This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

Adaptive Neuroevolution with Genetic Operator
Control and Two-way Complexity Variation

Amir Behjat, Member, IEEE, Nathan Maurer, Student Member, IEEE, Sharat Chidambaran, Student Member,
IEEE, and Souma Chowdhury, Senior Member, IEEE

Abstract—Topology and weight evolving artificial neural net-
work (TWEANN) algorithms optimize the structure and weights
of artificial neural networks (ANNs) simultaneously. The re-
sulting networks are typically used as policy models for solv-
ing control and reinforcement learning (RL) type problems.
This paper presents a neuroevolution algorithm that aims to
address the typical stagnation and sluggish convergence issues
present in other neuroevolution algorithms. These issues are
often caused by inadequacies in population diversity preservation,
exploration/exploitation balance, and search flexibility. This new
algorithm, called the Adaptive Genomic Evolution of Neural-
Network Topologies (AGENT), builds on the neuroevolution of
augmenting topologies (NEAT) concept. Novel mechanisms for
adapting the selection and mutation operations are proposed to fa-
vorably control population diversity and exploration/exploitation
balance. The former is founded on a fundamentally new way
of quantifying diversity by taking a graph-theoretic perspective
of the population of genomes and inter-genomic differences.
Further advancements to the NEAT paradigm occur through the
incorporation of variable neuronal properties and new mutation
operations that uniquely allow both the growth and pruning
of ANN topologies during evolution. Numerical experiments
with benchmark control problems adopted from the OpenAl
Gym illustrate the competitive performance of AGENT against
standard RL methods and adaptive HyperNEAT, and superiority
over the original NEAT algorithm. Further parametric analysis
provides key insights into the impact of the new features in
AGENT. This is followed by evaluation on an unmanned aerial
vehicle collision avoidance problem where maneuver planning
models are learnt by AGENT with 33% reward improvement
over 15 generations.

Impact Statement—This paper presents AGENT, a new neu-
roevolution algorithm that simultaneously optimizes the topology
and weights of neural networks. Through novel mutation and
selection controllers that regulate diversity and convergence,
along with flexible direction of mutation and flexible choice
of nodes, AGENT advances the application and robustness of
the neuroevolution paradigm. The potential impact of these
advancements is apparent when comparing the performance
of AGENT on reinforcement learning (RL) problems to the
performance of state-of-the-art RL algorithms on these same
problems. Various OpenAl Gym problems and a real-world

Support from the DARPA award HR00111920030 and the NSF award
CMMI-2048020 is gratefully acknowledged. Any opinions, findings, conclu-
sions, or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the DARPA or the NSF.

This paper was submitted on 03-21-2022

Amir Behjat was PhD student from University at Buffalo. He is a postdoc-
toral research in Purdue University, West Lafayette, IN 47906 USA (e-mail:
abehjat@purdue.edu).

Nathan Maurer is a Master student from University at Buffalo, Buffalo, NY
14260 USA (e-mail: namaurer @buffalo.edu).

Sharat Chidambaran was Master student from University at Buffalo, Buffalo,
NY 14260 USA (e-mail: sharatpa@buffalo.edu).

Corresponding author: Souma Chowdhury is Associate Professor in Univer-
sity at Buffalo, Buffalo, NY 14260 USA (e-mail: soumacho@buffalo.edu).

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httfs://www.ieee.orgr/lfublications/rights/index:html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

collision avoidance problem for unmanned aerial vehicles (UAVs)
are used to illustrate AGENT’s performance relative to these
other algorithms. AGENT is particularly deft at solving problems
with small-to-moderately sized action/state spaces and complex
environments with sparse, delayed and non-differentiable reward
functions. Problems with these features are quite common in the
engineering controls and robotics planning domains. In addition,
the proposed mutation and selection control operators, and the
novel graph-theoretic approach to quantifying diversity, could be
adopted in other evolutionary machine learning algorithms to
improve diversity preservation and address stalled convergence
issues.

Index Terms—Diversity preservation, Neuroevolution, Network
topology, Reinforcement Learning, Open AI Gym, UAV

I. INTRODUCTION

RTIFICIAL neural networks (ANNSs) are gaining a vital

role as models for decision-making for a variety of intel-
ligent autonomous systems [1]. ANNs are universal function
approximators [2], which allows ANNs to act as policy mod-
els that provide state-to-action mappings for RL algorithms.
Applications that require state-to-action mappings typically do
not have a priori (i.e., labeled data) of the optimum state-
to-action mappings. Reinforcment Learning (RL) methods [3]
and its deep variants [4] constitute a dominant contemporary
player in automated design of state-to-action models for such
planning and control problems. However, drawbacks of us-
ing RL methods include relying on gradient information for
backpropagation, which is not readily available for some prob-
lems, [5], requirement of a tedious (nested) hyper-parameter
optimization or neural architecture search when ANNs are
used as value or policy function approximators, and scalability
limitations with the dimension of the problem [6]. As an
alternative, Evolutionary algorithms [7], e.g., neuroevolution
[8] and evolution strategies [9], have emerged to mitigate some
of these limitations.

Neuroevolution allows for highly parallelized and distributed
implementations of the learning process, and is suitable for
problems with continuous and mixed state/action spaces. Key
issues that neuroevolution methods suffer from are topological
inflexibility, premature stagnation and poor convergence. To
address these issues, this paper presents key advancements to
the paradigm in co-evolving the topology and weights of neural
networks, particularly for solving RL type problems related to
planning and control. These advancements include the devel-
opment of novel controllers within selection and reproduction
operators to regulate population diversity and improvement
rates, and the introduction of new neuronal properties and
flexible initialization and mutation of neural topologies. The

EE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

new neuroevolution algorithm is evaluated over benchmark RL
and control problems adopted from the OpenAl Gym [10],
and a practical robotics problem — namely collision avoidance
between unmanned aerial vehicles (UAVSs).
A. Neuroevolution: Overview

Neuroevolution is the process of designing ANNs through
evolutionary optimization algorithms [11]. Some Neuroevolu-
tion approaches optimize only the ANN weights using Genetic
Algorithms (GA) [12], [13]. The topology of the ANN must
be prescribed by the user in these approaches, as is common
in backpropagation-based training. With a predefined topology,
there remains a risk of underfitting or overfitting of the state-
to-action mapping model [14]. Topology and Weight Evolving
ANNs (TWEANNS) directly addresses this issue. Some of the
earliest work in TWEANNS include that by Miller et al. [15],
where the adjacency matrix was evolved to alter the connection
of nodes in the ANN, and by Schaffer et al. [16] where a GA
was used to optimize hyper-parameters along with a hybrid
architecture with specified restrictions.
B. Neuroevolution: Related Works

NeuroEvolution of Augmenting Topologies (NEAT) [17] is
one of the most well-known implementations of the TWEANN
concept. NEAT treats nodes, edges, and edge weights as pheno-
types and these phenotypes are evolved using a GA. The initial
population in NEAT includes minimalist topologies of feed-
forward ANNs without any hidden nodes and with input and
output layers designed according to the concerned problem.
During the evolution process, NEAT performs classical genetic
operations such as selection, crossover, and mutation on the
population. Furthermore, a specialized operator called “speci-
ation” is used in NEAT which helps to preserve genomes that
are associated with complex newly created topologies, which
otherwise may be destroyed due to their premature weights.
Well known variations of NEAT, such as HyperNEAT [18],
which provides an indirect genotype to phenotype encoding,
and SUNA [19], have been used for controlling virtual agents
in Atari games [20], evolving robot gaits [21], and geological
prediction [22]. Evolving deep neural networks has also been
explored with Neuroevolution [23]. Overall, there’s been a rich
variety of developments to neuroevolution in the past 10-15
years, particularly involving indirect encoding of topologies
(e.g., HyperNeat [24], adaptive HyperNEAT [25], and ES-
HyperNeat [26]), extension to deep learning and metalearning
[23], [27], hybridization with gradient-based methods [28],
open-ended evolution and embodiment of intelligence [29],
[30]. A comprehensive survey of such developments can be
found in the review paper by Stanley et al. [11]. Key issues
with existing neuroevolution methods are discussed next.

TWEANNs: Stagnation & Efficiency Concerns: Premature
stagnation and sluggish rate of evolution are two crucial
concerns in neuroevolution, especially when a highly non-
linear state to action mapping is sought. There has been some
notable works in investigating the issue of premature stagnation
from different perspectives, such as in [31], [32], [33]. Two
underlying phenomena have been found to be the major factors
behind premature stagnation: i) loss of diversity and ii) poor
exploration/exploitation balance.

Since nascent complex ANN topologies need more time

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

to stabilize their weights compared to simpler counterparts,
Neuroevolution methods are often unable to preserve genomic
diversity which leads to local stagnation. Different approaches
exist to solve the diversity preservation issue, such as Novelty
search [34] and Surprise Search [35]. Some of these approaches
create artificial multi-objective problems that trade off novelty
with reward; however, the likely need for larger population
sizes for such an approach and its impact on the generalizabil-
ity [36] of the ensuing learnt behavior remains under-explored.
More importantly, most of these existing methods provide
limited capacity for adaptive diversity preservation during
the learning process. There exists a rich body of literature
on adaptive diversity preservation in the general domain of
evolutionary computing (e.g., in GA [37] and particle swarm
[38] algorithms). However, it is challenging to directly translate
these approaches to neuroevolution due to the specialized
encoding and reproduction operations used to respectively
represent and evolve TWEANNS.

Thus we hypothesize that a quantification of diversity, one
that accounts for the special combinatorial design space of
TWEANN genomes, is needed to implement adaptive diversity
preservation in neuroevolution. To investigate this hypothesis,
we pursue a novel projection of candidate ANNs onto an
undirected graph, based on their inter-genome distances [19],
and then use the minimum spanning tree (MST) estimate to
quantify the population diversity. This graph-based diversity
quantification concept is motivated by how in general diversity
between data sets, often occurring or posed as nodes in
a network, is measured in various applications of network
science [39]; our use of minimum spanning tree is specifically
inspired by the literature on Genetic Linkage Mapping [40].

Ineffective balance between exploration and exploitation
in neuroevolution, which leads to sluggish convergence or
vulnerability to local optima, can be partly attributed to the
inadequate recombination (e.g., due to permutation issues
[41]) or unregulated mutation operations. We posit that the
current state of “exploration / exploitation balance” can be
captured by analyzing the relative rates of improvement in the
fitnesses of the population best and the population average
during the neuroevolution process, with coherent rates being
deemed desirable. Based on this hypothesis, we propose an
improvement metric that is then used to guide the rates of
mutation operations, which regulates the degree of exploration
allowed in the evolution process.

Initiating the population with minimalist ANN topologies as
suggested in NEAT [42], [17] helps decrease the probability
of overfitting and speeds up the convergence for problems
with low-dimensional input spaces. However, a detrimental
effect is encountered in problems with larger state spaces or
when a highly non-linear policy function is required. There-
fore, minimalist initial population can often lead to colossal
computational effort, aka many generations of evolution, to
reach topologies with adequate complexity for these problems.
To address this issue, we have introduced two new capabilities:
problem size-adaptive initialization of the ANN topologies, and
allowing topological complexity to both increase and decrease
during neuroevolution. Furthermore, by applying different ac-
tivation function choices [19] and a novel memory property for

EE Xplore. Restrictions apply.

s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

BEHIAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION

neurons, we seek to extend the applicability of neuroevolution
to learn policies for a wider range of problems in autonomous
systems without deviating from the feed-forward network
structure. For example, the memory properties promote capture
of derivatives of state inputs or intermediate states.

C. Core Objectives of this Paper

This paper develops an adaptive neuroevolution approach to
handle the premature stagnation issues and enhance the search
efficiency in designing TWEANN-based policy models. Our
primary contribution lies in incorporating novel mechanisms
for insitu regulation of the genomic diversity and the rate of
average fitness improvement. To these ends, new approaches
are proposed respectively i) for measuring diversity in the
combinatorial space of “ANN topologies with variable node
properties”, and ii) for comparing “average vs. best fitness
improvement rates” to assess the balance between exploration
and exploitation. The regulation of diversity and average
improvement rate is respectively accomplished by dynamic
adaptation of the selection and mutation operators, essentially
acting as open-loop controllers in the neuroevolution process.
Thus, the primary objective of this paper is to enable these
new adaptation capabilities, along with novel node properties,
problem-adaptive population initialization, and provision for
both growth and pruning of networks in neuroevolution.

Our second objective is to test our neuroevolution algorithm
on a suite of control problems adopted from the popular
OpenAl Gym platform [10]. With these problems, we per-
form comparative analysis of our algorithm with existing RL
benchmarks, state-of-the-art implementations of the original
NEAT as well as a recent popular advancement of NEAT,
namely adaptive HyperNEAT [25]. Selected problems are also
used to perform parametric and ablation analysis to study the
impact of the proposed new features. Our third objective is to
demonstrate how the new neuroevolution algorithm can be used
to solve complex robotics planning problems, by applying it
to generate maneuver-planning models for reciprocal collision
avoidance between quadcopter UAVs [43].

The next section describes the basic components of our new
neuroevolution algorithm. Section III develops the controller
features used for regulation of average improvement rate and
population diversity. Sections IV and V respectively discuss the
results of applying this new neuroevolution algorithm on the
benchmark problems and the UAV collision-avoidance prob-
lem. Further discussion and concluding remarks are provided
in Sections VI and VII.

II. AGENT (NEUROEVOLUTION) ALGORITHM

In light of its adaptation capability, the new neuroevolution
algorithm is called Adaptive Genomic Evolution of Neural
Network Topologies or AGENT. In this section, we describe
the main components of AGENT, including the initialization
steps, intra-generational stages, the encoding procedure, and
the selection and reproduction operators. Figure 1 (a) shows
the flowchart of the AGENT algorithm. ! A pseudo code
summarizing the main steps of AGENT is included in the
supplementary material, as Algorithm-2 in Section S - VIIL

'To aid benchmarking and further adoption of AGENT, a MATLAB-
based implementation of AGENT have been made available at the following
repository: https://github.com/adamslab-ub/AGENT-Matlab.

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

As seen in Fig. 1, initialization of the algorithm involves
generating the design of experiments of problem scenarios
(similar to RL) over which the learning trials are conducted.
This is followed by the genomic encoding of ANNs and the
creation of the initial population.

At each generation, AGENT uses a two-stage evolution-
ary approach. The population of genomes (i.e., candidate
ANNs) is grouped into a set of species or niches, based on
topological similarities. All genomes participate in the first
stage of evolution in each generation, while only the genomes
with the highest fitness function from each species participate
in the second stage of evolution. Stage-1 processes: In the
first stage, the size of each niche is adjusted, followed by
selection, crossover, and mutation. The resulting offspring
genomes go through fitness evaluation (over the episodes of
sample scenarios), followed by speciation. Stage-2 processes:
In the second stage, similar to NEAT [17], the champions of
each species are identified, which then undergo crossover and
mutation. The resulting offspring are subsequently classified
into the existing species groups. The new stagnation-mitigating
controllers are then applied — this involves quantifying the
average improvement rate and population diversity and using
them as feedback to adapt the selection pressure and mutation
rate, respectively. Fitness evaluation is then performed on the
new genomes (resulting from second stage evaluation), and the
algorithm moves on to the next generation.

A. Encoding of the Neural Network Genome

Information processing capacity in an ANN is encapsulated
in its nodes (or neurons) and edges (or connections). Similar
to the original NEAT algorithm [17], AGENT uses a direct
bi-structural encoding, where each genome comprises of the
encoding of the constituent nodes and edges of the candidate
ANN. The genomic encoding is shown in the upper part of Fig.
1. In keeping with NEAT, AGENT encodes edges with two
genomic properties, edge weight w; ; and innovation number
I; ;. The start and end nodes of an edge are denoted by i and 7,
respectively. Innovation number is used to distinguish between
different edges based on their creation time, and sort edges
thereof. This number is a useful identifier of common edges
during the crossover operation.

AGENT differs from NEAT with regards to the encoding of
nodes. AGENT introduces new nodal properties, namely the
memory capacity M;, and the activation function ¢;. In Fig.
1, the different symbols (hexagon for modified sigmoid [17],
triangle for ramp, and pentagon for sigmoid) depict nodes with
different activation functions. The memory size of each node
is depicted by the color of the corresponding node symbol.

To allow greater flexibility of nonlinear transformations
encapsulated by the network [44], three different activation
functions are allowed to be selected, namely modified sigmoid
(which was used in the original NEAT [17]), saturated linear or
ramp, and sigmoid functions. Their mathematical expressions
are given below:
1+67+9’”’i7 if Mod.
max(min(v;, 1),0),
TR

Sigmoidal
yi = o(vi) =

if Ramp

if Sigmoidal
(1)

EE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

Avg. Pop. Improvement Rate

Changed Activ. Func)

\.

' R
Generate DOE| , A NODE MUTATION
—{ of Problem / Modified Sigmoidal Ramp Sigmoidal
Scenarios
ol 153 || 104 || 253 || 25 |[5-4 r - ~
= [CONTROL DIVERSITY via ADAPTIVE SELECTION PRESSURE
Encoding 20N wis=09 || wis=-01 || wzs=1.0 || w2s=0.3 || wss=0.2 (c)
w Controller Plant
Iiz=1 Iiy=2 I3=3 I5=8 Is4 =9 Initial Desired ’ Change Execute next
Population ; nitia Diversity Tournament generation of
ANN 1= Ratio evaluation
ge e . w
Initialization VI8 oi=1 [02=1 [[0s=2 || #s=3 || #s=1 :
ol M =2 M;=0 M;=2 My=1 Ms=2 1 Feedback
] \|=z Gurrent Diversity (D)
AGENT 1 151y
nitial Speciati \ i O 1 Estimation
nitia eciation i
p 0 Memory 1 Memory 2 Memory AlgOI’Ithm : ~ 4
. . 1
Y GA operations on each niche 1
& 1
Using Problem - . New
- Species (Niche, : Changed| 1
"l Sclenanl(;s to [P /S(llﬁnka)ge-- Candidates MemorySia| | (CONTROL IMPROVEMENT RATE via ADAPTIVE MUTATION)
valuate Fitness Evaluation
.) A : Controller Plant (d)
GA operations on champion solutions 1 ' ' 1 Change Execute next
1 Mutation generation of
% Speciation) 7 L—p Rate evaluation
topping of New utatio rossovel S raplon Speciation| A (J .
Criteria? Canoraes P : Feedback
1
b 1 Feedback
(a) (b) :
]
1
1

Fig. 1: AGENT Flowchart; (a) Overall AGENT algorithm, (b) New types of nodal mutation, (c) Diversity controller (via adaptive selection pressure), (d)

Improvement rate controller (via adaptive mutation).

The memory property is introduced with the goal of captur-
ing the temporal dynamic behavior that is typically demanded
of neurocontrollers, without having to change the feed-forward
structure (to say a recurrent structure). Here, the memory
property of neurons is allowed to take one of three values:
M € {0,1,2}; a memory size of 0 designates using the
current weighted aggregate input incoming into the node;
memory sizes of 1 and 2 respectively designate using the first
and second time derivatives of the weighted aggregate input
incoming into the node. Equation 2 explains how the effective
net synaptic input to any node-i is computed based on its
memory property. In this equation, for a node connected to
n; upstream nodes, V;(7) gives the net synaptic input of node-
i in time step 7, o; gives the output of the upstream node-j, 7
is the time step used when implementing the neural network

as a controller, and U;(7) = Z;‘:l(wﬂ X 05).

Ui(7), if M =0

Ui(t) = Ui(r = é7) . _
V=4 e FM=1)

Ui(T)—2Ui(T—(ST)+Ui(T—2(ST)7 M =2

(67)2
For control and planning problems, 47 can be defined to be
the simulation time step at which state information is recorded
during episodic trials. Here, we use §7 = 1. Therefore, the
above memory equations seek to estimate and propagate the
first and second time derivatives of the information computed
insitu w.r.t. the state inputs.

B. Initialization

Unlike the original NEAT and the majority of its variations,
the AGENT permits a small number of hidden neurons in
genomes of its initial population, instead of a minimalist
topology with no hidden neurons. This approach helps expedite
the optimization process in most higher-dimensional problems
or in problems with Multiple Inputs and Multiple Outputs
(MIMO), which usually demand a more complex ANN than
that provisioned by a minimalist topology. The number of

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:2

hidden nodes in each genome is chosen from a distribution such
that the expected value (over the population) of the number of
hidden nodes is given by+/n; X no which helps diversifying
in the initial population. Here n; and no are respectively
the numbers of input and output nodes. This average sizing
of initial ANNs is motivated by the work of Stathakis [45].
This initialization is merely suggestive, since AGENT can
both complexify and decomplexify the neural network by
adding and removing neurons, and can thus work with other
minimalist or prescribed initializations as well. Since AGENT
evolves non-layered TWEANNSs with neuronal properties that
offer additional variability, numerical experiments expectedly
showed that our initial size requirements were slightly smaller
than that recommended in [45].

C. Speciation

Speciation is a crucial process in the AGENT algorithm.
In this process, the population is divided into several groups
or species (also referred to as niches). Speciation has two
objectives. First, it protects newly generated genomes (which
contain yet-to-be-stabilized weights) from elimination due to
selection pressure. Second, it facilitates searches within each
species. The speciation process adopted here is conceptually
similar to that in SUNA [19]. The speciation process has
three steps. In step 1, we order the networks based on their
uniqueness. In step 2, the networks with the highest uniqueness
values are selected as the anchor genomes to form niches. In
step 3, the rest of the population is classified into these niches,
based on their similarity to each anchor genome. While for the
ease of implementation, the total number of groups are fixed
(here, set at min(fog”L8)), the size of groups could vary
across generations. This is because the distribution of genomes
w.r.t. their design space varies across generations.

The uniqueness of a genome is defined by how distinct a
genome is from others in the population, based on a distance
measurement in the design space of TWEANN:Ss. This distance
metric is described in Section III-A. Specifically, the unique-

/43 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

BEHIAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION

ness (u4) of a generic genome-A can be expressed as
3)

Here, B represents any genome in the population other than
A, and the distance metric dsp provides a measure of dissim-
ilarity of the two genomes, A and B.

D. Selection

Here, tournament selection [46] is used in AGENT due to
its property of being invariant to order-preserving transforma-
tions. Moreover, compared to the proportional selection [46],
tournament selection provides the opportunity to adapt the
selection pressure by varying the ratio between the number of
genomes that participate in the tournament and the number of
genomes that are allowed to win the tournament. The classical
tournament selection uses one-to-one competitions, with each
genome competing twice with randomly selected opponents.
Here, we define a more generalized multi-player competition,
comprising randomly selected Ny genomes, among which the
fittest Ny genomes are allowed to win the tournament and get
copied to the mating pool. A total of 2N/Ny, such random
tournaments are conducted. This allows the selection process
to create a mating pool of size 2NV, from which IV offspring are
subsequently derived via the crossover operation. We will later
see in Section III-B that, the probability of getting selected,
i.e., the selection pressure, can be regulated by controlling the
Ny /Nr ratio. Diversity increases when this ratio decreases.
Note that since crossover here (described next) produces one
offspring per pair of parent genomes, a mating pool of size 2NV
is created to preserve the population size over generations.

E. Crossover

AGENT expands on NEAT’s crossover process by trans-
ferring the special nodal properties to the offspring. Figure 2
(c) illustrates this procedure. Weights of common edges are
inherited randomly from one of the two parents, with an equal
probability. The nodal properties, i.e., the activation function
type, and memory type, as well as the weights associated with
unique edges, are inherited from the parent genome with higher
fitness.

F. Mutation

The mutation operator in AGENT includes edge mutation
that adds connections similar to that in NEAT, as well as node
mutations as implemented in other later architectures [19],
[47]. At the same time, we also implement newer types of
edge mutations for decomplexifying the network (not present
in NEAT or its popular variations), and newer node mutations
that allow switching between nodes with different memory and
functional characteristics. As illustrated in Fig. 2 (a, b), there
are three major types of mutation in AGENT: 1) connective
(continuous space): mutation of edge weights; 2) topological:
addition and removal of edges and nodes of the network; and 3)
neural (categorical space): mutation of nodal properties. Each
type of mutation has its own mutation rate, whose initial value
(1) can be prescribed, and the rate (y;) is then controlled over
generations (as described in Section III-D).

It should be noted that the addition of edges/nodes increases
the complexity of the network, and their removal leads to
the simplification of the network. With this capacity to both
complexify and simplify network topologies, the mutation

ups = min dAB
VB#A ’

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;s://www.ieee.orgfﬁ)ublications/rights/index,html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

Initial Network 1 Add Edge 4 Remove Edge 5

wiﬁ»

Add Node 3

¥

Mutate weights 2 Remove Node 6

(a) Mutation of edges and nodes (addition or removal) and
mutation of real-valued edge weights
Initial Network

Change Memory Size Change Transfer Function

Common Edge in A
—» Common Edge in B
-~ Only A’s Edge
— Only Bs Edge

(c) Crossover: f4 and fp are the fitnesses of genomes A and
B; since fp > fa, unique edges (e.g., 3 — 8) and nodal
properties (e.g., nodes 2 and 6) are inherited from B.

Fig. 2: Mutation and Crossover operations in AGENT

operation in AGENT is hypothesized to enhance the computa-
tional efficiency of the learning process, while still preserving
the ability to generate parsimonious policy models (as in
other TWEANNSs). The different types/sub-types of mutation
operations in AGENT are further described below.

Mutation of existing edge weights: For existing edges be-
tween any two nodes ¢ and j, real-valued Gaussian mutation
[48] of weights is undertaken, as given by:

wi,j = wm- +7r

r e N(0,0%)
Here, w; ; is the weight of the edge connecting nodes 7 and j.
The extent of mutation is controlled by the standard-deviation
parameter o,,, which can be prescribed by the user. A default
value of 0.2, i.e., 10% of the initial range of edge-weight, is
used in our case studies.

Addition of an edge: An edge can be added between any
existing pair of nodes (¢ and 7) as long as duplicate edges and
cycles are not produced. The new edge is assigned a unique
innovation number, I; ;, and a weight w; ; chosen randomly
from a uniform distribution in the range [—1, +1].

Removal of an edge: An edge between any existing pair
of nodes can be removed as long it does not produce a
floating node. A floating node is one that either has no
incoming edges or no outgoing edges. In our implementation,

“

EE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

the mutation rate for removing an edge is kept at 80% of the
mutation rate for adding an edge, thereby allowing the slightly
greater probability of network complexification (compared to
simplification).

Addition of a node: A new node k can be added on an
edge (previously connecting nodes ¢ and j), resulting in the
splitting of the edge into two edges. The two new edges thus
created are assigned new innovation numbers (I; 5 and Iy ;)
and randomized new initial weights (w; ;, wy ; € [—-1, +1]).

Removal of a node: Any hidden nodes can be removed. After
removing the hidden node, all incident downstream nodes (with
respect to the removed node) are connected to all upstream
nodes to which the removed node was connected using new
connections. The weights of the new connections or edges
are again randomly assigned from the range [—1, +1]. Node
removal probability is kept at 80% of the probability of adding
a node.

Mutation of nodal properties: Nodal properties are muted
by probabilistic switching between the categorical values of
these properties, i.e., different activation functions or memory
values. In the case of memory, the probability of selecting
M = 0,1, 2 are respectively set at 0.5, 0.25, and 0.25 to give
more weight to the memory-less type of node. In the case of
activation function, all three types have an equal probability of
getting selected during mutation.

The mutation operations of adding/removing edges or nodes
are illustrated in Fig. 2(a) and those of changing nodal prop-
erties are illustrated in Fig. 2(b). Each of these mutations is
carried out for a given node/edge of a candidate ANN genome
in the population, only if the following criteria is satisfied:
r < py; here r is a random number between 0 and 1, and p,
is the rate at generation ¢ associated with that particular type
of mutation. Each of the above-described types of mutation
has its own rate parameter. Supplementary materials Section S
- III list the different mutation rate parameters, their subject
of operation, their default initial value, and the recommended
range. These rates are controlled over generations in order to
adapt the rate of fitness improvement suitably.

Note that the list of crossover, mutation, elitism, selection,
speciation and diversity operations in AGENT, and the asso-
ciated parameters and their settings are provided as Table I in
the Supplementary Material S - III.

ITII. ADAPTATION MECHANISMS IN AGENT

In this section, we explain the formulations proposed to
adaptively regulate the diversity and fitness improvement rate
in AGENT along with the requisite metrics and limits, ending
with a description of how we quantify network complexity.
A. Diversity Preservation: Measure of Diversity

Population diversity is paramount to effective neuroevo-
lution. This calls for adaptively regulating the population
diversity — an abrupt decrease in diversity can lead to premature
stagnation, but at the same time, a steady (low) rate of diversity
reduction is needed for exploitation and eventual convergence.
The first step in diversity preservation is measurement of
diversity in the population. To develop a diversity measure, we
need to first measure the net difference between the designs of
any two neural networks, i.e., the difference in their structure
and weights. Subsequently, an approach (which is currently

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

lacking) is needed to use this measure of differences to quantify
the overall diversity in the population. In this paper, we propose
a new approach to quantifying the diversity in a population of
ANN genomes.

In neuroevolution, since genomes encode different topolo-
gies, their basic dimensionality varies across the population.
Hence, a distance metric partly motivated by the novelty metric
[19] is used here to quantify the difference between any two
genomes. The distance, d4, g, between two candidate ANNS,
A and B, is thus given by the weighted sum of the difference
between their node types, as well as the difference between
edges connecting different types of nodes.

Pr Pr Pr
dap=ap E |Pia— P gl+ag E E |Eisja— Eissj B
i=1 i=1j=1

&)
In Eq. 5, P 4 and P; p are the number of nodes of type i
respectively in neural networks A and B; F;_,; 4 is the number
of edges from node type 7 to node type j in neural network A;
and Pr is the number of types of activation functions allowed
in the ANN. The weights ap and ag are prescribed to be
0.5 in this paper. Note that only the type and connectivity of
neurons, and not the continuous parameters associated with
them (namely weights and biases), are considered to quan-
tify the difference between candidate neural networks. This
approach is based on the premise that as long as diversity in the
combinatorial characteristics (which includes topology) of the
network can be preserved, the weights will anyways converge
and follow suit, since the time constants of weight change is
much higher than that of the topology. This approach also
works well with the emerging hybrid concept of optimizing
the continuous parameters insitu through a gradient descent
approach [49], while the topology is being evolved.
To quantify the overall population diversity at any generation
t, we construct a complete undirected graph K out of the
population of N candidate genomes. The length of the edges
connecting candidate genomes in this graph is given by the
distance metric in Eq. 5. Then, by employing the concept
of minimum spanning tree (MST) on the graph Ky, the
overall population diversity is given by the total length of
the MST. The concept of using MST to represent diversity
has been explored in population-based optimization methods
[50]. Figure 3 illustrates how the concept of MST is applied to
the graph derived from the estimated distances between ANN
genomes in the population. Thus, the population diversity D,
at the t'" generation can be expressed as:

D, = Z da.B

v A,BEM.S.T

(6)

where A, B represents an edge connecting genomes A and
B in the population graph. Kruskal‘s Algorithm [51] is used
to determine the MST, which involves a frugal computational
expense of the order of O (|Ky|log|Ky|), where |K]| is the
number of edges in the graph. For reference, a pseudocode
of Kruskal’s algorithm is given in the Supplementary Material
Section S - L

In order to effectively calibrate diversity, we can now define
a desired value for diversity and also delineate an approach

EE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

BEHIAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION

Fig. 3: Applying Kruskal’s Algorithm [51] to compute the MST (dark edges get
excluded) for the graph based on differences between ANNSs in the population

to maintain this desired value. The desired diversity, D, ;, can
be defined as a linear (gradual) decay function of number of
generations (t), as given by:

6D X tmax — t (7)

/BD X tmax
Here D, is the measured diversity in the initial population,
the coefficient Sp > 1 facilitates gradual decay and seeks
to facilitate a lower bound to the diversity retained in the
final population, and ¢,,,x is the maximum allowed number
of generations. The measurement of current diversity and the
desired diversity decay formulation are together used to control
the selection operation, in order to regulate the population
diversity, as described next.

B. Diversity Preservation: Controlling Diversity

Since the selection process guides how greedy (biased
towards the fittest genomes) or diverse will be the resulting
mating pool, it can also serve as a medium for diversity preser-
vation. Here, the tournament size in the selection operator is
used as the control input to regulate the diversity.

In a population of N genomes, the probability of selecting a
specific genome, to be copied into the mating pool, decreases
with the number of genomes participating in the tournament
(N7) and increases with the number of the genomes chosen
from the tournament (Nyy). More specifically, the probability
of the k' ranked genome to be selected into the mating
pool (IP) by resampling can be approximated by the following
expression (where the higher order terms are ignored):

Dd,t = DO X

Nt N
N k—1 N—k
p(k S P) =1— N — NT N Ti:;\/‘w ())(NT’Ll))
")
3

where the rank % is determined by sorting the popula-
tion simply based on fitness. The derivation of this prob-
ability of selection is provided in the supplementary docu-

ment Section S - II. By decreasing Nrp, the effect of the

(k—1)!x (N—Nyw)!
term (1 — DX =N !

choosing all genomes become more uniform (less dependent
on ranking). Similarly, increasing Ny tends to decrease the
standard deviation in the probability of selection across the
ranked population, considering that P is a function of k

) decreases and the probability of

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

(ranking of genomes).

In summary, it can be seen that the probability of choosing
lower ranked genomes increases by increasing the ratio %—VTV
Therefore this ratio can be used to decrease the selection
pressure, thereby increasing the diversity, and thus serves as

a suitable choice for a control input. For regulating diversity

at any {th generation, we define the control input as a negative
exponential function:
Nw| _ Nw « e~ Kp(Di=Da,y))
Nr |, Nr |4

Kp is the diversity gain coefficient, which regulates the degree
of change that must be applied to the tournament ratio. We
set Kp = 0.1. (Dy — Dg) represents the difference between
the observed diversity (Eq. 6) and the desired diversity (Eq.
7). Due to undesirable diversity loss when this difference falls
below zero, the above controller will increase the Ny /Nrp
ratio, therefore relaxing the selection pressure. This, along with
speciation, is premised to provide lower ranked but potent
genomes (e.g., more complex ANN topologies with premature
weights) a greater chance of being selected into the mating
pool.
C. Improvement Adaptation: Metric of Improvement

The premise behind tracking and controlling fitness is its
ability to reflect whether adequate search dynamics are af-
forded by the population. Since diversity is simultaneously
being preserved, steady improvement in average fitness over
generations compared to the improvement in the fitness of the
population’s best fitness is reflective of a useful balance in
exploration and exploitation, and thus a robust search process.
With this premise, we first define an improvement metric that
captures the history of improvement, as given by

t—1 '

L= (ar(fi— fi)

=0

(10)

Here, f; and f; represent fitness function values at the ¢
(current) generation and the ith generations, respectively. The
constant oy is a scaling coefficient. This metric is designed
such that more recent improvements have a greater influence.
Both improvements in the average fitness (fayv: = Zf;l fi)
and the fitness of the population best (fye+ = maxij\;1 fi) are
measured using Eq. 10.
D. Improvement Adaptation: Mutation Controller

If the rate of improvement in the average fitness of the popu-
lation lags far behind the rate of improvement in the best fitness
value, it demonstrates a weakening exploitation dynamic. In
TWEANNS, mutation is the main driver of network innovation.
Too high a rate of mutation leads to the generation of new
niches of ANNs that do not get time to stabilize their weights,
and the algorithm starts acting as random search — and thus the
average fitness improvement starts lagging. Conversely, when
the rate of fitness improvement in the population’s best fitness
lags behind that of the average fitness of the population, it is
indicative of potential stagnation at local optima and weakening
exploration. This situation calls for increasing the mutation rate
to facilitate the discovery of new networks.

Thus, it is important to regulate the rate of mutation in order

EE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

to preserve a balance between the improvement in average
population fitness and the population’s best fitness. Thereof,
we formulate the following mutation rate (u:) controller:

Ibe,t - [av,t

—K] X
Ibe,t

Mt = Ht—1 X €

(1)

where p; is the mutation rate in generation ¢, Here, I, ¢
and [represent the fitness improvement metrics for the
population’s average fitness and the population’s best fitness,
respectively. These quantities are computed using Eq. 10. In
Eq. 11, K is the mutation controller gain coefficient which can
be prescribed to increase/decrease aggressive search dynamics.
Here, K7 is set at 0.1. This controller is applied on the rates
of different types of mutations, as listed in supplementary
materials Section S - III. Essentially, this controller (Eq.
11) decreases the mutation rates when the average fitness
improvement lags behind the best fitness improvement, and
vice versa.
E. Measure of ANN Complexity
An understanding of how an evolutionary approach varies
the network’s topological complexity is critical to analyze its
effectiveness in adapting expressibility to a given problem.
When determining the complexity of a neural network, we
use the popular measure of Von Neumann Entropy [52] with
quadratic approximation, specifically the idea of Normalized
Laplacian for directed graphs [53]. When expanded [54], this
idea leads to the following expression for network complexity:
1 1

S=1-———

s (12)

in,v

Here n is number of nodes and (u, V) € E is a directed edge
connecting nodes, with dqy: o, and ds, ,, indicating the out and
in degrees of nodes u and v respectively.
IV. BENCHMARK TESTING AGENT: OPENAI GYM

In this section, we apply the new AGENT algorithm to solve
a suite of benchmark problems in RL and control, with the next
section describing an application of AGENT to solve a complex
online planning problem in the UAV domain. The benchmark
problems are adopted from OpenAl Gym [10], which is an
open-source platform that has been growing in popularity for
benchmarking and comparing RL algorithms [55], as well as
other learning and optimization methods [23] to solve control
problems and other RL type problems. In this paper, we
showcase the performance of AGENT on four problems from
the Classic Control and Box2D suites in OpenAl Gym. These
problems include: 1) Mountain Car, 2) Acrobot, 3) Lunar
Lander, and 4) Bipedal Walker. Brief descriptions of these
problems are given in the Supplementary Material section S -
IX. For ease of reference, visual snapshots of these problems
and definitions of their state and action spaces are included as
Table V in the Supplementary Material. Further information on
these problems can be found at the OpenAl Gym website 2.
The problem settings such # inputs/outputs, high-level settings
in AGENT such as population size and max generations, and
size of neural networks resulting from AGENT are summarized
as Table S - II in the Supplementary Material.

Zhttps://github.com/openai/gym/wiki/Leaderboard

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

This Section is structured as follows: First, we summarize
each benchmark problem and present the results of the AGENT
algorithm and its comparison with state-of-the-art RL results
reported for that problem. We also compare AGENT’s perfor-
mance with that of a standard NEAT implementation [42] and
Adaptive HyperNEAT [25]. While comparing the goal function
or net reward value is straightforward for most problems,
it is challenging to compare the computational costs across
methods coherently. Typical measures of cost (e.g. number
of episodes, number of time steps, CPU-time) are unreliable
when comparing across different RL and evolutionary methods.
This is because of the difference in the nature of episodic
sampling in RL vs. Neuroevolution, greater cost accumulated
by more successful policies in some problems, impact of the
ODE solver’s time-stepping in control problems, and different
degrees of parallelizability of these methods (mostly in favor of
evolutionary methods [23], [11]). We still report the # episode
used by each method, mainly for reference. The results of
AGENT and the comparative algorithms on the benchmark
problems are all summarized in Table I, and discussed below.
Note that, since the neuroevolution methods are stochastic,
AGENT, NEAT and Adaptive HyperNEAT are each run 10
times on every OpenAl problem. Their results, i.e., net reward
value and # episodes used, are then reported in terms of
mean =+ standard deviation over those 10 runs. Since the RL
problems are from literature and NEAT function evaluation is
controlled by its algorithm , it is difficult to make the number
of function evaluations equal. Furthermore, neuroevolution
follows a highly parallelizable algorithm which makes the
computation cost of neuroevolution a function of number of
generations instead of function evaluations.

Subsequently we discuss the convergence history and opti-
mum network topology obtained by the best run of AGENT
on each problem. We also provide an analysis of the change
in the average/best improvement rates, population diversity
and network complexity over generations in AGENT. Selected
benchmark problems are also used to conduct ablation tests
to analyze the impact of the unique features of AGENT,
namely the selection and mutation controllers and the memory
property of nodes. Note that an extended analysis of how the
new diversity measure in AGENT compares to diversity in
the outputs given by different networks in the population is
provided in the Supplementary Materials Section S - V.

A. OpenAl Gym Problems: Comparative Analysis

Here we briefly describe the results obtained by AGENT
for each of the four OpenAl benchmark problems, and how
they compare to state-of-the-art RL methods reported in the
literature. The choice of the RL methods used for comparison
is based on the availability and reported superiority of their
published results on these benchmark problems.

1) Reward Evaluation for OpenAl Gym Problems

The four OpenAl Gym problems used here involve stochas-
tic elements (e.g., randomized initiations and action uncertain-
ties) which makes it challenging to have a robust evaluation
of the reward based on a single episode. Hence, multiple
episodes are used to evaluate the quality of each genome, and
for efficiency we allow each genome to progress to the next
episode (during evaluation) only if it has gathered a threshold

EE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

BEHIAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION

amount of reward. Mathematically, this can be expressed as:

Ng.i 1 N,
j=1 S =1

where R; ; is the reward the agent receives for each action
taken; NN, ; is the total number of actions taken in the ¢-th
scenario; Fj; represents the genome’s accumulated reward in
that scenario; F' represents the net fitness function evaluated
for an ANN genome; and N, refers to the maximum number
of scenarios available during training. In Eq. 13, N, refers
to the number of scenarios where the genome surpasses an
adaptive threshold that is set based on the historic performance
of genomes (e.g., a threshold of 0.8 x F; if F;* > 0 or
1.2 x Fr if F;* < 0, where F;* is the reward accumulated
by the previous best genome in the i-the scenario). Having
multiple scenarios (here, five scenarios for AGENT) is posited
to mitigate overfitting to training scenarios. The increased
probability of mutations that complexify the network allows
better exploration and thus addresses underfitting.
2) Mountain Car: Results

For this test problem, the performance of AGENT is com-
pared to the performance reported for the Random Weight
Guessing (RWG) method [56]. RWG is an exploration based
method, and thus incurs a relatively high number of episodes
to converge. From Table I, it can be seen that AGENT was able
to find a 3% greater net reward value with negligible variance
(and in fewer number of episodes) than that reported for the
RWG method.
3) Acrobot: Results

For this test problem, the performance of AGENT is com-
pared to that reported for the popular Q-learning method with
Adaptive Memory Replay [56]. As can be seen from Table
I, AGENT is able to achieve a clearly better net reward value
compared to that of the RL method [57]). However, in this case
AGENT requires a substantially greater number of episodes
to converge, compared to RL; note that AGENT reaches a
comparable net reward value much sooner, as evident from the
convergence history plot in Fig. 4b.
4) Lunar Lander: Results

The optimum results obtained by AGENT for this problem is
compared to that reported for a popular implementation of the
SARSA method [58]. As seen from Table I, AGENT does not
perform as well as the RL method. Considering the complexity
of this problem, the results are expected to be better if a larger
population size or greater # maximum generations are allowed.
Moreover, the handcrafted design of the reward functions in
such problems often aggregate multiple criteria which might
be more favorable to particular solution approaches.
5) Bipedal Walker: Results

The optimum results obtained by AGENT for this problem
is compared to that reported for a popular implementation
of Policy-on Policy-off Policy Optimization (P30) type RL
method [61]. Since the number of steps is not reported, we
used the maximum number of steps per episode to evaluate
minimum number of episodes in learning (which is at best,
an approximation). The NEAT implementation available to us
[60] encountered programmatic errors for Bipedal Walker, and

13)

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

hence the results of NEAT is adopted from [59] for comparison,
and appear to be marginally better than the mean performance
of AGENT over ten runs for this problem (as seen in Table
I). As observed from Table I, all the neuroevolution methods
perform poorer to the RL (P30) method, which is expected
given the larger size of the state space for this problem. Larger
population size and initiation with larger/deeper networks in
the initial population might be able to address this issue in the
future. Between AGENT and HyperNEAT, Table I shows that
AGENT performs marginally better than HyperNEAT w.r.t. the
optimum reward value obtained.

B. Comparison with NEAT and Adaptive HyperNEAT

We also compare AGENT with a state-of-the-art implemen-
tation of NEAT (with recurrent network) in Pytorch [60], based
on [17] and an advanced variation of NEAT, aka HyperNEAT.
We run NEAT with similar settings as that used in AGENT
for the corresponding problem. Note that, when implementing
NEAT on the Acrobot and Lunar Lander problems, each
genome is evaluated over all five random episodes and the
progressive reward computation concept (Eq. 13) is not used;
without this allowance NEAT performance was very poor.
Table I lists the results of this NEAT implementation. Unlike
NEAT, HyperNEAT uses Compositional Pattern Producing
Networks (CPPN) [24] to indirectly encode the weights, and
facilitate evolution of larger networks. In our case, we compare
with adaptive HyperNEAT, which uses CPPN to both encode
weights and the Hebbian rule [62] for updating the network.
For Adaptive HyperNEAT the progressive reward computation
concept (Eq. 13) is used, as in AGENT.

As seen from Table I AGENT performed better than Pytorch
NEAT in terms of net reward values in all three OpenAl
problems. AGENT took roughly half the number of episodes to
converge as NEAT did on the Acrobot and Lunar Lander prob-
lems. The performances of the two methods are comparable
for the Mountain Car problem, with AGENT exhibiting lower
variance in computing cost. While these results could change if
PyTorch NEAT is implemented with further calibrated settings,
the comparison provided here is intended to (and does) demon-
strate the favorable effects of the fundamental modifications in
AGENT over the standard NEAT algorithm.

From Table I, it can be seen that the performance of
AGENT and Adaptive HyperNEAT are relatively similar in
terms of reward values for the Mountain Car and Acrobat
problems. However, Adaptive HyperNEAT is found to require
a fewer number of episodes to converge on the corresponding
optimum solutions. In the case of the Lunar Lander problem,
AGENT is found to arrive at better reward values than Adaptive
HyperNEAT. The higher episodic cost of AGENT is attributed
to its explicit diversity preservation, which usually comes at
some compromise in convergence rate, as well as likely due
to the use of direct encoding of weights.

C. Computation Cost Analyses

As seen from Table I, in terms of the # episodes used, the
training cost of AGENT appears comparable to (or slightly
better than) that of NEAT and poorer than that of Adaptive
HyperNEAT, across the OpenAl Gym problems. Here, all three
neureovolution algorithms are subject to the same population
size, the same maximum number of episodes (5 scenarios, here)

EE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022
AGENT (our method) Mountain Car Acrobat Lunar Lander Bipedal Walker
Best Reward* 99.25 + 0.14 -65.20 + 3.56 86.69 + 18.28 4.5+ 0.25
Episodes 22,027 £ 775 47,346 £ 1,917 43,339 £+ 438 23,955 + 543
Random Weight Adaptive Memory
RL Benchmark Guessing [56] Replay [57] SARSA [58] P30 [59]
Best Reward* 96.1 ~ —75.0 ~ 200 ~ 250
Episodes 200,000 1,000 40,000 > 6250
NEAT (PyTorch) [60] Mountain Car Acrobat Lunar Lander Bipedal Walker [59]
Best Reward* 65.07 + 42.64 —119.64 + 1.57 10.63 £ 11.02 ~ 6.75%
Episodes 17,887 + 8,932 100, 143 £ 87 99,980 £ 52 > 6250
Adaptive HyperNEAT . .
(PyTorch) [25] Mountain Car Acrobat Lunar Lander Bipedal Walker
Best Reward* 99.24 + 0.05 —67.00 £ 2.79 0.92 +47.98 1.62 + 2.80
Episodes 6,790 + 794 11,180 + 518 10,899 + 435 10,646 + 252

*The Bipedal Walker results for NEAT (from [59]) doesn’t use settings similar to what AGENT and HyperNEAT uses in our simulations.

TABLE I: Benchmark evaluation on OpenAl Gym problems: AGENT vs. reported results of state-of-the-art RL methods and of PyTorch implementations of
NEAT, and Adaptive HyperNEAT. Due to their stochastic nature, AGENT NEAT and HyperNEAT results are reported in terms of mean =+ standard deviation
of the optimized fitness over 10 runs. [Note that reward values are higher the better]

100 -50

c()s(61) e(B) s(f2) 6 02 Bias
—2 p e

V=12

est

FBest

E|=15

80 -350
1) 20 40 60 80 100 0 20 40 60 80 100
Generation # Generation

(a) Mountain Car Problem (b) Acrobot Problem

150

X Y Wx W

0§ LC RC Bias K
e

FBest

V=18
|E| =32

Which bny;u
0 20 40 60) w0 20 40 6 80 100
Generation # Generation
(c) Lunar Lander Problem (d) Bipedal Walker Problem
Fig. 4: Convergence history of the best of 10 runs of AGENT on OpenAl
Gym problems, and the topology of the corresponding optimized network

for evaluating each unique candidate network, and the same
maximum number of generations for each problem, thereby
promoting fair comparisons. Now note that, due to the progres-
sive reward evaluation approach as explained in Section IV-A2,
and that only uniquely new network genomes are evaluated in
any generation, the executed number of episodes per candidate
evaluation (thus < 5 here) and per generation respectively both
vary. Hence, even though the neureovolution algorithms are run
till the same prescribed maximum number of generations (as
seen from the convergence history plots in the Supplement, Fig.
S - 3), the overall costs in terms of total # episodes could be
different. Here, HyperNEAT cost in this respect is lower likely
due to fewer candidates qualifying to be evaluated over all five
episodes, and the presence of fewer uniquely new genomes in
subsequent generations, compared to AGENT. On the other
hand, while the reported RL results shows smaller computing
cost compared to all three neuroevolution algorithms in terms
of # episodes (as Table I shows), note that neuroevolution
benefits from ready parallelization, and hence actual clock-
time comparison could be different, as explained towards the
start of Section IV.

For practical context, here we also report the computing

time of a representative runs of AGENT — For a system with
Windows 10, 16GB RAM and Ryzen 7, 2900 MHz 8-core

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https:/www.ieee.or

CPU, AGENT took: i) 50 mins to run 50 generations of
the OpenAl Mountain car problem with a population of 50
candidates; ii) 220 mins to run 50 generations of the OpenAl
Acrobot problem with a population of 200 candidates; and iii)
65 mins to run 50 generations of the OpenAl Lunar lander
problem with a population of 200 candidates.

D. Convergence History & Optimum ANN Topology

To provide insights into the nature of convergence of
AGENT and the complexity of the resulting optimum ANN
topologies, we use the best run of AGENT from each test
problem, and show the corresponding convergence history out-
comes in Fig. 4. It can be observed from Fig. 4 that significant
improvement (between 15 to 150 % for different problems) in
net reward values were accomplished during the neuroevolution
process in each benchmark problem. The improvement is
relatively gradual for the more complex Lunar Lander problem.
We also observed that AGENT was able to generate small
(parsimonious) policy models for each of these problems. To
put that into comparative perspective, consider that for the
Lunar Lander problem, SARSA (State—Action—Reward—State-
Action) algorithm [58] trained a model with 2 hidden layers
and a total of 32 nodes (16 RELU and 16 softmax nodes)
and over 400 weight and bias parameters vs. a policy network
with only 18 hidden nodes and 26 weight parameters evolved
by AGENT (Fig. 4c). For the Mountain Car and Acrobot
problems, the reported RL methods used for comparison do
not clearly report their model sizes.

For comparison of convergence trends, the convergence
history plot of the best of 10 runs of HyperNEAT on each of the
four OpenAl Gym problems are included in the Supplement as
Fig. S - 3. The AGENT convergence histories are re-plotted
therein as well. We observe from that figure that HyperNEAT
stalls early on for Mountain Car, Acrobot problems and Bipedal
Walker problems. For Lunar Lander, while HyperNEAT shows
gradual improvement, it converges to a premature (~ 45%)
poorer reward value compared to AGENT.

A more in depth analysis of the change in ANN complexity
over AGENT’s generations, and the accompanying process of
fitness improvement and variation in population diversity is
provided in the Supplementary Materials section S - V.

/)
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from %IEEE Xplore. Restrictions apply.

ublications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

BEHIAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION

-200

274008 | —~Kp =0.0, K; =00
—O—I{DZO.O7 K1:01
-600 —-—-Kp=0.1, K; =0.0
—O—KDZO.L K1=01

-800 L w : ‘ w .]

0 5 10 15 20 25 30

Generation

Fig. 5: Acrobot problem: AGENT’s convergence history of the median case
under each controller setting
E. Ablation Tests: Impact of the Adaptive Controllers

Here, we analyze the effect of diversity and improve-
ment rate control in AGENT, achieved via regulation of
selection pressure and mutation. Specifically, to study the
individual and joint impact of the two controllers, we con-
duct an ablation test by using the following four dif-
ferent combinations of the controller gains: (Kp,Kj;) €
{(0.0,0.0), (0.0,0.1), (0.1,0.0), (0.1,0.1) }; a zero gain repre-
sents a shut-off controller. With each { K, K} setting, we run
AGENT 5 times on the Acrobot problem. Given the high cost
of testing multiple combinations, we limit the max generations
to 30 in this test, as well as in the analysis of the effect of
memory nodes presented in Section I'V-F.

Kp,K; = 0.0, 0.0 | 0.1, 0.0 | 0.0, 0.1 | 0.1, 0.1
Reward: Mean -127.0 -105.8 -97.2 -83.7
Reward: Median -124.50 -92.2 -75.0 -67.5
Reward: Std-Dev 49.5 443 47.6 24.4

TABLE II: Acrobot: AGENT’s best genome’s reward over 5 runs, under each
controller setting — K p: diversity controller gain (regulates selection), K:
avg vs. best improvement rate controller gain (regulates mutation)

Table II summarizes the distribution of the reward value of
the best genome obtained by AGENT over 5 runs, under each
controller setting. The convergence history of the median case
under each controller setting is shown in Fig. 5. The results
in Table II show that using controllers has a clear positive
effect on mean performance (higher) and robustness (smaller
std-dev). Overall, the performance improvement, in terms of
mean or median value (higher the better) and variance (lower
the better) of the best reward obtained, is most significant when
both controllers are used together, as seen from Table II. Now,
when we consider the starting points (i.e., the quality of the
best genome in the initial population) in the median cases,
the diversity controller (Kp # 0) seems to provide the most
significant convergence gains, as observed from Fig. 5.

F. Ablation Test: Analyze the Impact of Using Neurons with
Memory in AGENT

To study the impact of using nodes with memory, i.e., nodes
of types M = 1 & M = 2 (refer Eq. 2), we run AGENT
on each of the benchmark problems with the memory choice
deactivated (i.e., allowing only nodes of type M = 0). When
memory nodes are available, neuroevolution is observed to
yield a final network with at least one node with memory,
e.g., the optimal model in the best “with memory” runs of
Mountain Car, Acrobot and Lunar Lander problems contained
(3/1/2), (8/1/1), and (9/2/2) nodes of types M 0/1/2,
respectively. The performance distribution of AGENT over 5
runs, obtained with and without memory nodes available to be

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

selected, are summarized in Table III. The table shows that
the realizable benefits of the availability of memory nodes is
problem dependent. For example, while in the Acrobot problem
significant mean performance gains are achieved when memory
nodes are available, in the other two problems, slight decrease
in mean performance is noted. These results are expected since,
while the availability of nodes adds flexibility to the space
of potential mappings (in continuous control), it increases the
complexity of the neuroevolution search process (leading to a
larger design space).

Problem Lunar Lander Acrobot Mountain Car
W/O Memory 57.3 £23.8 —111.4+£15.1 99.1 + 0.410
W/ Memory 55.5 + 23.1 -83.7 + 24.4 99.0 £ 0.276

TABLE III: Analysis of the impact of nodes with memory (Eq. 2) on AGENT
performance (Mean £ Std-Dev in Net Reward value of optimum network)

V. AGENT APPLICATION: UAV-UAV RECIPROCAL
COLLISION AVOIDANCE

In this section, we briefly describe the reciprocal UAV-
UAV collision avoidance problem, the simulation framework
used for this problem, and the performance of AGENT in
learning the collision avoidance maneuvers. As summarized
in Supplementary Materials section S - VI-A, in the recip-
rocal collision avoidance strategy, two approaching identical
quadcopter UAVs undertake mutually coherent maneuvers to
avoid collision with each other, based on the same ANN-based
maneuver planning model [43]. This model is developed via a
framework called training reciprocal actions for collision eva-
sion (TRACE) [43]. For successful collision avoidance, the dis-
tance of separation between the two UAVs must always remain
greater than a safety threshold, d.,; = 2 X UAV_Diameter.
Two different local trajectory modification strategies are used
to avoid a collision: 1) speed change (SC): UAVs respec-
tively accelerate/decelerate and decelerate/accelerate to avoid
the collision; and 2) direction change (DC): UAVs deviate
respectively to the left of their original heading to avoid the
collision. Both maneuvers are designed in a way such that the
UAVs return to their original path and velocity at the end of the
maneuver. Table IV lists the UAV specifications and problem
settings used for training the maneuver model here.

A. UAV-UAV Collision Avoidance: Framework

Parameters Value
UAV Weight & Size (Dia) 28 g & 92 cm
UAV Nominal & Max Speed 8 m/s & 15 m/s
Safe Separation Distance (dgo) 2x diameter
Reaction Time 0.1 seconds

TABLE IV: UAV collision avoidance: Simulation settings

Problem Formulation & Design of Experiments: Here the
goal of designing the TRACE maneuver planning model is to
decrease the dependency of the system on sensing capabilities.
Dependency is represented in terms of the minimum range
of detection demanded of the overall “sensing and peer-state
estimation” system. As shown on the right part of Fig. 2, the
input to the neural network based maneuver model includes
the initial state parameters of the UAVs, and the output is
the strategy to be applied (SC or DC strategy) and the action
parameter associated with it, i.e., change in speed (dy) or
change in heading angle (¢). Equation 14 summarizes the input

EE Xplore. Restrictions apply.

11

s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

12 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

= 55 prrveTey

Gl Vg o Bjos

& 5.0F

3

~ 45

S

5 40 : Kusts” smngy
8 35 Optimized Network

é 3.0 L

=i 0 5 10 15 20 25 30

Generations

(a) Convergence History & Topology of The Optimized Net-
4.0~ : : . : ‘ ‘ ‘ ‘ ‘
WE Worst Case Detection Range

3.0F

2.0F

Minimum Detection Range, r; (x

Colision Threshold
T T T

0.0 = I I I I I I
0 20 40 60 80 100 120

Approaching Angle (°)

140 160 180

(b) UAV collision avoidance: Performance of the maneuver

model trained by AGENT over unseen test scenarios
Fig. 6: UAV-UAV Collision Problem: Convergence, optimum network and its
performance on test cases

and output of the maneuver model.

[0v,¢,s] = fu(APx,0,APy,0,VB x,0, VB,v,0)

where APX70 = PA,X,O — PB,X,O and APY,O = PA,Y,O —
Pp y,o respectively represent the initial separation of the two
UAVs (A: own UAV; and B: peer UAV) along the global X and
Y coordinates; Vg x,0, VB,y,0 are the initial velocities in X and
Y directions for the peer UAV (UAV B). Here, fy denotes the
neural network model, with ¥ encapsulating the TWEANN
model description (topology, biases and weights). The output
parameter s serves as a binary classifier that selects which
strategy is to be used — by using the following discrimination:
if s < 0.5, use SC strategy, otherwise use DC strategy. Thus,
the maneuver planning neural network encompasses a multi-
input-multi-output (MIMO) regression model.

In order to promote robust optimal maneuver planning, a
worst case scenario perspective is taken here. The objective
function to be minimized is thus defined as the worst case
(largest) detection range required to just-about avoid collision
across a set of uniformly distributed approach scenarios. Fur-
ther details of how this objective function is computed can be
found in [63]. Here neuroevolution is used to train the neural
network based maneuver policy model with this objective being
treated as the loss function to be minimized. Note that the
possibility of the controller not being able to adequately follow
the planned trajectory is also identified by using a Bagged Tree
classifier (details of which can be found in the Supplementary
Materials Section S - VI), thereby mitigating the need for
large number flight (motion) simulations.

B. UAV-UAV Collision Avoidance: Results

The AGENT algorithm settings used to solve this problem is
summarized earlier in supplementary materials and [63]. Figure
6a shows the convergence history of AGENT and the final
network structure obtained for this problem. AGENT was able
to discover a compact network with only 5 hidden nodes and

(14)

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from

a total of 26 edges. It can be seen from Fig. 6a that AGENT
converged in ~ 15 generations, and in that process achieved
a 33% improvement in the fitness function over the random
initial models — the minimum detection range decreased from
5.2 m to 3.5 m. This AGENT-optimized minimum detection
range, that just about avoids collision, leads to a less than 1.7
seconds of detection lead-time across the different approaching
angles. When HyperNEAT was applied to this UAV problem
with settings comparable to that of AGENT, it was unable to
find feasible solutions, with the final rewards value remaining
at -200 even after 100 generations. As future work, we could
look at specific reward shaping of the objective function to
help HyperNEAT better solve this problem.

For further analysis, in Fig. 6b we plot the minimum detec-
tion range given by the AGENT-trained maneuver model for
144 different unseen approaching angles (i.e., test scenarios).
The trained network is observed to generalize very well,
with the minimum detection range showing a smooth trend,
and always remaining smaller than the estimated worst case
detection range of 3.5 m. In other words, the performance of
the trained maneuver model persists on unseen test scenarios.

VI. FURTHER DISCUSSION

The analysis of the effect of memory nodes in AGENT
showed that while significant performance gains can be
achieved in some problems, in others the added (ANN) design
space dimensionality might cause slight reduction in perfor-
mance. The convergence histories, including that of rates of
improvement and diversity over generations, showed that the
controllers had desirable impacts, e.g., consistent changes in
the fitness improvement rate of the population average and
the best. Niche-averaged complexity was observed to follow
a generally increasing but not necessarily monotonic trend —
exhibiting an useful exploration/exploitation balance. Further
statistical analysis was performed to elicit how our popula-
tion diversity quantification was correlated with the observed
diversity in the outputs of the networks in the population,
with mostly noting a positive correlation except in the more
complex lunar lander problem (where the weights of the
more complex networks may not have stabilized within the
allowed max generations). Statistical analysis of the impact of
the controllers over the final outcomes showed that the most
significant improvement across multiple runs of the algorithm
was achieved when both controllers were used together.

It is important to note that mutation and selection operations
impact both average improvement rates and diversity; and
thus it remains challenging to discriminate and appropriately
adapt their independent impacts. At present, AGENT sep-
arately adapts selection to control diversity, and mutation
to control “average vs. best” improvement rate and the ex-
ploration/exploitation balance thereof. This leaves scope for
further explorations regarding how to coherently adapt both
of these operators to improve convergence. While more work
remains to be done in the neuroevolution domain to formally
describe and understand the interplay between diversity and
exploration/exploitation balance, our work here offers insight-
ful new mechanisms to quantify and potentially regulate these
characteristics of neuroevolution.

EE Xplore. Restrictions apply.

s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

BEHIAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION

VII. CONCLUSION

In this paper, we developed a new neuroevolution method
for designing TWEANNSs, by making important advancements
to the NEAT formalism. The goal was to study how the
new advanced features could help in mitigating premature
stagnation and providing competitive performance on complex
RL/control problems. The key contributions in this regard
included: 1) quantifying diversity using a graph-theoretic con-
cept and controlling diversity via adaptation of the tournament
selection process; 2) controlling average fitness improvement
via mutation rate adaptation; 3) include activation function
choice and memory as nodal properties; and 4) allowing both
growth and shrinkage of ANN topologies during evolution.

When applied to four benchmark control problems from the
OpenAl gym platform, AGENT provided competitive results in
terms of final reward values and network complexity, compared
to results reported with state-of-the-art RL methods. AGENT
was also compared to well-known PyTorch implementations
of NEAT and Adaptive HyperNEAT, with AGENT providing
superior results in terms of net reward value and usually
smaller cost compared to NEAT. Results of AGENT was also
comparable (slightly better) to Adaptive HyperNEAT on three
out of four benchmark problems, and significantly better in the
Lunar Lander problem. AGENT was also tested on a UAV-UAV
collision avoidance problem, resulting in 33% improvement
over random initial models in only 15 generations, with a
population size of just 100 genomes. The resulting model was
also found to generalize well over unseen scenarios.

We also studied the effect of the major new features in
AGENT on its search process and performance. The insights
gained therein points to the potential for translating AGENT’s
unique features, e.g., the controllers and the ability to both
grow and shrink ANN topologies, to directly advance other
neuroevolution algorithms, and is thus also an important di-
rection of future work.

REFERENCES

[1] A. I. Dounis and C. Caraiscos, “Advanced control systems engineering
for energy and comfort management in a building environment—a
review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6-7,
pp. 1246-1261, 2009.

S. Sonoda and N. Murata, “Neural network with unbounded activation
functions is universal approximator,” Applied and Computational Har-
monic Analysis, vol. 43, no. 2, pp. 233-268, 2017.

J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for
humanoid robotics,” in Proceedings of the third IEEE-RAS international
conference on humanoid robots, 2003, pp. 1-20.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, p. 529, 2015.

W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud, “Back-
propagation through the void: Optimizing control variates for black-box
gradient estimation,” arXiv preprint arXiv:1711.00123, 2017.

T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why and
when can deep-but not shallow-networks avoid the curse of dimension-
ality: a review,” International Journal of Automation and Computing,
vol. 14, no. 5, pp. 503-519, 2017.

D. Floreano, P. Diirr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47-62,
2008.

S. Risi and J. Togelius, “Neuroevolution in games: State of the art and
open challenges,” IEEE Transactions on Computational Intelligence and
Al in Games, vol. 9, no. 1, pp. 25-41, 2015.

N. Hansen, S. D. Miiller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance

[2]

[3

=

[4

=

[5

—_

(6]

(71

[8

[t

[9]

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;s://www.ieee.orgfﬁ)ublications/rights/index:html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:2

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

matrix adaptation (cma-es),” Evolutionary computation, vol. 11, no. 1,
pp. 1-18, 2003.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24-35, 2019.

E. Ronald and M. Schoenauer, “Genetic lander: An experiment in
accurate neuro-genetic control,” in International Conference on Parallel
Problem Solving from Nature. Springer, 1994, pp. 452-461.

X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423-1447, 1999.

A. J. Turner and J. F. Miller, “The importance of topology evolution
in neuroevolution: a case study using cartesian genetic programming
of artificial neural networks,” in International Conference on Innovative
Techniques and Applications of Artificial Intelligence. Springer, 2013,
pp. 213-226.

G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural networks
using genetic algorithms.” in /CGA, vol. 89, 1989, pp. 379-384.

J. D. Schaffer, R. A. Caruana, and L. J. Eshelman, “Using genetic
search to exploit the emergent behavior of neural networks,” Physica
D: Nonlinear Phenomena, vol. 42, no. 1-3, pp. 244-248, 1990.

K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99-127, 2002.

K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based
encoding for evolving large-scale neural networks,” Artificial life, vol. 15,
no. 2, pp. 185-212, 2009.

D. V. Vargas and J. Murata, “Spectrum-diverse neuroevolution with
unified neural models,” IEEE transactions on neural networks and
learning systems, vol. 28, no. 8, pp. 1759-1773, 2016.

M. Hausknecht, P. Khandelwal, R. Miikkulainen, and P. Stone,
“Hyperneat-ggp: A hyperneat-based atari general game player,” in Pro-
ceedings of the 14th annual conference on Genetic and evolutionary
computation, 2012, pp. 217-224.

J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J. C. Zagal, and H. Lipson,
“Evolving robot gaits in hardware: the hyperneat generative encoding vs.
parameter optimization.” in ECAL, 2011, pp. 890-897.

G. Wang, G. Cheng, and T. R. Carr, “The application of improved
neuroevolution of augmenting topologies neural network in marcellus
shale lithofacies prediction,” Computers & geosciences, vol. 54, pp. 50—
65, 2013.

F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
arXiv preprint arXiv:1712.06567, 2017.

K. O. Stanley, “Compositional pattern producing networks: A novel
abstraction of development,” Genetic programming and evolvable ma-
chines, vol. 8, no. 2, pp. 131-162, 2007.

S. Risi and K. O. Stanley, “Indirectly encoding neural plasticity as a
pattern of local rules,” in International Conference on Simulation of
Adaptive Behavior. Springer, 2010, pp. 533-543.

S. Risi, J. Lehman, and K. O. Stanley, “Evolving the placement and
density of neurons in the hyperneat substrate,” in Proceedings of the 12th
annual conference on Genetic and evolutionary computation. ~ACM,
2010, pp. 563-570.

S. Risi and K. O. Stanley, “Deep neuroevolution of recurrent and
discrete world models,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2019, pp. 456-462.

J. Schmidhuber, D. Wierstra, and F. J. Gomez, “Evolino: Hybrid neu-
roevolution/optimal linear search for sequence prediction,” in Proceed-
ings of the 19th International Joint Conferenceon Artificial Intelligence
(IJCAI), 2005.

D. Howard, A. E. Eiben, D. F. Kennedy, J.-B. Mouret, P. Valencia,
and D. Winkler, “Evolving embodied intelligence from materials to
machines,” Nature Machine Intelligence, vol. 1, no. 1, pp. 12-19, 2019.
A. Behjat, C. Zeng, K. K. Gabani, and S. Chowdhury, “Concurrent
morphology-optimization and behavior-learning:co-designing intelligent
quadcopters,” in AIAA Aviation 2020 Forum, 2020.

T. Weise, M. Zapf, R. Chiong, and A. J. Nebro, “Why is optimization
difficult?” in Nature-inspired algorithms for optimisation. Springer,
2009, pp. 1-50.

H. M. Pandey, A. Chaudhary, and D. Mehrotra, “A comparative review
of approaches to prevent premature convergence in ga,” Applied Soft
Computing, vol. 24, pp. 1047-1077, 2014.

/43 UTC from IEEE Xplore. Restrictions apply.

13

14

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

M. de Wet, “Avoiding premature convergence in neuroevolution by
broadening the evolutionary search,” Department of Computer Science,
The University of Texas at Austin, Undergraduate Honors Thesis
HR-11-02, 2011. [Online]. Available: http://www.cs.utexas.edu/users/
ai-lab?dewet:ugthesis11

J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evolutionary computation, vol. 19, no. 2,
pp. 189-223, 2011.

D. Gravina, A. Liapis, and G. Yannakakis, “Surprise search: Beyond
objectives and novelty,” in Proceedings of the Genetic and Evolutionary
Computation Conference 2016. ACM, 2016, pp. 677-684.

K. Kawaguchi, L. P. Kaelbling, and Y. Bengio, “Generalization in deep
learning,” arXiv preprint arXiv:1710.05468, 2017.

I. Vlasi¢, M. durasevi¢, and D. Jakobovié, “Improving genetic algorithm
performance by population initialisation with dispatching rules,” Com-
puters & Industrial Engineering, vol. 137, p. 106030, 2019.

S. Chowdhury, W. Tong, A. Messac, and J. Zhang, “A mixed-discrete par-
ticle swarm optimization algorithm with explicit diversity-preservation,”
Structural and Multidisciplinary Optimization, vol. 47, no. 3, pp. 367-
388, 2013.

T. G. Lewis, Network science: Theory and applications.
Sons, 2011.

Y. Wu, P. R. Bhat, T. J. Close, and S. Lonardi, “Efficient and accurate
construction of genetic linkage maps from the minimum spanning tree
of a graph,” PLoS Genet, vol. 4, no. 10, p. 1000212, 2008.

S. Haflidason and R. Neville, “On the significance of the permutation
problem in neuroevolution,” in Proceedings of the 11th Annual confer-
ence on Genetic and evolutionary computation, 2009, pp. 787-794.

K. O. Stanley and R. Miikkulainen, “Efficient reinforcement learning
through evolving neural network topologies,” in Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation. Morgan
Kaufmann Publishers Inc., 2002, pp. 569-577.

A. Behjat, S. Paul, and S. Chowdhury, “Learning reciprocal actions for
cooperative collision avoidance in quadrotor unmanned aerial vehicles,”
Robotics and Autonomous Systems, vol. 121, p. 103270, 2019.

M. Dorofki, A. H. Elshafie, O. Jaafar, O. A. Karim, and S. Mastura,
“Comparison of artificial neural network transfer functions abilities to
simulate extreme runoff data,” International Proceedings of Chemical,
Biological and Environmental Engineering, vol. 33, pp. 39-44, 2012.
D. Stathakis, “How many hidden layers and nodes?” International
Journal of Remote Sensing, vol. 30, no. 8, pp. 2133-2147, 2009.

P. J. Hancock, “Selection methods for evolutionary algorithms,” in
Practical Handbook of Genetic Algorithms. CRC Press, 2019, pp. 67—
92.

G. Howard, E. Gale, L. Bull, B. de Lacy Costello, and A. Adamatzky,
“Evolution of plastic learning in spiking networks via memristive connec-
tions,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 5,
pp. 711-729, 2012.

K. Deb, Multi-objective optimization using evolutionary algorithms.
John Wiley & Sons, 2001, vol. 16.

W. Huang, Y. Li, and Y. Huang, “Deep hybrid neural network and
improved differential neuroevolution for chaotic time series prediction,”
IEEE Access, vol. 8, pp. 159552-159 565, 2020.

M. Li, J. Zheng, and J. Wu, “Improving nsga-ii algorithm based on min-
imum spanning tree,” in Asia-Pacific Conference on Simulated Evolution
and Learning. Springer, 2008, pp. 170-179.

J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48-50, 1956.

C. Ye, R. C. Wilson, C. H. Comin, L. d. F. Costa, and E. R. Hancock,
“Approximate von neumann entropy for directed graphs,” Physical Re-
view E, vol. 89, no. 5, p. 052804, 2014.

G. Minello, L. Rossi, and A. Torsello, “On the von neumann entropy of
graphs,” Journal of Complex Networks, vol. 7, no. 4, pp. 491-514, 2019.
E. Hancock, “Lecture notes in network entropy,” July 2016.

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, 2017.

D. Oller, T. Glasmachers, and G. Cuccu, “Analyzing reinforcement
learning benchmarks with random weight guessing,” arXiv preprint
arXiv:2004.07707, 2020.

R. Liu and J. Zou, “The effects of memory replay in reinforcement
learning,” in 2018 56th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). 1EEE, 2018, pp. 478-485.

K. Asadi and M. L. Littman, “An alternative softmax operator for rein-
forcement learning,” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org, 2017, pp. 243-252.

John Wiley &

. . ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt;s://www.ieee.org{Eublications/rights/index,html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:2

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

S. Zhang and O. R. Zaiane, “Comparing deep reinforcement learn-
ing and evolutionary methods in continuous control,” arXiv preprint
arXiv:1712.00006, 2017.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga er al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026-8037.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889-1897.

G. Shaw, “Donald hebb: The organization of behavior,” in Brain Theory.
Springer, 1986, pp. 231-233.

A. Behjat, K. K. Gabani, and S. Chowdhury, “Training detection-
range-frugal cooperative collision avoidance models for quadcopters via
neuroevolution,” in AIAA Aviation 2019 Forum, 2019, p. 3312.

J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1-4.

D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in 2011 IEEE International Conference on
Robotics and Automation, May 2011, pp. 2520-2525.

T. Luukkonen, “Modelling and control of quadcopter,” Independent
research project in applied mathematics, Espoo, vol. 22, 2011.

A. Moore, “Efficient memory-based learning for robot control,” Ph.D.
dissertation, Carnegie Mellon University, Pittsburgh, PA, March 1991.
A. Geramifard, C. Dann, R. H. Klein, W. Dabney, and J. P. How,
“Rlpy: A value-function-based reinforcement learning framework for
education and research,” Journal of Machine Learning Research,
vol. 16, no. 46, pp. 1573-1578, 2015. [Online]. Available: http:
/ljmlr.org/papers/v16/geramifard15a.html

Amir Behjat is a Post-Doctoral researcher at Pur-
due university. He received his Ph.D. in Mechanical
Engineering from University at Buffalo in 2021.
His contributions to this paper occurred during his
Ph.D. He graduated with his BS and MS degrees
in Mechanical engineering from Sharif University of
Technology. His research focuses on Neuroevolution,
Physics-Aware machine learning, and UAV collision
avoidance.

Nathan Maurer is an M.S. in Robotics student
at University at Buffalo. He received his B.S. in
Computer Engineering from University at Buffalo.
His contributions to this paper is related to his ongo-
ing M.S. Thesis research being performed under the
supervision of Dr. Souma Chowdhury. His research
interests include neuroevolution, neuromorphic com-
puting and graph learning.

Sharat Chidambaran received his M.S. in Me-
chanical Engineering from University at Buffalo. His
contributions to this paper occurred during his M.S.
Thesis performed under the supervision of Dr. Souma
Chowdhury at University at Buffalo. His research in-
terests include autonomous systems, machine learn-
ing and data driven engineering.

Souma Chowdhury is an Associate Professor of
Mechanical and Aerospace Engineering at University
at Buffalo. Dr. Chowdhury received his B.S., M.S.
and Ph.D. in Mechanical Engineering, respectively
from IIT Kharagpur in India, Florida International
University in Miami and Rensselaer Polytechnic In-
stitute in Troy. His research interests lie at the in-
tersection of multi-fidelity optimization and machine
learning with applications to the design and control
of autonomous systems, swarm robotics and energy
systems. He has co-authored 150 articles in leading

journals and full-length conference proceedings in related areas. His research
has been sponsored by the NSF, DARPA, ONR, NASA and AFOSR.

/43 UTC from IEEE Xplore. Restrictions apply.

