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ABSTRACT. Let Q C R"*! n > 2, be a 1-sided non-tangentially accessible domain (aka uniform
domain), that is,  satisfies the interior Corkscrew and Harnack chain conditions, which are
respectively scale-invariant/quantitative versions of openness and path-connectedness. Let us
assume also that {2 satisfies the so-called capacity density condition, a quantitative version of
the fact that all boundary points are Wiener regular. Consider Lou = —div(AoVu), Lu =
—div(AVu), two real (non-necessarily symmetric) uniformly elliptic operators in €2, and write
wry, wr for the respective associated elliptic measures. The goal of this program is to find
sufficient conditions guaranteeing that w; satisfies an A.-condition or a RHg-condition with
respect to wr,. In this paper we are interested in obtaining square function and non-tangential
estimates for solutions of operators as before. We establish that bounded weak null-solutions
satisfy Carleson measure estimates, with respect to the associated elliptic measure. We also
show that for every weak null-solution, the associated square function can be controlled by the
non-tangential maximal function in any Lebesgue space with respect to the associated elliptic
measure. These results extend previous work of Dahlberg-Jerison-Kenig and are fundamental
for the proof of the perturbation results in [2].
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1. INTRODUCTION AND MAIN RESULTS

The purpose of this program is to study some perturbation problems for second order diver-
gence form real elliptic operators with bounded measurable coefficients in domains with rough
boundaries. Let @ € R, n > 2, be an open set and let Lu = — div(AVu) be a second order
divergence form real elliptic operator defined in 2. Here the coefficient matrix A = (a”())fj:ll
is real (not necessarily symmetric) and uniformly elliptic, with a;; € L*(Q2), that is, there
exists a constant A > 1 such that

(L.1) ATHEP < AXE ¢, [A(X)E - n| < Afg] [n|

for all £, € R™! and for almost every X € €. Associated with L one can construct a family
of positive Borel measures {wy } xcq, defined on 9 with wX (9Q) < 1 for every X € Q, so that
for each f € C.(0N) one can define its associated weak-solution

(1.2) u(X) = f(2)dwy (2), whenever X € Q,
o0

which satisfies Lu = 0 in € in the weak sense. In principle, unless we assume some further
condition, u need not be continuous all the way to the boundary, but still we think of u as the
solution to the continuous Dirichlet problem with boundary data f. We call wi( the elliptic
measure of € associated with the operator L with pole at X € ). For convenience, we will
sometimes write wy, and call it simply the elliptic measure, dropping the dependence on the
pole.

Given two such operators Lou = —div(4pVu) and Lu = —div(AVu), one may wonder
whether one can find conditions on the matrices Ay and A so that some “good estimates” for
the Dirichlet problem or for the elliptic measure for Ly might be transferred to the operator
L. Similarly, one may try to see whether A being “close” to Ay in some sense gives some
relationship between wy, and wr,,. In this direction, a celebrated result of Littman, Stampacchia,
and Weinberger in [27] states that the continuous Dirichlet problem for the Laplace operator
Lo = A, (i.e., Ap is the identity) is solvable if and only if it is solvable for any real elliptic
operator L. By solvability here we mean that the elliptic measure solutions as in (1.2) are
indeed continuous in Q. It is well known that solvability in this sense is in fact equivalent to the
fact that all boundary points are regular in the sense of Wiener, a condition which entails some
capacitary thickness of the complement of €2. Note that, for this result, one does not need to
know that L is “close” to the Laplacian in any sense (other than the fact that both operators
are uniformly elliptic).

On the other hand, if ) = Ri is the upper-half plane and Ly = A, then the harmonic measure
associated with A is mutually absolutely continuous with respect to the surface measure on
the boundary, and its Radon-Nykodym derivative is the classical Poisson kernel. However,
Caffarelli, Fabes, and Kenig in [3] constructed a uniformly real elliptic operator L in the plane
(the pullback of the Laplacian via a quasiconformal mapping of the upper half plane to itself)
for which the associated elliptic measure wy, is not even absolutely continuous with respect to
the surface measure (see also [29] for another example). Hence, in principle the “good behavior”
of harmonic measure does not always transfer to any elliptic measure even in a nice domain
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such as the upper-half plane. Consequently, it is natural to see if those good properties can be
transferred by assuming some conditions reflecting the fact that L is “close” to Lg or, in other
words, by imposing some conditions on the disagreement of A and Ag.

The goal of this program is to solve some perturbation problems that go beyond [9, 11, 12,
28, 5, 6]. Our setting is that of 1-sided NTA domains satisfying the so called capacity density
condition (CDC for short), see Section 2 for the precise definitions. The latter is a quantitative
version of the well-known Wiener criterion and it is weaker than the Ahlfors regularity of the
boundary or the existence of exterior Corkscrews (see Definition 2.1). This setting guarantees
among other things that any elliptic measure is doubling in some appropriate sense, hence one
can see that a suitable portion of the boundary of the domain endowed with the Euclidean
distance and with a given elliptic measure wr,, is a space of homogeneous type. In particular,
classes like A (wr,) or RHy(wr,) have the same good features of the corresponding ones in
the Euclidean setting. However, our assumptions do not guarantee that the surface measure
has any good behavior and it could even be locally infinite. In one of our main results, we
consider the case in which a certain disagreement condition, originating in [12], holds either
with small or large constant. The small constant case can be seen as an extension of [12, 28] to
a setting in which surface measure is not a good object. The large constant case is new even
in nice domains such as balls, upper-half spaces, Lipschitz domains or chord-arc domains. To
the best of our knowledge, our work is the first to establish perturbation results on sets with
bad surface measures, and our large perturbation results are the first of their type. Finally, we
do not require the operators to be symmetric. The precise results, along with its context in the
historical developments, will be stated in the sequel to the present paper [2].

In the present article we develop some of the needed tools, and present some other results
which are of independent interest. Key to our argument is the construction of certain sawtooth
domains adapted to a dyadic grid on the boundary and to the Whitney decomposition of the
domain. These domains are shown to inherit the main geometrical/topological features of
the original domain (see Proposition 2.37). With this in hand we obtain a discrete sawtooth
lemma for projections improving [10, Main Lemmal, see Lemma 3.5 and Lemma 3.19. These
ingredients are crucial for the main results of the papers which we state next. First we establish
that bounded weak-solutions satisfy Carleson measure estimates adapted to the elliptic measure.

Theorem 1.3. Let Q C R"*! n > 2 be a 1-sided NTA domain (cf. Definition 2.5) satisfying
the capacity density condition (cf. Definition 2.10). Let Lu = — div(AVu) be a real (not neces-
sarily symmetric) elliptic operator and write wy, and G, to denote, respectively, the associated
elliptic measure and the Green function. There exists C' depending only on dimension n, the
1-sided NTA constants, the CDC constant, and the ellipticity constant of L, such that for every
u € I/Vli’cz(Q) N L>®(2) with Lu = 0 in the weak-sense in § there holds

1.4 Sup sup ———— // X)PGr(Xa, X)dX < Cllul2eq,
(1.4) up sy WXA w5 [ TR G ) 2 ey
where A = BNON, A" = B'NON, X is a corkscrew point relative to A (cf. Definition 2.1), and
the sups are taken respectively over all balls B = B(x,r) with x € 9Q and 0 < r < diam(0f?),
and B' = B(2',r") with ' € 2A and 0 < r' <reo/4, and ¢y is the Corkscrew constant.

This result is in turn the main ingredient to obtain that the conical square function can be
locally controlled by the non-tangential maximal function in norm with respect to the elliptic
measure, allowing us to extend some estimates from [10] to our general setting.

Theorem 1.5. Let Q C R**! n > 2, be a 1-sided NTA domain (cf. Definition 2.5) satisfying
the capacity density condition (cf. Definition 2.10). Let Lu = —div(AVu) be a real (non-
necessarily symmetric) elliptic operator and write wy, to denote the associated elliptic measure
and the Green function. For every 0 < q < oo, there exists Cy depending only on dimension n,
the 1-sided NTA constants, the CDC' constant, the ellipticity constant of L, and q, such that for
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every u € VV&J’S(Q) with Lu = 0 in the weak-sense in €, for every Qo € D, there holds
. <
(1.6) ISavtl, g 7, < CalNaotl, o 50

where Sg, and Ng, are the localized dyadic conical square function and non-tangential mazimal
function respectively (cf. (2.28) and (2.27)), and Xq, is a corkscrew point relative to Qo (see
Section 2./).

We note that the estimate (1.6) is written for the localized dyadic conical square function
and non-tangential maximal function. It is not difficult to see that, as a consequence, one
can obtain a similar estimate for the regular localized (or truncated) conical square function
and non-tangential maximal function with arbitrary apertures (see [4, Lemma 4.8]), precise
statements are left to the interested reader.

The plan of this paper is as follows. Section 2 presents some of the preliminaries, definitions,
and tools which will be used throughout the paper. Section 3 contains a dyadic version of the
main lemma of [10]. In Section 4 we prove our main results, Theorem 1.3 and Theorem 1.5.

We would like to mention that after an initial version of this work was posted on arXiv [1],
Feneuil and Poggi in [13] obtained results related to ours, compare for instance Theorem 1.3
with [13, Theorem 1.27]. Also, the recent work [4] complements this paper and its companion
[2], see for instance [4, Corollary 1.4].

2. PRELIMINARIES

2.1. Notation and conventions.

e We use the letters ¢, C to denote harmless positive constants, not necessarily the same at each
occurrence, which depend only on dimension and the constants appearing in the hypotheses
of the theorems (which we refer to as the “allowable parameters”). We shall also sometimes
write a < b and a = b to mean, respectively, that a < Cb and 0 < ¢ < a/b < C, where
the constants ¢ and C' are as above, unless explicitly noted to the contrary. Unless otherwise
specified upper case constants are greater than 1 and lower case constants are smaller than
1. In some occasions it is important to keep track of the dependence on a given parameter
7, in that case we write a <y b or a =, b to emphasize that the implicit constants in the
inequalities depend on ~.

e Our ambient space is R**1 n > 2.
e Given E C R"*! we write diam(E) = sup, ,cp [+ — y| to denote its diameter.

e Given a domain  C R™! we shall use lower case letters x,%, z, etc., to denote points on
0Q, and capital letters X,Y, Z, etc., to denote generic points in R™"! (especially those in
R\ 09Q).

e The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(z,r) when the

center z lies on 99, or B(X,r) when the center X € R\ Q. A surface ball is denoted
A(z,r) = B(z,r) N 0N, and unless otherwise specified it is implicitly assumed that x € 0€2.

o If 00 is bounded, it is always understood (unless otherwise specified) that all surface balls
have radii controlled by the diameter of 92, that is, if A = A(x,r) then r < diam(92). Note
that in this way A = 09 if diam(99Q) < r < diam(992).

e For X € R"! we set §(X) := dist(X, 99).
o We let H™ denote the n-dimensional Hausdorfl measure.

e For a Borel set A C R"*!, we let 14 denote the usual indicator function of A4, i.e. 14(X) =1
if X €A and 14(X) =0if X ¢ A.
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e We shall use the letter I (and sometimes .J) to denote a closed (n+ 1)-dimensional Euclidean
cube with sides parallel to the coordinate axes, and we let ¢(I) denote the side length of I.
We use @ to denote dyadic “cubes” on E or 0f). The latter exist as a consequence of Lemma
2.13 below.

2.2. Some definitions.

Definition 2.1 (Corkscrew condition). Following [25], we say that an open set  C R"+!
satisfies the Corkscrew condition if for some uniform constant 0 < ¢y < 1 and for every z € 952
and 0 < r < diam(092), if we write A := A(x,r), there is a ball B(Xa, cor) C B(z,r) N . The
point XA C Q is called a Corkscrew point relative to A (or, relative to B). We note that we
may allow r < C' diam(992) for any fixed C, simply by adjusting the constant cg. We say that
satisfies the exterior Corkscrew condition if Qezy := R" 1\ Q satisfies the Corkscrew condition.

Definition 2.2 (Harnack Chain condition). Again following [25], we say that ) satisfies
the Harnack Chain condition if there are uniform constants C, Co > 1 such that for every pair
of points X, X’ € 2 there is a chain of balls By, Ba, ..., By C Q with N < C1(2+1logj ) where

X - X|
min{§(X),6(X")}
such that X € By, X’ € By, By N Bgy1 # @ and for every 1 <k < N
(2.4) Oyt diam(By) < dist(By, 09) < Oy diam(By,).
The chain of balls is called a Harnack Chain.

(2.3) II:=

We note that in the context of the previous definition if II < 1 we can trivially form the
Harnack chain By = B(X,36(X)/5) and By = B(X',30(X’)/5) where (2.4) holds with Cy = 3.
Hence the Harnack chain condition is non-trivial only when II > 1.

Definition 2.5 (1-sided NTA and NTA). We say that a domain Q is a I-sided non-
tangentially accessible domain (1-sided NTA) if it satisfies both the Corkscrew and Harnack
Chain conditions. Furthermore, we say that €2 is a non-tangentially accessible domain (NTA
domain) if it is a 1-sided NTA domain and if, in addition, Qeyt 1= R+l \ﬁ also satisfies the
Corkscrew condition.

Remark 2.6. In the literature, 1-sided NTA domains are also called wniform domains. We
remark that the 1-sided NTA condition is a quantitative form of path connectedness.

Definition 2.7 (Ahlfors regular). We say that a closed set E C R"*! is n-dimensional
Ahlfors regular (AR for short) if there is some uniform constant C; > 1 such that

(2.8) Crlr <H™(E N B(x,r)) < Cy 1", reE, 0<r<dam(FE).

Definition 2.9 (1-sided CAD and CAD). A 1-sided chord-arc domain (1-sided CAD) is a
1-sided NTA domain with AR boundary. A chord-arc domain (CAD) is an NTA domain with
AR boundary.

We next recall the definition of the capacity of a set. Given an open set D C R™*! (where
we recall that we always assume that n > 2) and a compact set K C D we define the capacity
of K relative to D as

Cap, (K, D) = inf{//D |Vo(X)[?dX : veC§P(D), v(z) >1in K}

Definition 2.10 (Capacity density condition). An open set (2 is said to satisfy the capacity
density condition (CDC for short) if there exists a uniform constant ¢; > 0 such that

Capy(B(z,r) \ , B(z,2r)) .-

(2.11) SiAVAY >
Capy(B(z,r), B(x,2r))
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for all z € 9 and 0 < r < diam(99).

The CDC is also known as the uniform 2-fatness as studied by Lewis in [26]. Using [15,
Example 2.12] one has that

(2.12) Capy(B(z,7), B(x,2r)) ~ ", for all x € R"*! and r > 0,

and hence the CDC is a quantitative version of the Wiener regularity, in particular every x € 02
is Wiener regular. It is easy to see that the exterior Corkscrew condition implies CDC. Also,
it was proved in [30, Section 3] and [16, Lemma 3.27] that a set with Ahlfors regular boundary
satisfies the capacity density condition with constant ¢; depending only on n and the Ahlfors
regular constant.

2.3. Existence of a dyadic grid. In this section we introduce a dyadic grid along the lines
of that obtained in [7]. More precisely, we will use the dyadic structure from [23, 24], with a
modification from [22, Proof of Proposition 2.12]:

Lemma 2.13 (Existence and properties of the “dyadic grid”). Let E C R""! be a closed
set. Then there exists a constant C > 1 depending just on n such that for each k € Z there is a
collection of Borel sets (called “cubes”)

Dy :={QF CE: jeJ},

where Jy, denotes some (possibly finite) index set depending on k satisfying:

If m < k then either Qg? C Q™ or QN Qé‘f’ - 0.

For each k € Z, j € Ji, and m < k, there is a unique © € J,, such that Qf C Q.

Bk, c'27MynE c Q¥ c B(a},Cc27F) nE.

Proof. We first note that F is geometric doubling. That is, there exists N depending just on n
such that for every z € E and r > 0 one can cover the surface ball B(x,r) N E with at most N
surface balls of the form B(z;,r/2) N E with z; € E —observe that geometric doubling for F is
inherited from the corresponding property on R"*! and that is why N depends only on n and
it is independent of E. Besides, letting n = %6, for every k € Z it is easy to find a countable
collection {x?}jegk C E such that

@y —all =t g €3 AT minp—a <, Veel
k

Invoking then [23, 24] on E with the Euclidean distance and ¢y = Cyp = 1 one can construct a
family of dyadic cubes associated with these families of points, say ®y for k € Z. These satisfy
(a)—(d) in the statement with the only difference that we have to replace 27 by 1" in (d).

At this point we follow the argument in [22, Proof of Proposition 2.12] with n = %6' For any
k € Z we set D; = ©y, for every 4k < j < 4(k+1). It is straightforward to show that properties
(a), (b) and (c) for the families Dy, follow at once from those for the families ©. Regarding (d),
let Q" € D; and let k € Z such that 4k < j < 4(k + 1) so that Q' € D; = Dy. Writing 2’ € F
for the corresponding point associated with Q' € ®;, and invoking (d) for D} we conclude

Bz, ¢ 127\ nE c B(z',C"'y")nE c Q' c B(2',Cn*)NE c B(z',16C277)NE,
hence (d) holds. O
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A few remarks are in order concerning this lemma. Note that by construction, within the
same generation (that is, within each D) the cubes are pairwise disjoint (hence, there are no
repetitions). On the other hand, repetitions are allowed in the different generations, that is,
one could have that Q € Dy and Q' € Di_; agree. Then, although @ and Q' are the same
set, as cubes we understand that they are different. In short, it is then understood that D is
an indexed collection of sets where repetitions of sets are allowed in the different generations
but not within the same generation. With this in mind, we can give a proper definition of the
“length” of a cube (this concept has no geometric meaning for the moment). For every @ € Dy,
we set £(Q) = 27%, which is called the “length” of Q. Note that the “length” is well defined when
considered on D, but it is not well-defined on the family of sets induced by D. It is important
to observe that the “length” refers to the way the cubes are organized in the dyadic grid and
in general may not have a geometrical meaning. It is clear from (d) that diam(Q) < 4(Q) (we
will see below that in our setting the converse hold, see Remark 2.56).

Let us observe that the generations run for all £k € Z. However, as we are about to see,
sometimes it is natural to truncate the generations. If F is bounded and k € Z is such that
diam(E) < C~'27%, then there cannot be two distinct cubes in Dy. Thus, D = {Q*} with
QF = E. Therefore, we are going to ignore those k € Z such that 27% > diam(E). Hence, we
shall denote by D(E) the collection of all relevant Q?, ie., D(E) := (U, D, where, if diam(E)
is finite, the union runs over those k € Z such that 27% < diam(FE).

In what follows given B = B(x,r) with x € E we will denote A = A(z,r) = BN E. We
write Z = 202, with C being the constant in Lemma 2.13, which is a purely dimensional. For

Q € D(E) we will set k(Q) = k if Q € Dy. Property (d) implies that for each cube @ € D, there
exist zg € E and rg, with 271(Q) < rg < (Q) (indeed rg = (2C)~1(Q)), such that

(2.14) A(JZQ, QTQ) cQcC A(:CQ, ETQ).

We shall denote these balls and surface balls by

(2.15) Bq = B(zq,1q),  Aq:=A(zq,1q);
(2.16) EQ = B(zq,ZrqQ), AQ = A(zq,Erg),

and we shall refer to the point zg as the “center” of Q.

Let @ € Dy and consider the family of its dyadic children {Q" € Dyy4q : Q@ C Q}. Note
that for any two distinct children @', Q", one has |xg — xgr| > rgr = ror = rq/2, otherwise
zgr € Q"N Ag C Q"NQ’, contradicting the fact that Q" and Q" are disjoint. Also z¢, zgr €
Q C A(zg,rqQ), hence by the geometric doubling property we have a purely dimensional bound
for the number of such xg and hence the number of dyadic children of a given dyadic cube is
uniformly bounded.

Lemma 2.17. Let E C R"*! be a closed set and let D(E) be the dyadic grid as in Lemma 2.15.
Assume that there is a Borel measure i which is doubling, that is, there exists Cy, > 1 such that
w(A(x,2r)) < Cup(Ax,r)) for every x € E and r > 0. Then p(0Q) = 0 for every Q € D(E).
Moreover, there exist 0 < 19 < 1, C1, and n > 0 depending only on dimension and C,, such that
for every T € (0,79) and Q € D(E)

(2.18) p({z e @: dist(z, E\ Q) < 7(Q)}) < Cr17"u(Q).
Proof. The argument is a refinement of that in [17, Proposition 6.3] (see also [14, p. 403] where

the Euclidean case was treated). Fix an integer k, a cube @) € D, and a positive integer m to
be chosen. Fix 7 > 0 small enough to be chosen and write

Sr={zeQ:dist(z, E\ Q) < 7Q)}.
We set
{Qi} :=D" :=Dg N Dyyy
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and make the disjoint decomposition Q@ = Q}. We then split D! = DHUDY2, where Q} e Dbt
if Q} meets X, and Q} € D'? otherwise. We then write @ = RV U RY2, where
Rl,l — U @115 R1,2 — U Qzlv

pi.l D12

and for each cube Q} e D!, we construct @11 as follows. We enumerate the elements in D! as

le, 112, . ,Q%N, and then set (Q})* = Q! U (0Q} N dQ) and

7;11 = ( ill)*? ’}2 = ( }2)* \( 7;11)*7 ’}3 = ( ’}3)* \ (( ’}1)* U( ’}2)*)7 ttt

so that R%! covers ¥, and the modified cubes Q\Zl are pairwise disjoint.

We also note from (2.14) that if 2™ < =72/4 then

—=—1
dist (Ag, B \ Q) > ETHQ),  diam(Q}) < 2Erg < 25(Q}) < S-U(Q).

Then RY! misses Ag provided 7 < =-1/2. Otherwise, we can find z € a}ﬂ Ag with Ql e Db
The latter implies that there is y € Q} N X,. All these yield a contradiction:

=L(Q) < dist (Ag, B\ Q) < |a —y| + dist (y, £\ Q) < diam(QF) + 7£(Q) < =-14(Q).
Consequently, by the doubling property,

(@) < n(28q) < €l p(Aqg) < Cj n(R*?).
Since RM! and RY? are disjoint, the latter estimate yields
1 _ _
1,1 < — — =:
HRM) < (1= ) 1@ =0 1(Q),
where we note that 0 < 6 < 1.

Let us now repeat this procedure, decomposing @Zl for each Q} € D&Y We set D2(QZ-1) =
Dg1 M Dytom and split it into D?1(Q}) and D?2(Q}) where Q' € D>1(Q}) if Q' meets X,.
Associated to any Q' € D*1(Q}) we set (Q')* = (Q'N QHU (BQ' N (9Q N @,})) Then we make
these sets disjoint as before and we have that R?>1(Q}) is defined as the disjoint union of the
corresponding Q'. Note that @} = R>1(Q}) U R*?(Q}) and this is a disjoint union. As before,
R>Y(Q}) misses AQ} provided 7 < 27™Z71/2 so that by the doubling property

w(Q}) < p2Ag1) < Cp u(Bg1) < C p(R*(Q}))

and then p(R*>'(Q})) < 9#(@}) Next we set R>! and R%*? as the union of the corresponding
R®1(Q}) and R*?(Q}) with Q} € DY, Then,

pE)=p( | RP@D) = Y w(RM@D)

Q}EDl’l Q,}E]D)lvl
<6 > w@)=0uR") <6 uQ).
Q}E]D)l’l
Iterating this procedure we obtain that for every k = 0,1,..., if 7 < 27*mZ71/2 then

p(RFHLLY < 9F+1,(Q). Let us see that this leads to the desired estimates. Fix 7 < £71/2 and
find k > 0 such that 2-(F+)m=-1/2 < 7 < 27km=~1/2 By construction ¥, C R¥1! and then

logo 1 logo 1 -

p(Er) < p(REF) <M @) < (28) w rm u(@Q),
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—1

which easily gives (2.18) with C; = (QE)logzme and n = bg?f On the other hand, note that
aQ C m 2273‘,

§:i2-i<E-1/2

also Yy (j+1) C Xo—;. Thus clearly,
0<p(0Q) < lim p(Sy-5) < lim C12777u(Q) = 0,
Jj—o0 Jj—00

yielding that ©(0Q) = 0. O

Remark 2.19. Note that the previous argument is local in the sense that if we just want to
obtain the desired estimates for a fixed ()o we would only need to assume that p is doubling in
2Aq,. Indeed we would just need to know that pu(A(z,2r)) < Cu(A(z,r)) for every z € Qo
and 0 < r < Z{(Qo), and the involved constants in the resulting estimates will depend only on
dimension and C),. Further details are left to the interested reader.

We next introduce the “discretized Carleson region” relative to @, Dg ={Q' € D: Q' C Q}.
Let F = {Q;} C D be a family of pairwise disjoint cubes. The “global discretized sawtooth”
relative to F is the collection of cubes @ € D that are not contained in any ); € F, that is,

Dr:=D\ (] Dg,.
QiEF

For a given @ € D, the “local discretized sawtooth” relative to F is the collection of cubes in
Dg that are not contained in any @); € F or, equivalently,

D]:’Q = ]D)Q\ U DQi = ]D)]:ﬁ]D)Q.
QiEF

We also allow F to be the null set in which case Dy =D and Dy g = Dg.

With a slight abuse of notation, let Q¥ be either E, and in that case Dgo := D, or a fixed
cube in D, hence Dgo is the family of dyadic subcubes of Q°. Let p be a non-negative Borel
measure on Q¥ so that 0 < u(Q) < oo for every @Q € Dgo. For the rest of the section we will be
working with g which is dyadically doubling in Q°. This means that there exists C), such that

w(@Q) < Cup(Q") for every Q,Q" € Dgo with £(Q) = 2¢(Q").

Definition 2.20 (Ag%'adic). Given Q" and y, a non-negative dyadically doubling measure in Q°,

a non-negative Borel measure v defined on QY is said to belong to Ag%'adm(QO, w) if there exist

constants 0 < «, 3 < 1 such that for every @) € Dgo and for every Borel set F' C @, we have

that

. B

«@

(@) v(Q)
It is well known (see [8, 14]) that since u is a dyadically doubling measure in Q°, v €

A%adic(0 1) if and only if ¥ < g in Q° and there exists 1 < p < oo such that v €

RHgyadlc(QO, ), that is, there is a constant C' > 1 such that

(fporan)” <f poraer - G

for every @ € Dgo, and where k = dv/dyu is the Radon-Nikodym derivative.

=

(2.21) > 8.

=
— O

For each F = {Q;} C Dgo, a family of pairwise disjoint dyadic cubes, and each f € L{ (p),
we define the projection operator

PLF(2) = @) Lpy, -, a0l ][f ) du(v)) 1, (x).
QEJ-'
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If vis a non-negative Borel measure on Q°, we may naturally then define the measure Pééy as
73]_-u fE 73]_-1F dv, that is,

(222) Proe) =o(F\ U @)+ X M5,

QiEF QieF
for each Borel set F' C Q.

2.4. Sawtooth domains. In the sequel, Q@ C R*™! n > 2, will be a 1-sided NTA domain
satisfying the CDC. Write D = D(9Q) for the dyadic grid obtained from Lemma 2.13 with
E = 99. In Remark 2.56 below we shall show that under the present assumptions one has that
diam(A) & ra for every surface ball A. In particular diam(Q) =~ ¢(Q) for every @ € D in view
of (2.14). Given @ € D we define the “Corkscrew point relative to Q" as X¢q := Xa,. We note
that

§(Xg) ~ dist(Xg, Q) =~ diam(Q).

As done above, given Q) € D and F a possibly empty family of pairwise disjoint dyadic cubes,
we can define Dg, the “discretized Carleson region”; D, the “global discretized sawtooth”
relative to F; and Dr g, the “local discretized sawtooth” relative to F. Note that if F to be
the null set in which case Dy = D and Dy g = Dg. We would like to introduce the “geometric”
Carleson regions and sawtooths.

Let W = W(Q) denote a collection of (closed) dyadic Whitney cubes of 2 C R"™! so that
the cubes in W form a covering of €2 with non-overlapping interiors, and satisfy

(2.23) 4diam(I) < dist(41,09) < dist(I, 02) < 40 diam(I), VIeWw,

and

diam(I;) ~ diam(I3), whenever I; and I touch.
Let X(I) denote the center of I, let ¢(I) denote the side length of I, and write k = ky if
(1) =27".

Given 0 < A < 1 and I € W we write I* = (1 + A\)I for the “fattening” of I. By taking A
small enough, we can arrange matters, so that, first, dist(I*, J*) = dist(I, J) for every I, J € W.
Secondly, I* meets J* if and only if I meets 0.J (the fattening thus ensures overlap of I* and
J* for any pair I,J € W whose boundaries touch, so that the Harnack Chain property then
holds locally in I* U J*, with constants depending upon A). By picking A sufficiently small, say
0 < XA < Ay, we may also suppose that there is 7 € (%, 1) such that for distinct I,J € W, we
have that 7J N I* = . In what follows we will need to work with dilations I** = (1 4+ 2\)I or

I = (14 4\)I, and in order to ensure that the same properties hold we further assume that
0 <A< N/4

For every @ € D we can construct a family W, C W(2), and define
U r.
rew;

satisfying the following properties: X¢g € Ug and there are uniform constants k* and Ky such
that

(2.24) X(I) »uy Xq, VIEWy,
dist(1, Q) < Ko2™M@ | vI e Wp.

Here, X (I) =y, X means that the interior of Ug contains all balls in a Harnack Chain (in €2)
connecting X (I) to X¢, and moreover, for any point Z contained in any ball in the Harnack
Chain, we have dist(Z,0Q) ~ dist(Z,Q \ Ug) with uniform control of the implicit constants.
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The constants k*, Ko and the implicit constants in the condition X (/) —y, Xq, depend on
the allowable parameters and on A. Moreover, given I € W(2) we have that I € WE?N where
Qr € D satisfies £(Qr) = ¢(I), and contains any fixed y € 952 such that dist(Z,09Q) = dist(1, 7).
The reader is referred to [17, 20] for full details.

For a given @ € D, the “Carleson box” relative to @) is defined by
= int < U Ug >
QIEDQ

For a given family F = {Q;} C D of pairwise disjoint cubes and a given Q) € D, we define the
“local sawtooth region” relative to F by

(2.25) Q]:Q:int( U UQ/>:int< U I*),
Q' EDr g I1eWr g

where Wr ¢ 1= UQ’E]D)]: o Wa Note that in the previous definition we may allow F to be empty
in which case clearly )y g = T. Similarly, the “global sawtooth region” relative to F is defined
as

(2.26) — int (Qg) UQ> = int (zeLvJv; I*>,

where Wr := UQ’EDJ: We- It F is the empty set clearly Qg = (). For agiven ) € D and = € o9
let us introduce the “truncated dyadic cone”

Fo(z) == U Ug,
Z‘GQ/EDQ

where it is understood that I'g(z) = @ if z ¢ @Q. Analogously, we can slightly fatten the
Whitney boxes and use I** to define new fattened Whitney regions and sawtooth domains.
More precisely, for every @ € D,

= int < U UQ,) Uy = int ( U U5,>, To) = |J Uy
Q'eDg Q'eDr g z€Q'€Dg,
where Up) := UIEW& I**. Similarly, we can define 77", Q0% g, Fa*(x), and U5 by using I*** in
place of I**.

Given @) we next define the “localized dyadic non-tangential maximal function”

(2.27) Nou(z) := sup |u(Y)], x € 09,

Yery(z)
for every u € C(1g)), where it is understood that Ngu(x) = 0 for every z € 99\ @ (since
Fa(m) = () in such a case). Finally, let us introduce the “localized dyadic conical square
function”

(2.28) Soqu(z) == (//FQ |Vu(Y)[25(Y )1"dY>, T € 08,

for every u € VVl (TQo) Note that again Squ(x) = 0 for every x € 00\ Q.

To define the “Carleson box” Ta associated with a surface ball A = A(x,r), let k(A) denote
the unique k € Z such that 2_k_1 < 200r < 2% and set

(2.29) ={Q € Dya): QN2A#£0D}.
We then define

(2.30) Th :=int ( U TQ).

QebhA
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We can also consider fattened versions of Ta given by
1nt< U T*) T = int( U TQ**)
QebA

Following [17, 20], one can easily see that there exist constants 0 < k; < 1 and kg > 16Z
(with = the constant in (2.14)), depending only on the allowable parameters, so that

(2.31) k1BQNQ C Ty CTH CTH CTy CroBeNQ=:3B5NQ,

2.32 SBANQCTA CTA CTRN CTYF ChoBANQ =:1BiNQ,
4 A A A 2PA

and also

(2.33) Q C koBaNIQ=1iBAN0Q = 1A*  VQeD?,

where By is defined as in (2.15), A = A(z,r) withz € 09, 0 < r < diam(0?), and Ba = B(z, 1)
is so that A = BANJS. From our choice of the parameters one also has that Ba C B}, whenever
QCQ.

In the remainder of this section we show that if € is a 1-sided NTA domain satisfying the
CDC then Carleson boxes and local and global sawtooth domains are also 1-sided NTA domains
satisfying the CDC. We next present some of the properties of the capacity which will be used
in our proofs. From the definition of capacity one can easily see that given a ball B and compact
sets F1 C F» C B then

(2.34) Capy(F1,2B) < Capy(F»,2B).
Also, given two balls By C By and a compact set F' C By then
(2.35) Capy(F,2B3) < Capy(F,2By).

On the other hand, [15, Lemma 2.16] gives that if F is a compact with F' C B then there is a
dimensional constant C,, such that

(2.36) C1 Capy(F,2B) < Capy(F,4B) < Cap,(F,2B).

Proposition 2.37. Let Q C R*™! n > 2, be a 1-sided NTA domain satisfying the CDC. Then
all of its Carleson boxes Ty and Ta, and sawtooth regions QF, and Qr g are 1-sided NTA
domains and satisfy the CDC with uniform implicit constants depending only on dimension and
on the corresponding constants for €.

Proof. A careful examination of the proofs in [17, Appendices A.1-A.2] reveals that if Q is a
1-sided NTA domain then all Carleson boxes T and Ta, and local and global sawtooth domains
Qr g and QF inherit the interior Corkscrew and Harnack chain conditions, hence they are also
1-sided NTA domains. Therefore, we only need to prove the CDC. We are going to consider
only the case Qr o (which in particular gives the desired property for T by allowing F to be
the null set). The other proofs require minimal changes which are left to the interested reader.
To this end, fix Q@ € D and F C Dg a (possibly empty) family of pairwise disjoint dyadic cubes.
Let x € 0Qr g and 0 < r < diam(Qr g) =~ £(Q).

Case 1: 6(z) = 0. In that case we have that x € 9Q and we can use that 2 satisfies the CDC
with constant ¢, (2.34) and the fact that Qr g C € to obtain the desired estimate

err™™ < Capy(Bla, 1) \ 2 B(x, 2r)) < Capy(B(a, 1) \ 2.0, Bz, 21)).

Case 2: 0 < 6(z) < r/M with M large enough to be chosen. In this case z € QN IQr g and
hence there exist Q' € Dr g and I € W, such that = € 0I*. Note that by (2.24)
r

2~ 2 < diam(I") + dist(1, Q) + diam(@) S Q') ~ (1) ~ 6(x) § 7.
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Let Q" € Dg be such that zg/ € Q" and 537 < £(Q") < 17 < €(Q) provided that M is taken
large enough. If Z € Bgr then taking M large enough

7z — <\|Z - 1 " — / ;r — <y " <7
|Z — 2| <|Z —wgu| + |zgr — 2| + |2q x\N(QHM 7 <"

and Bgr C B(wx,r). On the other hand, if Z € B(x,2r), we analogously have provided M is
large enough

r
|Z—.CUQN’ < |Z—x| + ‘$—$Q/’ + |SUQ/ —IQH| < 2T+CM+ETQN < GME’I”Q//

and thus B(z,2r) C 6MZBgr. Once M has been fixed so that the previous estimates hold, we
use them in conjunction with the fact that Q satisfies the CDC with constant c¢;, (2.34)—(2.36),
and that Qr o C 2 to obtain

C1

WT" 1 < ClrQ// < Cap2 (?QH\ Q, 2BQ//) S CapQ(?Q” \ Q) 6MEBQH)

< CapZ(TQ”\ Q, B(z,2r)) < Capy(B (x )\ Qrq,B (z,2r)),

which gives us the desired lower bound in the present case.

Tq
o0 o0
0

FIGURE 1. Case 1 and Case 2 for Tj.

Case 3: 0(z) > r/M. In this case z € QNI g and hence there exists Q' € D g and I € WY,
such that x € 0I" and int(I*) C Q. Also there exists J € W, with J > x such that J & W,

for any Q" € D;Q Which implies that 7.J C Q\ Qr ¢ for some 7 € (3,1) (see Section 2.4). Note
that (1) ~ £(J) ) 2 r, and more precisely r/M < §(z) < 41 dlam J) by (2.23).

o0 \«

FIGURE 2. Case 3 for Tp.

Let B’ = B(2/,s) with s = r/(300M) and 2’ being the point in the segment joining x and
the center of J at distance 2s from z. It is easy to see that B’ C B(z,7) C B(z,2r) C 1000M B’
and also B’ C int(J) \ Q2. We can then use (2.12) and (2.34)—(2.36) to obtain the desired

estimate:
1 _ _ — _
GooarT" =" & Capy(B',2B') S Capy(B, 1000M B')

< Capy(B', B(w,2r)) < Capy(B(x,r) \ QF,q, B(x,2r)).
Collecting the 3 cases and using (2.12) we have been able to show that

Capy(B(z,1) \ Qr0, B(x,2r)) -

(2.38) SAV AL
Capy(B(z,r), B(x,2r))

Ve (99]:752, O0<r< diam(Qf’Q),
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which eventually gives that Qr ¢ satisfies the CDC. This completes the proof. U

Our next auxiliary result adapts [21, Lemma 4.44] to our current setting:

Lemma 2.39. Let Q C R be a I-sided NTA domain satisfying the CDC. Given Qo € D and
N > 4 consider the family of pairwise disjoint cubes Fy = {Q € Dg, : £(Q) = 27N 4(Qo)} and
let On = Qry ., and Uy = Qx, o - There exists Uy € C®(R") and a constant C > 1
depending only on dimension n, the 1-sided NTA constants, the CDC constant, and independent
of N and Qo such that the following hold:

(7,) Cct 1o, < Uy < IQ}fV.

(i7) supyxeq |VI¥N(X)|0(X) < C.
(731) Setting

(2400  Wwni= | Wo WRi={TeWy:3JeW\ Wy uwithdINdJ # D},
QED}-N7QO
one has
(2.41) VUy=0 in Uy
IEWN\WJE\:,

and there exists a family {QI}IGW}% so that

(2.42) Chu) < Q) < cel),  dist(I,Qr) < C ), Y 15 <C.
Tewy

Proof. We proceed as in [21, Lemma 4.44]. Recall that given I, any closed dyadic cube in R™™!
we set I* = (14 A)I and I** = (1 +2))I. Let us introduce I* = (14 3 A\)I so that

(2.43) I* Cint(I*) C I* C int(1*).

Given Iy := [— % 1]"“ C R fix g9 € C°(R™*!) such that Irr < ¢o < 13 and [Veo| S 1
(the implicit constant depends on the parameter \). For every I € W = W(fg) we set ¢r(-) =
do (-~ Z(I ) so that ¢; € C®(R" 1) 17 < ¢f < 15 and [Vér| £(I)~! (with implicit constant
depending only on n and A).

For every X € Q, we let ®(X) := > ;) ¢1(X). It then follows that & € CX.(Q2) since
for every compact subset of €2, the previous sum has finitely many non-vanishing terms. Also,
1 < ®(X) < Cy for every X € Q since the family {I*} ey has bounded overlap by our choice of
A. Hence we can set ®; = ¢;/® and one can easily see that ®; € C°(R"*1), C’;llp <o, <1y
and |[V®;| < ¢(I)~!. With this in hand set

5,10
Uy (X) = IGZW:N (X)) = W X eq.

We first note that the number of terms in the sum defining ¥y is bounded depending on N.
Indeed, if Q € Dx, ¢, then Q € Dg, and 27V¢(Qo) < £(Q) < £(Qo) which implies that Dz, ¢,
has finite cardinality with bounds depending only on dimension and N (here we recall that the
number of dyadic children of a given cube is uniformly controlled). Also, by construction Wé
has cardinality depending only on the allowable parameters. Hence, #Wn < Cn < oo. This
and the fact that each ®; € C°(R"H!) yield that Wy € C°(R"H!). Note also that (2.43) and
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the definition of Wy give

swpvrc |J F= ) U Fewm( U U 1)

IeWy QEDFy g, IEWS QEDFy @ TEW

—mt( J 05) =9
QEDFy.Qo
This, the fact that Wy C W, and the definition of ¥ immediately give that Uy < 1o« . On
the other hand if X € Qy = Qr, o, then the exists I € Wy such that X € I* in which case
Un(X) > ®;(X) > Cy ' All these imply (i). Note that (ii) follows by observing that for every
X e
IVUNOI< Y IVer(X) S D D) 13(X) S 6(X) 7
1eWn Iew

where we have used that if X € I* then 6(X) ~ ¢(I) and also that the family {I*};c)y has
bounded overlap.

To see (i4i) fix I € Wy \ Wx and X € I**, and set Wx = {J € W : ¢,(X) # 0} so
that I € Wyx. We first note that Wx C Wy. Indeed, if ¢;(X) # 0 then X € J*. Hence
X € I N J** and our choice of A gives that 0I meets 9J, this in turn implies that J € Wy

since I € Wy \ Wx. All these yield
> ds(X) > ou(X) > 9u(X)

\I/N<X) _ JEWN _ JEWNNW X _ JEWNTWx
> 9s(X) > bu(X) > du(X)
Jew JeEWx JeEWNTWx
Hence Wy |,,, =1 forevery I € Wnx \W=x. This and the fact that ¥y € C°(R"!) immediately
give that V¥ =0 in UIGWN\w]X\; Jaid

=1.

We are left with showing the last part of (iv) and for that we borrow some ideas from
[18, Appendix A.2]. Fix I € W% and let J be so that J € W\ Wy with 9 N dJ # O,
in particular ¢(I) ~ ¢(J). Since I € W]% there exists Q7 € Dry g, (that is, Qr C Qo with
27N 0(Qo) < £(Qr) < £(Qo) so that T € W5,)- Pick Qy € D so that £(Qy) = ¢(J) and it
contains any fixed y € 92 such that dist(.J, 092) = dist(J,y). Then, as observed in Section 2.4,
one has J € Wy, . But, since J € W \ Whn, we necessarily have Q; ¢ Dr, g, = Dry N Dg,.

Hence, WJ% = W]%,’l U W]%/Q U W]%,’g where
W' ={I e Wy : Qo C Qu},
Wi ={I € WX : Qs C Qo, UQs) <27V UQu)},
Wy ={IeWy:Q,;NQy=0}.

For later use it is convenient to observe that

(2.44) dist(Qy, I) < dist(Qy, J) + diam(.J) + diam(I) ~ £(J) + £(I) ~ €(I).

Let us first consider W]%,’l. IfI e Wﬁ’l we clearly have

U(Qo) < 6(Qy) = £(J) = UI) = {(Qr) < Qo)
and since Q7 € Do,
dist(1, zq,) < dist(1, Qr) + diam(Qr) ~ £([).

In particular, #)/Vf,’1 < 1. Thus if we set @1 := @ it follows from (2.44) that the two first
o %1
conditions in (2.42) hold and also ) rews! 1, < #Wy < 1.
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Consider next W]%,’z. For any I € Wﬁg we also set @ 1 := @ so that from (2.44) we clearly
see that the two first conditions in (2.42) hold. It then remains to estimate the overlap. With
this goal in mind we first note that if I € WE’Q, the fact that Q7 € D, o, vields

27N 0(Qo) < UQr) = L(I) = £(J) = UQr) < 27N £(Qu),
hence (1) ~ 27N £(Qo). Suppose next that Q; N Q’, = QiNQr+0for I,I' € W]%,’Q. Then
since I touches J and I’ touches J’
dist(Z, I') < diam(J) + dist(J, Q) + diam(Q ) + diam(Q';) + diam(J")
~U(T) (T = 27N Qo).

Hence fixed I € W]%,Q there is a uniformly bounded number of I’ € WJ%,Q with @ N @p £ O,
and, in particular, >, = 15, <1.
N

We finally take into consideration the most delicate collection WJZ\:,’S. In this case for every
Ie W]%,’?’ we pick @1 € D so that @1 > xg, and E(@I) =2=M' 9(Q;) with M’ > 3 large enough
so that 2M" > 282 (cf. (2.14)). Note that since M’ > 3 we have that Q; C @ which, together
with (2.44), implies

dist(1, Q) < dist(I, Q) + diam(Q) < ¢(I).
Hence the first two conditions in (2.42) hold in the current situation.
On the other hand, the choice of M’ and (2.14) guarantee that

5, S2E0Qn) =27 ENQ)) <ETQy).

Also, since 2Ag, C Qy, it follows that QoN2A¢, = @ and therefore 2271 4(Q ;) < dist(zg,, Qo).
Besides, since Q7 C Qg

(2.45) diam(Q;) < 22r

dist(zg,, Qo) < diam(Q ) + dist(Q s, J) + diam(J)
+ diam(J) + dist(/, Q1) + diam(Qy) ~ f(J) ~ ((I).
Thus, 22714(Q) < dist(zg,,Qo) < C¢(J). Suppose next that I,I' € W are so that

Q N Q # @ and assume without loss of generality that Q  C Q 1, hence ¢(J') < ¢(J). Then,
since zg, € QI and zq , € Q[/ C QI we get from (2.45)

2=2710(Qy) < dist(zq,, Qo) < |zg, — 2, | + dist(zq,,, Qo)
< diam(Q;) + CL(J) <E71U(Q,) + CL(J)

and therefore =71 ¢(Q;) < C¢(J) which in turn gives £(I) ~ ¢(J) ~ £(J') ~ {(I'). Note also
that since I touches J, I’ touches J’, and Q; N Qp # @ we obtain

dist(I, I') < diam(J) + dist(J, Q) + diam(Q ;) + diam(Q )
+dist(Qr, J) + diam(J") =~ £(J) + £(J") =~ £(I).

Consequently, fixed I € W]%/g there is a uniformly bounded number of I’ € W]%, 3 with @ Iﬂ@ I #
@. As a result, > [ewss 1Q < 1. This clearly completes the proof of (i7i) and hence that of

Lemma 2.39. U

2.5. Uniformly elliptic operators, elliptic measure and the Green function. Next, we
recall several facts concerning elliptic measure and the Green functions. To set the stage let
Q c R*! be an open set. Throughout we consider elliptic operators L of the form Lu =

—div(AVu) with A(X) = (a;;(X )):Lj:ll being a real (non-necessarily symmetric) matrix such
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that a; ; € L>°(€2) and there exists A > 1 such that the following uniform ellipticity condition
holds

(2.46) ATHEP < AX)E ¢, [A(X)E - nl < Afg][n]

for all £,n7 € R**! and for almost every X € Q. We write LT to denote the transpose of L, or,
in other words, LTu = — div(ATVu) with AT being the transpose matrix of A.

We say that u is a weak solution to Lu = 0 in 2 provided that u € VV&?(Q) satisfies
// AX)Vu(X) - Vo(X)dX =0 whenever ¢ € C5°(Q).

Associated with L one can construct an elliptic measure {wi( }xeq and a Green function Gp,
(see [20] for full details). Sometimes, in order to emphasize the dependence on €2, we will write
wrn and Gro. If Q satisfies the CDC then it follows that all boundary points are Wiener
regular and hence for a given f € C.(02) we can define

u(X) = f(2)dwy (2), whenever X € Q,
[2/9]
so that u € WI}JE(Q) NC(Q) satisfies u = f on 9Q and Lu = 0 in the weak sense in ). Moreover,
if Q is bounded and f € Lip(Q2) then v € W12(Q). In the same context the Green function
satisfies the following properties which will be used along the paper:

(2.47) 0<GLX,)Y)<CIX Y™, VX, Ye€Q X#Y;

(2.48) GL(-Y) e WZ@\{YHNC@\{Y}) and GL(-Y)lsa=0 VY e
(2.49) GL(X,Y) =G+ (YV,X), VX, YeQ, X#Y;

(2.50) //Q AX)VxGL(X,Y) - Vo(X)dX = p(Y), Ve CX(Q).

We first define the reverse Holder class and the A, classes with respect to fixed elliptic
measure in . One reason we take this approach is that we do not know whether H"|sq is
well-defined since we do not assume any Ahlfors regularity. Hence we have to develop these
notions in terms of elliptic measures. To this end, let €2 satisfy the CDC and let Ly and L be
two real (non-necessarily symmetric) elliptic operators associated with Lou = — div(AgVu) and
Lu = — div(AVu) where A and Ay satisfy (2.46). Let wfo and wy be the elliptic measures of
associated with the operators Ly and L respectively with pole at X € ). Note that if we further
assume that € is connected then wf < wiL/ on 0f) for every X,Y € Q. Hence if wfo < w}L/g
on 0N for some X, Yy € € then wf < wfo on 0f2 for every X,Y € Q and thus we can simply
write wy, < wr, on J). In the latter case we will use the notation

X
dwy
X
dw o

to denote the Radon-Nikodym derivative of wl)f with respect to wi(o, which is a well-defined
function wi(o—almost everywhere on 0f2.

Definition 2.52 (Reverse Holder and A, classes). Fix Ay = By N 9 where By = B(zo, o)
with zp € 0Q and 0 < 9 < diam(02). Given p, 1 < p < oo, we say that wy, € RH,(Ag,wr, ),
provided that wy, < wr,, on Ag, and there exists C' > 1 such that

1
X v X w
(][A h(y; L, Lo, X, )Pdewp, (y)) < C][A h(y; L, Lo, X, )dwy, 0 (y) = CﬁTy

for every A = BN 9Q where B C B(xg,19), B = B(z,r) with z € 09, 0 < r < diam(92). The

infimum of the constants C' as above is denoted by [wL]RHp(AO7UJLO)'
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Similarly, we say that w;, € RH,(09Q,wr,) provided that for every Ag = A(xg,r9) with
zo € 002 and 0 < 19 < diam(0€2) one has wy, € RH,(Ap,wr,) uniformly on Ay, that is,

wilrm,@00L,) = SEP[WL]RHP(AO,LULO) < o0.
0

Finally,

Aso(Do,wr,) = | RHy(Ao,wr,)  and  Ao(0Q,wr,) = | | RHy(09, wr,).
p>1 p>1

The following result lists a number of properties which will be used throughout the paper,
proofs may be found in [20]:

Lemma 2.53. Suppose that Q@ C R n > 2, is a 1-sided NTA domain satisfying the CDC. Let
Ly = —div(ApV) and L = — div(AV) be two real (non-necessarily symmetric) elliptic operators,
there exist C1 > 1, p € (0,1) (depending only on dimension, the 1-sided NTA constants, the
CDC constant, and the ellipticity of L) and Cy > 1 (depending on the same parameters and on
the ellipticity of Lg), such that for every By = B(xg,19) with zg € 02, 0 < ro < diam(9), and
Ag = By N O we have the following properties:

(a) wY (Ag) > Cyt for every Y € C;'ByNQ and waO(AO) > ot

(b) If B = B(z,r) with x € 0Q and A = BNOKY is such that 2B C By, then for all X € Q\ By
we have that O] 'wiX (A) < 7 1GL(X, Xa) < Crwi (A).

(¢) If X € Q\ 4By, then wi (2A0) < CrwyX (Ap).

(d) For every X € Q\ 2k0By with ko as in (2.32), we have that

U S 1

= < Y) <Cr— >
C1rwf(Ag) dws ) wi (Ao)
(e) For every X € BoNQ and for any j > 1

for wf-a.e. y € Ay.

X p
d;)iL(y) <Ci (6(X)> , for w-a.e. y € 90\ 27 A,.
dw, ¥ 20 2o

Remark 2.54. We note that from (d) in the previous result, Harnack’s inequality, and (2.14)
one can easily see that

Xor
dw; @ 1 X
L (y)~ ) for w; 9 -ae. y € Q', whenever Q' C Q" € D.

(2.55) - B v
duy @ w2 (@)

. Xon Xor . . .
Observe that since wLQ < wLQ an analogous inequality for the reciprocal of the Radon-

Nikodym derivative follows immediately.

Remark 2.56. Given , a 1-sided NTA domain satisfying the CDC, we claim that if A = A(x,r)
with x € 002 and 0 < r < diam(9Q) then diam(A) ~ r. To see this we first observe that
diam(A) < 2r. If diam(A) > ¢or/4 —cp is the Corkscrew constant— then clearly diam(A) ~ r.
Hence, we may assume that diam(A) < ¢or/4. Let s = 2diam(A) so that diam(A) < s < r
and note that one can easily see that A = A’ := A(x,s). Associated with A and A’ we can
consider XA and X+ the corresponding Corkscrew points. These are different, despite the fact

that A = A(z,r). Indeed,

¢
cor < 6(Xa) < [Xa — Xar| +[Xar — 2| <[ XA — Xar| +5 < [Xa — Xa —1—507"
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which yields that [Xa — Xas| > 9r. Note that Xa ¢ 2B’ := B(x, 2s) since otherwise we would
get a contradiction: cor < 6(Xa) < [Xa — 2| < 25 < ¢or. Hence we can invoke Lemma 2.53
parts (a) and (b) and (2.47) to see that

1~ WS (A) = WA (A) & 571G (Xa, Xar) S 571X — Xar|' ™ < (/1)L

This and the fact that n > 2 easily yields that r < s as desired.

We close this section by establishing an estimate for the non-tangential maximal function for
elliptic-measure solutions.

Proposition 2.57. Let Q) C R”tl be a 1-sided NTA domain satisfying the CDC. Given Qo € D
and f € C(00) with supp f C 2A¢q, let

u(X) = /8 fdei). X eon

Then for every x € Qq,

X
(2.58) Noou(@) S sup ][ 1F()] w0 (),
A>x A
0<ra<dZrq,

and, as a consequence, for every 1 < g < oo

<
(2.59) INGoul Ly g xa0y S I 4oz, o0y

Moreover, the implicit constants depend just on dimension n, the 1-sided NTA constants, the
CDC constant, and the ellipticity constant of L and on q in (2.59).

Proof. By decomposing f into its positive and negative parts we may assume that f is non-
negative with supp f C 25@0 and construct the associated u as in the statement which is
non-negative. Fix z € Qo and let X € I'yy (). Then, by definition there are @ € Dg, and
I € W, such that z € @ and X € I**. Hence using Harnack’s inequality and the notation
introduced in (2.14)—(2.16)

u(X) = /8 ) de ) ~ /6 )4 )

<[t +Y /

44q =3 /21 Ag\2171 Aq

Fy)doy®(y) = Y T;.
j=2

Let kg > 0 be such that £(Q) = 27%04(Qg). Observe that for every j > ko + 3 one has that
2A¢q, \ 2771Ag = O. Otherwise there is 2z € 2A¢, \ 2771 A and hence we get a contradiction:
4Erg, <2V Erg, = 27 Erg < |z — 2| < |2 — x| + |1q — 2qu| < 3E7q,.

With this in hand, and since supp f C 2&@0, we clearly see that Z; = 0 for j > ko + 3.

In order to estimate the Z;’s we need some preparatives. Note that for every 2 < j < kg + 2
one has 2/ By C 5Bg,. We claim that
XQJ'AQ
dw; y 1
X ~ X T~
dwy, wy, ¥ (21Aq)
Indeed, this estimate follows from Harnack’s inequality and Lemma 2.53 part (a) when j ~ kg

since 27 £(Q) ~ £(Qo), and from Lemma 2.53 part (d) whenever j < ko. We also observe that
Lemma 2.53 part (a) and Harnack’s inequality readily give that

(2.60) . forw, %ae ye2 Ao, 2<j < ko+2.

X i~
2JAQ

(2.61) w, 2(PAg)~1,  forevery 2 <j<ko+2.
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Finally, by Lemma 2.53 part (e) and Harnack’s inequality it follows that

(2.62) — () $2777, for wa—a.e. y € 0N\ 21 EQ, j>3.

Let us start estimating 7o. Use Harnack’s inequality and (2.61), (2.60) with j = 2, to conclude
that

A X
Ly~ fly)do, () = _ f(y)dw,* (y).
1A 1A
On the other hand, for 3 < j < ko + 2, we employ (2.62), Harnack’s inequality, (2.61), and
(2.60)

X .~

(y) S27/ ”]éﬁ Fly)dw,” "2 (y)
7T AQ

X .~
20-14q

Ij§2_jp/~ _ f(y)dwy,
QjAQ\ijlAQ
5 X
~ 2 ”][,~ f(y) dwp, “° (y).
QJAQ

If we now collect all the obtained estimates we conclude as desired (2.58):

ko+2 ko+2

ZI < 22 Jp]é W )
i Ag

s £ 1) 22”< s f 1] ).

0<TA<8_TQ0 0<TA<4_.T'QO

To complete the proof we just need to obtain (2.59) but this follows at once upon using
(2.58) and observing that the local Hardy—Littlewood maximal function on its right hand side

is bounded on L%(20 &QO,WfQO) since w; %Q0 5 g doubling measure in 20 EQO by Lemma 2.53

parts (a) and (c). O

3. DYADIC SAWTOOTH LEMMA FOR PROJECTIONS

In this section, we shall prove two dyadic versions of the main lemma in [10]. To set the stage
we sate a result which is partially proved in [17, Proposition 6.7] under the further assumption
that 02 is Ahlfors regular

Proposition 3.1. Let Q@ C R, n > 2, be a I-sided NTA domain satisfying the CDC. Fix
Qo € D and let F = {Q}r C Dg, be a family of pairwise disjoint dyadic cubes. There exists
Yo, € QN Qr g, N g, so that

(3.2) diSt(YQO, 0N) ~ dist(YQo, 89;,%) =~ diSt(YQO, 89;—',620) ~ L(Qo),

where the implicit constants depend only on dimension, the 1-sided NTA constants, the CDC
constant, and is independent of Qo and F. Additionally, for each Q; € F, there is an n-
dimensional cube P; C 08 r q,, which is contained in a face of I* for some I € W, and which
satisfies

(3.3) 0(Py) = dist(Pj, Q;) ~ dist(P;,00) = () = £(Q;),

and
(3.4) Z lp, S

where the implicit constants depend on allowable parameters.
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Proof. Note first that Qr g, is a 1-sided NTA domain satisfying the CDC (see Proposition
2.37). Pick an arbitrary xg € 00r ¢, and let Yy be a Corkscrew point relative to the sur-
face ball B(zo,diam(0Qr g,)/2) N 0Qr g, for the bounded domain Qr g, (recall that one has
diam(0Qr g,) =~ ¢(Qo) < oo by (2.31)). Note that Yy € Qr g, C , which is comprised of
fattened Whitney boxes, then Yy € I** for some I € W, with int(I**) C Qr g,. Let Yo, = X (1)
be the center of I so that §(Yy) =~ £(I) ~ 6(Yg,). Then,

UQo) ~ diam(902r ,) ~ dist(Yo, 0 g,) < dist(Yo, 9. gs) < 6(¥o)
~ 0(Yg,) = {(I) < diam(Q2rq,) = diam(9Qr q,) ~ £(Qo).

To continue we note that the existence of the family {P;}; so that (3.3) holds has been proved
in [17, Proposition 6.7] under the further assumption that 02 is Ahlfors regular. However, a
careful examination of the proof shows that the same argument applies in our scenario. We are
left with showing (3.4). To see this, observe that as in [17, Remark 6.9] if P; N P, # @ then
6(Qj) = £(Qy). Indeed from the previous result P; C I and Py C I}, for some I, I, € W. Thus
I7 meets I} and by construction I; and Iy meet. Using (3.3) and the nature of the Whitney
cubes we see that ((Q;) =~ £(I;) =~ £(I;) ~ £(Qk). Using this and (3.3) one can also see that
dist(Q;, Qr) S £(Q5) =~ £(Qk). Hence, fixing Pj, and x € Pj, we have some constant ky > 1
(depending on the allowable parameters) such that

Z 1p,(z) < #{P: PN Pj, # O}
J
< #{@k D 2R < gl < 2R dist(Qn, Qi) < 2°0(Qi)}

Z #{Qr : £(Qr) = 2"0(Qj,), dist(Qk, Qjy) < 270(Q,)} Z Ni.

k=—ko k=—ko

To estimate each of the terms in the last sum fix k£ and note that since the cubes belong to the
same generation then @);’s involved are disjoint and hence so they are the corresponding Ag,’s
which all have radius (2C)~12%¢(Q;,). In particular, |zg, — Tl 2 2k0(Qj0) > 27%00(Qj,) for
any such cubes Q and Q. Moreover,

2q, — 7q,, | < diam(Qy) + dist(Qk, Qj) + diam(Qj,) < 274(Q;,).

Thus it is easy to see (since R"*! is geometric doubling) that Ny < 22ko(n+1) = A1l these together
gives us desired (3.4) —we note in passing that the argument in [17, Remark 6.9] used the fact
there 012 is AR to estimate each Ni, while here we are invoking the geometric doubling property
of the ambient space R™"*1. O

We are now ready to state the first main result of this chapter which is a version of [17,
Lemma 6.15] (see also [10]) valid in our setting:

Lemma 3.5 (Discrete sawtooth lemma for projections). Suppose that @ C R"*1 n > 2 isa
bounded 1-sided NTA domain satisfying the CDC. Let Qo € D, let F = {Q;} C Dg, be a family

of pairwise disjoint dyadic cubes, and let u be a dyadically doubling measure in Qq. Gwen two
Y, Y,

real (non-necessarily symmetric) elliptic Ly, L, we write wOQO = wLQOQ, wLQO = wL 9 for the

elliptic measures associated with Lo and L for the domain ) with ﬁmed pole at Yo, € QF,QO N

Ya, Y, .y . . .
(cf. Lemma 5.1). Let wL LQgg be the elliptic measure associated with L for the domain

Qr.q, with fized pole at Yg, € QF,QO ﬂ Q. Consider Z/Z/QO the measure defined by

36 neE=w®(F\ U )+ Y o YQF 0Q) Yaupy, P q

QieF Qier wr (Qi)
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where P; is the cube produced in Proposition 3.1. Then P}L_-VEQO (see (2.22)) depends only on

Yo, Yo, :
wy " and wL , but not on wL . More precisely,

e P@ -G (P U @)+ X MR e, reqn

QieF QieF

Moreover, there exists 0 > 0 such that for all Q € Dg, and all F' C @, we have

r,YQo o YQo n Yoo
. (P! Phogis) P

Pho (@) " PR (@ " Pho, Q)

Proof. Our argument follows the ideas from [17, Lemma 6.15] and we use several auxiliary
technical results from [17, Section 6] which were proved under the additional assumption that
01} is AR. However, as we will indicate along the proof, most of them can be adapted to our
setting. Those arguments that require new ideas will be explained in detail.

We first observe that (3.7) readily follows from the definitions of P% and yzQO. We first
establish the second estimate in (3.8). With this goal in mind let us fix @ € Dg, and F' C Q.

Case 1: There exists @; € F such that Q C Q;. By (3.7) we have

Pro () _ Mgt (P) _ p(F) _ Migd e (@) _ Pl ()
Y N Y, v v .
Phy,®(@Q)  M9ESlo(p)  MQ) MR Q) Pl (Q)

Case 2: Q ¢ Q; for any Q; € F, that is, @ € Dr g,. In particular if Q N Q; # O with Q; € F
then necessarily Q; € Q. Let z} denote the center of P; and pick r; = £(Q;) ~ ¢(F;) so that
P; c A(zf,r;) == B(z}, ;) N0Qr g, Note that by Proposition 2.37, Harnack’s inequality and

Lemma 2.53 parts (a) and (c) we have that wzcio (P) ~ wL(‘iO (Ayx(zF,73)). On the other hand as
in [17, Proposition 6.12] one can see that

(3.9) AQ = B(a, to) N 00, C <Q\ U QZ> U ( U A*(x;,n))

QieF:Q:CQ
with tg ~ £(Q), z7) € 0QF, and dist(Q,A?) < /(Q) with implicit constants depending on
the allowable parameters. We note that the last expression is slightly different to that in [17,

Proposition 6.2], nonetheless the one stated here follows from the proof in account of [17, (6.14)
and Proposition 6.1] as 0Q); is contained in Tg,. Besides, Proposition 3.1 easily yields

G (v U e)U( U r)c(ey UQ)U( U A@im) coal,

QiEFQ;CQ QieF:Q:CQ
hence
Y Y
(3.11) ar((@vU @)U U aerm)) swna?),
QieF QiEF:Q:CQ

Writing Eo = Qo \ Ug,er @i C 02N 0QF g (see [17, Proposition 6.1]) we have

Y Y *
(3.12) wLiO(AQ) < wL *(QN Ey) + Z wr 2 (Ax(zf, 7))
QieF:Q:CQ
< Yqq E Ya, P no Yao
~ wL,* (Qm 0) + Z wL* ( 7') P.FVL (Q)
QieF:Q:CQ
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and, by (3.4),
(313) Phs®(@Q) =w)®(@QNE)+ Y W“{? (P)
Qierico MW
—n2QNE)+ Y w2 (P)
QIEF:QiCQ
sor(@neJ( U R))swe2@?)

Q:eF:Q:CQ

Since @ € Dr g, we can invoke [17, Proposition 6.4] (which also holds in the current setting)
to find Yg € QF g, which serves as a Corkscrew point simultaneously for {r g, with respect to
the surface ball A,(yq, sg) for some yg € Qr g and some sg ~ £(Q), and for ) with respect to
each surface ball A(x,sq), for every z € Q). Applying (2.55) and Harnack’s inequality to join
Yo with X¢g and Yp, with Yg we have

Y.
dw; ? 1 Y,

L Q :

Voo ¥ You , wyY-a.e. in Q.
dw; w; Q)

On the other hand one can see that
(3.15) BoU( U  BGim) < Blye.5o),
QieF:Q;2Q

for some 5g ~ sq. Invoking then Proposition 2.37, and Lemma 2.53 parts (c) and (d) in the
domain €1 g, we can analogously see

(3.14)

1 1 ~
~ wzfi‘)—a.e. in A(yg, 5qg)-

(3.16) il 2
: Yo, Y ~
dp® WP (Aly,30) w0 (AD)

) PLu®(F)  w, ™ (F N Ep) Loy MENQ) w2 (P)
Y, ~ Y, Y,
P;VLQO (@Q) WL,CiO (A?) QIEF:Q:CQ Qi) WLiO (Ag)
Y, (F nQi)
QiEF:QiCQ '
We claim the following estimates hold
(3.18) WS (FNE) Sw?(FNEy),  w,%(P) S w®(Qs).

The first estimate follows easily from the maximum principle since Q7 g, C 2 and F' N Ey C
00NN r g, For the second one, by the maximum principle we just need to see that wf Qi) 21

~

for X € P;, but this follows from Lemma 2.53 part (a), (2.14), Harnack’s inequality, and (3.3).

With the previous estimates at our disposal we can the continue with our estimate (3.17):
Y,
fpll Qo(p FNo,
Py D) swprnmy+ Yy IR e,
PE (Q) acraice M)
Y,
Wy Qo (F N Ep) w(FNQy) WL °(Qi)
Y, 2 To) I
wr,(Q) QiEF-Q:iCQ wr Q)
_ Phoy®(F) _ P (F)
T Y Y, ’
w?(Q) PR (Q)
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where we have used (3.15) and that Pjéwz% Q) = wj}-jQO (Q). This proves the second estimate
n (3.8) in the current case.

Once we have shown the second estimate in (3.8) we can invoke [17, Lemma B.7] (which
is a purely dyadic result and hence applies in our setting) along with Lemma 3.22 below to
eventually obtain the first estimate in (3.8). O

As a consequence of the previous result we can easily obtain a dyadic analog of the main
lemma in [10].

Lemma 3.19 (Discrete sawtooth lemma). Suppose that Q C R"™1 n > 2, is a bounded 1-
sided NTA domain satisfying the CDC. Let Qo € D and let F = {Q;} C Dq, be a family of
pairwise disjoint dyadz’c cubes. Gz’ven two real (non-necessarily symmetric) elliptic Ly, L, we

Y, o . .
write wOQO = wLEQOQ, wLQO = wL 8 for the elliptic measures associated with Lo and L for the

domain Q0 with fizxed pole at Yo, € Qr.q, N (¢f. Lemma 3.1). Let wLQO = wz%) be the
elliptic measure associated with L for the domain Qr g, with fized pole at Yg, € Q]-‘ Qo N

Consider Z/Z/QO the measure defined by (3.6). Then, there exists @ > 0 such that for all Q € Dg,
and all F' C @, we have

(3.20) <w§% <F>>9 L UO(E) w0 (F)

w @7/ T @) T w, Q)

In particular, if F C Q\ UQieF Qi, we have

< -)L/QO(F))G _ wzin(F) _ on(F)
0@/ T w29 T W@

where A9 = B(:J;Q,tQ) NIQr g, with tg ~ £(Q), zg) € 0Qrq,, and dist(Q,Ag) < Q) with
implicit constants depending on the allowable parameters (cf. [17, Proposition 6.12]).

(3.21)

Proof. Lettlng ,u = w}L/ , which is dyadically doubling in Q)g, one easily has waL = wz/QO

and Phv Yao _ ) . Thus (3.8) in Lemma 3.5 readily yields (3.20). Next, to obtain (3.21) we
FYL L

may assume that F' is non-empty. Observe that if ' C Q\Ug,cr @i, then UE/QO (F) = wzio (F).
On the other hand, if FF C @ \ UQieF Q; we must be in Case 2 of the proof of Lemma 3.5,
hence (3.12) and (3.13) hold. With all these we readily obtain (3.21). O

. . Y Y . .
Our last result in this section establishes that both VLQO and P;VLQO are dyadically doubling

on QQ.

Lemma 3.22. Under the assumptions of Lemma 3.5, VE/QO and Pj‘ryz/% are dyadically doubling

on Q.

Proof. We follow the ideas in [17, Lemma B.2]. We shall first see I/ZQO is dyadically doubling.
To this end, let Q) € D¢, be fixed and let @’ be one of its dyadic children. We consider three
cases:

Case 1: There exists Q; € F such that ) C @);. In this case we have
Y, Y,
YQ, _ wLQO (Q) YQO . WLQ (Q') YQO
v - YQ v, YL (Pl) S YQ Wy, (
°(Qi) Qi)

where we have used Harnack’s inequality and Lemma 2.53 parts and (a) and (c).

P) = (@)
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. .. . . Y,
Case 2: Q' € F. For simplicity say Q' = Q1 € F and in this case v,%°(Q’) = wL (P1). Note

that then @ € Dr g, and we let i be the family of cubes Q; € F with Q;NQ # @ and observe
that if Q; € F; then Q; € Q. Then by (3.4)

823 V@ = (0 [ @)+ Y La@0@),

QiEF QieF1 YQO (Qi)
ey U @)+ Y wLi°<P><wYQ°((Q\ Ue)U( U »)).
O.eF QieF Qi€F Qi€F1

Recall that in Case 2 in the proof of Lemma 3.5 we mentioned that Py C A,(z7,r1) with a7
being the center of P} and r; = ((P1) ~ ¢(Q1) = ¢(Q) since @ is the dyadic parent of Q1. Note
that since Q; € F1 by (3.3)

UP) = dist(P;, Q) = £(Q;) SUQ) = 20(Q1) = {(P1) =~ dist(Qq, P1) = 11.
Thus

(@\ U @)U( U R)cauaion,
QieF

€51

where we here and below we use the notation A, for the surface balls with respect to 92r g, .
Using this, (3.23), and Lemma 2.53 parts (a) and (c¢) and Harnack’s inequality we derive

1,%(Q) S w; % (A}, Cr1)) S w; P (Au(af, 1)) S w,20(P1) = 1,2 (Q).

~ L,*

Case 3: None of the conditions in the previous cases happen, and necessarily Q, Q" € Dr g,.
We take the same set Fj as in the previous case and again if Q; € F; then Q; C @ (otherwise
we are driven to Case 1). Introduce Fs, the family of cubes Q; € F with Q; N Q' # @. Again,
if Q; € Fo we have Q; C Q'; otherwise either @' = @; which is Case 2, or Q' C @; which
implies @ C @Q; and we are back to Case 1.

Note that since @ is the dyadic parent of @', using the same notation as in (3.9) applied to
Q' € Dr g, we have that

dist(zg)y, Q) < dist(z(y, Q") S Q") = £(Q) ~ t¢y.
Also by (3.3)
dist(zgy, Pi) < dist(zgy, Q) +£(Q) + dist(Q, P;) $ £(Q) + dist(Qi, ) S U(Q) = tg-

These readily give

(@\ U @)U( U P)cauy.cro).
Q:EF

Qi€F1

We can then proceed as in the previous case (see (3.23)) to obtain

v Q) S w2 ((@) U Q)U( U P)) swr(auay,Clo)) s w2 (a?)
Qi€F1

where A9 = B(xg),tq) N0QF g, (see (3.9)) and we have used Lemma 2.53 parts (a) and (c)
and Harnack’s inequality. On the other hand, proceeding as in (3.12) with @’ in place of Q
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since Q' € Dr g,:

Y.
w2 (AY) < w (@ NE)+ ) wLiO(A*(iﬂf,W))
Qze]'—2

SO @@ NE)+ Y w0 (P)

QiEF2
YQ() /
Y, QR'NQ;) Y Y,
QB+ Y (—’) () =1 (@),

Q;EF2 (Ql)
Eventually we obtain that VEQO(Q) < VEQO (Q"), completing the proof of the dyadic doubling
property of V}J/QO

We next deal with P}—VL . We can simply follow the previous argument replacmg wYQO by

P;VEQO to see that in Cases 2 and 3 we have that 73%1/2/% Q) = yzQO(Q) and PfyL Q) =

Y, . " . .
LQO (@Q"), hence the doubhng condition follows from the previous calculations and the constant

depend on that of W L . With regard to Cases 1, on which @) C @; for some @); € F, one can
easily see that

Y, 1@ Yo 1(Q') YQ Yo
,P/,L Qo Q) = w *0 P S 0 ,P'u 0 Q )
(@)= Qs TS gy ) =Prn (@)
which uses that p is dyadically doubling in (Qg. Eventually we have seen that doubling constant
depend on that of wzQO and p as desired. This completes the proof. O

4. PROOF OF THE MAIN RESULTS

4.1. Proof of Theorem 1.3. By renormalization we may assume without loss of generality
that |lul[fe() = 1. We will first prove a dyadic version of (1.4). Let D = D(99) the dyadic
grid from Lemma 2.13 with £ = 0. Our goal is to show that

1
4.1 My := sup sup @ ———— Vu(X)?GL(Xpo, X)dX <1
X Q
QUeD  QoeDgo (o, e (Q To,
K(QO)S%

with M > 4 large enough. Assuming this momentarily let us see how to derive (1.4). Fix B
and B’ as in the suprema in (1.4). Let k, k" € Z be so that 21 < r < 2F and 2¥'~1 < ¢/ < 2V
and define k" := min{k’, k — 10kps} where kp; > 1 is large enough to be chosen depending on
M and the allowable parameters. Set

Wi={IeW:INB #0.01) <2} T ew:I1nB #0,0(I) > 28"}y == wiuw;.
Note that for every I € W with I N B’ # @ we have

dist{d, 0%) T g2
1 1=

As a consequence, if W) # O, then k" = k — 10 kjy, and picking I € W) # @ one has

(1) < diam(I) <

P 2F g 2 <o) <2 <o

This gives 7’ ~p r and #W5 Spr 1.
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To proceed, let us write

/ / Vu(X) Gu(Xa, X) dX < / / Vu(X)2 GL(Xa, X) dX
B'NQ U I

/
rew;

+Z//\Vu )2 GL(Xa, X)dX = T + 11,

Iew,
and we estimate each term in turn.

To estimate ZZ we may assume that W) # O, hence k£’ = k — 10kys, ' = r and #W) <
1. Then Lemma 2.53, the fact that w(9€2) < 1, Caccioppoli’s inequality, the normalization
|ul| oo (@) = 1, and Harnack’s inequality give

11 = Z/ IVu(X)[? GL(Xa, X)dX < > 4I)! / IVu(X)[?dX
I

Iew; Iew;
< < ~ XA /
S#Wy S1=wp2(A).

Next we deal with Z. Introduce the disjoint family F' = {Q e D : ¢(Q) = 2""~1, QN3 B’ #
O}. Given I e Wy, let X7 € B'N1I, and Qr € D be so that £(Qr) = ¢(I) and it contains some
fixed y; € 0 such that dist(Z,09Q) = dist([,ys). Then, as observed in Section 2.4, one has
I'e W, Note that

5) 9
lyr — 2’| < dist(yr, I) + diam(I) + | X — 2’| < Zdist([, o)+ |X;—2'| < Z|XI —a'| <37,

hence y; € QN3 A’. This and the fact that, as observed before, £(Qr) = £(I) < 2K imply that
Qr C Q for some @ € F'. Hence, I C (1+A)I C Ug, C Ty for some Q € F'. This eventually
show that rew I C Uger Tq and therefore

<) //T |Vu(X)|? GL(Xa, X)dX.

QeF’

For any @ € F' pick the unique (ancestor) @ € D with E(@) =21 and Q C @ Note that
I(Xa) =, 5(X@) ~0(Q) = 2F1 ~r. Also,
[ Xa — Xpl < 1Xa — 2]+ |z — 2|+ |2" — 2q| + |2 — 25| + 25 — Xl
< 37437 4 diam(Q) + diam(Q) + £(Q) < r+ 2" +2F <1
Hence by the Harnack chain condition one obtains that G (Xa,X) ~ Gr(X X ) for every
X € Tg (in doing that we need to make sure that kjs is large enough so that the Harnack chain
joining XA and X oL which is c¢r-away from OS2, does not get near Tgy, which is kg £(Q)-close to

09). Note also that % = oK'~k < 9~km < M1 provided ks is large enough depending on

M. All theres and (4.1) yield

T Z//T Vu(X)]? GL(Xg. X)dX S My Y w,2(Q)

QeF QeF
SMy Y w2 (Q) < Mowi® (U Q) < Mow2(CA) S Mywy®(A),
QeF' QeF’
where we have used Lemma 2.53. This completes the prof of the fact that (4.1) implies (1.4).

We next focus on showing (4.1). With this goal in mind we fix Q° € D = D(9Q) and let
Qo € Dgo with £(Qo) < £(Q")/M with M large enough so that Xgo ¢ 4 Bj (cf. (2.31)). Write
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X
wr = wy, 2" and Gy, = Gr(Xqo,-) and note that our choice of M, (2.49), and (2.50) guarantee
that L'Gy = LTGp7(-, Xgo) = 0 in the weak sense in 4 B.

Fix N > 1 and consider the family of pairwise disjoint cubes Fy = {Q € Dg, : 4(Q) =
27V 0(Qo)} and let Qn = Qry .0, (cf. (2.25)). Note that by construction Qy C Tp, is an

increasing sequence of sets converging to Tg,. Our goal is to show that for every N > 1 there
holds

(42) J[ 19u(x0R 6130 dX < Myeon(@o)
N
with My independent of Q°, Qo, and N. Hence the monotone convergence theorem yields

2 1 2
[, wur e ax = g [ 19u00R 60300 < @)
)

which is (4.1).

Let us next start estimating (4.2). Using ¥y from Lemma 2.39 and the ellipticity of the
matrix A we have

[ wueoreoax s [ vuop e wa) ix
Qn Rnt+1

< / [ ACOVU(X) - Vu(X) G(X) Wa(X) dX

- //Rn+1 AX)Vu(X) - V(uGr Un)(X)dX
- ;/ AX)V(u? Un)(X) - VGL(X) dX
Rn+1

_ ;/ AX)V(u?)(X) - VO (X) Gr(X) dX
Rn+1

1
+ 2/ AX)VIN(X) - VGL(X)u(X)?dX
Rn+1
=11 +1Iy+13+ 14.

We observe that u Gy, ¥y and u? ¥y belong to W12(Q) since u € T/Vlf)CQ(Q) NL>®(Q), supp ¥y C
Qy, 6(X) 2 27N 0(Qo) for every X € %, the properties of G, and the fact that Xqo is away
from Q} —06(Xgo) ~ £(Q°) and by (2.31) one has 6(X) < £(Qo) < U(Q°)/M < 6(Xgo)/2 for
every X € {2} and provided M is large enough. Using all these one can easily see via a limiting
argument that the fact that Lu = 0 in the weak sense in €2 implies that Z; = 0. Likewise, one
can easily show that Zo = 0 by recalling that supp ¥y C Q3 C %BQ* NQ (see (2.31)) and that
as mentioned above LTG; = 0 in the weak sense in 4 BZQ Thus we are left with estimating the
terms Z3 and Z,. By (44) in Lemma 2.39 and the fact that |lul[zq) = 1 we obtain

|Zs| + |Z4] < // ]Vu\ gr + |VQL|) 5(')71 dX

IewZ I

<y // \vu|2dX gL // yng|2dX 5)

Tewy
< S ((/ |u]2dX>;+£(I)n§1>gL(X(I))
Iews

S D UNTGL(X (1)),

Tewx
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where X (I) denotes the center of I, and we have used Harnack’s and Caccioppoli’s inequalities,
that LGy = 0 and Lu = 0 in the weak sense in [*** C 1 B; N (see (2.31)). Invoking Lemmas

2.53 and Lemma 2.39 one can see that £(1)"* G(X(I)) < wr(Qy) for every I € Wx. This
together with Lemma 2.39 allows us to conclude

Zol+1Tl 5 Y wr@) ser( U @)

Tewx Tewx
Note that if y € @1 with I € W5 one has

1y — 20| < diam(@y) + dist(Qr, T) + diam (1) + dist(1, zg,) < £(T) + €(Q0) S £(Qo)
where we have used (2.42) and (2.31). Thus, Lemma 2.53 gives
|Zs| + |Za] S wir(CAgy) S wir(Qo)-
This allows us to complete the proof of Theorem 1.3. U

4.2. Proof of Theorem 1.5. We borrow some ideas from [19]. Given k € N introduce the
truncated localized conical square function: for every @ € Dg, and z € @, let

1-n % k L
SQU <//F’“ [Vu(Y)[25(Y) dY> ,  where I'¢)() := U Uy,

IEQ’GDQ
€Q")>27%(Qo)
where if £(Q) < 27%£(Qo) it is understood that F’é(m) = and Sf?u(x) = 0. Note that by the
monotone convergence theorem Sgu(:n)  Squ(x) as k — oo for every z € Q.

Fixed ko large enough (eventually, kg — o0), our goal is to show that we can find ¢ > 0
(independent of k) such that for every 3,~, A > 0 we have

(4.3) waO ({z€Qo: S(g%u(x) > (14 8) A, Ngyu(z) <vA})

< (g)ﬂwf% ({Jc €Qo: Sg%u(a:) > B)\}),

where the implicit constant depend on the allowable parameters and it is independent of ky. To
prove this we fix 5,7, A > 0 and set

Eyx:={zecQ: Sg%u(:v) > A}

Consider first the case E\ C @Qg. Note that if z € E), by definition Sg%u(x) > A. Let

Q2 € Dg, be the unique dyadic cube such that @, > xz and 4(Q,) = 27%00(Qp). Then it is clear
from construction that for every y € ), one has

k k k k
r'g () = U Ug=Tg (y) and A <Sgulx) =S u(y).
QICQCQO
Hence, @, C E) and we have shown that for every x € FE) there exists ), € D¢, such that

Q. >z and @, C E). We then take the ancestors of ),, and look for the one with maximal
side length Q2** D ), which is contained in E). That is, ) C E) for every Q, C Q) C Q2
and @;nax N Qo \ Ex # O where @;nax is the dyadic parent of Q™ (during this proof we
will use @ to denote the dyadic parent of @), that is, the only dyadic cube containing it with
double side length). Note that the assumption Ey C Qo guarantees that Q' € Dg,\{Qo}. Let
Fo = {Qj}; be the collection of such maximal cubes as x runs in E) and we clearly have that the
family is pairwise disjoint and also E) = UQj cr, @j- Also, by construction £(Q;) > 27k00(Qo)

and by the maximality of each @); we can select x; € @j \ E\.
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On the other hand, for any z € (J; we have, using that z; € Qj \ E},

k k k
@)= | UQZPQOJ_(Q;)U( U )cro ) JTE ()
z€QEDg, Q;CQCQo
(Q)>20 £(Qo)

and therefore
Sg%u(m) < Sg‘lu(x) + Sgoou(wg) < Sg(;u(x) + A
As a consequence,
{z€Q):Sgu(x) > (1+p)A} C {z €Q: S ulz) > pA}

and
{zeQo: Sg%u(:z) >(1+B8)A={z€Qo: Sg%u(x) > (1+B)A\} NEy
U {zeq;: Sg%u(x) > (1+B)A} C U {zeq;: Sg;u(x) > BA}.

QjGJ:O QjE]'—o

This has been done under the assumption that Ey\ C Qp. In the case E\ = Qg we set Fy = {Qo}.
Then in both cases we obtain

(4.4) {reQo:Shu@) >+ c | {re@: S5 ulx)> BA}.
QjeFo
Thus, to obtain (4.3) it suffices to see that for every Q; € Fo
9
(4.5) waO ({:r: € Q; Sgoju(a:) > B, Noyu(z) < 7)\}) < (%) waO(Qj).

From this we just need to sum in Q; € Fp to see that (4.4) together with the previous facts
yield the desired estimate (4.3):

“({x e Qo: Sulx) > (1+8) A, Nogu() <y A})
< 3w ({r e SEule) > BA, Noyu() <yA})

Q;€F0
() 3 i@ =(2) s (U o) = (3) i

Q;€Fo Qj€Fo

Let us then obtain (4.5). Fix Q; € Fy and to ease the notation write Py = @Q;. Set
(4.6) E\ = {l‘ e Py Slkggu(:r) > B)\}, F\ = {J; € Py : Ngyu(z) < 7)\}.

If waO (F)\) = 0 then (4.5) is trivial, hence we may assume that waO (F)\) > 0sothat PhNF) =
F)\ # (). We subdivide Py dyadically and stop the first time that QN F\ = @. If one never stops
we write Fp, = {0}, otherwise Fp = {P;}; C Dp, \ {Fo} is the family of stopping cubes which
is maximal (hence pairwise disjoint) with respect to the property Fy N Q = @. In particular,
F\Ch \ (UD]__FO’POJDJ').

Next we claim that
k . * *
xeF) QED}_};OvPO QGD}_};OvPO
£(Q)>27k0 £(Qo)

To verify the first inclusion, we fix Y € I’I;% (x) with € F). Then, Y € Ug where z € Q € Dp,.
Since x € F) we must have QQ € ]D)ffoo (otherwise @ C P; for some P; € Fp, and this would
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imply that € P; N Fy = ©) and therefore @ € Dy p, which gives the first inclusion. The
0
second inclusion in (4.7) is trivial (since Ug C int(Up)).

To continue we see that
(4.8) lu(Y)| <A, for all Y € Q..

Fix such a Y so that Y € Uy for some @ € ]D;}*)O,po. If QN F\ = @, by maximality of the cubes
in Fp, , it follows that @ C P; for some P; € Fp, , which contradicts the fact Q € D Fp, Po- Thus,
QN Fy # O and we can select z € Q N F) so that by definition |u(Y)| < Ng,u(z) < v since
Y € U C I, (o).

Apply Lemma 3.1 to find X, :=Yp, € Q, NQ so that
(4.9) U(Py) =~ dist(X,, 0Q) =~ 6(X,).

Let w} := wfb* be the elliptic measure associated with L relative to {2, with pole at X, and
write 0, = dist(-,0Q). Given Y € ,, we choose yy € 9, such that |Y — yy| = 0.(Y). By
definition, for x € F\ and Y € I'p,(x), there is a Q) € Dp, such that Y € Ug and z € Q). Thus,

by the triangle inequality, and the definition of Ug, we have that for Y € I'p, (z),

(4.10) e —yy| < |z =Y+ 0.(Y) = 0(Y) + 0.(Y) = 5.(Y)

where in the last step we have used that

(4.11) JY)~6.(Y) for Ye |J Ug
QEDF}SO»PO

On the other hand, as observed above F\ C Py \ (UrQ;) C 9Q N0, see [17, Proposition 6.1].
Using this and the fact that if Q N Fy # O then Q € ID)]:}*)O’po we have

(4.12) /FA Sllggu(m)deE(m):/FA //ko (V)26 dY dw ()
/FA ) // IVu(Y)?5(Y) ™ dY dw} (x)

zEQE]D)
Q)>2~ koe (Qo)
< Z (f[ wurar) a@i—wi@nm
QED}'* Py
S SRR S
QED}'}SO,PO QED}‘;;O,PO
UQ)>M~1(Po) HQ)<M~e(Po)
= Zl+22)

where M is a large constant to be chosen.
We start estimating ¥;. Note first that #{Q :€ Dp, : £(Q) > M~Y(Py)} < Cyy, thus

135 Z 1”2// Vu(Y)]2dY

QED]-';;O,PO IEWY
2(Q)>M~1e(Py)
S Y w Y an [ umpay
Q€D7; ry 1EW;, "
HQ)>M~Le(Py)
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SN Y HT Y«
Q€Dp, Iew;,
UQ)=M (o)

S/M (7 )‘)27
where we have used (4.8), along with the fact that int(I**) C int(Up) C Q. for any I € W,
with @ € Dry p,, and the fact that W, has uniformly bounded cardinality. To estimate ¥y we

0

note that picking yg € @ N F) we have that Q N F\ C B(yg,2 diam(Q)) N 09, =: Ap. Write
X, for Corkscrew relative to A7), with respect to Q. so that 0.(X() ~ diam(Q) < M~Y(P).
Note that by (4.9), we clearly have X, € Q\ B(yq,4 diam(Q)) provided M is sufficiently large.

Hence, by Lemma 2.53 part (b) applied in €, which is a 1-sided NTA domain satisfying the
CDC by Proposition 2.37, we obtain for every Y € Ug

(4.13) HQ) " wi(QN Fy) S diam(Q) Wi (AY) S Gra(Xe, X§) ~ Gr.(X,,Y),

where G, . is the Green function for the operator L relative to the domain 2. Above the last
estimate uses Harnack’s inequality (we may need to tale M slightly larger) and the fact that by
(4.11), one has 6.(Y) ~ {(Q) = diam(Q) ~ 6.(X()) (see Remark 2.56) and that if I > Y with
I'eWg,

Y — X,| < diam(/) 4 dist(/, Q) + diam(Q) + |yg — X*| < diam(Q).
Write {P}}; C Dp, for the collection of dyadic cubes with M ¢(Py) < (P¢) < 2 M{(Py) which
has uniformly bounded cardinality depending on M. Note that

{Q € D]'—}*DO’PO Q) < Mﬁlg(Po)} C UD]'—;OvPé'

For each 14, if ]D)]_-;) Pi # () then P} € Dz p, and hence PiN Fy # (. Pick then y; € PN F)y
0’ 0
and note that for every Q € D F5 pi DY (2.31) it follows that
07

Uq C Tp N C By N C B(y;, C o €(Fg)) N Q=2 BN s
0
Using then (4.13) we have

S < > // IVu(Y)|? Gpa(X.,Y)dY
Ug

QeDr, r,
K(Q)<M 1@ PO

<Y ¥ // Vu(V) Gr (X, Y)Y
i QeDr.
Py
UQ)<M~1e(Py)

52// Vu(Y)P Gra(X., V) dY
i Biﬂﬂ*
<l S wh (BN 00)

S (YN
where we have invoked Theorem 1.3 applied in €2, which is a 1-sided NTA domain satisfying

the CDC by Proposition 2.37, and we may need to take M slightly larger and use Harnack’s
inequality; (4.8); and the fact that {P}}; C Dp, has uniformly bounded cardinality.

Using Chebyshev’s inequality, (4.12), and collecting the estimates for ¥; and ¥y we conclude
that
1

* (I 0 % 1 o N 2
WL(E)\ ﬂFA) < (6)\)2 /EVAQFA(SIICDOU)Zde < W /F)\ Slkaou(ﬂf)2 de(I) S (%) .
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At this point we invoke Lemma 3.19 in Py with ]-";50 —we warn the reader that Py and .7-"1’50 =

{P;}; play the role of Qo and {Q;}; and that associated to each P; one finds ]Bj as in Proposition

3.1, which now plays the role of P; in that result, and p = w;* (recall that X, = Yp,) and

observe that the fact that F) C Py \ (Up,.. . P;) implies on account of (3.21) that for some
Py’

¥ > 0 we have

~ ~ 9
wi (EANF)) _ (wZ(E,\ﬂFA)>2 - (1>ﬂ
wpt(Po) T\ wpady )T

B

where we have used that w}(A?) ~ 1 since AL := B(ap,,tp,) N OO with tp, ~ {(Py) ~
diam(9€), o, € 0%, (4.9), Harnack’s inequality, and Lemma 2.53 part (a). We can then use
Remark 2.54, Harnack’s inequality, and (4.9), to conclude that

X ~ ~
QO(EAQFA) LO(EANE) _wpt(BaNFy) _ (1)19

QO (Po) XPO(PO) wrt(Py) T\
Recalling that Py = Qj € Fop, and the definitions of E \ and F) in (4.6) the previous estimates
readily lead to (4.5).

To conclude we need to see how (4.3) yields (1.6). With this goal in mind we first observe
that for every z € Qo and Y € Fgoo(x) one has that YV € B* N Q (see (2.31)) and also

5(Y) = 27%0 ¢(Qq). Hence, since u € VVI})C (€2), one has

1
(4.14)  sup Sg% = sup // IVu(Y)?6(Y) "dY)2
€Qo z€Qo Iy 0
1
seuan = ([ Vu(¥)Fdy)® < oo
G MY eQ:a(Y)227%0 £(Qo)}

On the other hand, given 0 < ¢ < oo, we can use (4.3)

L4 B) 7| SE ull?
1+8)71] UHL(Q’XQO)

:/0°° Xiw,® ({z € Qo : SEu(x) > (1+5>A})%
< [T ax (e e Qu: sl > (14 H)A Noyuw) <74) 5
0
[N (o e Qos Nogula) >4 0})

y\Y [ X A
< (1) [T (e e o s > 1) 2
7 ol - x

Y\Y a=q | ok
< (7) BSE u q
5 ISgoull) L
We can then choose v small enough so that we can hide the first term in the right hand side of
the last quantity (which is finite by (4.14)) and eventually conclude that
ISe, ull? S Wooull?
(QOWL o) 0 2(Qo,w LQO)
Since the implicit constant does not depend on ky and SQou(x) S Sgou(x) as k — oo for every

x € @, the monotone convergence theorem yields at once (1.6) and the proof Theorem 1.5 is
complete.

XQO) +7_q||NQoqu XQO)

0,Wr, q 0,Wy,
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