
JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022 1

Adaptive Neuroevolution with Genetic Operator

Control and Two-way Complexity Variation
Amir Behjat, Member, IEEE, Nathan Maurer, Student Member, IEEE, Sharat Chidambaran, Student Member,

IEEE, and Souma Chowdhury, Senior Member, IEEE

AbstractÐTopology and weight evolving artificial neural net-
work (TWEANN) algorithms optimize the structure and weights
of artificial neural networks (ANNs) simultaneously. The re-
sulting networks are typically used as policy models for solv-
ing control and reinforcement learning (RL) type problems.
This paper presents a neuroevolution algorithm that aims to
address the typical stagnation and sluggish convergence issues
present in other neuroevolution algorithms. These issues are
often caused by inadequacies in population diversity preservation,
exploration/exploitation balance, and search flexibility. This new
algorithm, called the Adaptive Genomic Evolution of Neural-
Network Topologies (AGENT), builds on the neuroevolution of
augmenting topologies (NEAT) concept. Novel mechanisms for
adapting the selection and mutation operations are proposed to fa-
vorably control population diversity and exploration/exploitation
balance. The former is founded on a fundamentally new way
of quantifying diversity by taking a graph-theoretic perspective
of the population of genomes and inter-genomic differences.
Further advancements to the NEAT paradigm occur through the
incorporation of variable neuronal properties and new mutation
operations that uniquely allow both the growth and pruning
of ANN topologies during evolution. Numerical experiments
with benchmark control problems adopted from the OpenAI
Gym illustrate the competitive performance of AGENT against
standard RL methods and adaptive HyperNEAT, and superiority
over the original NEAT algorithm. Further parametric analysis
provides key insights into the impact of the new features in
AGENT. This is followed by evaluation on an unmanned aerial
vehicle collision avoidance problem where maneuver planning
models are learnt by AGENT with 33% reward improvement
over 15 generations.

Impact StatementÐThis paper presents AGENT, a new neu-
roevolution algorithm that simultaneously optimizes the topology
and weights of neural networks. Through novel mutation and
selection controllers that regulate diversity and convergence,
along with flexible direction of mutation and flexible choice
of nodes, AGENT advances the application and robustness of
the neuroevolution paradigm. The potential impact of these
advancements is apparent when comparing the performance
of AGENT on reinforcement learning (RL) problems to the
performance of state-of-the-art RL algorithms on these same
problems. Various OpenAI Gym problems and a real-world

Support from the DARPA award HR00111920030 and the NSF award
CMMI-2048020 is gratefully acknowledged. Any opinions, findings, conclu-
sions, or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the DARPA or the NSF.

This paper was submitted on 03-21-2022
Amir Behjat was PhD student from University at Buffalo. He is a postdoc-

toral research in Purdue University, West Lafayette, IN 47906 USA (e-mail:
abehjat@purdue.edu).

Nathan Maurer is a Master student from University at Buffalo, Buffalo, NY
14260 USA (e-mail: namaurer@buffalo.edu).

Sharat Chidambaran was Master student from University at Buffalo, Buffalo,
NY 14260 USA (e-mail: sharatpa@buffalo.edu).

Corresponding author: Souma Chowdhury is Associate Professor in Univer-
sity at Buffalo, Buffalo, NY 14260 USA (e-mail: soumacho@buffalo.edu).

collision avoidance problem for unmanned aerial vehicles (UAVs)
are used to illustrate AGENT’s performance relative to these
other algorithms. AGENT is particularly deft at solving problems
with small-to-moderately sized action/state spaces and complex
environments with sparse, delayed and non-differentiable reward
functions. Problems with these features are quite common in the
engineering controls and robotics planning domains. In addition,
the proposed mutation and selection control operators, and the
novel graph-theoretic approach to quantifying diversity, could be
adopted in other evolutionary machine learning algorithms to
improve diversity preservation and address stalled convergence
issues.

Index TermsÐDiversity preservation, Neuroevolution, Network
topology, Reinforcement Learning, Open AI Gym, UAV

I. INTRODUCTION

A
RTIFICIAL neural networks (ANNs) are gaining a vital

role as models for decision-making for a variety of intel-

ligent autonomous systems [1]. ANNs are universal function

approximators [2], which allows ANNs to act as policy mod-

els that provide state-to-action mappings for RL algorithms.

Applications that require state-to-action mappings typically do

not have a priori (i.e., labeled data) of the optimum state-

to-action mappings. Reinforcment Learning (RL) methods [3]

and its deep variants [4] constitute a dominant contemporary

player in automated design of state-to-action models for such

planning and control problems. However, drawbacks of us-

ing RL methods include relying on gradient information for

backpropagation, which is not readily available for some prob-

lems, [5], requirement of a tedious (nested) hyper-parameter

optimization or neural architecture search when ANNs are

used as value or policy function approximators, and scalability

limitations with the dimension of the problem [6]. As an

alternative, Evolutionary algorithms [7], e.g., neuroevolution

[8] and evolution strategies [9], have emerged to mitigate some

of these limitations.

Neuroevolution allows for highly parallelized and distributed

implementations of the learning process, and is suitable for

problems with continuous and mixed state/action spaces. Key

issues that neuroevolution methods suffer from are topological

inflexibility, premature stagnation and poor convergence. To

address these issues, this paper presents key advancements to

the paradigm in co-evolving the topology and weights of neural

networks, particularly for solving RL type problems related to

planning and control. These advancements include the devel-

opment of novel controllers within selection and reproduction

operators to regulate population diversity and improvement

rates, and the introduction of new neuronal properties and

flexible initialization and mutation of neural topologies. The

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

2 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

new neuroevolution algorithm is evaluated over benchmark RL

and control problems adopted from the OpenAI Gym [10],

and a practical robotics problem ± namely collision avoidance

between unmanned aerial vehicles (UAVs).

A. Neuroevolution: Overview

Neuroevolution is the process of designing ANNs through

evolutionary optimization algorithms [11]. Some Neuroevolu-

tion approaches optimize only the ANN weights using Genetic

Algorithms (GA) [12], [13]. The topology of the ANN must

be prescribed by the user in these approaches, as is common

in backpropagation-based training. With a predefined topology,

there remains a risk of underfitting or overfitting of the state-

to-action mapping model [14]. Topology and Weight Evolving

ANNs (TWEANNs) directly addresses this issue. Some of the

earliest work in TWEANNs include that by Miller et al. [15],

where the adjacency matrix was evolved to alter the connection

of nodes in the ANN, and by Schaffer et al. [16] where a GA

was used to optimize hyper-parameters along with a hybrid

architecture with specified restrictions.

B. Neuroevolution: Related Works

NeuroEvolution of Augmenting Topologies (NEAT) [17] is

one of the most well-known implementations of the TWEANN

concept. NEAT treats nodes, edges, and edge weights as pheno-

types and these phenotypes are evolved using a GA. The initial

population in NEAT includes minimalist topologies of feed-

forward ANNs without any hidden nodes and with input and

output layers designed according to the concerned problem.

During the evolution process, NEAT performs classical genetic

operations such as selection, crossover, and mutation on the

population. Furthermore, a specialized operator called ªspeci-

ationº is used in NEAT which helps to preserve genomes that

are associated with complex newly created topologies, which

otherwise may be destroyed due to their premature weights.

Well known variations of NEAT, such as HyperNEAT [18],

which provides an indirect genotype to phenotype encoding,

and SUNA [19], have been used for controlling virtual agents

in Atari games [20], evolving robot gaits [21], and geological

prediction [22]. Evolving deep neural networks has also been

explored with Neuroevolution [23]. Overall, there’s been a rich

variety of developments to neuroevolution in the past 10-15

years, particularly involving indirect encoding of topologies

(e.g., HyperNeat [24], adaptive HyperNEAT [25], and ES-

HyperNeat [26]), extension to deep learning and metalearning

[23], [27], hybridization with gradient-based methods [28],

open-ended evolution and embodiment of intelligence [29],

[30]. A comprehensive survey of such developments can be

found in the review paper by Stanley et al. [11]. Key issues

with existing neuroevolution methods are discussed next.

TWEANNs: Stagnation & Efficiency Concerns: Premature

stagnation and sluggish rate of evolution are two crucial

concerns in neuroevolution, especially when a highly non-

linear state to action mapping is sought. There has been some

notable works in investigating the issue of premature stagnation

from different perspectives, such as in [31], [32], [33]. Two

underlying phenomena have been found to be the major factors

behind premature stagnation: i) loss of diversity and ii) poor

exploration/exploitation balance.

Since nascent complex ANN topologies need more time

to stabilize their weights compared to simpler counterparts,

Neuroevolution methods are often unable to preserve genomic

diversity which leads to local stagnation. Different approaches

exist to solve the diversity preservation issue, such as Novelty

search [34] and Surprise Search [35]. Some of these approaches

create artificial multi-objective problems that trade off novelty

with reward; however, the likely need for larger population

sizes for such an approach and its impact on the generalizabil-

ity [36] of the ensuing learnt behavior remains under-explored.

More importantly, most of these existing methods provide

limited capacity for adaptive diversity preservation during

the learning process. There exists a rich body of literature

on adaptive diversity preservation in the general domain of

evolutionary computing (e.g., in GA [37] and particle swarm

[38] algorithms). However, it is challenging to directly translate

these approaches to neuroevolution due to the specialized

encoding and reproduction operations used to respectively

represent and evolve TWEANNs.

Thus we hypothesize that a quantification of diversity, one

that accounts for the special combinatorial design space of

TWEANN genomes, is needed to implement adaptive diversity

preservation in neuroevolution. To investigate this hypothesis,

we pursue a novel projection of candidate ANNs onto an

undirected graph, based on their inter-genome distances [19],

and then use the minimum spanning tree (MST) estimate to

quantify the population diversity. This graph-based diversity

quantification concept is motivated by how in general diversity

between data sets, often occurring or posed as nodes in

a network, is measured in various applications of network

science [39]; our use of minimum spanning tree is specifically

inspired by the literature on Genetic Linkage Mapping [40].

Ineffective balance between exploration and exploitation

in neuroevolution, which leads to sluggish convergence or

vulnerability to local optima, can be partly attributed to the

inadequate recombination (e.g., due to permutation issues

[41]) or unregulated mutation operations. We posit that the

current state of ªexploration / exploitation balanceº can be

captured by analyzing the relative rates of improvement in the

fitnesses of the population best and the population average

during the neuroevolution process, with coherent rates being

deemed desirable. Based on this hypothesis, we propose an

improvement metric that is then used to guide the rates of

mutation operations, which regulates the degree of exploration

allowed in the evolution process.

Initiating the population with minimalist ANN topologies as

suggested in NEAT [42], [17] helps decrease the probability

of overfitting and speeds up the convergence for problems

with low-dimensional input spaces. However, a detrimental

effect is encountered in problems with larger state spaces or

when a highly non-linear policy function is required. There-

fore, minimalist initial population can often lead to colossal

computational effort, aka many generations of evolution, to

reach topologies with adequate complexity for these problems.

To address this issue, we have introduced two new capabilities:

problem size-adaptive initialization of the ANN topologies, and

allowing topological complexity to both increase and decrease

during neuroevolution. Furthermore, by applying different ac-

tivation function choices [19] and a novel memory property for

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

BEHJAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION 3

neurons, we seek to extend the applicability of neuroevolution

to learn policies for a wider range of problems in autonomous

systems without deviating from the feed-forward network

structure. For example, the memory properties promote capture

of derivatives of state inputs or intermediate states.

C. Core Objectives of this Paper

This paper develops an adaptive neuroevolution approach to

handle the premature stagnation issues and enhance the search

efficiency in designing TWEANN-based policy models. Our

primary contribution lies in incorporating novel mechanisms

for insitu regulation of the genomic diversity and the rate of

average fitness improvement. To these ends, new approaches

are proposed respectively i) for measuring diversity in the

combinatorial space of ªANN topologies with variable node

propertiesº, and ii) for comparing ªaverage vs. best fitness

improvement ratesº to assess the balance between exploration

and exploitation. The regulation of diversity and average

improvement rate is respectively accomplished by dynamic

adaptation of the selection and mutation operators, essentially

acting as open-loop controllers in the neuroevolution process.

Thus, the primary objective of this paper is to enable these

new adaptation capabilities, along with novel node properties,

problem-adaptive population initialization, and provision for

both growth and pruning of networks in neuroevolution.

Our second objective is to test our neuroevolution algorithm

on a suite of control problems adopted from the popular

OpenAI Gym platform [10]. With these problems, we per-

form comparative analysis of our algorithm with existing RL

benchmarks, state-of-the-art implementations of the original

NEAT as well as a recent popular advancement of NEAT,

namely adaptive HyperNEAT [25]. Selected problems are also

used to perform parametric and ablation analysis to study the

impact of the proposed new features. Our third objective is to

demonstrate how the new neuroevolution algorithm can be used

to solve complex robotics planning problems, by applying it

to generate maneuver-planning models for reciprocal collision

avoidance between quadcopter UAVs [43].

The next section describes the basic components of our new

neuroevolution algorithm. Section III develops the controller

features used for regulation of average improvement rate and

population diversity. Sections IV and V respectively discuss the

results of applying this new neuroevolution algorithm on the

benchmark problems and the UAV collision-avoidance prob-

lem. Further discussion and concluding remarks are provided

in Sections VI and VII.

II. AGENT (NEUROEVOLUTION) ALGORITHM

In light of its adaptation capability, the new neuroevolution

algorithm is called Adaptive Genomic Evolution of Neural

Network Topologies or AGENT. In this section, we describe

the main components of AGENT, including the initialization

steps, intra-generational stages, the encoding procedure, and

the selection and reproduction operators. Figure 1 (a) shows

the flowchart of the AGENT algorithm. 1 A pseudo code

summarizing the main steps of AGENT is included in the

supplementary material, as Algorithm-2 in Section S - VIII.

1To aid benchmarking and further adoption of AGENT, a MATLAB-
based implementation of AGENT have been made available at the following
repository: https://github.com/adamslab-ub/AGENT-Matlab.

As seen in Fig. 1, initialization of the algorithm involves

generating the design of experiments of problem scenarios

(similar to RL) over which the learning trials are conducted.

This is followed by the genomic encoding of ANNs and the

creation of the initial population.

At each generation, AGENT uses a two-stage evolution-

ary approach. The population of genomes (i.e., candidate

ANNs) is grouped into a set of species or niches, based on

topological similarities. All genomes participate in the first

stage of evolution in each generation, while only the genomes

with the highest fitness function from each species participate

in the second stage of evolution. Stage-1 processes: In the

first stage, the size of each niche is adjusted, followed by

selection, crossover, and mutation. The resulting offspring

genomes go through fitness evaluation (over the episodes of

sample scenarios), followed by speciation. Stage-2 processes:

In the second stage, similar to NEAT [17], the champions of

each species are identified, which then undergo crossover and

mutation. The resulting offspring are subsequently classified

into the existing species groups. The new stagnation-mitigating

controllers are then applied ± this involves quantifying the

average improvement rate and population diversity and using

them as feedback to adapt the selection pressure and mutation

rate, respectively. Fitness evaluation is then performed on the

new genomes (resulting from second stage evaluation), and the

algorithm moves on to the next generation.

A. Encoding of the Neural Network Genome

Information processing capacity in an ANN is encapsulated

in its nodes (or neurons) and edges (or connections). Similar

to the original NEAT algorithm [17], AGENT uses a direct

bi-structural encoding, where each genome comprises of the

encoding of the constituent nodes and edges of the candidate

ANN. The genomic encoding is shown in the upper part of Fig.

1. In keeping with NEAT, AGENT encodes edges with two

genomic properties, edge weight wi,j and innovation number

Ii,j . The start and end nodes of an edge are denoted by i and j,

respectively. Innovation number is used to distinguish between

different edges based on their creation time, and sort edges

thereof. This number is a useful identifier of common edges

during the crossover operation.

AGENT differs from NEAT with regards to the encoding of

nodes. AGENT introduces new nodal properties, namely the

memory capacity Mi, and the activation function φi. In Fig.

1, the different symbols (hexagon for modified sigmoid [17],

triangle for ramp, and pentagon for sigmoid) depict nodes with

different activation functions. The memory size of each node

is depicted by the color of the corresponding node symbol.

To allow greater flexibility of nonlinear transformations

encapsulated by the network [44], three different activation

functions are allowed to be selected, namely modified sigmoid

(which was used in the original NEAT [17]), saturated linear or

ramp, and sigmoid functions. Their mathematical expressions

are given below:

yi = φ(vi) =











1
1+e−4.9vi

, if Mod. Sigmoidal

max(min(vi, 1), 0), if Ramp
1

1+e−vi
, if Sigmoidal

(1)

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

4 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

AGENT

Algorithm

Fig. 1: AGENT Flowchart; (a) Overall AGENT algorithm, (b) New types of nodal mutation, (c) Diversity controller (via adaptive selection pressure), (d)
Improvement rate controller (via adaptive mutation).

The memory property is introduced with the goal of captur-

ing the temporal dynamic behavior that is typically demanded

of neurocontrollers, without having to change the feed-forward

structure (to say a recurrent structure). Here, the memory

property of neurons is allowed to take one of three values:

M ∈ {0, 1, 2}; a memory size of 0 designates using the

current weighted aggregate input incoming into the node;

memory sizes of 1 and 2 respectively designate using the first

and second time derivatives of the weighted aggregate input

incoming into the node. Equation 2 explains how the effective

net synaptic input to any node-i is computed based on its

memory property. In this equation, for a node connected to

ni upstream nodes, Vi(τ) gives the net synaptic input of node-

i in time step τ , oj gives the output of the upstream node-j, δτ
is the time step used when implementing the neural network

as a controller, and Ui(τ) =
∑ni

j=1(wj,i × oj).

Vi(τ) =



















Ui(τ), if M = 0
Ui(τ)− Ui(τ − δτ)

δτ
, if M = 1

Ui(τ)− 2Ui(τ − δτ) + Ui(τ − 2δτ)

(δτ)2
, if M = 2

(2)

For control and planning problems, δτ can be defined to be

the simulation time step at which state information is recorded

during episodic trials. Here, we use δτ = 1. Therefore, the

above memory equations seek to estimate and propagate the

first and second time derivatives of the information computed

insitu w.r.t. the state inputs.

B. Initialization

Unlike the original NEAT and the majority of its variations,

the AGENT permits a small number of hidden neurons in

genomes of its initial population, instead of a minimalist

topology with no hidden neurons. This approach helps expedite

the optimization process in most higher-dimensional problems

or in problems with Multiple Inputs and Multiple Outputs

(MIMO), which usually demand a more complex ANN than

that provisioned by a minimalist topology. The number of

hidden nodes in each genome is chosen from a distribution such

that the expected value (over the population) of the number of

hidden nodes is given by
√
nI × nO which helps diversifying

in the initial population. Here nI and nO are respectively

the numbers of input and output nodes. This average sizing

of initial ANNs is motivated by the work of Stathakis [45].

This initialization is merely suggestive, since AGENT can

both complexify and decomplexify the neural network by

adding and removing neurons, and can thus work with other

minimalist or prescribed initializations as well. Since AGENT

evolves non-layered TWEANNs with neuronal properties that

offer additional variability, numerical experiments expectedly

showed that our initial size requirements were slightly smaller

than that recommended in [45].

C. Speciation

Speciation is a crucial process in the AGENT algorithm.

In this process, the population is divided into several groups

or species (also referred to as niches). Speciation has two

objectives. First, it protects newly generated genomes (which

contain yet-to-be-stabilized weights) from elimination due to

selection pressure. Second, it facilitates searches within each

species. The speciation process adopted here is conceptually

similar to that in SUNA [19]. The speciation process has

three steps. In step 1, we order the networks based on their

uniqueness. In step 2, the networks with the highest uniqueness

values are selected as the anchor genomes to form niches. In

step 3, the rest of the population is classified into these niches,

based on their similarity to each anchor genome. While for the

ease of implementation, the total number of groups are fixed

(here, set at min(⌈Npop

10 ⌉, 8)), the size of groups could vary

across generations. This is because the distribution of genomes

w.r.t. their design space varies across generations.

The uniqueness of a genome is defined by how distinct a

genome is from others in the population, based on a distance

measurement in the design space of TWEANNs. This distance

metric is described in Section III-A. Specifically, the unique-

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

BEHJAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION 5

ness (uA) of a generic genome-A can be expressed as

uA = min
∀B ̸=A

dA,B (3)

Here, B represents any genome in the population other than

A, and the distance metric dAB provides a measure of dissim-

ilarity of the two genomes, A and B.

D. Selection

Here, tournament selection [46] is used in AGENT due to

its property of being invariant to order-preserving transforma-

tions. Moreover, compared to the proportional selection [46],

tournament selection provides the opportunity to adapt the

selection pressure by varying the ratio between the number of

genomes that participate in the tournament and the number of

genomes that are allowed to win the tournament. The classical

tournament selection uses one-to-one competitions, with each

genome competing twice with randomly selected opponents.

Here, we define a more generalized multi-player competition,

comprising randomly selected NT genomes, among which the

fittest NW genomes are allowed to win the tournament and get

copied to the mating pool. A total of 2N/NW such random

tournaments are conducted. This allows the selection process

to create a mating pool of size 2N , from which N offspring are

subsequently derived via the crossover operation. We will later

see in Section III-B that, the probability of getting selected,

i.e., the selection pressure, can be regulated by controlling the

NW /NT ratio. Diversity increases when this ratio decreases.

Note that since crossover here (described next) produces one

offspring per pair of parent genomes, a mating pool of size 2N
is created to preserve the population size over generations.

E. Crossover

AGENT expands on NEAT’s crossover process by trans-

ferring the special nodal properties to the offspring. Figure 2

(c) illustrates this procedure. Weights of common edges are

inherited randomly from one of the two parents, with an equal

probability. The nodal properties, i.e., the activation function

type, and memory type, as well as the weights associated with

unique edges, are inherited from the parent genome with higher

fitness.

F. Mutation

The mutation operator in AGENT includes edge mutation

that adds connections similar to that in NEAT, as well as node

mutations as implemented in other later architectures [19],

[47]. At the same time, we also implement newer types of

edge mutations for decomplexifying the network (not present

in NEAT or its popular variations), and newer node mutations

that allow switching between nodes with different memory and

functional characteristics. As illustrated in Fig. 2 (a, b), there

are three major types of mutation in AGENT: 1) connective

(continuous space): mutation of edge weights; 2) topological:

addition and removal of edges and nodes of the network; and 3)

neural (categorical space): mutation of nodal properties. Each

type of mutation has its own mutation rate, whose initial value

(µ0) can be prescribed, and the rate (µt) is then controlled over

generations (as described in Section III-D).

It should be noted that the addition of edges/nodes increases

the complexity of the network, and their removal leads to

the simplification of the network. With this capacity to both

complexify and simplify network topologies, the mutation

(a) Mutation of edges and nodes (addition or removal) and
mutation of real-valued edge weights

(b) Mutation of nodal properties

(c) Crossover: fA and fB are the fitnesses of genomes A and
B; since fB ≥ fA, unique edges (e.g., 3 → 8) and nodal
properties (e.g., nodes 2 and 6) are inherited from B.

Fig. 2: Mutation and Crossover operations in AGENT

operation in AGENT is hypothesized to enhance the computa-

tional efficiency of the learning process, while still preserving

the ability to generate parsimonious policy models (as in

other TWEANNs). The different types/sub-types of mutation

operations in AGENT are further described below.

Mutation of existing edge weights: For existing edges be-

tween any two nodes i and j, real-valued Gaussian mutation

[48] of weights is undertaken, as given by:

wi,j = wi,j + r

r ∈ N (0, σ2
W)

(4)

Here, wi,j is the weight of the edge connecting nodes i and j.

The extent of mutation is controlled by the standard-deviation

parameter σw, which can be prescribed by the user. A default

value of 0.2, i.e., 10% of the initial range of edge-weight, is

used in our case studies.

Addition of an edge: An edge can be added between any

existing pair of nodes (i and j) as long as duplicate edges and

cycles are not produced. The new edge is assigned a unique

innovation number, Ii,j , and a weight wi,j chosen randomly

from a uniform distribution in the range [−1, +1].

Removal of an edge: An edge between any existing pair

of nodes can be removed as long it does not produce a

floating node. A floating node is one that either has no

incoming edges or no outgoing edges. In our implementation,

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

6 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

the mutation rate for removing an edge is kept at 80% of the

mutation rate for adding an edge, thereby allowing the slightly

greater probability of network complexification (compared to

simplification).

Addition of a node: A new node k can be added on an

edge (previously connecting nodes i and j), resulting in the

splitting of the edge into two edges. The two new edges thus

created are assigned new innovation numbers (Ii,k and Ik,j)

and randomized new initial weights (wi,k, wk,j ∈ [−1, +1]).
Removal of a node: Any hidden nodes can be removed. After

removing the hidden node, all incident downstream nodes (with

respect to the removed node) are connected to all upstream

nodes to which the removed node was connected using new

connections. The weights of the new connections or edges

are again randomly assigned from the range [−1, +1]. Node

removal probability is kept at 80% of the probability of adding

a node.

Mutation of nodal properties: Nodal properties are muted

by probabilistic switching between the categorical values of

these properties, i.e., different activation functions or memory

values. In the case of memory, the probability of selecting

M = 0, 1, 2 are respectively set at 0.5, 0.25, and 0.25 to give

more weight to the memory-less type of node. In the case of

activation function, all three types have an equal probability of

getting selected during mutation.

The mutation operations of adding/removing edges or nodes

are illustrated in Fig. 2(a) and those of changing nodal prop-

erties are illustrated in Fig. 2(b). Each of these mutations is

carried out for a given node/edge of a candidate ANN genome

in the population, only if the following criteria is satisfied:

r ≤ µt; here r is a random number between 0 and 1, and µt

is the rate at generation t associated with that particular type

of mutation. Each of the above-described types of mutation

has its own rate parameter. Supplementary materials Section S

- III list the different mutation rate parameters, their subject

of operation, their default initial value, and the recommended

range. These rates are controlled over generations in order to

adapt the rate of fitness improvement suitably.

Note that the list of crossover, mutation, elitism, selection,

speciation and diversity operations in AGENT, and the asso-

ciated parameters and their settings are provided as Table I in

the Supplementary Material S - III.

III. ADAPTATION MECHANISMS IN AGENT

In this section, we explain the formulations proposed to

adaptively regulate the diversity and fitness improvement rate

in AGENT along with the requisite metrics and limits, ending

with a description of how we quantify network complexity.

A. Diversity Preservation: Measure of Diversity

Population diversity is paramount to effective neuroevo-

lution. This calls for adaptively regulating the population

diversity ± an abrupt decrease in diversity can lead to premature

stagnation, but at the same time, a steady (low) rate of diversity

reduction is needed for exploitation and eventual convergence.

The first step in diversity preservation is measurement of

diversity in the population. To develop a diversity measure, we

need to first measure the net difference between the designs of

any two neural networks, i.e., the difference in their structure

and weights. Subsequently, an approach (which is currently

lacking) is needed to use this measure of differences to quantify

the overall diversity in the population. In this paper, we propose

a new approach to quantifying the diversity in a population of

ANN genomes.

In neuroevolution, since genomes encode different topolo-

gies, their basic dimensionality varies across the population.

Hence, a distance metric partly motivated by the novelty metric

[19] is used here to quantify the difference between any two

genomes. The distance, dA,B , between two candidate ANNs,

A and B, is thus given by the weighted sum of the difference

between their node types, as well as the difference between

edges connecting different types of nodes.

dA,B = αP

PT
∑

i=1

|Pi,A −Pi,B |+αE

PT
∑

i=1

PT
∑

j=1

|Ei→j,A −Ei→j,B |

(5)

In Eq. 5, Pi,A and Pi,B are the number of nodes of type i
respectively in neural networks A and B; Ei→j,A is the number

of edges from node type i to node type j in neural network A;

and PT is the number of types of activation functions allowed

in the ANN. The weights αP and αE are prescribed to be

0.5 in this paper. Note that only the type and connectivity of

neurons, and not the continuous parameters associated with

them (namely weights and biases), are considered to quan-

tify the difference between candidate neural networks. This

approach is based on the premise that as long as diversity in the

combinatorial characteristics (which includes topology) of the

network can be preserved, the weights will anyways converge

and follow suit, since the time constants of weight change is

much higher than that of the topology. This approach also

works well with the emerging hybrid concept of optimizing

the continuous parameters insitu through a gradient descent

approach [49], while the topology is being evolved.

To quantify the overall population diversity at any generation

t, we construct a complete undirected graph KN out of the

population of N candidate genomes. The length of the edges

connecting candidate genomes in this graph is given by the

distance metric in Eq. 5. Then, by employing the concept

of minimum spanning tree (MST) on the graph KN , the

overall population diversity is given by the total length of

the MST. The concept of using MST to represent diversity

has been explored in population-based optimization methods

[50]. Figure 3 illustrates how the concept of MST is applied to

the graph derived from the estimated distances between ANN

genomes in the population. Thus, the population diversity Dt

at the tth generation can be expressed as:

Dt =
∑

∀ A,B∈M.S.T

dA,B (6)

where A,B represents an edge connecting genomes A and

B in the population graph. Kruskal‘s Algorithm [51] is used

to determine the MST, which involves a frugal computational

expense of the order of O (|KN | log |KN |), where |KN | is the

number of edges in the graph. For reference, a pseudocode

of Kruskal’s algorithm is given in the Supplementary Material

Section S - I.

In order to effectively calibrate diversity, we can now define

a desired value for diversity and also delineate an approach

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

BEHJAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION 7

2

3

5

6

5

4

3 4

7

8

5
5

96

9

Fig. 3: Applying Kruskal’s Algorithm [51] to compute the MST (dark edges get
excluded) for the graph based on differences between ANNs in the population

to maintain this desired value. The desired diversity, Dd,t, can

be defined as a linear (gradual) decay function of number of

generations (t), as given by:

Dd,t = D0 ×
βD × tmax − t

βD × tmax
(7)

Here D0 is the measured diversity in the initial population,

the coefficient βD ≥ 1 facilitates gradual decay and seeks

to facilitate a lower bound to the diversity retained in the

final population, and tmax is the maximum allowed number

of generations. The measurement of current diversity and the

desired diversity decay formulation are together used to control

the selection operation, in order to regulate the population

diversity, as described next.

B. Diversity Preservation: Controlling Diversity

Since the selection process guides how greedy (biased

towards the fittest genomes) or diverse will be the resulting

mating pool, it can also serve as a medium for diversity preser-

vation. Here, the tournament size in the selection operator is

used as the control input to regulate the diversity.

In a population of N genomes, the probability of selecting a

specific genome, to be copied into the mating pool, decreases

with the number of genomes participating in the tournament

(NT) and increases with the number of the genomes chosen

from the tournament (NW). More specifically, the probability

of the kth ranked genome to be selected into the mating

pool (P) by resampling can be approximated by the following

expression (where the higher order terms are ignored):

p(k ∈ P) = 1−











N −NT

N
+

NT

NT
∑

i=Nw

(

k−1
i

)(

N−k
NT−i−1

)

(

N
NT

))











2N
NW

(8)

where the rank k is determined by sorting the popula-

tion simply based on fitness. The derivation of this prob-

ability of selection is provided in the supplementary docu-

ment Section S - II. By decreasing NT , the effect of the

term
(

1− (k−1)!×(N−NW)!
(N−1)!×(k−NW)!

)

decreases and the probability of

choosing all genomes become more uniform (less dependent

on ranking). Similarly, increasing NW tends to decrease the

standard deviation in the probability of selection across the

ranked population, considering that P is a function of k

(ranking of genomes).

In summary, it can be seen that the probability of choosing

lower ranked genomes increases by increasing the ratio NW

NT

.

Therefore this ratio can be used to decrease the selection

pressure, thereby increasing the diversity, and thus serves as

a suitable choice for a control input. For regulating diversity

at any tth generation, we define the control input as a negative

exponential function:

NW

NT

∣

∣

∣

∣

t

=
NW

NT

∣

∣

∣

∣

t−1

× e−KD(Dt−Dd,t) (9)

KD is the diversity gain coefficient, which regulates the degree

of change that must be applied to the tournament ratio. We

set KD = 0.1. (Dt −Dd,t) represents the difference between

the observed diversity (Eq. 6) and the desired diversity (Eq.

7). Due to undesirable diversity loss when this difference falls

below zero, the above controller will increase the NW /NT

ratio, therefore relaxing the selection pressure. This, along with

speciation, is premised to provide lower ranked but potent

genomes (e.g., more complex ANN topologies with premature

weights) a greater chance of being selected into the mating

pool.

C. Improvement Adaptation: Metric of Improvement

The premise behind tracking and controlling fitness is its

ability to reflect whether adequate search dynamics are af-

forded by the population. Since diversity is simultaneously

being preserved, steady improvement in average fitness over

generations compared to the improvement in the fitness of the

population’s best fitness is reflective of a useful balance in

exploration and exploitation, and thus a robust search process.

With this premise, we first define an improvement metric that

captures the history of improvement, as given by

It =

t−1
∑

i=0

(αI (ft − fi))
i
t (10)

Here, ft and fi represent fitness function values at the tth

(current) generation and the ith generations, respectively. The

constant αI is a scaling coefficient. This metric is designed

such that more recent improvements have a greater influence.

Both improvements in the average fitness (fav,t =
∑N

i=1 fi)
and the fitness of the population best (fbe,t = maxNi=1 fi) are

measured using Eq. 10.

D. Improvement Adaptation: Mutation Controller

If the rate of improvement in the average fitness of the popu-

lation lags far behind the rate of improvement in the best fitness

value, it demonstrates a weakening exploitation dynamic. In

TWEANNs, mutation is the main driver of network innovation.

Too high a rate of mutation leads to the generation of new

niches of ANNs that do not get time to stabilize their weights,

and the algorithm starts acting as random search ± and thus the

average fitness improvement starts lagging. Conversely, when

the rate of fitness improvement in the population’s best fitness

lags behind that of the average fitness of the population, it is

indicative of potential stagnation at local optima and weakening

exploration. This situation calls for increasing the mutation rate

to facilitate the discovery of new networks.

Thus, it is important to regulate the rate of mutation in order

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

8 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

to preserve a balance between the improvement in average

population fitness and the population’s best fitness. Thereof,

we formulate the following mutation rate (µt) controller:

µt = µt−1 × e
−KI×

Ibe,t − Iav,t
Ibe,t (11)

where µt is the mutation rate in generation t, Here, Iav,t
and Ibe,t represent the fitness improvement metrics for the

population’s average fitness and the population’s best fitness,

respectively. These quantities are computed using Eq. 10. In

Eq. 11, KI is the mutation controller gain coefficient which can

be prescribed to increase/decrease aggressive search dynamics.

Here, KI is set at 0.1. This controller is applied on the rates

of different types of mutations, as listed in supplementary

materials Section S - III. Essentially, this controller (Eq.

11) decreases the mutation rates when the average fitness

improvement lags behind the best fitness improvement, and

vice versa.

E. Measure of ANN Complexity

An understanding of how an evolutionary approach varies

the network’s topological complexity is critical to analyze its

effectiveness in adapting expressibility to a given problem.

When determining the complexity of a neural network, we

use the popular measure of Von Neumann Entropy [52] with

quadratic approximation, specifically the idea of Normalized

Laplacian for directed graphs [53]. When expanded [54], this

idea leads to the following expression for network complexity:

S = 1− 1

n
− 1

n2

∑

(u,v)∈E

1

dout,u × din,v
(12)

Here n is number of nodes and (u, V) ∈ E is a directed edge

connecting nodes, with dout,u and din,v indicating the out and

in degrees of nodes u and v respectively.

IV. BENCHMARK TESTING AGENT: OPENAI GYM

In this section, we apply the new AGENT algorithm to solve

a suite of benchmark problems in RL and control, with the next

section describing an application of AGENT to solve a complex

online planning problem in the UAV domain. The benchmark

problems are adopted from OpenAI Gym [10], which is an

open-source platform that has been growing in popularity for

benchmarking and comparing RL algorithms [55], as well as

other learning and optimization methods [23] to solve control

problems and other RL type problems. In this paper, we

showcase the performance of AGENT on four problems from

the Classic Control and Box2D suites in OpenAI Gym. These

problems include: 1) Mountain Car, 2) Acrobot, 3) Lunar

Lander, and 4) Bipedal Walker. Brief descriptions of these

problems are given in the Supplementary Material section S -

IX. For ease of reference, visual snapshots of these problems

and definitions of their state and action spaces are included as

Table V in the Supplementary Material. Further information on

these problems can be found at the OpenAI Gym website 2.

The problem settings such # inputs/outputs, high-level settings

in AGENT such as population size and max generations, and

size of neural networks resulting from AGENT are summarized

as Table S - II in the Supplementary Material.

2https://github.com/openai/gym/wiki/Leaderboard

This Section is structured as follows: First, we summarize

each benchmark problem and present the results of the AGENT

algorithm and its comparison with state-of-the-art RL results

reported for that problem. We also compare AGENT’s perfor-

mance with that of a standard NEAT implementation [42] and

Adaptive HyperNEAT [25]. While comparing the goal function

or net reward value is straightforward for most problems,

it is challenging to compare the computational costs across

methods coherently. Typical measures of cost (e.g. number

of episodes, number of time steps, CPU-time) are unreliable

when comparing across different RL and evolutionary methods.

This is because of the difference in the nature of episodic

sampling in RL vs. Neuroevolution, greater cost accumulated

by more successful policies in some problems, impact of the

ODE solver’s time-stepping in control problems, and different

degrees of parallelizability of these methods (mostly in favor of

evolutionary methods [23], [11]). We still report the # episode

used by each method, mainly for reference. The results of

AGENT and the comparative algorithms on the benchmark

problems are all summarized in Table I, and discussed below.

Note that, since the neuroevolution methods are stochastic,

AGENT, NEAT and Adaptive HyperNEAT are each run 10

times on every OpenAI problem. Their results, i.e., net reward

value and # episodes used, are then reported in terms of

mean ± standard deviation over those 10 runs. Since the RL

problems are from literature and NEAT function evaluation is

controlled by its algorithm , it is difficult to make the number

of function evaluations equal. Furthermore, neuroevolution

follows a highly parallelizable algorithm which makes the

computation cost of neuroevolution a function of number of

generations instead of function evaluations.

Subsequently we discuss the convergence history and opti-

mum network topology obtained by the best run of AGENT

on each problem. We also provide an analysis of the change

in the average/best improvement rates, population diversity

and network complexity over generations in AGENT. Selected

benchmark problems are also used to conduct ablation tests

to analyze the impact of the unique features of AGENT,

namely the selection and mutation controllers and the memory

property of nodes. Note that an extended analysis of how the

new diversity measure in AGENT compares to diversity in

the outputs given by different networks in the population is

provided in the Supplementary Materials Section S - V.

A. OpenAI Gym Problems: Comparative Analysis

Here we briefly describe the results obtained by AGENT

for each of the four OpenAI benchmark problems, and how

they compare to state-of-the-art RL methods reported in the

literature. The choice of the RL methods used for comparison

is based on the availability and reported superiority of their

published results on these benchmark problems.

1) Reward Evaluation for OpenAI Gym Problems

The four OpenAI Gym problems used here involve stochas-

tic elements (e.g., randomized initiations and action uncertain-

ties) which makes it challenging to have a robust evaluation

of the reward based on a single episode. Hence, multiple

episodes are used to evaluate the quality of each genome, and

for efficiency we allow each genome to progress to the next

episode (during evaluation) only if it has gathered a threshold

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

BEHJAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION 9

amount of reward. Mathematically, this can be expressed as:

Fi =

Na,i
∑

j=1

Ri,j ; F =
1

Ns

Np
∑

i=1

Fi (13)

where Ri,j is the reward the agent receives for each action

taken; Na,i is the total number of actions taken in the i-th
scenario; Fi represents the genome’s accumulated reward in

that scenario; F represents the net fitness function evaluated

for an ANN genome; and Ns refers to the maximum number

of scenarios available during training. In Eq. 13, Np refers

to the number of scenarios where the genome surpasses an

adaptive threshold that is set based on the historic performance

of genomes (e.g., a threshold of 0.8 × F ∗
i if F ∗

i ≥ 0 or

1.2 × F ∗
i if F ∗

i ≤ 0, where F ∗
i is the reward accumulated

by the previous best genome in the i-the scenario). Having

multiple scenarios (here, five scenarios for AGENT) is posited

to mitigate overfitting to training scenarios. The increased

probability of mutations that complexify the network allows

better exploration and thus addresses underfitting.

2) Mountain Car: Results

For this test problem, the performance of AGENT is com-

pared to the performance reported for the Random Weight

Guessing (RWG) method [56]. RWG is an exploration based

method, and thus incurs a relatively high number of episodes

to converge. From Table I, it can be seen that AGENT was able

to find a 3% greater net reward value with negligible variance

(and in fewer number of episodes) than that reported for the

RWG method.

3) Acrobot: Results

For this test problem, the performance of AGENT is com-

pared to that reported for the popular Q-learning method with

Adaptive Memory Replay [56]. As can be seen from Table

I, AGENT is able to achieve a clearly better net reward value

compared to that of the RL method [57]). However, in this case

AGENT requires a substantially greater number of episodes

to converge, compared to RL; note that AGENT reaches a

comparable net reward value much sooner, as evident from the

convergence history plot in Fig. 4b.

4) Lunar Lander: Results

The optimum results obtained by AGENT for this problem is

compared to that reported for a popular implementation of the

SARSA method [58]. As seen from Table I, AGENT does not

perform as well as the RL method. Considering the complexity

of this problem, the results are expected to be better if a larger

population size or greater # maximum generations are allowed.

Moreover, the handcrafted design of the reward functions in

such problems often aggregate multiple criteria which might

be more favorable to particular solution approaches.

5) Bipedal Walker: Results

The optimum results obtained by AGENT for this problem

is compared to that reported for a popular implementation

of Policy-on Policy-off Policy Optimization (P3O) type RL

method [61]. Since the number of steps is not reported, we

used the maximum number of steps per episode to evaluate

minimum number of episodes in learning (which is at best,

an approximation). The NEAT implementation available to us

[60] encountered programmatic errors for Bipedal Walker, and

hence the results of NEAT is adopted from [59] for comparison,

and appear to be marginally better than the mean performance

of AGENT over ten runs for this problem (as seen in Table

I). As observed from Table I, all the neuroevolution methods

perform poorer to the RL (P3O) method, which is expected

given the larger size of the state space for this problem. Larger

population size and initiation with larger/deeper networks in

the initial population might be able to address this issue in the

future. Between AGENT and HyperNEAT, Table I shows that

AGENT performs marginally better than HyperNEAT w.r.t. the

optimum reward value obtained.

B. Comparison with NEAT and Adaptive HyperNEAT

We also compare AGENT with a state-of-the-art implemen-

tation of NEAT (with recurrent network) in Pytorch [60], based

on [17] and an advanced variation of NEAT, aka HyperNEAT.

We run NEAT with similar settings as that used in AGENT

for the corresponding problem. Note that, when implementing

NEAT on the Acrobot and Lunar Lander problems, each

genome is evaluated over all five random episodes and the

progressive reward computation concept (Eq. 13) is not used;

without this allowance NEAT performance was very poor.

Table I lists the results of this NEAT implementation. Unlike

NEAT, HyperNEAT uses Compositional Pattern Producing

Networks (CPPN) [24] to indirectly encode the weights, and

facilitate evolution of larger networks. In our case, we compare

with adaptive HyperNEAT, which uses CPPN to both encode

weights and the Hebbian rule [62] for updating the network.

For Adaptive HyperNEAT the progressive reward computation

concept (Eq. 13) is used, as in AGENT.

As seen from Table I AGENT performed better than Pytorch

NEAT in terms of net reward values in all three OpenAI

problems. AGENT took roughly half the number of episodes to

converge as NEAT did on the Acrobot and Lunar Lander prob-

lems. The performances of the two methods are comparable

for the Mountain Car problem, with AGENT exhibiting lower

variance in computing cost. While these results could change if

PyTorch NEAT is implemented with further calibrated settings,

the comparison provided here is intended to (and does) demon-

strate the favorable effects of the fundamental modifications in

AGENT over the standard NEAT algorithm.

From Table I, it can be seen that the performance of

AGENT and Adaptive HyperNEAT are relatively similar in

terms of reward values for the Mountain Car and Acrobat

problems. However, Adaptive HyperNEAT is found to require

a fewer number of episodes to converge on the corresponding

optimum solutions. In the case of the Lunar Lander problem,

AGENT is found to arrive at better reward values than Adaptive

HyperNEAT. The higher episodic cost of AGENT is attributed

to its explicit diversity preservation, which usually comes at

some compromise in convergence rate, as well as likely due

to the use of direct encoding of weights.

C. Computation Cost Analyses

As seen from Table I, in terms of the # episodes used, the

training cost of AGENT appears comparable to (or slightly

better than) that of NEAT and poorer than that of Adaptive

HyperNEAT, across the OpenAI Gym problems. Here, all three

neureovolution algorithms are subject to the same population

size, the same maximum number of episodes (5 scenarios, here)

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

10 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

AGENT (our method) Mountain Car Acrobat Lunar Lander Bipedal Walker

Best Reward* 99.25 ± 0.14 -65.20 ± 3.56 86.69± 18.28 4.5± 0.25
Episodes 22, 027± 775 47, 346± 1, 917 43, 339± 438 23, 955± 543

RL Benchmark
Random Weight
Guessing [56]

Adaptive Memory
Replay [57]

SARSA [58] P3O [59]

Best Reward* 96.1 ∼ −75.0 ∼ 200 ∼ 250

Episodes 200,000 1,000 40,000 ≥ 6250

NEAT (PyTorch) [60] Mountain Car Acrobat Lunar Lander Bipedal Walker [59]

Best Reward* 65.07± 42.64 −119.64± 1.57 10.63± 11.02 ∼ 6.75*

Episodes 17, 887± 8, 932 100, 143± 87 99, 980± 52 ≥ 6250

Adaptive HyperNEAT
(PyTorch) [25]

Mountain Car Acrobat Lunar Lander Bipedal Walker

Best Reward* 99.24± 0.05 −67.00± 2.79 0.92± 47.98 1.62± 2.80
Episodes 6, 790± 794 11, 180± 518 10, 899± 435 10, 646± 252

*The Bipedal Walker results for NEAT (from [59]) doesn’t use settings similar to what AGENT and HyperNEAT uses in our simulations.

TABLE I: Benchmark evaluation on OpenAI Gym problems: AGENT vs. reported results of state-of-the-art RL methods and of PyTorch implementations of
NEAT, and Adaptive HyperNEAT. Due to their stochastic nature, AGENT NEAT and HyperNEAT results are reported in terms of mean ± standard deviation
of the optimized fitness over 10 runs. [Note that reward values are higher the better]

0 20 40 60 80 100
80

85

90

95

100

0 2 4 6 8 10

0

2

4

6

8

10

(a) Mountain Car Problem

0 20 40 60 80 100
-350

-300

-250

-200

-150

-100

-50

0 2 4 6 8 10

0

2

4

6

8

10

(b) Acrobot Problem

0 20 40 60 80 100

0

50

100

150

0 2 4 6 8 10

0

2

4

6

8

10

(c) Lunar Lander Problem

6/21/2022

2

0 20 40 60 80 100
-50

-40

-30

-20

-10

0

10

(d) Bipedal Walker Problem
Fig. 4: Convergence history of the best of 10 runs of AGENT on OpenAI
Gym problems, and the topology of the corresponding optimized network

for evaluating each unique candidate network, and the same

maximum number of generations for each problem, thereby

promoting fair comparisons. Now note that, due to the progres-

sive reward evaluation approach as explained in Section IV-A2,

and that only uniquely new network genomes are evaluated in

any generation, the executed number of episodes per candidate

evaluation (thus ≤ 5 here) and per generation respectively both

vary. Hence, even though the neureovolution algorithms are run

till the same prescribed maximum number of generations (as

seen from the convergence history plots in the Supplement, Fig.

S - 3), the overall costs in terms of total # episodes could be

different. Here, HyperNEAT cost in this respect is lower likely

due to fewer candidates qualifying to be evaluated over all five

episodes, and the presence of fewer uniquely new genomes in

subsequent generations, compared to AGENT. On the other

hand, while the reported RL results shows smaller computing

cost compared to all three neuroevolution algorithms in terms

of # episodes (as Table I shows), note that neuroevolution

benefits from ready parallelization, and hence actual clock-

time comparison could be different, as explained towards the

start of Section IV.

For practical context, here we also report the computing

time of a representative runs of AGENT ± For a system with

Windows 10, 16GB RAM and Ryzen 7, 2900 MHz 8-core

CPU, AGENT took: i) 50 mins to run 50 generations of

the OpenAI Mountain car problem with a population of 50

candidates; ii) 220 mins to run 50 generations of the OpenAI

Acrobot problem with a population of 200 candidates; and iii)

65 mins to run 50 generations of the OpenAI Lunar lander

problem with a population of 200 candidates.

D. Convergence History & Optimum ANN Topology

To provide insights into the nature of convergence of

AGENT and the complexity of the resulting optimum ANN

topologies, we use the best run of AGENT from each test

problem, and show the corresponding convergence history out-

comes in Fig. 4. It can be observed from Fig. 4 that significant

improvement (between 15 to 150 % for different problems) in

net reward values were accomplished during the neuroevolution

process in each benchmark problem. The improvement is

relatively gradual for the more complex Lunar Lander problem.

We also observed that AGENT was able to generate small

(parsimonious) policy models for each of these problems. To

put that into comparative perspective, consider that for the

Lunar Lander problem, SARSA (State±Action±Reward±State-

Action) algorithm [58] trained a model with 2 hidden layers

and a total of 32 nodes (16 RELU and 16 softmax nodes)

and over 400 weight and bias parameters vs. a policy network

with only 18 hidden nodes and 26 weight parameters evolved

by AGENT (Fig. 4c). For the Mountain Car and Acrobot

problems, the reported RL methods used for comparison do

not clearly report their model sizes.

For comparison of convergence trends, the convergence

history plot of the best of 10 runs of HyperNEAT on each of the

four OpenAI Gym problems are included in the Supplement as

Fig. S - 3. The AGENT convergence histories are re-plotted

therein as well. We observe from that figure that HyperNEAT

stalls early on for Mountain Car, Acrobot problems and Bipedal

Walker problems. For Lunar Lander, while HyperNEAT shows

gradual improvement, it converges to a premature (∼ 45%)

poorer reward value compared to AGENT.

A more in depth analysis of the change in ANN complexity

over AGENT’s generations, and the accompanying process of

fitness improvement and variation in population diversity is

provided in the Supplementary Materials section S - V.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

BEHJAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION 11

Fig. 5: Acrobot problem: AGENT’s convergence history of the median case
under each controller setting

E. Ablation Tests: Impact of the Adaptive Controllers

Here, we analyze the effect of diversity and improve-

ment rate control in AGENT, achieved via regulation of

selection pressure and mutation. Specifically, to study the

individual and joint impact of the two controllers, we con-

duct an ablation test by using the following four dif-

ferent combinations of the controller gains: (KD,KI) ∈
{(0.0, 0.0), (0.0, 0.1), (0.1, 0.0), (0.1, 0.1)}; a zero gain repre-

sents a shut-off controller. With each {KD,KI} setting, we run

AGENT 5 times on the Acrobot problem. Given the high cost

of testing multiple combinations, we limit the max generations

to 30 in this test, as well as in the analysis of the effect of

memory nodes presented in Section IV-F.
KD,KI = 0.0, 0.0 0.1, 0.0 0.0, 0.1 0.1, 0.1
Reward: Mean -127.0 -105.8 -97.2 -83.7

Reward: Median -124.50 -92.2 -75.0 -67.5

Reward: Std-Dev 49.5 44.3 47.6 24.4

TABLE II: Acrobot: AGENT’s best genome’s reward over 5 runs, under each
controller setting ± KD : diversity controller gain (regulates selection), KI :
avg vs. best improvement rate controller gain (regulates mutation)

Table II summarizes the distribution of the reward value of

the best genome obtained by AGENT over 5 runs, under each

controller setting. The convergence history of the median case

under each controller setting is shown in Fig. 5. The results

in Table II show that using controllers has a clear positive

effect on mean performance (higher) and robustness (smaller

std-dev). Overall, the performance improvement, in terms of

mean or median value (higher the better) and variance (lower

the better) of the best reward obtained, is most significant when

both controllers are used together, as seen from Table II. Now,

when we consider the starting points (i.e., the quality of the

best genome in the initial population) in the median cases,

the diversity controller (KD ̸= 0) seems to provide the most

significant convergence gains, as observed from Fig. 5.

F. Ablation Test: Analyze the Impact of Using Neurons with

Memory in AGENT

To study the impact of using nodes with memory, i.e., nodes

of types M = 1 & M = 2 (refer Eq. 2), we run AGENT

on each of the benchmark problems with the memory choice

deactivated (i.e., allowing only nodes of type M = 0). When

memory nodes are available, neuroevolution is observed to

yield a final network with at least one node with memory,

e.g., the optimal model in the best ªwith memoryº runs of

Mountain Car, Acrobot and Lunar Lander problems contained

(3/1/2), (8/1/1), and (9/2/2) nodes of types M = 0/1/2,

respectively. The performance distribution of AGENT over 5

runs, obtained with and without memory nodes available to be

selected, are summarized in Table III. The table shows that

the realizable benefits of the availability of memory nodes is

problem dependent. For example, while in the Acrobot problem

significant mean performance gains are achieved when memory

nodes are available, in the other two problems, slight decrease

in mean performance is noted. These results are expected since,

while the availability of nodes adds flexibility to the space

of potential mappings (in continuous control), it increases the

complexity of the neuroevolution search process (leading to a

larger design space).

Problem Lunar Lander Acrobot Mountain Car

W/O Memory 57.3± 23.8 −111.4± 15.1 99.1 ± 0.410

W/ Memory 55.5 ± 23.1 -83.7 ± 24.4 99.0± 0.276

TABLE III: Analysis of the impact of nodes with memory (Eq. 2) on AGENT
performance (Mean± Std-Dev in Net Reward value of optimum network)

V. AGENT APPLICATION: UAV-UAV RECIPROCAL

COLLISION AVOIDANCE

In this section, we briefly describe the reciprocal UAV-

UAV collision avoidance problem, the simulation framework

used for this problem, and the performance of AGENT in

learning the collision avoidance maneuvers. As summarized

in Supplementary Materials section S - VI-A, in the recip-

rocal collision avoidance strategy, two approaching identical

quadcopter UAVs undertake mutually coherent maneuvers to

avoid collision with each other, based on the same ANN-based

maneuver planning model [43]. This model is developed via a

framework called training reciprocal actions for collision eva-

sion (TRACE) [43]. For successful collision avoidance, the dis-

tance of separation between the two UAVs must always remain

greater than a safety threshold, dcol = 2 × UAV_Diameter.

Two different local trajectory modification strategies are used

to avoid a collision: 1) speed change (SC): UAVs respec-

tively accelerate/decelerate and decelerate/accelerate to avoid

the collision; and 2) direction change (DC): UAVs deviate

respectively to the left of their original heading to avoid the

collision. Both maneuvers are designed in a way such that the

UAVs return to their original path and velocity at the end of the

maneuver. Table IV lists the UAV specifications and problem

settings used for training the maneuver model here.

A. UAV-UAV Collision Avoidance: Framework

Parameters Value

UAV Weight & Size (Dia) 28 g & 92 cm
UAV Nominal & Max Speed 8 m/s & 15 m/s
Safe Separation Distance (dcol) 2× diameter
Reaction Time 0.1 seconds

TABLE IV: UAV collision avoidance: Simulation settings

Problem Formulation & Design of Experiments: Here the

goal of designing the TRACE maneuver planning model is to

decrease the dependency of the system on sensing capabilities.

Dependency is represented in terms of the minimum range

of detection demanded of the overall ªsensing and peer-state

estimationº system. As shown on the right part of Fig. 2, the

input to the neural network based maneuver model includes

the initial state parameters of the UAVs, and the output is

the strategy to be applied (SC or DC strategy) and the action

parameter associated with it, i.e., change in speed (δV) or

change in heading angle (φ). Equation 14 summarizes the input

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

12 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

Optimized Network

(a) Convergence History & Topology of The Optimized Net-
work - UAV problem

Colision Threshold

Worst Case Detection Range

(b) UAV collision avoidance: Performance of the maneuver
model trained by AGENT over unseen test scenarios

Fig. 6: UAV-UAV Collision Problem: Convergence, optimum network and its
performance on test cases

and output of the maneuver model.

[δV , φ, s] = fΨ(∆PX,0,∆PY,0, VB,X,0, VB,Y,0) (14)

where ∆PX,0 = PA,X,0 − PB,X,0 and ∆PY,0 = PA,Y,0 −
PB,Y,0 respectively represent the initial separation of the two

UAVs (A: own UAV; and B: peer UAV) along the global X and

Y coordinates; VB,X,0, VB,Y,0 are the initial velocities in X and

Y directions for the peer UAV (UAV B). Here, fΨ denotes the

neural network model, with Ψ encapsulating the TWEANN

model description (topology, biases and weights). The output

parameter s serves as a binary classifier that selects which

strategy is to be used ± by using the following discrimination:

if s ≤ 0.5, use SC strategy, otherwise use DC strategy. Thus,

the maneuver planning neural network encompasses a multi-

input-multi-output (MIMO) regression model.

In order to promote robust optimal maneuver planning, a

worst case scenario perspective is taken here. The objective

function to be minimized is thus defined as the worst case

(largest) detection range required to just-about avoid collision

across a set of uniformly distributed approach scenarios. Fur-

ther details of how this objective function is computed can be

found in [63]. Here neuroevolution is used to train the neural

network based maneuver policy model with this objective being

treated as the loss function to be minimized. Note that the

possibility of the controller not being able to adequately follow

the planned trajectory is also identified by using a Bagged Tree

classifier (details of which can be found in the Supplementary

Materials Section S - VI), thereby mitigating the need for

large number flight (motion) simulations.

B. UAV-UAV Collision Avoidance: Results

The AGENT algorithm settings used to solve this problem is

summarized earlier in supplementary materials and [63]. Figure

6a shows the convergence history of AGENT and the final

network structure obtained for this problem. AGENT was able

to discover a compact network with only 5 hidden nodes and

a total of 26 edges. It can be seen from Fig. 6a that AGENT

converged in ≈ 15 generations, and in that process achieved

a 33% improvement in the fitness function over the random

initial models ± the minimum detection range decreased from

5.2 m to 3.5 m. This AGENT-optimized minimum detection

range, that just about avoids collision, leads to a less than 1.7

seconds of detection lead-time across the different approaching

angles. When HyperNEAT was applied to this UAV problem

with settings comparable to that of AGENT, it was unable to

find feasible solutions, with the final rewards value remaining

at -200 even after 100 generations. As future work, we could

look at specific reward shaping of the objective function to

help HyperNEAT better solve this problem.

For further analysis, in Fig. 6b we plot the minimum detec-

tion range given by the AGENT-trained maneuver model for

144 different unseen approaching angles (i.e., test scenarios).

The trained network is observed to generalize very well,

with the minimum detection range showing a smooth trend,

and always remaining smaller than the estimated worst case

detection range of 3.5 m. In other words, the performance of

the trained maneuver model persists on unseen test scenarios.

VI. FURTHER DISCUSSION

The analysis of the effect of memory nodes in AGENT

showed that while significant performance gains can be

achieved in some problems, in others the added (ANN) design

space dimensionality might cause slight reduction in perfor-

mance. The convergence histories, including that of rates of

improvement and diversity over generations, showed that the

controllers had desirable impacts, e.g., consistent changes in

the fitness improvement rate of the population average and

the best. Niche-averaged complexity was observed to follow

a generally increasing but not necessarily monotonic trend ±

exhibiting an useful exploration/exploitation balance. Further

statistical analysis was performed to elicit how our popula-

tion diversity quantification was correlated with the observed

diversity in the outputs of the networks in the population,

with mostly noting a positive correlation except in the more

complex lunar lander problem (where the weights of the

more complex networks may not have stabilized within the

allowed max generations). Statistical analysis of the impact of

the controllers over the final outcomes showed that the most

significant improvement across multiple runs of the algorithm

was achieved when both controllers were used together.

It is important to note that mutation and selection operations

impact both average improvement rates and diversity; and

thus it remains challenging to discriminate and appropriately

adapt their independent impacts. At present, AGENT sep-

arately adapts selection to control diversity, and mutation

to control ªaverage vs. bestº improvement rate and the ex-

ploration/exploitation balance thereof. This leaves scope for

further explorations regarding how to coherently adapt both

of these operators to improve convergence. While more work

remains to be done in the neuroevolution domain to formally

describe and understand the interplay between diversity and

exploration/exploitation balance, our work here offers insight-

ful new mechanisms to quantify and potentially regulate these

characteristics of neuroevolution.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

BEHJAT et al.: ADAPTIVE NEUROEVOLUTION WITH GENETIC OPERATOR CONTROL AND TWO-WAY COMPLEXITY VARIATION 13

VII. CONCLUSION

In this paper, we developed a new neuroevolution method

for designing TWEANNs, by making important advancements

to the NEAT formalism. The goal was to study how the

new advanced features could help in mitigating premature

stagnation and providing competitive performance on complex

RL/control problems. The key contributions in this regard

included: 1) quantifying diversity using a graph-theoretic con-

cept and controlling diversity via adaptation of the tournament

selection process; 2) controlling average fitness improvement

via mutation rate adaptation; 3) include activation function

choice and memory as nodal properties; and 4) allowing both

growth and shrinkage of ANN topologies during evolution.

When applied to four benchmark control problems from the

OpenAI gym platform, AGENT provided competitive results in

terms of final reward values and network complexity, compared

to results reported with state-of-the-art RL methods. AGENT

was also compared to well-known PyTorch implementations

of NEAT and Adaptive HyperNEAT, with AGENT providing

superior results in terms of net reward value and usually

smaller cost compared to NEAT. Results of AGENT was also

comparable (slightly better) to Adaptive HyperNEAT on three

out of four benchmark problems, and significantly better in the

Lunar Lander problem. AGENT was also tested on a UAV-UAV

collision avoidance problem, resulting in 33% improvement

over random initial models in only 15 generations, with a

population size of just 100 genomes. The resulting model was

also found to generalize well over unseen scenarios.

We also studied the effect of the major new features in

AGENT on its search process and performance. The insights

gained therein points to the potential for translating AGENT’s

unique features, e.g., the controllers and the ability to both

grow and shrink ANN topologies, to directly advance other

neuroevolution algorithms, and is thus also an important di-

rection of future work.

REFERENCES

[1] A. I. Dounis and C. Caraiscos, ªAdvanced control systems engineering
for energy and comfort management in a building environmentÐa
review,º Renewable and Sustainable Energy Reviews, vol. 13, no. 6-7,
pp. 1246±1261, 2009.

[2] S. Sonoda and N. Murata, ªNeural network with unbounded activation
functions is universal approximator,º Applied and Computational Har-

monic Analysis, vol. 43, no. 2, pp. 233±268, 2017.
[3] J. Peters, S. Vijayakumar, and S. Schaal, ªReinforcement learning for

humanoid robotics,º in Proceedings of the third IEEE-RAS international

conference on humanoid robots, 2003, pp. 1±20.
[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
ªHuman-level control through deep reinforcement learning,º Nature, vol.
518, no. 7540, p. 529, 2015.

[5] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud, ªBack-
propagation through the void: Optimizing control variates for black-box
gradient estimation,º arXiv preprint arXiv:1711.00123, 2017.

[6] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, ªWhy and
when can deep-but not shallow-networks avoid the curse of dimension-
ality: a review,º International Journal of Automation and Computing,
vol. 14, no. 5, pp. 503±519, 2017.

[7] D. Floreano, P. DÈurr, and C. Mattiussi, ªNeuroevolution: from architec-
tures to learning,º Evolutionary Intelligence, vol. 1, no. 1, pp. 47±62,
2008.

[8] S. Risi and J. Togelius, ªNeuroevolution in games: State of the art and
open challenges,º IEEE Transactions on Computational Intelligence and

AI in Games, vol. 9, no. 1, pp. 25±41, 2015.
[9] N. Hansen, S. D. MÈuller, and P. Koumoutsakos, ªReducing the time

complexity of the derandomized evolution strategy with covariance

matrix adaptation (cma-es),º Evolutionary computation, vol. 11, no. 1,
pp. 1±18, 2003.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, ªOpenai gym,º arXiv preprint

arXiv:1606.01540, 2016.

[11] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, ªDesigning
neural networks through neuroevolution,º Nature Machine Intelligence,
vol. 1, no. 1, pp. 24±35, 2019.

[12] E. Ronald and M. Schoenauer, ªGenetic lander: An experiment in
accurate neuro-genetic control,º in International Conference on Parallel

Problem Solving from Nature. Springer, 1994, pp. 452±461.

[13] X. Yao, ªEvolving artificial neural networks,º Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423±1447, 1999.

[14] A. J. Turner and J. F. Miller, ªThe importance of topology evolution
in neuroevolution: a case study using cartesian genetic programming
of artificial neural networks,º in International Conference on Innovative

Techniques and Applications of Artificial Intelligence. Springer, 2013,
pp. 213±226.

[15] G. F. Miller, P. M. Todd, and S. U. Hegde, ªDesigning neural networks
using genetic algorithms.º in ICGA, vol. 89, 1989, pp. 379±384.

[16] J. D. Schaffer, R. A. Caruana, and L. J. Eshelman, ªUsing genetic
search to exploit the emergent behavior of neural networks,º Physica

D: Nonlinear Phenomena, vol. 42, no. 1-3, pp. 244±248, 1990.

[17] K. O. Stanley and R. Miikkulainen, ªEvolving neural networks through
augmenting topologies,º Evolutionary computation, vol. 10, no. 2, pp.
99±127, 2002.

[18] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, ªA hypercube-based
encoding for evolving large-scale neural networks,º Artificial life, vol. 15,
no. 2, pp. 185±212, 2009.

[19] D. V. Vargas and J. Murata, ªSpectrum-diverse neuroevolution with
unified neural models,º IEEE transactions on neural networks and

learning systems, vol. 28, no. 8, pp. 1759±1773, 2016.

[20] M. Hausknecht, P. Khandelwal, R. Miikkulainen, and P. Stone,
ªHyperneat-ggp: A hyperneat-based atari general game player,º in Pro-

ceedings of the 14th annual conference on Genetic and evolutionary

computation, 2012, pp. 217±224.

[21] J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J. C. Zagal, and H. Lipson,
ªEvolving robot gaits in hardware: the hyperneat generative encoding vs.
parameter optimization.º in ECAL, 2011, pp. 890±897.

[22] G. Wang, G. Cheng, and T. R. Carr, ªThe application of improved
neuroevolution of augmenting topologies neural network in marcellus
shale lithofacies prediction,º Computers & geosciences, vol. 54, pp. 50±
65, 2013.

[23] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, ªDeep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,º
arXiv preprint arXiv:1712.06567, 2017.

[24] K. O. Stanley, ªCompositional pattern producing networks: A novel
abstraction of development,º Genetic programming and evolvable ma-

chines, vol. 8, no. 2, pp. 131±162, 2007.

[25] S. Risi and K. O. Stanley, ªIndirectly encoding neural plasticity as a
pattern of local rules,º in International Conference on Simulation of

Adaptive Behavior. Springer, 2010, pp. 533±543.

[26] S. Risi, J. Lehman, and K. O. Stanley, ªEvolving the placement and
density of neurons in the hyperneat substrate,º in Proceedings of the 12th

annual conference on Genetic and evolutionary computation. ACM,
2010, pp. 563±570.

[27] S. Risi and K. O. Stanley, ªDeep neuroevolution of recurrent and
discrete world models,º in Proceedings of the Genetic and Evolutionary

Computation Conference, 2019, pp. 456±462.

[28] J. Schmidhuber, D. Wierstra, and F. J. Gomez, ªEvolino: Hybrid neu-
roevolution/optimal linear search for sequence prediction,º in Proceed-

ings of the 19th International Joint Conferenceon Artificial Intelligence

(IJCAI), 2005.

[29] D. Howard, A. E. Eiben, D. F. Kennedy, J.-B. Mouret, P. Valencia,
and D. Winkler, ªEvolving embodied intelligence from materials to
machines,º Nature Machine Intelligence, vol. 1, no. 1, pp. 12±19, 2019.

[30] A. Behjat, C. Zeng, K. K. Gabani, and S. Chowdhury, ªConcurrent
morphology-optimization and behavior-learning:co-designing intelligent
quadcopters,º in AIAA Aviation 2020 Forum, 2020.

[31] T. Weise, M. Zapf, R. Chiong, and A. J. Nebro, ªWhy is optimization
difficult?º in Nature-inspired algorithms for optimisation. Springer,
2009, pp. 1±50.

[32] H. M. Pandey, A. Chaudhary, and D. Mehrotra, ªA comparative review
of approaches to prevent premature convergence in ga,º Applied Soft

Computing, vol. 24, pp. 1047±1077, 2014.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

14 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MARCH 2022

[33] M. de Wet, ªAvoiding premature convergence in neuroevolution by
broadening the evolutionary search,º Department of Computer Science,
The University of Texas at Austin, Undergraduate Honors Thesis
HR-11-02, 2011. [Online]. Available: http://www.cs.utexas.edu/users/
ai-lab?dewet:ugthesis11

[34] J. Lehman and K. O. Stanley, ªAbandoning objectives: Evolution through
the search for novelty alone,º Evolutionary computation, vol. 19, no. 2,
pp. 189±223, 2011.

[35] D. Gravina, A. Liapis, and G. Yannakakis, ªSurprise search: Beyond
objectives and novelty,º in Proceedings of the Genetic and Evolutionary

Computation Conference 2016. ACM, 2016, pp. 677±684.
[36] K. Kawaguchi, L. P. Kaelbling, and Y. Bengio, ªGeneralization in deep

learning,º arXiv preprint arXiv:1710.05468, 2017.
[37] I. VlašiÂc, M. ðuraseviÂc, and D. JakoboviÂc, ªImproving genetic algorithm

performance by population initialisation with dispatching rules,º Com-

puters & Industrial Engineering, vol. 137, p. 106030, 2019.
[38] S. Chowdhury, W. Tong, A. Messac, and J. Zhang, ªA mixed-discrete par-

ticle swarm optimization algorithm with explicit diversity-preservation,º
Structural and Multidisciplinary Optimization, vol. 47, no. 3, pp. 367±
388, 2013.

[39] T. G. Lewis, Network science: Theory and applications. John Wiley &
Sons, 2011.

[40] Y. Wu, P. R. Bhat, T. J. Close, and S. Lonardi, ªEfficient and accurate
construction of genetic linkage maps from the minimum spanning tree
of a graph,º PLoS Genet, vol. 4, no. 10, p. e1000212, 2008.

[41] S. Haflidason and R. Neville, ªOn the significance of the permutation
problem in neuroevolution,º in Proceedings of the 11th Annual confer-

ence on Genetic and evolutionary computation, 2009, pp. 787±794.
[42] K. O. Stanley and R. Miikkulainen, ªEfficient reinforcement learning

through evolving neural network topologies,º in Proceedings of the 4th

Annual Conference on Genetic and Evolutionary Computation. Morgan
Kaufmann Publishers Inc., 2002, pp. 569±577.

[43] A. Behjat, S. Paul, and S. Chowdhury, ªLearning reciprocal actions for
cooperative collision avoidance in quadrotor unmanned aerial vehicles,º
Robotics and Autonomous Systems, vol. 121, p. 103270, 2019.

[44] M. Dorofki, A. H. Elshafie, O. Jaafar, O. A. Karim, and S. Mastura,
ªComparison of artificial neural network transfer functions abilities to
simulate extreme runoff data,º International Proceedings of Chemical,

Biological and Environmental Engineering, vol. 33, pp. 39±44, 2012.
[45] D. Stathakis, ªHow many hidden layers and nodes?º International

Journal of Remote Sensing, vol. 30, no. 8, pp. 2133±2147, 2009.
[46] P. J. Hancock, ªSelection methods for evolutionary algorithms,º in

Practical Handbook of Genetic Algorithms. CRC Press, 2019, pp. 67±
92.

[47] G. Howard, E. Gale, L. Bull, B. de Lacy Costello, and A. Adamatzky,
ªEvolution of plastic learning in spiking networks via memristive connec-
tions,º IEEE Transactions on Evolutionary Computation, vol. 16, no. 5,
pp. 711±729, 2012.

[48] K. Deb, Multi-objective optimization using evolutionary algorithms.
John Wiley & Sons, 2001, vol. 16.

[49] W. Huang, Y. Li, and Y. Huang, ªDeep hybrid neural network and
improved differential neuroevolution for chaotic time series prediction,º
IEEE Access, vol. 8, pp. 159 552±159 565, 2020.

[50] M. Li, J. Zheng, and J. Wu, ªImproving nsga-ii algorithm based on min-
imum spanning tree,º in Asia-Pacific Conference on Simulated Evolution

and Learning. Springer, 2008, pp. 170±179.
[51] J. B. Kruskal, ªOn the shortest spanning subtree of a graph and the

traveling salesman problem,º Proceedings of the American Mathematical

society, vol. 7, no. 1, pp. 48±50, 1956.
[52] C. Ye, R. C. Wilson, C. H. Comin, L. d. F. Costa, and E. R. Hancock,

ªApproximate von neumann entropy for directed graphs,º Physical Re-

view E, vol. 89, no. 5, p. 052804, 2014.
[53] G. Minello, L. Rossi, and A. Torsello, ªOn the von neumann entropy of

graphs,º Journal of Complex Networks, vol. 7, no. 4, pp. 491±514, 2019.
[54] E. Hancock, ªLecture notes in network entropy,º July 2016.
[55] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, ªEvolution

strategies as a scalable alternative to reinforcement learning,º arXiv

preprint arXiv:1703.03864, 2017.
[56] D. Oller, T. Glasmachers, and G. Cuccu, ªAnalyzing reinforcement

learning benchmarks with random weight guessing,º arXiv preprint

arXiv:2004.07707, 2020.
[57] R. Liu and J. Zou, ªThe effects of memory replay in reinforcement

learning,º in 2018 56th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2018, pp. 478±485.
[58] K. Asadi and M. L. Littman, ªAn alternative softmax operator for rein-

forcement learning,º in Proceedings of the 34th International Conference

on Machine Learning-Volume 70. JMLR. org, 2017, pp. 243±252.

[59] S. Zhang and O. R. Zaiane, ªComparing deep reinforcement learn-
ing and evolutionary methods in continuous control,º arXiv preprint

arXiv:1712.00006, 2017.
[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., ªPytorch: An
imperative style, high-performance deep learning library,º in Advances

in neural information processing systems, 2019, pp. 8026±8037.
[61] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, ªTrust

region policy optimization,º in International conference on machine

learning. PMLR, 2015, pp. 1889±1897.
[62] G. Shaw, ªDonald hebb: The organization of behavior,º in Brain Theory.

Springer, 1986, pp. 231±233.
[63] A. Behjat, K. K. Gabani, and S. Chowdhury, ªTraining detection-

range-frugal cooperative collision avoidance models for quadcopters via
neuroevolution,º in AIAA Aviation 2019 Forum, 2019, p. 3312.

[64] J. Benesty, J. Chen, Y. Huang, and I. Cohen, ªPearson correlation
coefficient,º in Noise reduction in speech processing. Springer, 2009,
pp. 1±4.

[65] D. Mellinger and V. Kumar, ªMinimum snap trajectory generation and
control for quadrotors,º in 2011 IEEE International Conference on

Robotics and Automation, May 2011, pp. 2520±2525.
[66] T. Luukkonen, ªModelling and control of quadcopter,º Independent

research project in applied mathematics, Espoo, vol. 22, 2011.
[67] A. Moore, ªEfficient memory-based learning for robot control,º Ph.D.

dissertation, Carnegie Mellon University, Pittsburgh, PA, March 1991.
[68] A. Geramifard, C. Dann, R. H. Klein, W. Dabney, and J. P. How,

ªRlpy: A value-function-based reinforcement learning framework for
education and research,º Journal of Machine Learning Research,
vol. 16, no. 46, pp. 1573±1578, 2015. [Online]. Available: http:
//jmlr.org/papers/v16/geramifard15a.html

Amir Behjat is a Post-Doctoral researcher at Pur-
due university. He received his Ph.D. in Mechanical
Engineering from University at Buffalo in 2021.
His contributions to this paper occurred during his
Ph.D. He graduated with his BS and MS degrees
in Mechanical engineering from Sharif University of
Technology. His research focuses on Neuroevolution,
Physics-Aware machine learning, and UAV collision
avoidance.

Nathan Maurer is an M.S. in Robotics student
at University at Buffalo. He received his B.S. in
Computer Engineering from University at Buffalo.
His contributions to this paper is related to his ongo-
ing M.S. Thesis research being performed under the
supervision of Dr. Souma Chowdhury. His research
interests include neuroevolution, neuromorphic com-
puting and graph learning.

Sharat Chidambaran received his M.S. in Me-
chanical Engineering from University at Buffalo. His
contributions to this paper occurred during his M.S.
Thesis performed under the supervision of Dr. Souma
Chowdhury at University at Buffalo. His research in-
terests include autonomous systems, machine learn-
ing and data driven engineering.

Souma Chowdhury is an Associate Professor of
Mechanical and Aerospace Engineering at University
at Buffalo. Dr. Chowdhury received his B.S., M.S.
and Ph.D. in Mechanical Engineering, respectively
from IIT Kharagpur in India, Florida International
University in Miami and Rensselaer Polytechnic In-
stitute in Troy. His research interests lie at the in-
tersection of multi-fidelity optimization and machine
learning with applications to the design and control
of autonomous systems, swarm robotics and energy
systems. He has co-authored 150 articles in leading

journals and full-length conference proceedings in related areas. His research
has been sponsored by the NSF, DARPA, ONR, NASA and AFOSR.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2022.3214181

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 27,2022 at 22:25:43 UTC from IEEE Xplore. Restrictions apply.

