )|2GL,∗(X∗, Y ) dY

.
∑
i

∑
Q∈DF∗

P0
,P i0

`(Q)<M−1`(P0)

∫∫
UQ

|∇u(Y )|2GL,∗(X∗, Y ) dY

.
∑
i

∫∫
Bi∩Ω∗

|∇u(Y )|2GL,∗(X∗, Y ) dY

. ‖u‖2L∞(Ω∗)

∑
i

ω∗L(Bi ∩ ∂Ω∗)

. (γ λ)2,

where we have invoked Theorem 1.3 applied in Ω∗, which is a 1-sided NTA domain satisfying
the CDC by Proposition 2.37, and we may need to take M slightly larger and use Harnack’s
inequality; (4.8); and the fact that {P i0}i ⊂ DP0 has uniformly bounded cardinality.

Using Chebyshev’s inequality, (4.12), and collecting the estimates for Σ1 and Σ2 we conclude
that

ω∗L(Ẽλ ∩ Fλ) ≤ 1

(β λ)2

∫
Ẽλ∩Fλ

(Sk0
P0
u)2 dω∗L ≤

1

(β λ)2

∫
Fλ

Sk0
P0
u(x)2 dω∗L(x) .

(γ
β

)2
.
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At this point we invoke Lemma 3.19 in P0 with F∗P0
—we warn the reader that P0 and F∗P0

=

{Pj}j play the role of Q0 and {Qj}j and that associated to each Pj one finds P̃j as in Proposition

3.1, which now plays the role of Pj in that result, and µ = ωX∗L (recall that X∗ = YP0) and
observe that the fact that Fλ ⊂ P0 \ (∪DF∗
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,P0
Pj) implies on account of (3.21) that for some

ϑ > 0 we have
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where we have used that ω∗L(∆P0
? ) ≈ 1 since ∆P0

? := B(x?P0
, tP0) ∩ ∂Ω∗ with tP0 ≈ `(P0) ≈

diam(∂Ω∗), x
?
P0
∈ ∂Ω∗, (4.9), Harnack’s inequality, and Lemma 2.53 part (a). We can then use

Remark 2.54, Harnack’s inequality, and (4.9), to conclude that
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Recalling that P0 = Qj ∈ F0, and the definitions of Ẽλ and Fλ in (4.6) the previous estimates
readily lead to (4.5).

To conclude we need to see how (4.3) yields (1.6). With this goal in mind we first observe

that for every x ∈ Q0 and Y ∈ Γk0
Q0

(x) one has that Y ∈ B∗Q0
∩ Ω (see (2.31)) and also

δ(Y ) & 2−k0 `(Q0). Hence, since u ∈W 1,2
loc (Ω), one has
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On the other hand, given 0 < q <∞, we can use (4.3)
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We can then choose γ small enough so that we can hide the first term in the right hand side of
the last quantity (which is finite by (4.14)) and eventually conclude that
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Since the implicit constant does not depend on k0 and SkQ0
u(x)↗ SQ0u(x) as k →∞ for every

x ∈ Q, the monotone convergence theorem yields at once (1.6) and the proof Theorem 1.5 is
complete.
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[4] M. Cao, Ó. Dominguéz, J. M. Martell, and P. Tradacete. On the A∞ condition for elliptic operators
in 1-sided NTA domains satisfying the capacity density condition. https://arxiv.org/abs/2101.06064.
Preprint, 2021. (Cited on page 4.)

[5] J. Cavero, S. Hofmann, and J. M. Martell. Perturbations of elliptic operators in 1-sided chord-arc domains.
Part I: Small and large perturbation for symmetric operators. Trans. Amer. Math. Soc., 371(4):2797–2835,
2019. (Cited on page 3.)

[6] J. Cavero, S. Hofmann, J. M. Martell, and T. Toro. Perturbations of elliptic operators in 1-sided chord-
arc domains. Part II: non-symmetric operators and Carleson measure estimates. Trans. Amer. Math. Soc.,
373(11):7901–7935, 2020. (Cited on page 3.)

[7] M. Christ. A T (b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math.,
60/61(2):601–628, 1990. (Cited on page 6.)

[8] R. R. Coifman and C. Fefferman. Weighted norm inequalities for maximal functions and singular integrals.
Studia Math., 51:241–250, 1974. (Cited on page 9.)

[9] B. E. J. Dahlberg. On the absolute continuity of elliptic measures. Amer. J. Math., 108(5):1119–1138, 1986.
(Cited on page 3.)

[10] B. E. J. Dahlberg, D. S. Jerison, and C. E. Kenig. Area integral estimates for elliptic differential operators
with nonsmooth coefficients. Ark. Mat., 22(1):97–108, 1984. (Cited on pages 3, 4, 20, 21, and 24.)

[11] R. Fefferman. A criterion for the absolute continuity of the harmonic measure associated with an elliptic
operator. J. Amer. Math. Soc., 2(1):127–135, 1989. (Cited on page 3.)

[12] R. A. Fefferman, C. E. Kenig, and J. Pipher. The theory of weights and the Dirichlet problem for elliptic
equations. Ann. of Math. (2), 134(1):65–124, 1991. (Cited on page 3.)

[13] J. Feneuil and B. Poggi. Generalized Carleson perturbations of elliptic operators and applications. https:
//arxiv.org/abs/2011.06574. Preprint, 2021. (Cited on page 4.)
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[Mathematical Notes], 104. (Cited on pages 7 and 9.)
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