CORONA DECOMPOSITIONS FOR PARABOLIC
UNIFORMLY RECTIFIABLE SETS
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ABsTRACT. We prove that parabolic uniformly rectifiable sets admit (bilateral)
corona decompositions with respect to regular Lip(1,1/2) graphs. Together with
our previous work, this allows us to conclude that if & < R™! is parabolic
Ahlfors-David regular, then the following statements are equivalent.

(1) X is parabolic uniformly rectifiable.

(2) X admits a corona decomposition with respect to regular Lip(1,1/2) graphs.

(3) X admits a bilateral corona decomposition with respect to regular Lip(1,1/2)

graphs.
(4) X is big pieces squared of regular Lip(1,1/2) graphs.
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1. INTRODUCTION

The results proved in this paper are part of a program devoted to providing par-
abolic analogues of the influential work of G. David and S. Semmes [DS1, DS2]
concerning uniformly rectifiable sets. At the time [DS1] was written, tools from
the Calderén-Zygmund school of harmonic analysis were being rapidly adapted
to less classical and rougher geometrical settings. A particularly important devel-
opment was the proof of the L? boundedness of the Cauchy integral on Lipschitz
curves [CMM], and subsequent developments concerning the boundedness of sin-
gular integral operators of Calderdn type on Lipschitz graphs and curves [CDM]
(see also [CCFJR, D, M, LMcS, CS]). In addition, the Calderén-Zygmund theory
was extended beyond the Euclidean setting (see e.g. [Chr]).

When restricting to the setting of d-dimensional subsets of n-dimensional Eu-
clidean space, David and Semmes [DS1, DS2] found necessary and sufficient con-
ditions on these sets for the validity of the L? boundedness of d-dimensional sin-
gular integral operators. David and Semmes coined the sets having this property
uniformly rectifiable, and through a remarkable series of works they provided nu-
merous characterizations of these sets. Of particular relevance to this paper is the
following theorem stating a subset of the equivalent characterizations of uniformly
rectifiable sets. We refer to [DS1] for exact definitions of the different notions
appearing in Theorem 1.1.

Theorem 1.1 ([DS1]). Let E € R™! be n-dimensional Ahlfors(-David) regular.
Then the following statements are equivalent.

(a) E is uniformly rectifiable.

(b) E admits a corona decomposition with respect to Lipschitz graphs.

(c) All sufficiently regular convolution type Calderon-Zygmund operators with
odd kernels are L? bounded on E.

The purpose of this paper is to prove that the implication (a) = (b) holds in
the context of parabolic uniformly rectifiable sets (see Definition 2.19). To prove
that the implication (c) = (b) holds in the parabolic setting is, as of writing,
an interesting and open problem. Combining the main results established in this
paper, see Theorem 3.1 and Theorem 3.3 below, with the results of our previous
work [BHHLNT1], we obtain the following.

Theorem 1.2. Let ¥ c R™! be parabolic Ahlfors-David regular (see Definition
2.14). Then the following statements are equivalent.

(a) Z is parabolic uniformly rectifiable.

(b) T admits a corona decomposition with respect to regular Lip(1,1/2) graphs.

(c¢) X admits a bilateral corona decomposition with respect to regular Lip(1,1/2)
graphs.

(d) Z is big pieces squared of regular Lip(1,1/2) graphs.
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All implications stated in Theorem 1.2, but the implications (a) — (b) and
(a) = (c¢), are contained' in [BHHLNI1]. We will prove” directly that (a) and
(b) imply (c) by essentially re-running the machine that we use to prove that (a)
— (b), and by using additional information gleaned from the fact that (b) —
(d). This means that the bulk of the paper is mainly devoted to the proof of the
implication (a) = (b) and our proof will involve a very careful adaptation of the
proofin [DS1], along with some additional arguments utilizing ideas from [HLN1].
The implication (a) = (b) is the content of Theorem 3.1 stated in precise form
below. The precise statement of the result that (a) = (c) is given in Theorem
3.3.

The study of parabolic uniformly rectifiable sets * ¢ R"*! emanates in [HLN1],
[HLN2] where the third and fifth author, together with J. Lewis, introduced the
notion of parabolic uniformly rectifiable sets. In [HLN1] the existence of big pieces
of regular Lip(1,1/2) graphs, under the additional assumption that X is Reifenberg
flat in the parabolic sense, is established. The results in [HLN1], [HLN2] were
the first of their kind in the context of parabolic problems and the studies [HLN1],
[HLN2] were motivated by the study of parabolic/caloric measure in rough time-
varying domains.

By definition, a Lip(1,1/2) graph is the graph of a function which is Lipschitz
with respect to the parabolic metric. A Lip(1,1/2) graph is a regular Lip(1,1/2)
graph if, in addition, the 1/2-order time derivative of the function defining the
graph is in (parabolic) BMO (see Definition 2.11). Combining the results of Sec-
tion 2 in [HLN2] with the developments in [LM, H2, HL1], it follows that a
Lip(1,1/2) graph is parabolic uniformly rectifiable in the sense of [HLN1], [HLN2]
if and only if it is a regular Lip(1,1/2) graph. This explains the importance of reg-
ular Lip(1,1/2) graphs in the statement of Theorem 1.2, and in the statements of
Theorem 3.1 and Theorem 3.3. As proved in [LS], [KW], the class of regular
Lip(1,1/2) graphs is strictly smaller than the class of Lip(1,1/2) graphs.

The notions of regular Lip(1,1/2) graphs and parabolic uniform rectifiability are
deeply rooted in the study of the Dirichlet problem for the heat equation in time-
varying (graph) domains, and the solvability of the LP-Dirichlet problem for the
heat equation is intimately connected to quantitative mutual absolute continuity of
the caloric measure and the surface measure. In particular, in [KW] it was proved
that there are Lip(1,1/2) graph domains for which caloric measure and surface mea-
sure are mutually singular. Later, in their pioneering work, Lewis, Silver and Mur-
ray [LS, LM] proved that for regular Lip(1,1/2) graph domains, the caloric measure
and the surface measure are quantitatively related in the sense that they are mutual
absolutely continuous, and the associated parabolic Poisson kernel satisfies a scale-
invariant reverse Holder inequality in L? for some p € (1, c0). The importance and
relevance of regular Lip(1,1/2) graph domains, from the perspective of parabolic
singular integrals, layer potentials, boundary value problems and inverse problems,
is emphasized through the works in [LS, LM, HI, H2, HL1, HL2, LN, N1]. In

IThe implication (¢) = (b) is trivial.
2We could also follow the more indirect method in [HMM1], but we present an alternative ap-
proach here.
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particular, in [HL1] the solvability of the L?-Dirichlet problem (and of the L’-
Neumann problem) for the heat equation, using layer potentials, was obtained in
the region above a regular Lip(1,1/2) graph under the restriction that the 1/2-order
time derivative (measured in BMO) of the function defining the graph is small’.
The highly influential work [HL3] (see also [DPP]), devoted to parabolic opera-
tors with singular terms, should also be mentioned in this context. In particular,
in [HL3] the method of extrapolation of Carleson measure estimates was intro-
duced, a method which was crucial in the resolution of the Kato conjecture, see
[AHLeMcT], [AHLMCcT].

In [HLN1], [HLN2] parts of the analysis on regular Lip(1,1/2) graph domains
mentioned above was extended beyond the setting of graphs. However, other than
[HLNT1], [HLN2] only a few notable works in rougher parabolic settings have ap-
peared [E, GH1, GH2, N, NS, MP, MPT]. This is in contrast to the correspond-
ing elliptic contexts, see, for example, [DJ, HMM1, GMT, AGMT, HLMN, MT,
AHMMT], and it is a long term goal of the authors to develop a corresponding par-
abolic theory. The present paper is one of the starting points of that effort. In partic-
ular, in forthcoming work we will show, using Theorem 1.2, that the main theorem
in [HMMI1] can be extended to the parabolic setting. In addition, in [BHHLN?2]
we have recently obtained, by expanding on [NS], a flexible parabolic analogue
of the work of David and Jerison [DJ]. Still, to establish parabolic analogues of,
for example, [GMT, AHMMT, HLMN] remain open problems which may require
new methods and tools.

As mentioned, in the elliptic setting, some of the most significant recent progress
in this area relies on methods which are currently unavailable in the parabolic set-
ting. Thus, to prove parabolic versions of those results, one will require signifi-
cantly new ideas. However, to prove the results of this paper, we are able to develop
parabolic versions of the methods in [DS1, HMM1]. We prove two main results,
whose statements may be found below. First, Theorem 3.1, whose elliptic analogue
appears in [DS1], and we give the proof of Theorem 3.1 in Section 4, Section 5 and
Section 6. Second, Theorem 3.3, whose elliptic analogue appears in [HMM1], and
we give the proof of Theorem 3.3 in Section 7. Concerning Theorem 3.1, it turns
out that we can follow quite closely the corresponding arguments in [DS1]. The
reader who is familiar with that work will certainly recognize substantial parts of
the proof. The novelties in Section 4, Section 5 and Section 6 are in many respects
mainly of technical nature: they arise here to treat the extension to the parabolic
setting, and they rely in part on some ideas from [HLN1]. On the other hand, the
corona decomposition is of central importance and utility in the theory of quan-
titative rectifiability, and we believe that this fact justifies a complete and careful
treatment in the parabolic case. Finally, we note that the converse to Theorem 3.1,
which we have established (in particular) in [BHHLN1], does indeed rely on some
new methods that are significantly different to those previously appearing in the
literature.

3This smallness is sharp in the sense that there are regular Lip(1,1/2) graph domains for which
the L2-Dirichlet problem is not solvable. On the other hand, the L?-Dirichlet problem is solvable for
some p < oo for all regular Lip(1,1/2) graph domains [LM].
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As we have previously mentioned in [BHHLN1, BHHLNZ2], it is true that in
[RN1, RN2, RN3], the author took on the ambitious challenge to develop the theory
of parabolic uniformly rectifiable sets. Unfortunately though, at least in the papers
in [RN1, RN2], the author either gives no proofs of his claims or he supplies proofs
which have fundamental errors. In the present work we give a correct proof of the
main result claimed in [RN1], and we shall explain momentarily two principal
errors (as well as a third, more technical error) in the latter paper. The errors in
[RN2] are discussed in some detail in our paper [BHHLN2], which gives a correct
proof of those results.

In [RN1] the author claims to prove that parabolic uniform rectifiability implies
corona decompositions with respect to regular Lip(1,1/2) graphs. In [RN1], the
author, as we do here, follows rather closely the outline of the proof of the corre-
sponding elliptic result in [DS1], while also, as we do, employing some ideas from
[HLNI] in order to adapt the arguments of [DS1] to the parabolic case. It is in
the latter context that the proof in [RN1] breaks down, for the following reason:
in Lemma 2.7 in [RN1], the constant ¢ cannot necessarily be taken small, given
only the assumption of parabolic uniform rectifiability. In [HLN1], the constant is
small by virtue of the assumption of Reifenberg flatness used in that paper. With-
out smallness, the sets {E;}, introduced in subsection 2.3.1 in [RN1], need not, as
claimed, have bounded overlaps and therefore the estimate in display (20) in [RN1]
is not valid. This is a critical gap in the proof: it means that in [RN1] there is no
proof of the “regularity” (see Definition 2.11 below for the definition of a regu-
lar Lip(1,1/2) graph) of the approximating graphs, which is the essential feature
required of the graphs in the parabolic setting (and which has no analogue in the
elliptic case); thus, the proof in [RN1] breaks down precisely at the point in the
argument where one needs to do something new in the parabolic setting that has no
counterpart in the corresponding elliptic proof. Below we deal with this problem
by using a counting function introduced in [DS1], see Lemma 5.12 below.

A second critical error in [RN1] appears in the claimed proof of [RN1, Theorem
1.5], which in turn relies* on the claimed result [RN1, Theorem 3.1]. In fact, the
latter is false. Indeed, in contrast to the situation in the elliptic setting, parabolic
uniform rectifiability is not characterized by Carleson set conditions such as the
“Bilateral Weak Geometric Lemma”, even in the case of a Lip(1,1/2) graph; see
[BHHLN1, Observation 4.19] for a discussion of this issue and a counter-example.
Thus the proof of [RN1, Theorem 1.5] collapses.

In addition, we mention a technical (but still serious) error, in the crucial es-
timate in the display between displays (32) and (33) in [RN1]. Here, the author
claims a Poincaré inequality that need not hold if the function ¥, depends on time,
which it certainly does since the problem is parabolic; thus, again the error arises
because the author in [RN1] did not address the difference between the elliptic and

4Even the reduction of [RN1, Theorem 1.5] to [RN1, Theorem 3.1] is not clear to the authors.
Indeed, the claimed bilateral approximation does not follow as in the elliptic setting as ‘nice’ para-
bolic Littlewood-Paley kernels are always odd in x, they are unable to detect the difference between a
t-independent plane and the same plane omitting the points with ¢ € (a, b). In particular, they do not
detect all ‘holes’; this would be essential for [RN1, Claim 1, Section 3] to “be easily adapted from
[DS1, page 24]”, as claimed therein.
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parabolic settings. In this context, the correct estimates, based on a more refined
inequality of Poincaré type appropriate to the parabolic setting, are given in our
Lemma 6.31 below.

The rest of the paper is organized as follows. Section 2 is mainly of preliminary
nature and we here provide notation and definitions. In Section 3 we state our main
result: Theorem 3.1 and Theorem 3.3. In Subsection 3.1 we briefly discuss the out-
line of the proof of Theorem 3.1 to be presented in subsequent sections. The proof
is divided into several parts and our argument adapts the corresponding arguments
of [DS1], also utilizing some ideas from [HLN1], to deal with the extension to the
parabolic setting. The proof of Theorem 3.1 is given in Section 4, Section 5 and
Section 6 and progresses from the construction of a Lip(1,1/2) graph with small
constant for each stopping time regime, to the pushing of the geometric square
function estimate (the Carleson measure estimate) to the graph, also verifying that
the graph is actually a regular Lip(1,1/2) graph, and finally to the packing of the
stopping time regimes. In Section 7 we then prove Theorem 3.3 by improving The-
orem 3.1(4) to give a bilateral approximation as in Theorem 3.3(4). The paper ends
with two appendix containing a few technical estimates and observations used in
the paper.

2. PRELIMINARIES

In this section we provide notation and definitions. We will for simplicity as-
sume n > 2. Our results also remain valid in the case n = 1, but in this case some
notations used in the paper have to be adjusted. Points in Euclidean (n + 1)-space
R™*! are denoted by (X,t) = (x1,..., X, 1), where X = (xq,...,x,) € R" are the
spatial coordinates and ¢ represents the time-coordinate. We set

d:=n+1.

In general, ¢ will denote a positive constant satisfying 1 < ¢ < oco. We write
c1 < ¢, if ¢1/c; is bounded from above by a positive constant depending on the
structural constants of a lemma or theorem (e.g. n,d, the constant defining the
Ahlfors-David regularity or the constants defining parabolic uniform rectifiability).
We write ¢; ~ ¢, ifc1 S cp and 3 S .

We let (-, -) denote the standard inner product on R” and we let |X| = (X, x)yl/2
be the Euclidean norm of X. We let [|(X, 1)|| := |X| + 14"/ Given (X, #), (¥, s) € R"*!
we let

dp(X,1,Y,5) 1= dp((X,1),(Y, ) = |X = Y|+ |t — s|'/2,

and we define d,(X,t, E) to equal the parabolic distance, defined with respect to
d,(-,-), from (X,1) € R™! to E ¢ R™!. We let diam(E) denote the parabolic
diameter of E, that is,

diam(E) := sup{d,(X,t,Y,s) : (X,1),(Y,s) € E}.
We let
(2.1) CAX.0) = {(Y, ) eR"XR: [y, — x| < r]t — s| < 7},
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whenever (X, 1) € R"™!, r > 0, and we will refer to C.(X, ) as a parabolic cube of
“length” 7 (in R"*1). For (x,t) € R”, we will use the notation

(22) Crx,0) = {1, 9) €R™I X Ry —xl <l = sl < %),

to denote a parabolic cube in R".

We let dX, dx, denote Lebesgue measure on R”, R"~!, respectively, and, given
n > 0, we let H" denote the (standard Euclidean) n-dimensional Hausdorff mea-
sure. To continue we need to define Hausdorff measure adapted to the parabolic
setting. This is done in a straightforward way replacing the standard Euclidean
diameter with its parabolic counterpart.

Definition 2.3. For 7,6 > 0, E C R"*!, we define
H J(E) = inf {Z diam(E,)" : E C U}E;, diam(E;) < 5} .
We define the parabolic Hausdorff measure, of homogeneous dimension 7, as

(2.4) H(E) := lim H 5(E).

Note that the limit in (2.4) exists (possibly as +co) since ?{g’ s(E) is a decreasing
function on (0, c0).

In the sequel, £ ¢ R™*! will denote a closed set which will be clear from the
context. Below we will, for (X,7) € X and r > 0, use the notation A(X,t,r) =
A(X, 1) := 2N CH(X, 1) to denote a (parabolic) “surface ball”. We define

(2.5) o =05 :=H" 5,

to denote the parabolic surface measure on X.

Also other notions of surface measure can be considered in the parabolic context.
Indeed, we let

(2.6) WU(E) := / / 1p(X, 1) dH" (X)) dH' (),
R JR"x{t}

where 1r is the indicator function for the set E, denote a slice-wise or product-
like measure of the set E ¢ R**!. This measure has been used in previous works
concerning parabolic uniform rectifiability as in [KW, LM, H2, HL1, HL2, HL.N1,
HLN2], the parabolic surface measure was defined as

(2.7) o’ = pls.

In this paper we do not use the measure in (2.7), instead we use the measure
defined in (2.5). We here collect a number of remarks concerning this choice. The
non-trivial statements in Remark 2.8, (i), (v), and (vi), are proved in Appendix B
below.

Remark 2.8.

(1) If o® (or for that matter any measure m defined on X) satisfies the parabolic
Ahlfors-David Regularity (p-ADR) condition (see Definition 2.14 below),
then so does o, and in that case the two measures are of course equivalent.
This follows easily from the definition of the 7{5’” measure, and it is really
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just the same phenomenon that occurs in the classical (elliptic) case, see
[DS1]. We give the proof for o® in Appendix B.

(i) Consequently, if X is a Lip(1,1/2) graph, then o ~ ¢®. In particular, on a
hyperplane P ¢ R™*! parallel to the t-axis, which we may identify with
Euclidean space R”, we have that H"|p ~ 7—(S+1|7>, since the former is just
n-dimensional Lebesgue measure on $, which is parabolic ADR on X = .

(iii) If # is a hyperplane parallel to the #-axis, and if « is the orthogonal pro-
jection operator onto ¥, then ?{I’,’“ measure does not increase under the
action of z. In particular, by virtue of (ii), we have, for any Borel set A,
that H"(n(A)) = Hy* (m(A)) < HFT'(A).

(iv) If X is parabolic uniformly rectifiable (p-UR set; see Definition 2.19 be-
low), defined with respect5 to o, then using (i) one deduces® that ¥ is also
p-UR defined with respect to o~. Thus, a priori p-UR with respect to o® is
a stronger notion, that is, it implies p-UR with respect to o-.

(v) If X is parabolic uniformly rectifiable (p-UR; see Definition 2.19 below),
with respect to o, then the two measures ¢ and o~ are equivalent and hence
one deduces (in the same way as (iv)) that X is parabolic uniformly recti-
fiable, defined with respect to 0. Thus, a posteriori the notions of p-UR
are equivalent.

(vi) The measures are not equivalent in general, even in the p-ADR setting. In
fact, o® < c(n)o, but the other direction does not need to hold.

Definition 2.9. We say that a n-dimensional hyperplane P ¢ R™*! is a t-independent
plane if P contains a line in the 7-direction. Equivalently, if Np is the normal to P,
then Np - (0, 1) = 0. We let ? denote the collection of all t-independent planes. If
P € P we let P, C R” be the (n — 1)-dimensional plane that defines P = P, X R.

Given a function ¢ : R""! xR — R we let Dj /21//(x, t) denote the 1/2 derivative
in t of ¥(x,-), x fixed. This half derivative in time can be defined by way of the
Fourier transform or by

_ [ Y)Yl D)
(2.10) Dl py(x,0) = ¢ /R T s—p2 ds,

for properly chosen ¢. We let || - || denote the norm in parabolic BMO(R") (replace
standard cubes by parabolic cubes in the definition of BMO).

Definition 2.11. A function ¢ : R”"! x R — R is called Lip(1,1/2) with constant
by, if

(2.12) W(x, £) — w(y, $)| < bi(lx =yl + |t — s'/%)

whenever (x,f) € R", (y,s) € R". If £ = {(x,¥(x,1),1) : (x,1) € R* ! x R} in the
coordinates P, X (Py)* X R, for some -independent plane P € # and Lip(1,1/2)
function ¢, then we say that X is a Lip(1,1/2) graph. We say that ¢ = y¥(x,?) :

3This means replacing o by ¢* in the definition of p-UR below and working with a set such that
o® is p-ADR.
6By nothing more than chasing definitions.
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R"! xR — R is a regular Lip(1,1/2) function with parameters b; and b,, if ¢
satisfies (2.12) and if

(2.13) D' o € BUOR"), |ID})lls < by < co.

IfZ ={(x,¥(x,0),1) : (x,1) € R* ! x R} in the coordinates P, X (P,)* X R, for some
t-independent plane P € # and regular Lip(1,1/2) function i, then we say that X is
a regular Lip(1,1/2) graph.

Definition 2.14. Let = c R™*! be a closed set. We say that a measure m, defined on
%, is parabolic Ahlfors-David regular, parabolic ADR for short (or simply p-ADR,
or just ADR) with constant M > 1, if

(2.15) M <m(AX, 1, 1) < M9,

whenever 0 < r < diamX, (X,7) € X, Typ < t < T; and where diam X is the
(parabolic) diameter of £ (which may be infinite). If

(2.16) M < o(AX 1) < M,

then we simply say that X is parabolic ADR (p-ADR, or just ADR).

As noted above (see Remark 2.8 (1)), if (2.15) holds for a measure m on X, then
it holds for o as in (2.5), i.e. (2.16) holds for a possibly different but still universal
choice of M.

Following [HLN1], [HLN2] we next introduce parabolic 8, numbers, which we
will denote by y. These are defined in a way analogous to the usual § numbers
in [DS1, DS2] except that they incorporate parabolic scalings, parabolic surface
measure and they only allow for approximation by #-independent planes. Indeed,
assume that ¥ ¢ R™*! is parabolic ADR in the sense of Definition 2.14. We then

let
d Y, ,P 2 1/2
7(Z9T7 r) = )/Z(Z’ T, r) = lnf<% (17(S)> dO‘(K S)> s
PeP ANZ.7,7) r

whenever (Z,7) € Z, r > 0, and where % is the set of n-dimensional hyperplanes P
containing a line parallel to the ¢ axis. We also introduce

217)  dZ7r):= dn@Z o) = (aEnn) doZ o dn

Recall that v is defined to be a Carleson measure on A(Y, s, R) X (0, R), if there exists
I' < oo such that

(2.18) V(A(X, 1,p) X (0,p)) < Tp?,

whenever (X, 1) € X and C,(X, 1) C Cr(Y, 5). The least such I in (2.18) is called the
Carleson norm of v on A(Y, s, R) X (0, R).

We are now ready to give the definition of parabolic uniform rectifiability.
Definition 2.19. Assume that ¥ c R"*! is parabolic ADR in the sense of Definition

2.14 with constant M. Let v = vy be defined as in (2.17). Then X is parabolic
uniformly rectifiable, parabolic UR for short, with UR constants (M, I') if

(2.20) M= sup  p WAX,t,p)x(0,p) < T.
(X,HeZ, p>0
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We will also need a parabolic dyadic decomposition of X. This is a special case
of a more general result in [Chr].

Lemma 2.21. Assume that ¥ C R™! is parabolic ADR in the sense of Definition
2.14 with constant M. Then X admits a parabolic dyadic decomposition in the
sense that there exist constants a > 0, B > 0 and ¢, < oo, such that for each k € Z
there exists a collection of Borel sets, Dy, which we will call (dyadic) cubes, such
that

Dy :={Qj CZ:jeJb
where 3y denotes some index set depending on k, satisfying
i T=uU jQ’; for each k € Z.
(i) Ifm = kthen either Qf* C 0% or Q" N O = 0.
(ii7) For each (j, k) and each m < k, there is a unique i such that Q’J‘. c o
(iv)  diam (Q%) < c.27h
) Each Q’]‘- contains £ N C -« (Z;?, tlj‘») for some (Zf, t’]‘-) €.
vi) oz e 0h:dyZ 13\ 0 <02} < e o),
forall k, j and for all o € (0, ).
Remark 2.22. We denote by D = D(X) the collection of all Ok ie.,
D := U;Dy.

For a dyadic cube Q € Dy, we let £(Q) := 27%, and we will refer to this quantity as
the size of Q. Evidently, £{(Q) ~ diam(Q) with constants of comparison depending
at most on n and M. Note that (iv) and (v) of Lemma 2.21 imply, for each cube
Q € Dy, that there is a point (Xg,p) = (Xg,tp) € Z, and a cube C,(Xg, tp), such
that

(223)  rx2%xdiam(Q), and InN C.(Xg,tg) C Q XN Cer(Xp, o),

for some uniform constant c. We will denote the associated surface ball by

(2.24) Ap(r) := XN C(Xp, 1),

and we shall refer to the point (Xg,7p) as the center of Q. Given a dyadic cube
Q cXand 4 > 1, we define

(2.25) 10 = Ap(Adiam(Q)).

Definition 2.26. [DS1] Let S ¢ D(X). We say that S is coherent if the following
conditions hold.

(a) S contains a unique maximal element Q(S) which contains all other ele-
ments of S as subsets.

(b) If Q belongs to S, and if 0 € Q c O(S), then Q € 8.

(c) Given a cube Q € S, either all of its children belong to S, or none of them
do.

We say that S is semi-coherent if only conditions (@) and (b) hold.
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3. STATEMENT OF THE MAIN RESULTS

As stated in the introduction, the purpose of this work is to prove (a) = (b)
and (a) = (c) in Theorem 1.2. To prove (a) = (b) we show the following.

Theorem 3.1. Suppose that . ¢ R™! is parabolic uniformly rectifiable with con-
stants (M,T"). Let 6 < 1 and k > 1 be two given positive constants. Then there
exists a disjoint decomposition D(X) = B U G, satisfying the following properties.

(1) The collection B satisfies the Carleson packing condition:

Z o(Q) < cn,M,T,6,)0(Q), YO eD®Z).
0'cQ.QeB
(2) The collection G is further subdivided into disjoint stopping time regimes
{S}ser, such that each such regime S is coherent.
(3) The maximal cubes Q(S) for the stopping time regimes satisfy the Carleson
packing condition:

Y o(0O) < cnM.T.6,0)0(Q), YQeDE).
5:0(8)CQ

(4) ForeachS, there exists a coordinate system7 and a regular Lip(1,1/2) func-
tion ys := ¥ = Y(x,1) : R xR — R with parameters by = c(n, M) - §
and by = by(n, M,T), such if we define Xs := Xy := {(x,¥(x,1),1) : (x,1) €
R"=1 x R}, then

3.2) sup dp(X,t,Zg) < ¢ diam(Q),
(X.1)ekQ

forall Q €8.

The second theorem we prove is a strengthening of Theorem 3.1 in the sense
that it gives instead a bilateral approximation in (4) and proves (a) = (c) in
Theorem 1.2.

Theorem 3.3. Suppose that ¥ ¢ R"*! is parabolic uniformly rectifiable with con-
stants (M,T’). Let 6 < 1 and k > 1 be two given positive constants. Then there
exists a disjoint decomposition D(X) = B*UG", satisfying the following properties.

(1) The collection B* satisfies the Carleson packing condition:

Y (@) 2 cnMT.6.6)0(Q), YQeDE).
Q'CQ,Q'eB"
(2) The collection G* is further subdivided into disjoint stopping time regimes
{S*}s+eq, such that each such regime S* is coherent.
(3) The maximal cubes Q(S*) for the stopping time regimes satisfy the Car-
leson packing condition:

> o(0EY) < . M.T,6.6)0(Q), VYQeD(E).
S$*:0(8*)c0

"This means that we identify P, X Py x R with R" X R for some z-independent plane P € P, see
Definition 2.9.
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(4) Foreach S*, there exists a coordinate system and a regular Lip(1,1/2) func-
tion Ys- := ¥ = Y(x,1) : R"! x R — R with parameters by = c(n, M) - §
and by = by(n, M,T'), such if we define X := Xy = {(x,¥(x,1),1) : (x,1) €
R X R}, then

sup dp(X,t,Zs) + sup dp(Y,5,%) < ¢ diam(Q),
(X,nexQ (Y,$)€Cy diam(0)(X0.t0)NZg*
forall Q € S*.

3.1. The proof of Theorem 3.1. We here briefly discuss the outline of the proof
of Theorem 3.1 to be presented in subsequent sections.

In the sequel, = ¢ R"*! is parabolic uniformly rectifiable with constants (M, T).
Throughout the proof, four parameters will consistently appear: K, €, ¢ and «.
The parameters ¢ and « are exactly as in the statement of Theorem 3.1. K and
€ are auxiliary parameters. Both € and ¢ will be small, ¢ < 6 <« 1, and € is
chosen/defined in (6.46). This implies that € = e(n, M, T, k, K, 6). K and k will be
large, K > « > 1, and to achieve that the constants in Theorem 3.1 only depend
on n, M,T’, 6 and «, we will enforce the relation K/kx = c¢(n, M) > 1.

For K > k > 1 fixed, we define, for each Q € D(X),
Boo(Q) = Bo(Q, K) and B2(Q) := B2(Q, K),

where
(3.4 Bo(Q, K) := inf diam(Q)™"  sup d,(¥,s,P),

pep (X.5)e8K Q)
and

dy(Y,5,P)\* v

3.5 K) := inf [ diam(Q)™ D50 doy,
(3.5) B2(Q. K) := Inf ( iam(Q) //SKQ< diam(0) > o ( S)>
In the following we drop K to ease the notation. Note that
(3.6) Beol Q" 5 B3(Q),

where Q* is an appropriately chosen ancestor to Q such that
100c¢ diam(Q) < diam(Q") < diam(Q)

for ¢ = c¢(n, M) > 2 to be chosen. Indeed, let P be a plane realizing the infimum
in the definition of 8,(Q*). Clearly there exists (Z;, 1) € 8KQ with

p = diam(Q)Be(Q) < dp(Z1, 71, P).

We have o(A(Z;,71,p/8)) 2 p? as T is parabolic ADR. Moreover every point in
AZy, 11, p~/8) is contained in 8¢KQ, for some ¢ = c¢(n, M) > 2, and lies at least
p/2 from P. Thus, (3.6) is valid.

Using that v is a Carleson measure, a standard argument (see e.g. [R, Lemma
4.8]) shows that

(3.7) > BQ)(Q) s (0. 0 D),
Qco*

with implicit constant depending on K,n, M and I'.
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To this end, we define

B:=8B(e,K) :={Q € D) : B(Q) = €},
G = G(e,K) = D)\ B(e, K).
Then (3.6) and (3.7) imply that

(3.8) > Q) < 0(Q). QeDE),
0c0
QeB

where the implicit constant now depends on €, K, n, M and I'.

For Q € D(X) we let Pp € P be a t-independent plane which achieves the
infimum in the definition of 5.,(Q). Then, by the definition of G,

3.9 dp(Y, s, Pg) < ediam(Q) for all (Y, s) € 8KQ,

and forall Q € G.

Following [DS1, Section 7] (or equivalently, [DS2, Lemma IV.2.35]) we may
construct an augmented collection 8’ O B, and a refined collection G’ C G, for
which we have a disjoint decomposition of the dyadic cubes D(Z) = 8’ U G.
Moreover, 8’ still satisfies the packing condition (3.8), and G’ may be partitioned
into a collection of coherent stopping time regimes {S}ses, with maximal cubes
{O(S)}scr, with the following properties:

(A) If Q €8S, then Angle(Pg, Pgs)) < 0.
(B) If Q is a minimal cube of S, then either a child of Q is in B’
(3.10) or Angle(Pg, Pos)) = 6/2.

Given a stopping time regime S, we define m(S) to be the collection of minimal
cubes in S.

Following [DS1], we will construct a Lip(1,1/2) graph associated to each stop-
ping time regime. After doing so, proving Theorem 3.1 is a matter of demonstrat-
ing that the graph is, in fact, a regular Lip(1,1/2) graph and that the maximal cubes
{O(S)} pack. These objectives will be achieved in a somewhat simultaneous man-
ner in a way similar to [DS1]. The insight (and courage) of David and Semmes in
providing such a proof is quite remarkable.

The proof of Theorem 3.1 is divided up into three sections: in Section 4, we
construct a Lip(1,1/2) graph with small constant for each stopping time regime. In
Section 5, we push the geometric square function estimate (the Carleson measure
estimate for v) to the graph. The control of the geometric square function on the
graph will verify, by [HLN1, HLN2], that the graph is indeed regular. In Section
6, we use the fact that we pushed the geometric square function in a sharp manner
to pack the stopping time regimes.

Our argument will also rely on two simple lemmas concerning the approxima-
tion of surface cubes by planes, these lemmas can be found in Appendix A. The
construction of the graph relies on condition (3.10) (A) and that the geometric
lemma holds for Z. It is also worth making the remark that we only use condition
(3.10) (B) above when packing the stopping time regimes in Section 6.
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4. ConsTrRUCTION OF LiP(1,1/2) GRAPHS FOR STOPPING TIME REGIMES

In this section we shall follow very closely the arguments in [DS1, Chapter 8]
to construct, for S € ¥ fixed, a Lip(1,1/2) graph which approximates Q € S as in
Theorem 3.1(4). We can without loss of generality assume that

Poes) = 16, x,,0) e R XR X R : x, = 0}

We will often identify Py with R” and employ the notation C(x, ) introduced in
(2.2) for a n-dimensional parabolic cube in Pgys). We let 7 denote the projection
onto Pys), that is, 7(x, x,,1) = (x,7) € R". We let 7+ denote the projection onto
the normal to Pgs), that is, 7t (x, x,, 1) = x,. Given Q € D(X) we let (xg, fp) :=
n(Xg, to) denote the projected center of Q.

Given S € ¥, and following [DS1], we introduce distance functions adapted to
the stopping regime. Indeed, if (X, ) € R"*! then we define

dX, 1) =ds(X,1) = iQIg[dp(X, t, Q) + diam(Q)],

and we let D = Dg : R" — [0, o) be defined as
4.1) D(x,1) := inf  d(X,t) = 1Qn£ [d,(x,t,7(Q)) + diam(Q)].
(S}

X,Hen L(x,0)

In the sequel, we set

F={X,neZ:dX,n=0}.
Lemma 4.2. Let S € ¥ and let Pys) = R". Then n is one-to-one on F and we can
define a function ¥ on n(F) C R" as follows. Given (X,t) = (x, x,,t) € F, we set
J(x, 1) := (X, 1) = x,. Then @ is a well-defined Lip(1,1/2) function with constant
bounded by 26 on n(F), i.e.,
(4.3) G (x, 1) = (v, 5)| < 26dy(x,1,y, 5),
whenever (x,1), (y, s) € n(F). More generally, suppose that (X, 1), (¥, s) € 16xQ(S),
and that for some N > 1, we have min{d(X, 1), d(Y, s)} < Nd,(X,t,Y, s); then
4.4) It (X, 1) — (Y, 9)| < 26d, (7(X, 1), 7(Y, 5)) ,

provided that € < 6 is small enough, depending on N, and K > 1 large enough,
depending on N and k. (Remark: in the sequel, we apply the lemma
with N equal to an absolute constant.)

Proof. Clearly, it suffices to prove (4.4). The proof follows that of [DS1, Lemma
8.4]. Let (X,1), (Y,s) € 16xQ(S) and without loss of generality, suppose that
d(X,t) < Ndy(X,t,Y,s). Let Q € S be such that

(4.5) dy(X, 1, Q) + diam(Q) < 2Nd,(X, 1,7, s).

We can, if necessary, replace Q by one of its ancestors (which is still in S) to obtain
K_ldp(X, t,Y,s) < diamQ < Ndy(X,t,Y,s). By construction, Q € G and hence
Bo(Q) < €, s0 for K = K(N, k) large enough, there is a plane Py such that

dp(X,t,Pp) +d,(Y,s,Pp) < ediam Q < eNdy(X,1,Y,5) < 0d,(X, 1,7, s),

as € < 0. The conclusion in (4.4) now follows since, by construction of the stop-
ping time, the angle between Pgs) and P is at most 6. In particular, the reader
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can verify this claim using elementary geometry and the fact that sin?(8) ~ 6> for
¢ small. O

With Lemma 4.2 as the starting point we next construct a function ¢ on R" =
Pgs) which coincides with § on n(F). We will extend i off 7(F) using an appro-
priate Whitney type extension following the corresponding construction in [DS1].
For (x,7) € R" and (x, 1) not on the boundary of any dyadic cube, let I, be the
largest (closed) dyadic cube in R” containing (x, f) and satisfying

diam(/(y5) < 2—10 " Tl)Ig( . D(z, 7).
Let {/;} be a labelling of the set of all these cubes /(. without repetition. By
construction the collection {/;} consists of pairwise non-overlapping closed dyadic
cubes in R". These cubes cover R"” \ n(F) and they do not intersect m(F). For
the construction we need the following, whose proof follows that of [DS1, Lemma
8.7], essentially verbatim.

Lemma 4.6. Given I; we have

4.7 10diam I; < D(y, s) < 60diamI; VY(y,s) € 101I;.
In particular, if 101; N 101; # O, then
4.8) diam /; ~ diam /.

Proof. Fix i and let (y, s) € I;. As D(-,-) is Lip(1, 1/2) with norm 1, we have
D(y,s) > inf D(x,t)— 10diam [; > 10diam [;,
(x,0)el;
where we used that diam I; < 207! inf(y per, D(x,1). On the other hand, if I is the

dyadic parent of I;, then there exists (z,7) € [ such that D(z,7) < 20diam/ =

40 diam /;. Thus,
D(y, s) < D(z,7) + 20diam I; < 60 diam I,.

This proves (4.7), and hence also (4.8). m]

We continue to follow the constructions in [DS1, Chapter 8]. Set
4.9) R = Rg := diam(Q(S)).
Given the center (Xgs), fo(s)) of Q(S), we recall that

(xos): 09)) = 7(Xos), 10(9))>

and we introduce the index set
(4.10) A ={i: I; N Chgp(xges) tos)) # 0.

We claim, for each i € A, that there exists Q(i) € S such that
(4.11)  « 'diam J; < diam Q(i) < 120 diam I;, dp(n(Q(0)), I;) < 120 diam /;.

To see this, note that given I; and (x,¢) € I;, there exists a cube Q € S such that
dp(x,t,n(Q))+diam(Q) < 2D(x, t) ~ diam(/;). Moreover, D(x, ) < ck diam(Q(S)),
for a constant ¢ > 1 depending only on n, M, and

dy(x,1,7(Q")) < 2D(x, 1) < 120diam I;,
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forall Q € O* € Q(S). Therefore we can choose Q(i) so that Q C Q(i) € Q(S) and
4.12) (CK)_ID(X, 1) < diam(Q(i)) < 2D(x,t) < 120diam [;,

provided « is chosen large enough.

In the sequel, we will, at instances, use the notation
4.13) r; :=diam/[;, so that r;/x < diam Q(i) < r,
by (4.11).
Let {#;} be a class of infinitely differentiable functions on R” such that

(D) v;=1on2l;and ¥; = 0in R" \ 37; for all i,

s, 21
@VL + r;

<cl,n)forl=1,2,....

[
en ] ~
@@0) r; Frid

/ . . o . .
In (i), % denotes an arbitrary partial derivative with respect to the space variable
x and of order /. We also introduce {v;} defined as a partition of unity adapted to
{26}, 1e.,

Vi, 1) = 7060 (i)

J

Then {v;} is also a class of infinitely differentiable functions on R" and

[ )
K T
oxl ! !

[
(4.14) 7! o

+r <cl,n)forl=1,2,....

We now ready to construct the extension of J/ off n(F). If i € A, then for I; we
have an associated dyadic cube Q(i) € S asin (4.11), we first express the associated
hyperplane Pg(; as

4.15) PQ(,’) ={(x, Bi(x,1),1) : (x,1) € R"},

ie., B; : R" — Ris the affine function whose graph is Pg;. If i ¢ A, set B; = 0
and we note, in this case, B; is the affine function whose graph is Pys). Using this
notation we let

W(x, 1) = §(x,t) when (x, 1) € n(F),
(4.16) U(x, 1) = Z B;(x, D) vi(x,t) when (x, 1) € R" \ n(F).

This defines  on R”, with ¢ = ¢ on 7(F) and by construction
(4.17) ¥ =0o0nR"\ Chrlxge) tos)):
Based on the construction we can prove the following lemma.
Lemma 4.18. For (y, s), (z,7) € R" we have

(@) |Bi(y, s) — Bi(z,7)| <0dy(y,s,z,7) for all i,
(i) |Bi(y, s) — Bj(y, )| S emin(r;, r;), if (v, s) € 1001; U 1001;, 101; N 101; # 0.
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Proof. By construction of the stopping regime, the Lip(1,1/2) norm of B; is bounded
by 26, so (i) is trivial. To prove (ii), we follow the proof of [DS1, Lemma 8.17].
Let I; and I; be two cubes such that 10;n101; # (, thus diam /; = r; ~ r; = diam I;
by Lemma 4.6. We claim that if i € A or j € A, then

(4.19) dp(0@), Q) S ri = 1.

Let us prove the claim. Leti € A. Let (X,r) € Q(@i) and (Y, s) € O(j), We may
assume that d,(X, ,Y, s) > diam Q(i), the other case being trivial. Since d(X,1) <
diam Q(i), by (4.4) we see that

(4.20) T (X, ) = (Y, 9)| < dp(m(X, 1), (Y, 5)).
By (4.11), dp(n(X, 1), (Y, 5)) S 1 ~ r}, s0 the claim (4.19) holds.

Suppose that i € A. Then by (4.19) and (4.11), there is a “surface ball” A,,
centered in Q(i), such that r ~ r; ~ r}, and

0@V O(j) CAr C Ay C KO NKQO()),

for K large enough. Using the second part of Lemma A.2 (with A = A, Py = Pg(,
Py = Pg(j), we see that if (y, s) € 100/; U 100/;, with 101; N 101; # 0, then

(4.21) |Bi(y, s) — Bj(y, s)| < er.

The case j € A is exactly the same, so this completes the proof in the case that at
least one of i or j belongs to A.

If, on the other hand, i ¢ A and j ¢ A, then Q(i) = Q(j) = O(S), and hence B; =
Bj, so the estimate holds trivially. This completes the proof of Lemma 4.18. O

Before proving that ¢ is Lip(1,1/2), we present one more preliminary lemma,
which is the parabolic version of [DS1, Lemma 8.21].

Lemma 4.22. Let
(4.23) (x,1) € Chr(xs)s tos)) and r > 0 with D(x,1) < r < 2«R,

and let Q € S be such that d,(x,t,n(Q)) < Ar and A~y < diam Q < Ar for some
A > 1. Then

(4.24) al (C (X, t)) N 4kQ(S) is contained in 1Q,
where A depends on A and k.
Furthermore, for some A depending on k, we have
(4.25) A7 Yd(X, 1) < D(n(X, 1) < d(X, 1) for all (X, 1) € 2kQ(S).
Proof. The proof follows that of [DS1, Lemma 8.21] essentially verbatim. To
prove (4.24), we consider (Y, 5) € Q, (Z,7) € i~ (Ci(x, 1)) N 4xQ(S). First, if
dp ((Y, s), (Z, T)) < diam Q,
then (Z,7) € ;lQ, for, say, A > 5. Second, if
dy((Y,9),(Z 1)) > diam Q,

then
d(Y,s) < diam Q < d,((Y, 5),(Z,7)).
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Hence, by Lemma 4.2
(Y, s) = 7(Z,7)| < dp(7(Y, 5),7(Z, 7)) <1 diam Q.

(The last inequality follows from our assumptions that d,(x, , 7(Q)) < r ~ diam Q,
and that (Y, s) € Q, and n(Z, 1) € C/(x,t).) This proves (4.24).

To deduce (4.25), we note that the second inequality is trivial by definition.
To prove the first inequality, we consider first the case that n(X,t) € n(F), thus,
n(X,t) = n(X’, t) for some (X', 7) € F, so that d(X’, ) = 0 by definition. But then by
Lemma 4.2, (X,1) = (X', 1), s0d(X,t) = 0, and (4.25) holds in this case. Otherwise,
if 7(X, 1) ¢ n(F), we then set (x,?) := n(X, 1), and r := D(x,t) > 0, and note that
by definition of D(x, 1), there is a Q € S such that d,(x,t,7(Q)) < r = diam Q
(here, there can be possible implicit dependence on « in the case that R < r < «kR).
Hence, we may apply (4.24) to deduce that (X, ) € AQ, and therefore,

d(X,1) < dy(X,t,Q) + diam Q < diam Q ~ r = D(n(X,1)).
O

Lemma 4.26. Let v : R" — R be defined as in (4.16). Then ¢ : R" — R is
Lip(1,1/2) with constant on the order of 6, i.e.

(427) |¢’(y’ S) - l,//(Z, T)| s 6dp(y’ S, 2, T) s v (y9 S), (Z9 T) € Rn .

Proof. Again, we shall follow the corresponding arguments in [DS1, Chapter 8].
However, we point out that the proof in [DS1] is not fully explicated, and in par-
ticular, does not address the case that F = (0 (which, in contrast to the case of the
classical Whitney extension theorem, can actually happen in the present setting).
Fortunately, the methods of [DS1] require only a modest refinement to address this
situation.

Recall that we use the notation r; := diam /;. There are four cases to consider:

(1) (v, 9), (z,7) € w(F).
(2) (v, ) € R"\ n(F), with (y, s) € 2I;, and (z,7) € n(F).
() (v,9),(z,7) € R" \ n(F), with (y, s) € 21}, (z,7) € 2I}, and

(WLOG) ri <rj, (z,7) € 101;.
4) (v, 9), (z.7) € R"\ n(F), with (y, 5) € 21}, (z,7) € 21, and
(WLOG) rp <rj, (z7)¢10I;.

We make one more preliminary observation: by (4.17), we may suppose that
(v, s) and (z, 7) both lie in the closure of C;, := Cj,x(x0(s), tos)). Indeed, if both
points lie outside of this closed cube, then (4.27) is trivial, and if one (say (y, 5)) lies
outside, and the other inside, then we may replace (y, s) by another point (y’, s”) €
0C;, such that dj,(z,7,y',s") < dp(z,7,y, 5), since for such points (y’, s") and (y, ),
we have ¥(y, s) = 0 = (Y, s).

Let us now discuss the various cases (1)-(4).

Case (1) follows immediately from Lemma 4.2, and the definition of ¢ (see
(4.16)).
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Consider next case (3). In this case, (y, 5), (z,7) € 10/;. By Lemma 4.6, (4.14)
and Lemma 4.18, and the fact that ) ,(v;(y, 5) — vi(z, 7)) = 0,

(428) (. s) =Dl < | D (Bi(y.5) - Biz. D)WVi(. 5)|
+ | ) (Bi(z. 1) - Bz )iy 5) = vi(z, )]

S 5dp(y’ saZ, T) + r]_'ledp(ya Sa Z’ T)rj S 6dp(y’ S, ZaT)a

since each B; has Lip(1,1/2) norm at most 26, and € < ¢.

It remains to treat cases (2) and (4), which we shall do more or less simultane-
ously. We remark that if F is non-empty, one can reduce case (4) to case (2), as
in the proof of the classical Whitney extension theorem. However, in the present
setting, it may be that F' is empty, so we shall treat case (4) directly. For the sake
of specificity, let us do this first, as the proof in case (2) will be similar, but a bit
simpler.

In case (4), we decompose
W (y,s) —w(z,T) < ay +ax+az+aq +as +ag + ay,

where for some (U, 1) € Q(j), (U’,t") € Q(k) to be specified more precisely below,
setting (u,t) := n(U, 1), and (', ¢") := 7(U’,t’), we define

ar =W (y,s) = Bj(y,9)l, a2 =1|Bj(y,s) - Bj(u, 1),

a3 = |Bj(u,0) = (U,0l, a4 =|r=(U,0) -~ (U, 1),
as = |nt(U".1") = By, 1)|,  as = |Be(u’,1") — Bi(z, 7)),
ar = |B(z,7) — ¥(z,7)|.

We estimate these terms as follows. For future reference, we observe that since
(z,7) ¢ 101}, and (y, s) € 21;, therefore, for a purely dimensional implicit constant,

(4.29) 1k <1 < dp(y, 5,2, 7).

Consider for now any (U, t) € Q(j), and any (U’,t’) € Q(k). By definition of i,
since ) ; vi(y, s) = 1, we have

a, = |Zw(y, $) (Bi(v, ) = B, S))| S erj < edy(y,s,2,7),

by Lemma 4.18 (ii) and (4.29). Similarly,
a7 < edy(y,s,z,7).
Since each B; has Lip(1,1/2) norm at most 29, by the second inequality in (4.11),
(4.30) ay < 0dy(y, s,u,t) < orj < 6dy(y,s,2,7),
again using (4.29). Similarly,

as < 0dy(y,s,2,7).
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Since Py is the graph of Bj, which has small slope, and since B (Q())) < €,
we have

4.31) az ~ dist (U, 1), Pg(j)) < ediam Q(j) < 120er; < edp(y, 5.2,7),
where we have used (4.11) and then (4.29) in the last two steps. Similarly,
as < edp(y, s,2,7).
It remains to deal with a4. Since (U, 1) € Q(j) and (y, s) € 2I;, we have
(4.32) d(U,1) < diam Q(j) < 120r;, dp(u,t,y,s) < 300r;,
by (4.11). Similarly, since (U’,¢') € Q(k), and (z, 1) € 21,
(4.33) d(U’,7) < diam Q(k) < 120r, < 120r;, d,(u’,1',z,7) < 300r; < 300r;.

Consequently, by (4.32) and (4.29),
(4.34) d(U,1) < 120r; S dp(y, 5,2, 7).

To treat a4, we now consider two sub-cases:

e (Sub-case A) d,(y, 5,z,7) > 10007 ;.

e (Sub-case B) d,(y, s,z,7) < 1000r;.
We first consider the former. In this case, since d,(y, s,z,7) > 10007, the right
hand inequalities in (4.32) and (4.33) imply that

dy(y,s,2,7) = dy(u,t,u’, ") < dp(U,1, U, 1),
Combining the latter estimate with (4.34), we obtain
dlU,1 < d,(U,t,U',1).

Thus, we may apply Lemma 4.2, with N equal to an absolute constant, and with
€ < 0, to obtain

(4.35) asy < 26d,(u, t,u’ ') ~ 6dy(y, 5,2, 7).

On the other hand, consider now sub-case B, i.e., d,(y, 5,2z, 7) < 1000r;. Thus
(4.36) dp(y,s,z,7) =1},
by (4.29). In the current scenario, we consider two further sub-cases.
(Sub-case B1): Q(j) meets Q(k). In this case we simply let (U, 1) = (U’, ') be any
point in Q(j) N Q(k), so that, trivially, a4 = 0.

(Sub-case B2): Q(j) and Q(k) are disjoint. In this case, we let (U’,¢’) be any
point in Q(k), and we select (U, 1) as follows. Let C(j) := C(Xg(j), o)), With
r = diam Q(j), be the cube defined in (2.23), with respect to @ = Q(j). Since
¥ N C(j) c Q()) by construction (see (2.23)), it follows that (U’,¢") ¢ C(j). We
then set (U, 1) := (Xop(j), to(j)) (the center of C(j)), and observe that in this case

(4.37) d,(U,t,U’,1') 2 diam Q(}),
where the implicit constants here depend on those in (2.23).

Note that (4.32) and (4.33) continue to hold, since we still have (U, 1) € Q()),
(y,s) €21, (U, 1) € Q(k), and (z, 7) € 2. In particular,

(4.38) dU,t) <diam Q(j), dp(u,t,y,s) +dp',t',2,7) S ).
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By (4.36) and the second inequality in (4.38), we see that
(4.39) dy(u,t,u’ 1) S 1rj~dy(y,s,2,7).
Combining (4.37) and the first inequality in (4.38), we find that
d(U, 1) < diam Q(j) < d(U,1,U’,1).
Consequently, we may as above apply Lemma 4.2 to obtain
ay < 26d,(u, t,u’,t') < 8dp(y, 5,2,7),
where in the last step we have used (4.39).

Summing our estimates for the terms a; through a7, and using that € <« ¢, we
obtain the desired bound (4.27) in case (4), in general.

In case (2), we proceed in a similar fashion to case (4), but now matters are a bit

simpler: we decompose
(v, s) —¥(z, Dl < a1 +az + as + as,
with a;, a; and a3 exactly as above (and enjoying the very same bounds), and with
as = |7TJ_(U’ t) - lﬁ(Z, t)l ’

where (U, ) is an arbitrary point in Q(j). Thus, again, (4.32) holds, and combining
the latter with (4.29), we see as before that
(4.40) dp(u,t,y,s) <dp(y,s,2,7).

Recall that in case (2), we assume (z,7) € n(F). Consequently, by (the first part
of) Lemma 4.2, and the fact that y = Y on n(F), we have d(z, 7, (z, 7)) = 0, and
mt(z, 7, ¥(z,7)) = ¥(z, 7). Hence, by the second part of Lemma 4.2, and (4.40), we
find that

as <20d,(u,t,z,7) < 0dy(y,5,2,7)

We now sum the bounds for terms a; through a4 to complete the proof of the

lemma. O
Lemma 4.41. Let (X, t) € 2kQ(S). Then
(4.42) dp(X,t,(x,¥(x,1),1) S ed(X,1), (x,1):=nm(X,01).

In particular, (3.2) holds provided € < d/«.

Proof. Note that if Q € S, then d(X, 1) < kdiam(Q) for all (X, ) € kQ. Using this
observation, we see that (4.42) implies (3.2) provided € <« §/«.

We turn now to (4.42), following the proof of [DS1, Proposition 8.2]. If (X, ) €
F, there is nothing to prove, so we consider (X,r) € 2«Q(S) \ F. In particular,
d(X,t) > 0. Set (x, 1) := n(X, r). Estimate (4.25) implies that D(x, t) > 0 and hence
(x,1) € I; for some i. Using (4.24) with Q := Q(i) and r := D(x,t) =~ diam [;, we
see that (X, #) € 1Q(i), where by (4.11), the constant A in Lemma 4.22 depends on
k, and therefore A depends on k. Since we assume that K is large, depending on «,
we may in particular take K much larger than A, so that

Im (X, t) — Bi(x,1)| < 2ediam(Q(i)) < ediam I; ~ eD(x, 1) < ed(X, 1),

where we have used (3.9) with Q = Q(i), along with the definition of B;. Estimate
(4.42) now follows, by Lemma 4.18 (ii) and the definition of . m|
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Lemma 4.43.
(4.44) VWG, )| + 100, )| < e if (v, 5) € 21;.

Proof. We first prove the bound for |V)2C¢(y, s)| by following [DS1]. By the defini-
tion of A (see (4.10)), and the adapted partition of unity {v;}, we have

(4.45) > w9 =1 and > Vi,9) = Vo Yo 9) =0
ieA ieA ieA
whenever (y, s) € 21;. Let «, 8 be two spatial indices and let d,,, dg, and 9,4 denote

the corresponding partial differential operators of order one and two. Using (4.45)
we see that if (y, s) € 2/}, then

Dop (s $) = Oap (Z vi(y, $)Bi(, s))
= " upvi(y, NBi, ) + Y _(Bavi(y, N@pBi(y, ) + >_(Dpvi(y, ) Bi(y 5))
= @apviys NBI(, $) = Bj(3, ) + > _(Baviy, ) @pBi(y, 5) — IpBj(y, 5)

+ ) (0pVi(y: $)(BaBi(y, 5) — 0o Bi(y, 8)) =: I+ II+III.
l

The desired bound for term [ follows immediately from Lemma 4.18 (ii) and
(4.14), and the fact that the cubes 3/; (which contain the support of v;) have bounded
overlaps, by virtue of Lemma 4.6 (specifically (4.8)). A similar argument yields
the desired bound for terms /7 and /11, once we observe that, if 10I; N 10/; # 0,
then |V, B; — VBj| < €. To see the latter, we translate and (spatially) rotate coor-
dinates (only for purposes of the present argument) so that Py is the hyperplane
{(x, x4,1) : x, = 0}, hence in these new coordinates B; = 0. By Lemma A.2, the

angle between Py and Py is at most Ce, i.e., in the new coordinates B; is affine
with |V B; — Vxle =|V,B;| < Ce.

The bound for |0.44(y, )| can be produced similarly. In this case we first note
that 9,B; = 0 (since Pg(;) € ) and that

=0, (Z vi(y, S)) = Z 0vi(y, 5)

for (y, s) € 2I;. Using this, Lemma 4.18 (ii), and (4.14), we deduce, for (y, s) € 21},

10y, 9)] = }a,Zvl , )Bi(y, 5)| = \Zam , )Bi(y, )|
= }Zam(y, )(Bi(y, 5) = Bj(y, 5))]

< Z |0viler; < er;

Here we have also used diam(/;) ~ diam(/;) whenever 101; N 101; # 0. ]
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5. PUSHING THE GEOMETRIC SQUARE FUNCTION TO THE GRAPH

In the previous section we proved that there exists, for arbitrary but fixed S € 7,
a coordinate system and a Lip(1,1/2) function ys := ¢ = y(x,1) : R" ! xR - R
with parameter b; < 9, such that if we define

Ys 1= 2y = {(ny(x, 0,0 0 (x,0) e R xR),
then

G.D sup dp(X,t,Xs) < €el(Q), VQeS.
(X,HE2Q

(The latter bound (5.1) is proved in Lemma 4.41.) Recall that we have already
fixed some of the relations amongst the parameters K, €, 6 and «: e.g., we have
specified that € <« 9, depending on « (see Lemma 4.41), and that K is very large,
also depending on « (see Lemma 4.2 and the proof of Lemma 4.41). A little more
precisely, we have 0 < C(k)e < ¢ <« 1, for some large enough constant C(x),
and K = c(k,n, M) > 1. In addition to these existing relations, in the final part of
the argument, see (6.46), € will be chosen to depend further upon n, K, the ADR
constant M, and the parabolic UR constant I" (see Definition 2.19), as well as on «
and ¢.

To complete the proof of Theorem 3.1 we have to prove two things. First, we
have to prove that the constructed function ¢s := ¥ = ¥(x,1) : R*! xR - R
in fact is a regular parabolic Lip(1,1/2) function with parameters b1 < ¢ and by =
by(n, M,T’). Second, we have to prove that the maximal cubes Q(S) for the stopping
time regimes satisfy the Carleson packing condition

(5.2) > o(0®) < cnMT,6,6)0(Q). YQeDE).

S:0(8)cQ
The key to both of these arguments is to make use of the geometric square function
which is part of the definition of parabolic uniform rectifiability. In this section we
prove how this information can be pushed to the constructed graph.

Recall that X is equipped with the geometric square function y and the Carleson
measure v. We let X be the graph of ¢ and we denote the corresponding geometric
square function and Carleson measure by ¥ and ¥, respectively. In addition, for
r > 0,(z,7) € R" we introduce

_ 2 1/2
(5.3) Y(z, T, 1) = (infjf[ <M> dyds> ,
L Ci(z,7) r

where the infimum is with respect to all linear functions of y (only). Using the
regularity of the i constructed, we see that®

(54 dogx dg)(Y.s) = \/1+IV0, R dyds ~ dH"(y) ds,

for all (Y, s) € i and we recall that u is the slice-wise measure (see (2.6)). The
reader can easily verify that the slice-wise measure on the graph is parabolic ADR,
and hence after an application of Proposition B.2 that the implicit constants in the

8See Remark 2.8.
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first comparability in display 5.4 above depend only on constants which depend on
dimension and 6. Combining (5.4) with (4.27) and (4.44) it follows that

(5.5) Yz, 1,7) ~¥(Z,7,r) forall (Z,7) = (z,Y(z,7),7) € T, r>0.

The essence of the section is to prove that we can control integrals of ¥(z, T, r),
and hence integrals of ¥(Z, 7, r), with corresponding quantities involving y, with an
error controlled by €2. In particular, the most important lemma in this section is
the following.

Lemma 5.6. Fix S € ¥. Consider (Z,7) € R", p > 0, and let

(5. % g N dzdrdr

(3.7 T, p) = / // 3z, 1, 1))? )
0 1 (2%) r
Assume further that
5-8) C5,(2, 1) € Chr(xgs), t0s)),  p < kR/10.
Then
do(Z,7)d
5.9 92,1, p) < € + /// (y(Z, 7, Kr))? do(Z,7)dr
EEZ1.p) r

where E(Z,T,p) is the set of all (Z,7,r) € [E N ﬂ_l(C}(p(i, ’r))] X (0, 00) such that
K~'d(Z,7) < r < Kp.

From the previous lemma we shall be able to deduce the following lemma which
will yield the desired regularity of the graph (see Lemma 5.40).

Lemma 5.10. Let (2,7) € R", p > 0, and let ¥(Z, 7, p) be defined as in Lemma 5.6.
Then

(5.11) 92,10 < (€ + [VIDp?.

The rest of this section is devoted to the proofs of Lemma 5.6 and Lemma 5.10.
To achieve this we will prove a number of auxiliary lemmas. Recall that R =

diam(Q(S)).
5.1. Auxiliary lemmas.

Lemma 5.12. Let (z,7) € C5,x(x0(s), tos)) and D(z,7)/60 < r < kR/10. Let

I(z,7,r) be the set of all i € A such that C.(z,T) N I; # 0. Let, fori € A, J(i) be the
subset of 1(z, T, r) which consists of those j which satisfy diam(Q(j)) < diam(Q(7))
and 2Q0(j)) N20Q@) # 0. Let

NiY, ) := Y xa00)(Y ).
jeJ (@)
Then

(5.13) / N, ) dor(Y, 5) < ().

Furthermore, there exists, for any 8 > 1, a constant ¢ = c(n, M, 3) > 1, such that

(5.14) > N ) Pragn (Y s) <,

i€l(z,T,r)
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for all (Y, s) € Uicpzr,r(20(i)). Here we interpret9 (Ni(Y, $)) B = 0 if Ni(Y, 5) = co.
Proof. To prove (5.13) of the lemma it suffices to note that

(5.15) / Ni(Y, s) do(Y,8) S Y Q) s Y o)) < o(Q(0))
JjeJ @) JjeJ @)
since {/;} is a disjoint collection, with d,, (I js n(Q(i))) < r; for each j € J(i).

To prove (5.14), we consider (Y, s) € .. ) 20(i) fixed. Note that in the sum
in (5.14) we only consider indices i in 1(z, T, r) sucll that (Y, s) € 2Q(i) and in the
following we, for simplicity, denote this collection /. An important observation is
that there exists a’ = a’(n, M) € N, such that if i, i’ € I, Q(i) € Dy and Q(i’) € Dy,
for some k and k’ such that k < kK’ — @', then i’ € J(i). This is a consequence of the
facts that diam(Q) ~ 27* for all Q € Dy, and that (Y, s) € 20(i)) N 20(7").

We divide the proof of (5.14) into two cases. First, assume that #I = oo. In this
case, since each Q(i) € QO(S), there must exist a sequence of cubes {Q(i,)};» with
im € I, such that diam(Q(i,,)) — 0 asm - oo Using the observation made above,
this implies that N;(Y, s) = oo for all i € I. In particular,

> (N, ) PlLagp (Y, ) = 0.

i€l(z,T,r)

Second, assume that #I < co. In this case, the sets {Q(i)}, where i € 7, belong to
a finite number of generations of D. With this in mind, we let {km}Z‘il, ki > ky >
- > ky,, be all the integers for which there exists Q(i) € Dy, with i € I. For

me{l,2,...,mp} we introduce

Gm =100 : i € 1, Q) € Dy, ),
and we note that G,, is non-empty. Again by the observation made above, we can
conclude that if Q(i) € G,, and Q") € G,,v, withm > m’ + a’, then i’ € J(i). Thus,
Ni(Y,s) 2 max{l,m - d’}, VQO() € Gn.

For each dyadic generation k, every Q € Dy such that (Y, s) € 20, must lie within a
distance < diam Q ~ 27% of (Y, s), hence, by the dyadic cube construction, there are
at most a uniformly bounded number of such cubes; in particular, #G,, < c(n, M).
Consequently,

D N ) Plagn(Ys) =D Y (N, ) Plapp(Y, 5)

i€l(z,t,r) m=1 Q(i)Egm

<" #G,,(max{1,m - a'})*

m=1

<c'(n,M,p),

where we have used that a’ = a’(n, M). O

9This interpretation will be valid when we use the functions A, since by (5.13) the set of such
points has measure zero.
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The following lemma will be an important ingredient in the proof of Lemma
5.6.

Lemma 5.16. Let (z,7) € Cp(x0s). tos)) and D(z,7)/60 < r < kR/10. Let

I(z,7,1) be the set of all i € A such that Cl.(z,T)NI; # 0. Let (X,1) € &, (X,1) =
(X(z,7,1),1(z, 7, 1)), be such that (X, t) € Q(S) and d(z, 7,n(X,1)) < r. Then

(517 Gz, 1)

st [ s K0P dotrs) + 3D S
2NCH(X,1) i€l(z,1,r)
Proof. Let (z,7) € Cy,x(x0(s), tos)), 1(z, 7, r) and
X,0) = (X(z,7,r),1(z, T, 7)) € X,
be as stated in the lemma. We emphasize that by construction the point (X, )
depends on (z,7) and r. Let P := P(X,t,r) € P be the time independent plane

for which the infimum in the definition of y(X, ¢, Kr/10) is realized. Recall the
notation

2= {00, 9),9) (v, 5) € R

To denote points on the approximating graph, we will in the following also use the
notation X(y, s) := (v, ¥(y, $), ).
To start the proof we first note that
dp(E(y, 9), P)\ >
(5.18) 3zt < // (,,((ys))> dyds.
1(@1) r

and we introduce

dy(E(y, 5), P)\ >
T = r‘d// <p( > 9) )> dyds,
C(z,0)Nn(F) r

d,E(y,5), P)\*
(5.19) T; = r_d// <”((”))> dyds.
Wz )N, r
Using this notation we can continue the estimate in (5.18) and write
(5.20) G sT+ Y T
i€l(z,T,r)

It is straightforward to lift the integral in the definition of 7" to the graph, and to
produce the estimate

2
(5.21) Tsr-d// (dI’((Y’s)’P)> dor (Y, 5) < V(X 1, Kr/10))2.
7 H(Cl(z,T)NF

r

Note that in this estimate we have also used (5.4).
Fix i € I(z,7,7r). Then

T,‘ T,' + Tl',

. d,E Poi)\ >
T :=r // <p( 0, 5), Q())> dyds,
Cl(zT)NI; r

A

where
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and
2
~ d,,s,P .
T; = r_drfi sup{ <p()> (Y, s) € Po, dp(Y, s, 0(i)) < CI”,‘}.
r

Recall (4.15) and (4.16). Using that Py is the graph of B;,

. - Bi(y, )\’
(522) Tl — r_d // <|¢(y9 s) (y S)|> dy ds S é_zr—drld(ri/r)z’
;(Z,T)ﬂ],'

r
where we have used that [y/(y, s) — Bi(y, s)| < er; on I;, see Lemma 4.18.

To estimate ﬁ we use Lemma A.1 applied to O = Q(i). Indeed, let (Z;,7;) €
Q(i) for j = 0,1, ...,n, be as in the statement of the lemma and let Ly = L,-1 be
the spatial (n — 1)-dimensional plane which passes through Zy, Zy, ..., Z,_1. Then

2 2

523  Ti<rd sup {(‘W) N (dp(Z/’Tf’PQU))> }

N 1~ .
le{O ..... n—1} r r

To see this, we note that by Lemma A.1 we have that the points {(Z;, 7;)} stay at an
ample distance from each other, and the point (Y}, s;), realizing the infimum

inf d Y,s 5 Z‘yT‘ s
vt (Y. 5),(Zj, 7))

is within e diam Q(i) of (Z;, ;). Hence, for sufficiently small €, we can ensure that
(Y, s;) — (Y, sp)ll 2 diam Q(i) whenever j # j.

In particular, the points {(Y}, s;)} generate the plane Pg;), and for each (Y, s) € Py

such that d,(Y, s, Q(i)) < cr;, we have

dp(Y, s,Ly,_1) S ~ max dp(Yj, Sj,Zj,Tj) = max dp(Zj,Tj,PQ(,')).
J 1} Jjel0,...,n—1}

An even simpler argument shows that d,(L,-1, P) is controlled by

Jj€l0,....,n—

In this case we do not need to find a generating set for P. Put together we can
conclude that (5.23) holds.

Using that Q(i) € S we see that

dy(Z:, T, Poi)\ >
sup {< (Zj, T, Q())) }SEZ(I”,'/I”)2,
n}

Jj€lo,..., r
and hence, based on (5.23),
_ d,(Zi,ti,P)\ >
(5.24) T, < sup }{ ("(JFTJ)) } + e (r ).
Jjel0,..., n

We now note that the statement in (5.24) remains true with (Z;, 7;) replaced by
any (Z;,%,) € < satisfying d,(Z;, 7, Zj, ;) < nr; for n = n(n, M) sufficiently small.
This can be seen from the proof of Lemma A.1 because we are free, at each iteration
of the argument, to replace the points (Z;, 7;) with sufficiently close points V4 T
as this will preserve the desired properties of the (new) approximating planes and
collection of points. Combining this observation, (5.24), (5.20), (5.21), (5.22) and
averaging over such (Z j»Tj), we conclude that
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S 2
(5.25) (¥ 7 1)

S GOGCLKr/10) + > Erirle/r? + D B

i€l(z,7,r) i€l(z,t,r)

2/3 3
Boa) = (i[ <dp(YSP)> do(y, s)> )
20(i) r

We now let J(i) be the subset of I(z, 7, r) which consists of those j which are such
that diam(Q(j)) < diam(Q(i)) and 2Q(j) N 20(i) # 0. We let

N;(Y,s) := Z X200)(Y, 5).
jelt)

where

Then using Lemma 5.12 we have, for § > 1 given, that there exists a constant
c=c(n,M,B),1 < c < oo, such that

(5.26) D N, ) Praga (Y, ) < ¢,
for all (¥, s) and
(5.27) N;(Y,s) do(Y, s) < 1.

200)
To estimate Sg(;), we apply Holder’s inequality and use (5.27) to deduce that

2/3
(5.28) Bou = (ﬂ <W> <Ni<xs))‘2/3(Ni(xs>)2/3da<xs)>
20(i)

r

2
< (# (W) (NAY, ) dor(¥, s>).
20() r

In particular we can rewrite (5.25) as

3

(529) (Gt s WX LKr/10)* + > Er i/’

iel(z,T,r)

2
+ r_d Z // (dp(Y’s’P)) (N;(Y, s))—z do(Y, ).
2003 r

i€l(z,T,r)

Then using (5.26) with § = 2, we conclude that

(530) (@t s X LKr/10)* + > Er /)’

i€l(z,T,r)

d,(Y,s,P)\*
+ r_d// <p( > )) do(¥, 5).
Viel(z,r,n20(0) r

Thus, to complete the proof of the lemma it now suffices to prove the estimate

2
(5.31) rd // <d”(Y’S’P)> do (Y, s) < (¥(X, 1, Kr/10))%.
Uiel(z.‘r,r)zQ(i)

r



PARABOLIC CORONA DECOMPOSITIONS 29

To this end, we note that in turn, it is enough to prove that, for sufficiently large «,
(5.32) 20(i) € Cirp10(X, 1) forall i € I(z, 7, ).

To establish this inclusion, we observe that if i € I(z,7,r) and (Z,7) € I;, then
D(Z,7) < D(z,7) + r < r, and hence diam /; < r. Because d,(n(Q(i)), I;) < diam [;,
it follows that

dp(n(Q(D), 7(X, 1) < dp(7(Q()), I}) + dp(I;, (2, 7)) + dp(7(X, 1), (2, 7)) S 7.

Hence

(5.33) dp(n(Q()), n(X, 1)) < 7.

To see that 2Q(i) C C.-(X, 1), choose (¥, s) € 2Q(i). Since Qi) € S, by (4.11) and
our previous observation that diam /; < r, we obtain that

(5.34) d(Y, s) < diam(Q(i)) < diam/; < r.

Set 7(Y,s) = (v,5), n(X,t) = (x,1). If d,(Y,s,X,t) < r, then there is nothing to
prove. Otherwise, if r < d,(Y, 5, X, 1), then using (5.34), we may apply Lemma 4.2
to conclude that
(Y, s) — (X, 0| S dp (r(Y, 5),7(X, 1) S 7,
where in the last step we have also used (5.33). Consequently, (Y, s) € C.(X, 1), so
that (5.32) holds for « sufficiently large.
Combining the estimates deduced, we see that
(5.35) Gt ) < XL Kr/10)? + > Errir/n?.
i€l(z,T,r)

Furthermore, the argument can be repeated with any (Y, s) € X N C(X, ¢) in place
of (X, ). Hence, averaging gives

() 57 // (Y., Kr[10) do(¥s) + D Erritn/ry,
ENCH(X,1) i€l(z,1,r)

and we have arrived at the conclusion of the lemma. O

5.2. Proof of Lemma 5.6. Recall that we are assuming that p < kR/10 (see (5.8)).
Let A’ be the set of all i € A such that I; N Cép(f, 7) # 0. Using the construction,
(4.44) and Taylor’s theorem we immediately deduce that

min{ri,p} dzdrdr
CECREED O R A s < &l
0 LiNC5,(2,7) r

ieN

It therefore remains to estimate ¥(z, 7, r) when either (z,7) € n(F) N C ,’3(2, 7), or
(z,t) e [ N C;)(ﬁ, 7),i € N,butr; < r < p. By (4.7), both of these cases are
covered if we assume (z,7) € C,'Q(i, 7) and that D(z,7)/60 < r < p. With this set
up we are in a position to apply Lemma 5.16. To do so we let I(z, 7, r) be the set
of all i € A such that Cl(z,7) N I; # 0. Let (X, 1) = (X(z,7,7),1(2, 7, 7)) € Z be such
that (X,7) € O(S) and d,(z, 7, m(X, 1)) < r. Then, by Lemma 5.16, we have estimate
(5.17), which we reproduce here for the reader’s convenience:

(5.37) ((z,7, 1)
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s [ s K0P dotrs) + 3D S
INCH(X,1)

i€l(z,7,r)
The estimate in (5.37) is valid for all (z,7) € C ;,(2, 7) satisfying D(z,7)/60 < r < p.
Hence,

p drdzd
(5.38) // / ) LT A+ 2B,
Cy 1) J D) /60 r

where we define A to equal

P drdzd
// / (r‘d // (Y(Y, 5, Kr/10))? da(Ks)) drezdr
12.8) J D(z,7)/60 ENCHX(21,0),H(z,T,r)) r

and
P drdzd
B::// / ( Z (ri/r)d+2> rdzdr.
C,(2.1) J D(z,1)/60 r

i€l(z,7,r)
Note that in A we have written (X(z, 7, 7), t(z, 7, )) to highlight the dependence on
(z,7T,7).
To estimate A we note that for any (Y, s, z, 7, r) arising in the integral we have
dp(z,7,m(Y,5)) S 1,

which also implies that D(Y,s) < D(z,7) + r < r. Using this we see that A is
bounded from above by

g drdo(¥,
// / r <// dzdr) (v, s, Kr/lO))zL(s)
2N H(Ch, D) J eI D(Y5) Cor(n(Y,5)) r
v drdo(¥,
s // / %, K10y L ITE)
2N (C, @) J eI D(Y,s) r

< /ﬂ (27, k2 TED A
E(2.2.p) r

To estimate B we first note that if i € I(z, 7, r), then r; < r. Hence

1
C1ad+2 d+1
> i S > i

i€l(z,t,r) i€l(z,T,r)

and we see that

B<// /p ( r¢+1> drdzdr
~ 2 : I d+2
12,8 J D(z,7)/60 r

i€l(z,t,r)

«© drdzdr
d+1
< > it // B / ey (rernen (& T =3 —
Ch(E2) Jrifc

ieA, [NCh,(2.4)%0

o0 dr
< E rfl“ (ri + r)? )

iEA, [iNCh,(:1)%0 rife

s D < p.

ieA, [iNCy,(2.2)#0



PARABOLIC CORONA DECOMPOSITIONS 31

We can justify the second inequality in this deduction as follows. The bounds of
integration for the integral in r hold because D(z,7) < r ~ r; + r wheni € I(z, T, 1),
and the indicator appears because when i € I(z,7,r), d,(I;,(z,7)) < r must hold.
This completes the proof of Lemma 5.6.

5.3. Proof of Lemma 5.10. To prove Lemma 5.10 we fix (Z,7) € R" and p > O,
and we divide the proof into the following cases:

(i) C3,(2, 1) € Chp(x0(s)- ors))» P < kR/10,
(ii) C3p(2, 1) € Cop(x(s)s tos)), P = KR/10,
(5.39) (iii) CQP(Z, )N R\ Chr(xgs), tos))) # 0.
If (z,7,p) is as in (i) then the estimate of Lemma 5.10 follows immediately from

Lemma 5.6 and the fact that X is parabolic UR. Assume that (2, 7, p) is as in (ii) and
consider (z,7) € C(2,7), p = «kR/10. In this case

D2, %, 0) S Vxps)» tos) kKR) < (€2 + IVIDKR)? < (€2 + IIVIp?

by a covering argument and (7). Assume that (Z, 7, p) is as in (#ii). Recall that y = 0
on R"\ Cj,z(x0s), tos)) and hence we can without loss of generality assume that

€22, 1) N Chr(xgs) 10(s) # 0.

This case can be handled as in (5.36) by using the construction, (4.44) and Tay-
lor’s theorem. We omit the remaining ‘routine’ details and claim that the proof of
Lemma 5.10 is complete.

Lemma 5.10 also proves that ¢ is a regular Lip(1,1/2) graph.

Lemma 5.40.

DIyl < (& + VD2,
In particular, Ys = ¢ = y(x,1) : R xR — R is a regular Lip(1,1/2) function
with parameters by < 6 and by = by(n, M, T).

To prove Lemma 5.40, we observe that #(Z, T, p) is a (parabolic) Carleson mea-
sure on R" X R, by Lemma 5.10. After making this observation, one may use
the arguments in Section 2 of [HLN2] or the arguments in Section 2 and at the
beginning of Section 3 in [HLN1], to produce the desired estimate on ||D,1/ 2gbll*.
Note that the measure used in [HLN1] is 0%, a measure which is equivalent to o in
the setting of Lip(1,1/2) graphs and, consequently, this change does not change the
validity of the arguments (see Remark 2.8).

Proof. We follow the argument in [HLN2]; for the reader’s convenience we in-
clude a detailed account of their result and make the appropriate changes for our
purposes.

Throughout the proof we will use simple variants of the following elementary
estimate:

(5.41) sup ¥ — inf ¢ < or, (x,1) e R",
Cl(x,0) Ci(x0)

where the implicit constant is the same as for the Lip(1, 1/2) constant for ¢ ob-
tained in Lemma 4.26.
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For the rest of the proof we will fix a point (z,7) € R” and a scale p > 0. Asso-
ciated to these parameters we choose a cut-off function 8 = ., € CZ(C; (2, 7)),
0<p<1,andB=1inCj5,(z 7). To simplify notation we will also set

C:=C(z, 7).
We define
Y1+ ¢ = [ —ye)Bl + [Bye + (1 = B,

where as usual ¢ denotes the average (with respect to Lebesgue measure) of ¢
over C.

Recall that we aim to control the BMO norm of D,l/ zw, or in other words, we
wish to prove

(5.42) // D2y — (D)l dyds < (5 + Mo,
C

with appropriate dependence of the implicit constants on allowable parameters'".

To prove (5.42), add and subtract a constant @ (to be determined) and use the
decomposition ¢ = ¢| + ¥, from before to get

// D2y — (D] dyds < // D2y ol dyds + (Clla — (D)l
C C

+ // D!y dyds.
C

Notice that for the middle term we have

lo — (DY *y)cl < 1C™! // lo — D2y, — D2y dyds,
C

//(; D2y — (D)ol dyds <2 //C D2y, — ] dyds
(5:43) +2//|D§/2¢/1| dyds
C

=1+1I

and so

To handle /1 we need some preparation. Introduce first an approximate identity
P, and abuse notation to denote both the operator and it’s kernel in this fashion. In
particular, we require P € CX(C}(0, 0)), even and nonnegative with || f]R" P dyds =
1, and as usual set Py(y, s) = A~2P(y/A, s/ 2%).

In what follows ¢;(y, s) = 1~%¢(y/A, s/A%) may denote either of the following
functions: 5

oP oP 0P
A=, = =
04 Os dy;
The main features of these functions for us are:

. / 6] dyds = // 6l dyds <1, suplgal = - sup || < 4.
Rn R" Rn R’l

for 1<i<n-1.

1045 will be seen from the proof, the implicit constants will depend on the same parameters as
the Lip(1, 1/2) estimate from Lemma 4.26.
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e Foreach 1 <i < n we have

/ ¢ dyds=0= // vi¢ dyds.
Ril Rn

By the second property of ¢ above we have, for any linear function L of y only,

(61 * )23, 8) = (P2 * W — L))* (v, 5)

< lgliz A // W — L| dxdt
/’{(y,s)
<p A7 // I — L dxdt,
1 (v,5)

where we used Holder’s inequality in the first line, and Cauchy-Schwarz together
with the first property of ¢ above on the second.

Multiplying by A=3 and integrating the above equation over C 5(2,7) X (0,p) we
arrive at

P 0
/// 3@ r ) dydsdd < / // 50, 5) dydsda,
0(z,7) Cp(z,7)

or, in other words,

0
(5.44) / // 3w 0 dydsdd <o [l
0 (2,7

We are now ready to begin estimating /7 in (5.42). Fix 0 < & < p, then using the
fundamental theorem of calculus

(5.45)
/ (DY2Py)* dyds = // (DY?Py1)? dyds
Rn Rn

- / ’ // 2D (01 Py)IIDY*(Pay1)] dydsda
& R2

= // (DY2Py)? dyds

‘ /p // H(@0:(P2y1)) 9(Pagr1) dydsda,
=11 +8112_
where H denotes the Hilbert transform and we have used the following facts:
DI2DV —Ha.  H = -H.

To handle /1; we first claim that it’s enough to show

3
(5.46) D2 Pt (3, 8)| < 6mm{ l_pTP/z} Ly-zj<ap-

Assuming this for the moment, we integrate in (y, s) to get

3 2
(5.47) 1} < Zmin< 1, P dyds < 620,
lz— y|< p It — |3/2
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which is the right type of bound (see (5.42)). Therefore, it remains only to prove
(5.46). For this purpose recall that for nice functions'' f we defined

D% f(y, s) := c/ f(ylt)_f(ys) dr.
R

(= spP2

In particular, since ¢/, is supported on Cép(z, 7),if |z—7| > 4p then D!/ szwl (v, 5) =
0. We have thus reduced (5.46) to proving

3
1/2 . 1Y%
(548) |DS/ Pplﬁ](y, S)I Sn 6m1n{1,|s_7_|3/2}, Iy—ZI S4p
First we note that
1)
(5.49) 105 Py (y, s)| < ; (y,5) € R™.

This follows from properties of the convolution:

105Po1 (v, $)| = p 205 P)ptp1 (v, )] < p 2105 Pl oy Wt oy <

’

T IS

where we used (5.41) and the definition of ¢ in the last inequality.

We first get the uniform bound; for this we break up the integral in the definition
of the half-order time derivative and the above estimate, together with (5.41), to
get

|Pp‘r//1(y’ t) - Pp'vbl(y’ S)l

D2 P (v, 9) < / dr
e lt—1]<p? |t - s|3/2
P ,H)— P , S
+/ | p'»bl(y ) 3/,021#1()’ )] dr
[ |t — sl
)
< / It — s/ dr + (5p/ It —s|73/? dr
P Jit-l<p? |t—7|>p?

< O.

Therefore it remains to get the decay in estimate (5.48), and, for this, we need only
consider'” |s — 7| > 100p2. For such s we have Pori(y, s) = 0 and so

Pplvbl(y’ t)l _ / |Pplr//1(y7 t)l
[t—7|<16p?

12 1P . Dl
D Pp‘pl(y’ s)| S/R It — sP3/2 dr = |t — s]3/2 dr

< po / It = 5|7 di ~ pop?lr — 5|72,
[t-1|<16p?

where we again used (5.41) in the second line and the fact that |t — s| ~ |t — 5| with
the given restrictions on s,¢. This is exactly the desired decay in (5.48), and thus
we’ve finished controlling /1;.

USuch as Py, € C2(RM).
12Perhaps worsening our implicit constant by an universal factor.
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11, is a bit more elaborate. We first apply Cauchy-Schwarz to get

bP <, < / ’ // T HOUPw )P dyds dA)
& Rn
< ( / ’ // AP dydsdﬂ)

= 1121 . 1122.

From the L2 boundedness of the Hilbert transform on R we see that

0
(5.50) I < / // A N0(Paw)I? dydsda.

With this in hand, the estimates for /15, and 115, will follow the same lines, the
different powers of A accounting for the difference in scaling of 9,P, and 0,P,. In
particular one should keep in mind the fact that both of these functions “annihilate”
first order (spatial) polynomials (see the properties of ¢ above).

With the above in hand, we focus on 115;.
For fixed (y, s) € C consider the linear polynomial

n—1

L(x) := By, $)+ > 0B, )i = x),  xeR"

i=1
Using the alluded properties of 9, P, and the triangle inequality we see
(5.51)

10A(P2Y 1)y, 9| < /Rn 01Pa(y — x, 5 = DlY(x, 1) — YellB(x, 1) — L(x)] dxdr

n—1
+3 " 10480 9) // i = )0 PAy = %, 5 = DIY(x, 1) = Y(y, 9)] dadr
i=1 R

+|8(y, $)0, Py (y, s)| =: A+ B+ C.

To handle A recall that [|[0AP,||;1 < A7 and (5.41) (together with the fact that the
integration is taking place over C’(y, s) and A < p) to get

A< '6p  sup  |B(x, 1) — L(x)|.
(x,0)eC(y,s)

To control the last term we appeal to Taylor’s theorem:

n—1

BCx, 1) = LI < |BCx, 1) = B 1) = D 8y, i = )
i=1

n—1

+ 18O, 1) = BOL O + > |05800 1) = 8y, BG )] yi — xil

i=1
< DB Dll gy = Y2 + 195805, M=okt = 1
+ 10 DyB(y, Mlrelx — yllz — s
<p 24 p 4 o0
<pA,
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where we used the derivative bounds for 8 and in the second to last line the fact
that A < p. Plugging this estimate, we arrive at

as?
Je

Using again the derivative estimates for 8 and (5.41) we see

51
Bsplarlsa=—.
e

Trivially, since 8 < 1 we have

C < |02PY(y, 5)l,
and so, combining all these estimates into (5.50) we arrive at

P 54 2
Ih < / // I (+|aﬂw<y,s>|> dydsda
e Cjtp(z,‘r) Y

' s 2
< —+ AP (Y, s)| dydsdAa
0 Cl,(z7) P

< 6% + 91l
where we have used (5.44) in the last line with ¢ = 10, P,.
To handle 11y, the only change is that |0;Pallp1 gy S A72, which gives

0
05 Pari(y, 5)I < P + 05 Pay(y, s)l,
and thus
I < 8" +1Pe”.
These last two estimates, in turn, give
I 5 (8 + 191D,

Combining these estimates we have

/ IDY2Pa? dyds < (8 + 996",
R’l

with bounds uniform in . In fact the implicit constants only depend on the param-
eters upon which the Lip(1, 1/2) bound in Lemma 4.26 depends.

By weak compactness, there is a subsequence (which we denote the same) and
an h € L>(R") such that DY/2P.y; — h, as & — 0*. Since Py € CX(R™) and ¥
has compact support we see that I, * (Di/ 2P8lﬁ1) = P | converges pointwise,
uniformly, everywhere to ¢ and to I 2/ (here I} /5 is the fractional integral of order
1/2 in the time variable, appropriately normalized). This shows that D!/2y exists,
and satisfies the estimate

/ ID}2y > dyds < (6% + IPIDp?.
Rn

Therefore

1/2
1= // IDy/?y| dyds < p*/? <// D2y P dyds> <@+ 92
¢ C
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It thus remains to control / in (5.42). First, notice that for (y, 5) € C§ » 2(2,T) we
have (v, s) = ¢, by definition of i, so that in particular the integral defining
D!/2y, is always convergent for such points. By the decomposition ¥ = 1 + i,
we conclude that D!/2y exists in C.

Write

DWmmw=c/

[t=7|>902 /4

'7[’2()]’ t) - l/IZ(y’ S)

It — s/

dz, v, s) €C,

and set a to be

SR / V) v
[t—7]>902 /4

|t — 7372
If we can show, for this value of «,
(5.52) IDYys(y,5)—al $6,  (.5)€C,

then integrating would give

I= // |D£/2l//2 —a| dyds < 6pd,
C

which combined with the estimate for /1, gives the desired BM O bound in (5.42).
The rest of the proof is then devoted to showing (5.52).

First notice that for (y, s) € C and |t — 7| > 9p?/4, we have |t — 7| = |t — s|; we
will exploit this repeatedly below without mention.

From the above formulas we have

/ (%ﬁz(y, N =¥y, 8) Yz, 1) - Yz, T)> dt
[t=1|>9p2 /4

D!/? ,S)—al=c
IDy" "2 (y, 5) — al i — s/ It — 7]/

Recall Y, = (Y¢c — ¥)B + ¢, so that we can rewrite the quantity in parentheses as

@m—wmnwmn_wC—wawm®+(wmo—wyw_w@n—w@ﬂ>

It — sP/2 TEREE It — 572 7P

Call these terms A, Ay, A3 respectively.

For the first one, notice that 5(y, £), as a function of  is supported on |t — 7| < 4p>
by definition, so

— ,t _ ,t
/‘ mnmz/ W?wgﬂmz/ We-v0u0l
l—1>9p%/4 |t—7|~p? |t — s lt—l~p? [t — 7]

and since then (y,7) € C ftp(z, T), we use (5.42) to bound the numerator by dp, which

gives
/ |A1] df < 5p/ 2 dr < 6.
[t—=7|>902 /4 t~p?

For A, we use that |8 < 1 and (y, s) € C to again bound the numerator by p¢ and

SO
/ |As| dr spé/ 3% dr < 6.
|t=11>90% /4 p?
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For A3 we first put a common denominator on the quantity in parentheses and
rewrite the result as

(WG, D = ¥z, 1) = @O, 5) =¥z O = TP + Wiz, 1) = Yz, D) = 7P = |s = tlm)‘

It — P2l — 52

Now notice that for any given ¢, the points (y, 1), (z, ) lie in a (parabolic) cylinder
of size < p, and so each term inside the brackets can be controlled, using (5.41),
by dp. This an the Lip(1, 1/2) estimate for ¢ directly then give

As] < op It =o' 2(r = 7* - |t - sI/)
I spr It — P2t — 5P
. _ o It =22 = 7|2 + |t = 5|5 - 7
TR = P2l — o2
op 5p°

< + )
lt—7P2 |t —1?

where we used the elementary inequality |a” — bP| < (a”~! + b Ya — b in the
second line. Integrating this gives

/ |As| dr <6,
[t=7|>9p2 /4

which finishes the proof. O

6. PACKING THE MAXIMAL CUBES

In this section we conclude the proof of Theorem 3.1, by proving the packing
condition for the maximal cubes {Q(S)}sc#. In order to reduce matters, we need to
introduce some additional notation. Recall that m(S) is the collection of minimal
cubes in a stopping time regime S € . We let my(S) denote the cubes in m(S)
which are such that Q has a child in 8’ and we let m;(S) denote the cubes in m(S)
for which the angle between Pgs) and P is greater or equal to 6/2. Hence, by
construction

m(S) = mo(S) U m(S).

Following [DS1], we now let

Fo:={S € F : 0(Ugemys)Q) = o(Q(S))/4},
F1:={S € F : o (Ugem Q) = (Q(8S))/2},
6.1) Fri=(SeF : o(Q8)\ Ugems)Q) > o(Q(S))/4}.
Then F = Fo U F1 U F,. It follows (see [DS1, Lemma 7.4]) that
Z o (Q®) < cn,M,T,€,6,K)o(Q), YQeD(E).
SeFoUF2:0(S)cQ

The ideas behind this estimate are that to obtain the bound for %>, one uses that the
sets Q(S) \ (Ugems)Q) are pairwise disjoint, while the bound for #( follows from
the packing condition which by construction holds for 8’. We include the details
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of these arguments below. In the case of #, we have for each~Q(S) aset Fg C Q(S)
with each Fg disjoint and o (Fs) > (1/4)0(Q(S)). Thus, for Q any cube

> (@) <4 > o(Fs) <40(Q),

0S)cO 0(S)cO
SeF, SeF;

where we used that F'g C O(S) C Q are disjoint, so their measures cant add up to
more than O'(é).

The ¥y stopping times have a different packing argument. If S is in 7y we have
for each Q(S) and associated collection of subcubes Q; of Q(S), call them Bg,
which have a child Q} in 8. In particular, we take Bg to be the m(S) cubes and
they satisfy

Y o@=0| [ Q| =0u/4000).

0€Bg 0€eBs
One notes that if S, S is in ¥ are distinct thgn Bs N Bg/, which can be seen by the
disjointness of the stopping times. Thus, if Q is a cube

Y o@s)H<4 > D o)

oSO 0(S)c0 0€Bs
Sefo SeFo
<4C. Y o(Q') £ 4C.Co(Q),
Qe
0'cO

where the C is the packing constant for the cubes B’ and C. is a constant so that
if Q' is a child of Q then o(Q) < C.o(Q’). Thus, to pack the maximal cubes (and
hence prove Theorem 3.1) it suffices to prove that

6.2) Y o(0®) < c(n.M.T,e.6,K)(Q), VQeDE).
SeF1:0(8)c0

Consider S € ¥ and assume that
Z
(6.3) // vzt knp LD 200y,
ES) r

where E(S) := E(xqs). tos), R) is the region appearing in Lemma 5.6, and R :=
diam(Q(S)), see (4.9). Le. E(S)is the setof all (Z, 7, ) € [Enm™ 1 (Cir(xgs), tas))] X
(0, c0) such that K~'d(Z,7) < r < KR.

We are the going to prove that there exists € small, independent of S, such that
if (6.3) holds then, S ¢ ¥,. Hence, if S € ¥ then the opposite inequality in (6.3)
must hold and therefore, if Q € D(X) then

D) 5 do(Z,7)dr
Y., o)< Y // (Z 1K)y ————

SeF1:0(S)cO SeFi:0S)co /Y ES)
(6.4) <cn,MT, €6, K)o(Q),

by the facts that £ is parabolic UR, that o is a doubling measure, and that the sets
{E(S)}ser have bounded overlap in £x (0, c0). Verification of the latter fact follows
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by first noting, for each (Z, 7, r) € E(S), that there is some cube Q € S such that
dp(Z,7,Q) + diam Q < 2Kr.
Hence, upon replacing Q with a suitable ancestor in S, we have
dy(Z,7,0) < rand diam Q ~ r.

Clearly there are only a bounded number of cubes satisfying the inequality in this
display for each (Z, 7, r), hence the sets {E(S)}sc# have bounded overlap in X X
(0, 00).

Based on this, and for the sake of obtaining a contradiction, we will from now on
assume that (6.3) holds and that S € ¥;. In the following we will at instances use
the short notation Cj, := C,(x¢g(s), 1g(s)), p > 0. Using this notation, the assumption
in (6.3) and Lemma 5.6, we can conclude the validity of the important estimate

kR/10
65) | L 6= < coos.

We are now going to study the implications of (6.5). To do this, let ¢ be an
infinitely differentiable real valued function on R" with compact support in C7(0, 0)
and set

2z 1) = AP/ 4,7/ ).
For f : R* — R, we introduce the usual convolution of ¢ with f by
(©6) 64160 = || 6G=yr= 9105 dyds,
whenever this convolution makes sense. Furthermore, we suppose that
6.7) //]R" #(y,s)dyds =0 and //Rnyicﬁ(y, s)dyds =0for1 <i<n-1.

If L is a linear function of y only, then

(G2 * )z, 7) = [¢a * (W - DIz, 7)

(6.8) <1 // Iy — L|* dyds.
" (z,7)

In particular,

(6.9) (6 % ) (z,7) < P37, D)

From this observation and (6.5) we see that

P dzdrdAa P R dzdrdAa
I a5 s [ Genar =]
o Joyes o Joyes

(6.10) s €0(Q(9))
whenever C/,(2,7) C Cyr(xg(s), toes)) and p < kR/10.

We will now use a parabolic Calderdn reproducing formula. We here follow the
construction in [H2, pp 227-228] and we let P, f := k, = f, where

ka(x, 1) := k(A7 x, 2720,
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and where k € C’(C{(0, 0)) is a non-negative even function, with

// kdyds = 1.

Thus, P, is a nice standard parabolic approximation of the identity. Consequently,

® 9 e da
6.11 I=-| ZPida=[ Poi—,
(©1h /0 ar " /o 10

in the strong operator topology on B(L*(R")), where Q, := —2/1%. In particular,
if we let ¢, := —22%

R then, as k is even, we see that (6.7) holds for ¢,, and by
(6.11)

o0 dAa
6.12) W) = /0 (kawpr9) @S

in the sense of L? and with pointwise almost everywhere.

Using the representation in (6.12) we decompose i as

U=y + i, Y =Y+ Y,

where
o0 dAa ® 9
U1z, 7) = /R (ka*(b/l*lﬂ)(z,T)/l:—/R ﬁpﬁlﬁ(Z,T) da,
R dzdsda
Yoz 1) = / // kaz = 2,7 = B)(P # Y)(E ) — ; ,
0 "\Choor
R dzdsda
Ua(e,7) = / // k-2 7= D e ST
0 C/

200R

for (z, 7) € R" and we again recall that R = diam(Q(S)).
Lemma 6.13. The function | : R" — R satisfies
(6.14) W1 (x, 1) = 1 (y, $) < 6dp(x,t,, ),

whenever (x,1),(y, s) € Cloor(X0(s) tos))- Furthermore,
(6.15) V201 (x, )] + 1001 (x, )] < SR™" on Cloor(xas)» tocs))-

Proof. Note that if (x,1) € Cjyor(x0s) tos))s then Ya(x, 1) = 0 by construction
and hence it suffices to treat ¢1;. Recall that by Lemma 4.26,

(6.16) [ (x, 1) = Y (y, )| S 6dp(x,1,y,s)
for all (x,1), (v, s) € R". Observe that by construction,
Y1 = f)R'ﬁ:%R*lﬂ,

where %R := kg * kg, and ﬁR = P,ze. Since ER is non-negative with integral 1, we
see that |y11(x, ) — ¥11(y, s)| can be bounded by

< // %R(z,r) W(x—z,t—7)—¥(y—2z,5—71)| dzdr
< ody(x,t,y,5),
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by (6.16) and the translation invariance of the parabolic distance d,. This proves
(6.14).

To prove (6.15), we first observe that

2 Tr(x, t)’ +

// V2 kp(x,1) dxdr = 0 = // 8, kr(x, 1) dxdr.

Therefore |V)2(¢11(X, D] + |0411(x, t)| can be bounded by

O; kr(x, I)‘ SR ey 006 0).

Moreover,

A

R //R Loy 00/ = ot = )W, 5) — (e, D dxdr

12\

SR™472 // ]lcéR(O’o)(x - t=98)dp(x,t,y,s) dxdt < 6R_1,
Rn
where in the next-to-last step we have again used (6.16). |

Lemma 6.17. The function y, : R" — R satisfies

(6.18) 2 (x, 1) = Y2 (y, $)| < 0dy(x,1,y, 5),
whenever (x,1), (v, s) € Cloor(X0(s): toes))- Furthermore,

(6.19) / IV al? + 1D}y dzdr < E0(Q(S)).
Rn

Proof. (6.18) follows immediately from (6.14) and (6.16). To prove (6.19), let
f € L*(R") and note that

dz d d/l
// O 0(e,?) fz, 7 dzdr = - / // (@0 * ) #0) 29T

200R

J/ [ Vsl dzar < / //C wuP LI < 2ot06s)),

200R

Hence,

by Littlewood-Paley theory and (6.10) (provided we ensure x > 2000 so that
«R/10 > 200R). Similarly,

// D yn(zt) flz. ) dz dr = / // (@ o ey TN,

200R

and again

/ s 1D}y, dzdr < / // g * v dzjchr(Q(sn

ZOOR

where we have used that
® . ,dzdrda o
/ / (D} %k = fE DI < / IfG, P d2 d#.
0 R A R~

In turn, the latter estimate follows readily via Plancherel’s theorem in R”, using

that the half time derivative corresponds to the Fourier multiplier |T|% as follows.
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First, the equivalence between our notion of half-time derivative and the Fourier
multiplier one can be found, for instance, in [DPV] (see in particular the beginning
of Section 3 and Proposition 3.3 there).

Recall that £ € Ci’(C1(0,0)). Taking the Fourier transform in (Z,7) and using
Plancherel’s formula we have, using (¢, () € R"! x R for the dual variables,

//]R ,, (D%l * f2, 1) d2dt = ¢, //R R LlkE, 2O f € O dgdl
< [ mintPia, P nie oF dede,

where we used the fact that k is a Schwartz function in the last inequality; more
specifically we used the bounds

lk(¢, 0l < min{1, 12}, (£ eR

Using the previous estimate and integrating in A we arrive at

o0 dzdrda
/ / D0 e P =
0 R”

A « da
S / f& or ( / minu%a,(ﬁa)”}ﬂ) dg dg
R 0

- [[ 1. seac

We next prove two lemmas concerning the oscillations of ¢, and .

Lemma 6.20. Consider C/(z,7) C R", let

mer o2 = 15[ Yo dZdt,
Cl(z,7)

and

osCoign W2 = sup  |[Y2(Z,T) — meyeane

(&DeCl(z.)

Assume that C)(z,7) C Clyor(x0(s) tos)). Then

-1
osCcrzr Y2 S r{r ]f[
Ci(z.1)

Proof. Let (Z,7) € C/(z,7) be such that

1/(d+1)
Y22, %) — meyoWa| d2 d%} §/@+h),

Y2(2, ) — meyoa| = 0SCeyen Y2 =1 1

Using Lemma 6.13 and Lemma 6.17 we note that

(6.21) 22, ) = ¥2(Z, D) < Bod)y (2, 1,2, 7),
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whenever (2,7), (Z,7) € Ci(z,7), and for every function ¢ in the set {i, ¥, ¥2}.
Here f3 is the implicit constant in (6.18). If (Z,7) € C(z, 1) issuch that d,(Z, 7,2, 7) <
u/(236), then

(6.22) [Wa(Z, 7) — Y2(Z, DI < u/2,
by (6.21) and hence

(6.23) > /2,

Ua(Z,T) — mey o

by the definition of y and (Z, 7).
Assume that u/(280) < r. Then, using (6.23) we see that

// (z,7)

for a constant ¢ = c¢(n). Hence, in this case, with implicit constants depending only
on n, we have

/Jd+] sﬁdé‘d//
1(2,7)

(6.24) ~ plodrttty! ]5[
Ci(z,7)

This completes the proof of the lemma in this case.
Assume that u/(286) > r. In this case, using (6.21) and (6.22) we see that

dzd7 > cu(u/(B))! = cut' g6,

Y2(Z,7) — meyny

dzdt

U (Z,7T) — mC}(Z,T)¢2

'702(2’ %) - mC;(z,T)',bQ dZ dr.

Y2(Z,7) = meyaa| = p/2

on an ample portion of C/.(z, 7) and hence, for ¢ = c(n), we have

(6.25) F |ven-meeops) azar>
Ci(z,7)

Moreover, using (6.21), we also have

(6.26) r! ]f[
Cl(z,1)

In particular, combining (6.25) and (6.26) we deduce

RS r{r‘ljf[ dZd%}
Ci(z,7)
1/(d+1)
(6.27) < r{r—l ]f[ dZd%} (B8
Ci(z,7)

where the various implicit constants are purely dimensional, i.e. depend only on n.
The conclusion of the lemma follows also in this case. O

dﬁdf'}.

Y2(Z, T) — meyoW2| dZdT < B6.

U2(Z2,T) — mey o2

Y22, 7) — mey o2

Lemma 6.28. Let

NG 7) = sup {p‘l ]f[
C/’)(z,r)a(z,%) C,’](z,r)

Y22, 7) — mey o2
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Let 0 € (0,1) be a degree of freedom and let
F :={(z.7) € Cyop(xgs). tos) : NW)E 7)< 6716).

Let n € (0, 1), consider (zo,79) € R" and assume that Fn C/(z0,T0) # O for some
r <nR. Then

(6.29) sup  [Y(z, 7) = ¥(20, T0) = Va1(20, 70) - (2 = 20)| 5 (6 + M)

(z,7)€C}(z0,70)

Proof. Let (z,7) € Cl(20,To). Then

[ (z, T) — (20, 70) — V21(20, T0) - (2 = 20)
< Wa(z, 1) = ¢a(z0, T0)l + 1(2, ) — ¥1(20, 70) — Veh1(20, T0) - (2 = 20)
< 208Ccizm Y2 + W1z, 7) — Y120, T0) — Veb1(zo, T0) - (2 — 20)l-
Using Lemma 6.13, and in particular (6.15)), and Taylor’s Theorem, we see that
(6.30) W1(2,7) = ¥1(20, T0) = Veth1(20,70) - (2 = 20)l $ SR 5 onr,

by our assumption that r < nR. Furthermore, as Fn Cl(z0,70) # 0 we can apply
Lemma 6.20 to conclude that

0SCC7(z0,70) Yo < 6or.
Combining the latter estimate with (6.30), we obtain (6.29). |

Lemma 6.31. Let N(y;), 6 and F be defined as in Lemma 6.28. Then
H! (CgOR(xQ@), tos) \ [7') < 6726724 D 20((S)).
Proof. Note that
632 H Courosntas)\ P <0020 | Wi of diar

To control N(y;)(Z,f) we need to use a Poincaré inequality. To this end, for lo-
cally integrable g : R” — R, we let M(g) be the n-dimensional parabolic Hardy-
Littlewood maximal function

M(g)(x, ) := sup ]ﬁ[ lgldyds,
Cy(x0)

0>0

and we let M, and M, denote (respectively) the standard Hardy-Littlewood max-
imal operators in the x and ¢ variables only. Consider (Z,7) € R" and assume that
(Z,7) € C)(z, 7). Then C/(z,7) C C5,(Z,7) and

rl i[
Ci(z,7)

<! ]5[
C5,(27)

Using Lemma 2.2 in [AEN] we see that

r! ]5[
C, G5

Y22, %) — meyapa| d2d?

U2(2, ) — me,, ;02| d2dT.

dzdr

V22, 7) — me,, o2
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< M(Vhal)E B + My M(H. D} 9a))(E, 7).
In particular,
NW2)(ET) < MV.2)E T) + My M(H.D,y)) G, 7).

Hence,
Hy ! (Chor(ros), o) \ F) < 67767 // Vol + D Pyl dedr

S 6_29_2(d+])€20-(Q(S)),
by Lemma 6.17. O

Let N(¢»), 6 and F be defined as in Lemma 6.28. Let € (0, 1), consider
(20, 7o) € R", and assume that F' N C/.(zg, 7o) # 0 for some r < R. By Lemma 6.28
we have

sup  |W(z, 7) — (20, T0) — Vob1(z0, 70) - (2 — 20)| < (0 + n)or.

(z,1)EC(20,70)

Letting 6 := 1 we can conclude that

(6.33) sup  |¥(z,7) — Y(z0,70) — Vh1(20, T0) - (2 — 20)| < 10T

(z,1)€C1(20,70)

Let P = PC;(ZO,TO) be the time-independent plane which is the graph of the affine
function

L(z) := ¥(z0,70) — V1(20, 70) - (2 — 20)-
Then by (6.33) we have

(6.34) sup r\d,(Z,7, P) < 1.
(Zr)eEnm=! (Ci(z0.70))

Recall that the we are seeking a contradiction to the assumption that (6.3) holds
for some S € . We will achieve this by proving that the conclusion in (6.34) is
incompatible with S € ;. Next, we prove two additional auxiliary lemmas to be
used in the final argument.

Lemma 6.35. Letn, 0 < n < 1 and A > 1 be given. Then there exists €y =
eo(n,M,n,A) > 0 such that if € < €y, then the angle between Py and Pgs) is
< 6/100 for all Q € S with diam(Q) > nR/A.

Proof. Consider Q € S, let Qg = Q and let Qy, ..., Qy denote the successive ances-
tors of O with Oy = O(S). By definition, see (3.9), we have
(6.36) dy(Y,s, Pgp,) < ediam(Q;) for all (¥, s) € 8KQ; and for all i € {0, ..., M}.

This implies, see Lemma A.2, that the angle between Py, and Py,,, is bounded by
< €. In particular, the angle between P and Pgs) is bounded by

< eM < elog(2R/ diam(Q)),
from which the result follows. O

Lemma 6.37. If Q € m(S), then d,(F,7(Q)) > diam(Q).
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Proof. Assume, for the sake of obtaining a contradiction, that there exists Q €
m1(S) such that dp(f ,m(Q)) < diam(Q). Let (Xp,?p) be the center of Q, let
(z0,70) = (x0,t0) = m(Xg,tg), r = 10diam(Q). Consider C;(z0, o). By the
assumption and the construction FNnC "(20,To) # 0. Recall also that m,(S) denotes
the cubes in m(S) for which the angle between P and Pgs) is greater or equal to
0/2. Hence, by Lemma 6.35 we can conclude that » < R if € sufficiently small.
Furthermore, C;(z0,70) € Ciopor(X0es), tos))- By Lemma 4.41, for (Z,7) € Q we
have

(6.38) dy(Z, 7, (z,¥(2,7),7))) S €d(z,7) S ediam(Q), (z,7) = n(Z, 7).
Furthermore, by (6.34) we also know that

Sup dp(Za Ta F)) S T](SF’
(Z,0)eENa=1(CL(z0,70))

for a time independent plane P € P. The inequalities in the last two displays imply
that if (Z, 1) € Q, and if € < nd, then

(6.39) dp(Z,7, P) < nor.

Upon observing that we can produce n + 1 points of Q with ample distance from
each other using Lemma A. 1, the estimate (6.39) implies that the angle between P
and Py is < no < 6/100 if we choose 17 and € small. Let Q" be the largest ancestor
to O such that 10diam(Q*) < nR. The same argument as above then gives that
the angle between P and Py is < §/100. In particular, the angle between Py
and Pg must be < 6/50. On the other hand, we may apply Lemma 6.35 to Q" to
deduce that the angle between P+ and Pgs) is at most /100, and thus that the
angle between Py and Pgs) is at most ¢/33. This is incompatible with Q € m(S)
and hence we have reached a contradiction. O

We are now ready finally to complete the proof of Theorem 3.1 by proving that
S ¢ 71. We see that by Lemma 6.37 it suffices to prove that (6.3) implies that there
is at least one Q € m;(S) with dp(ﬁ, n(Q)) < diam(Q) where F is defined as in
Lemma 6.28. Let

(6.40) F= |J o
Qem, (S)
There exists a collection S’ C m(S) such that F can be covered by
{C20diam(0)(Zg, T0)} 0es
in such a way that
{C3diam(0)(Z0, T0)} ges’
is a disjoint collection. Hence,

(6.41) o) s | | Coodian0)(Zo:10) NZ | £ (diam(Q))”.
QeS’ QeS’

Using this fact, and our usual notation (zg, 79) = n(Zp, 7o), we can use by proof of
Lemma 4.2 (specifically, the fact that (4.4) holds whenever (X, 1), (Y, s) € 16xQ(S)
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and min{d(X, 1), d(Y, s)} < 1000d,(X, 1, Y, 5)), to conclude that the collection

{Cliam(0)(20> T0)} 0es’

is also pairwise disjoint. Hence

(6.42) 7‘{;,”1 U Céiam(Q)(ZQa TQ) 2z o).

QeS’
Moreover, every set in {C (’ﬁam(Q)(ZQ, To)}ges is contained in C5y,(xg(s), tocs)) and
by Lemma 6.37, none of the sets in the collection {C(,liam(Q)(ZQ’ To)}ges intersect

F. Hence, using this observation and (6.42), we see that

643) o) sH | | Chiamio)@0:70) | 5 HE (Chor(xos): tos) \ F.
QeF’

Using Lemma 6.31 with 8 = 7 we have

(6.44) o(F) < 620724 DE0(Q(S)) =~ 627 2D a(0(S)) .
Hence,
(6.45) o(F) < ¢67 27 2 D25 (Q(8S)),

for some ¢ = ¢c(n, M,T',k, K) > 1. Given ¢ and n, we let €] := 677d+1 / V4c. Let also
€ = e(n,M,n,A) > 0, with A > 1 fixed, be as in the statement of Lemma 6.35.
‘We now choose

(6.46) € := min{¢, € }.

Then € = e(n, M, T, k, K, 6,n,A), and in fact, as n and A can be chosen as constants
with no particular dependencies, € can be seen simply as a function of n, M, I, k, K
and ¢. By the choice for €,

(6.47) o(F) < o(Q(S))/4.

The estimate (6.47) contradicts the statement that S € ;. As we had reduced
matters to showing S ¢ ¥, we have proved Theorem 3.1.

7. THE PROOF OF THEOREM 3.3

In this section we prove Theorem 3.3 by improving Theorem 3.1(4) to give a
bilateral approximation as in Theorem 3.3(4). The latter is a parabolic version of
a result appearing in [HMM1]. The most important observation here is that in
the proof of Theorem 3.1 the condition (3.10) (B), for the stopping time regimes,
was only used to pack the maximal cubes of the stopping time regimes (Section
6). In particular, the construction of the graphs requires only property (3.10) (A)
of the stopping time regimes (and the fact that X is p-UR). With this in mind,
we are going to use the packing of the stopping time regimes in Theorem 3.1 to
prove the packing of stopping time regimes where (3.10) (A) still holds, along with
a stronger, bilateral approximation by a f-independent plane. Then we can run
the machine that produces the regular Lip(1,1/2) graphs and never carry out the
arguments of Section 6 (since the stopping time regimes will already pack) and we
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will use this bilateral approximation by planes to improve the approximation by
graphs to a bilateral one.

Definition 7.1. Let X be a parabolic Ahlfors-David Regular set with dyadic grid
D(X). For Q € D(Z) and K > 1 we let bB.(Q) := bB(Q, K) denote the number

infdialm(Q)_l sup dp(Y,s,P) + sup dp(X,1,2)| .
pep {(Y,5)e8K 0} {(X.)ECsk diam() P}

Given € > 0, K > 1, we say that the (e, K)-parabolic bilateral weak geometric
lemma ((e, K)-PBWGL) holds for X, if there exists a constant c(e, K) such that

Y d(Q) < ce. K)o(QY), YO D).
hﬁwQ(gé(*)Ze

Combining Theorem 3.1 with our previous work [BHHLN1] we immediately
obtain the following'”.

Theorem 7.2 (([BHHLNI1, Theorem 4.15]). Let X be a parabolic Ahlfors-David
regular set. If X is parabolic UR with constants M and T, then X satisfies the
(€, K)-PBWGL for every € € (0,1] and K > 1.

The reader may notice that the § numbers used here are defined slightly differ-
ently compared to [BHHLNI1], and that the (dilation) parameter K does not appear
in Theorems 4.15 [BHHLN1]. However, these differences represent no problems,
see [BHHLNI1, Remark 2.24]. In particular, it turns out that (¢, K)-PBWGL for
some fixed K and all € > 0 implies that the (€, K)-PBWGL for all K and all € > 0,
so that we may use the result of [BHHLNI1] to first prove the (€, 2)-PBWGL for all
€ > 0 and obtain (€, K)-PBWGL for all K and all € > 0. This improvement of K
be proved with techniques in [DS2, 1. 3.2] specifically using Lemma 3.27 in part I.

The following lemma will be important in the proof of Theorem 3.3.

Lemma 7.3. Suppose X is a parabolic UR set with parameters M and 1. Let € < ¢
and K > « be as in the proof of Theorem 3.1. If we define

G =G (6K):={0 € DEX) : bBx(0,K) < €},
B =B (6,K) = {0 € DZ) : bB(0,K) > €},
then D(X) = G* U B*, and the following hold.

(1) The cubes G* can be decomposed into disjoint, stopping time regimes
{S*}s*e7=, such that each S* is coherent and

Angle(PQ,PQ(s*)) <46, VQ¢e S,
where Py € P is the plane minimizing the quantity in the definition of

bBeo(Q, K).

13The notation GPG in [BHHLN1] means ‘good parabolic graph’, that is, a regular Lip(1,1/2)
graph.
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(2) With the decomposition in (1), the ‘bad’ cubes B* and the maximal cubes
{O(S")}s+e7~ satisfy a packing condition

Y o@+ D> o(QO)) e, K)o(QY), VO € D).

QeB* $*:0(8*)co*

OcR
Proof. The packing for the cubes $* is a consequence of Lemma 7.2. By the proof
of Theorem 3.1 the decomposition above holds with G*(¢, K) replaced by

G =6(6,K) ={Q € DX) : fo(Q. K) < €},

and with 8* replaced by the complement of G in D(X). In particular, there exists a
decomposition of G into stopping time regimes {S}se# such that

Angle(P’Q, ’Q(S)) <6, VYOeS,
where Py, is the plane that minimizes Be(Q, K). Now this implies that
Angle(Py, Pg) <26, YQ,RE€S.
Moreover, since € < J, Lemma A.2 implies that
Angle(Pg,Pg) <6, YQ,ReSNgG".

Now to prove the lemma, we follow the most natural course of action and simply
check that for each S, we can decompose SN G* into stopping time regimes {S*} ¢
in a way that maintains the packing condition. This can be done exactly as in
[HMMI, Lemma 2.2]. We describe the process of partitioning S N G*, and we
leave the verification'* of the packing condition to the interested reader. Given
S € F, we let Mg be the set of Q € S N G* for which either O = Q(S) or else the
dyadic parent of Q or one of its siblings belongs to $*. For each QO € Mg we form
a new stopping time regime S* = S*(Q) as follows. Set Q(S*) = Q and ‘subdivide’
Q(S") ‘dyadically’ until we reach a subcube Q" such that Q" ¢ S, or else Q’ or one
of its siblings belongs to B*. In any such scenario, Q" and all of its siblings are
omitted from S* and Q’ is a minimal cube of S*. It then follows that S* ¢ S N G*
and that S* is coherent. Moreover,

sng' = | ",

QeMs
and since G = UgesS and G* C G, it holds that
g =Js"
T*
where 7 = {S*(Q)}gems,ser- This concludes the proof of the lemma. O

Proof of Theorem 3.3. We will prove Theorem 3.3 with ¢ in (4) replaced by 26.
We begin, as in Theorem 3.1, by considering € <« 6 and K > «, and compared
to Theorem 3.1, a difference is that we now work with the stopping time regimes
{S*}s*e#+ produced in Lemma 7.3. Here we have no intention, or need, to carry out
the analysis in Section 6, and we can repeat the arguments verbatim up until that
point. Since we already have proven the packing condition for the maximal cubes

14This verification is carried out in detail in [HMM1].
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in Lemma 7.3, all conclusions of Theorem 3.3 hold with the potential exception of
the estimate
(7.4) sup dy(Y,s,X) < 26diam(Q), VQeS".
(Y,S)eckdiam(Q)nZS*
Hence, to prove Theorem 3.3 we have to prove (7.4). We continue to use the
notation Py of Lemma 7.3. Fix Q € §* and (Y, s5) € Cxdiam(p) N Zs+. Since Q € §*
we have that P satisfies
diam(Q)™'[ sup d,(¥,s, Po) + sup dy(X,1,2)] <,
(¥,5)e8KQ (X.0)€Csk diam@)NPo
and
Angle(Pg, Po(s)) < 40.

We assume, by translation and a change of coordinates, that Py = R ! x {0} x R.
Recalling that Xg- is the graph of a Lip(1,1/2) function with Lip(1,1/2) constant
< 6, with respect to the coordinates induced by Pgs+), it follows, if we choose ¢
to be sufficiently small, that g is the graph of a Lip(1,1/2) function ¢ : R* — R
with Lip(1,1/2) constant < 6. In particular if (x,0,1), (y,0, ) € Po then

(7.5) dp (X, 4 (x, ), 1), 3, Y, 8), 1) < c(1 + 8)d,p(x, 1, Y, ).

Now let (y, 0, ) be the projection of (¥, s) into Pg. Then, (y, 0, s) € C3/2)k diam(0)(X0, t0)N
Py as bB(Q, K) < €. Again using that bB..(Q, K) < €, we can conclude that there
exists (X, 1) € 2N (7/8)kQ C 2kQ(S*) such that

(7.6) dp(X,1,(y,0,s)) < ediam(Q),
and
(7.7) dp(X,t, Pg) = dp((X,1),(x,0,1)) < ediam(Q).

The inequalities (7.6) and (7.7) imply
dp((x’ 0’ t)9 (y$ 0’ s)) S 26 dlam(Q)’
and hence, by (7.5),

78 dp((x, Y (x,0),0), (Y, ) = dp((x, Y (x, 0,1, (3, Y (3, 5), 1))
' < ¢(1 + 6)2ediam(Q) < ce diam(Q).

By Lemma 4.41, which holds by construction, we have

(7.9) dp((X, 1), (x,4(x, 1), 1)) < 2d,(X, 1,Zs+) < cke diam(Q),

where we have used that J(x, t) is Lip(1,1/2) with small constant. Assuming that
€ < Jd/k, the inequality in (7.9) yields

dp((X, 1), (x,4(x, 1), 1) < & diam(Q).
Combining this inequality with (7.8), we find that
dp(X,1, Y, 5) < dp(X, 1), (6, §(x, 1), 1)) + dp(x, P, 1), ), (¥, )
<0+ ce<?20.

This proves (7.4) and Theorem 3.3. |
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APPENDIX A. TWO LEMMAS CONCERNING APPROXIMATING PLANES

In this appendix we prove two auxiliary and technical lemmas on approximating
hyperplanes.

Lemma A.1. Let X ¢ R™! be a parabolic Ahlfors-David regular set with dyadic
cubes D(X). Then there exists a constant A = A(n, M) > 1 such that the following
holds. Let Q € D = D(X). Suppose that (Zy,70) € Q. Then there exist points
(Zi,7i) € O fori = 1,...,n, such that if we let, for j = 1,...,n, Lj_| be the spatial
(j — 1)-dimensional plane which passes through Zy, 71, ..., Zj_, then

dy(Z;,7j,Li-1 X R) > A™! diam(Q)

for j = 1,...,n. Moreover, the same result holds if Q is replaced by AQ for some
A > 1, with A now depending on A as well.

Proof. We only prove the result for Q as the same proof works for any dilate 1Q
of 0, 4 > 1. We will prove the lemma by induction on j for j = 1,...,n. Let
Ly := {Zp}. Then Ly is a O-dimensional plane. Assume that d,,(Z,7,Ly X R) <
A~!diam(Q) for all (Z,7) € Q. Then Q can be covered by roughly A% cubes of size
2A~! diam(Q). Hence

(diam(Q)"™*! 5 o(Q) s A2(A™" diam(Q))"*!

which is impossible if A is large enough. Hence there exists a point (Z;,71) € Q
such that d,,(Zy, 71, Lo XR) > A~ diam(Q) and the conclusion is true for j = 1 and
we let L; be the linear span of Zy and Z;. Let 1 < j < n—1 and suppose that we have
found points (Z;,7;) € Q fori = 1,...,j — 1 as stated and that L;_; is the (spatial)
(j — 1)-dimensional plane spanned by Z, Z, ..., Z;_1. Assume that d,(Z,7,L;_1 X
R) < A~! diam(Q) for all (Z,7) € Q. Then Q can be covered by roughly AI"1A?
cubes of size 24! diam(Q) and, again using that X has the parabolic ADR property,
we see that

1 SAj_lAzA_n_l
which again is impossible, as j < n, if A = A(n, M) > 1 is large enough. Hence
there exists (Z;,7;) € Q such that d,(Z;,7;,Lj_-1 X R) > A~!diam(Q) and we let
L; be the (spatial) j-dimensional plane spanned by Zy, Zi, ..., Z;. The lemma now
follows from the induction hypothesis. O

Lemma A.2. Let X c R™! be a parabolic Ahlfors-David regular set with dyadic
cubes D(X). Let Q € D = D(Z) and assume that P, and P, are two time-
independent hyperplanes such that d,(X,t, P;) < ediam(Q) for all (X,t) € Q and
forie{l1,2}. Then

(1) dp(Y, 5, P2) < e(diam(Q) + dp(Y, 5, D)), (Y, s) € Py,
(A.3) (i) dp(Y, 5, P1) < €(diam(Q) + dp(Y, 5, Q)), (¥, 5) € Ps.

In particular, the angle between P and P, is bounded by < €.

Moreover, (A.3) continues to hold (with slightly different implicit constants) with
Q replaced by any “surface ball” A = A(X,t) = C(X,1) N Z, where (X,t) € Z,
provided that d,(X, t, P;) < ediam(A) for all (X,t) € 2A and for each i € {1,2}.
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Proof. Tt is enough to prove the result for a cube Q: indeed, given a surface ball
A = A, for which d (X, t, P;) < ediam(A) for all (X, 7) € 2A and for each i € {1, 2},
we may cover A by a bounded number of disjoint cubes Q;, with diam(Q;) ~ r,
such that U;Q; C 2A, and observe that (A.3) (with € replaced by Ce) may be
applied to each Q.

Fix now a dyadic cube Q C X, satsifying the hypotheses of the lemma. Let
(Zi,ti) € Qfori =0,1,...,n, be as in the statement of Lemma A.l and let Ly =
L, be the spatial (n — 1)-dimensional plane which passes through Zy, Z,, ..., Z,—1.
Let P := Ly X R. Consider (Y, s) € P;. Then

dp(Y, s, P2) < dp(Y, s, P) + dp(P, P2)

s max d Y,S,Z',T‘ + max d Z‘,T',P
i€(0,...n) P( i l) ie(0nn) p(z i 2)

< ediam(Q) + max d,(Y,s,Z;, 1))
ic{0,...n)

(A4) < €(diam(Q) + dp(Y, 5, Q).

This proves the lemma. O

APPENDIX B. SLICE-WISE vs. PArRaBoOLIC HAUSDORFF MEASURE

In this appendix we prove the (non-trivial) assertions made in Remark 2.8. Re-
call u is the (global) slice-wise measure defined as

W(E) = / H V(B dH (1),
R

where fort € R, E; := EN (R" X {1}).

The following proposition proves Remark 2.8(vi).

Proposition B.1. There exists a constant c(n) such that yu < c(n)?-(;“.

Proof. In the proof, for any parabolic cube'” Q, we will write Q = Q’ x I, where I
is an interval, so that the side length of Q’, £(Q’), and the length of I, £(1), satisfy
£(I)? = €(Q") and we let £(Q) := £(Q’). Suppose that E ¢ R™*!, a Borel set, is such
that ‘H;}” (E) < oo (otherwise there is nothing to prove). Recall that HZ’ng (E)is a
decreasing function in 8. Let & > O be arbitrary. By definition of 7{[’,'+1(E) there
exists a countable collection of cubes Q; such that

> woyt <2 HE)+6, ECUQ; and  diam(Q)) < 6.

To see this, we use a covering {E;} which nearly minimizes the quantity in the
definition of H;}}(E), where (2 + V2)§' = 6, then for each i we take Q; =
C,.(X;, 1) with €(0;)/2 = r; = diam(E;) and (X;, #;) an arbitrary point in E;.

I5Here we are taking an ‘honest’ parabolic cube, different from the C,(X, r) defined above. This
means Q = {(X,1) : |X; - X;fl < /2,1t — t*] < €%/2}, where (X*,t") is the center of the cube and ¢ is
the side length.
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Let 7(t) = {i : t € I;}. Then as E C Q; we have E; C Ujer(;)Q; and diam(Q;) < 6.
Therefore

HE) <) Y 4@y =) Y (o),

ieI(t) i€l ()
where ¢’(n) := (\/n)""'. Hence
[H @0 <o [ 3 aoraro
R

Rier
<) /[ ()" dH (1) = () > L™

< /2" HIT(E) + ¢ (n)s.
The result now follows from the monotone convergence theorem as H gl_l(E,) in-
creases as ¢ decreases. O

The following proposition proves Remark 2.8(i) for the measure 7.

Proposition B.2. Let E ¢ R™! be closed. There exists c(n) > 0 such that the
following holds. If there is a constant ¢ such that

P < w(CHX,DNE) < e, VX, )€ E,r>0,
then
e < HIPNC(X, D N E) < cmer™!, V(X 1) € E,r > 0.
Proof. The lower bound follows directly from the previous proposition. To prove

the other inequality fix (X, ) € E,r > 0, let § € (0, r) be arbitrary and let rs be such
that diam(Cs,,(0)) = ¢. Clearly,

cx.nnEc ) C,m9onE
Y,s)eC(X,))NE

By the 5r-covering lemma (see e.g. [Mat, Theorem 2.1]) there exists a countable
collection of (Y, s;) € E N C(X, t) such that the cubes C,,(Y;, s;) are disjoint and

C/(X,HNEC U,‘C5r§(Yi, s NE.
It follows that
HE (CX DN E) $ ) diam(Csy, (i, s:)™ s ¢ > pu(Cry(Yi, 51) 0 EY"™!
i i

S u(Cr(X, ) NE) S ",

where now < means that constants only depend on n, and where we have used that
diam(C,,(Y;, s;)) < § < r in the second-to-last inequality. Letting 6 — 07 yields
the upper bound. O

On the other hand, 7‘(1’)’“ <« u, even when the set is p-ADR with respect to
H z”, as the following example shows.
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Example B.3. Let E = [C_1/2,]" X C3/4, where C; denotes a (generalized) s-
dimensional Cantor-type set in R. Then E is p-ADR with respect to 7—(1’}“, but

u(E) = 0. The fact that u(E) = 0 follows from the fact that ' (C3 /4) = 0. More-
over, one can verify that E is p-ADR with respect to the measure H"~1/% x H3/*
and hence p-ADR with respect to H ;,’“.

We will require the following definition.

Definition B.4. Let E ¢ R™! be a p-ADR set (with respect to . 1’,}“) and let S be
a collection of p-ADR sets, with uniform control on the p-ADR constant. We say
E is big pieces of S, written E is BP(S), if there exists § > 0 such that for every
(X,t) € E and r € (0, diam(E)) there exists I' € S with

HNENCX, )N T) > 6H (E N Cu(X, 1)).

We say E is big pieces squared of S, written E is BP?*(S) if there exists a constant
M such that E is BP(BP(S, M)), where BP(S, M) is the collection of all p-ADR
sets with p-ADR constant less than M which are BP(S).

Proposition B.5. Let S be a collection of closed subsets of R™*', which are uni-
formly p-ADR with respect to u, that is, there exists M > 1 such that for allT € S
it holds

MY < un CuX, 1) < M, VX, 1) e, r>0.

If E is p-ADR (with respect to ‘HI’,‘” ) and E is BP(S), then E is p-ADR with re-
spect to u with constant depending only on M, n, the ADR constant of E, and the
constant 0 in the definition of BP(S). In particular, u|lg =~ W;,’”IE, with implicit
constant depending only on M, n, the p-ADR constant of E, and the constant 0 in
the definition of BP(S).

Proof. Let (X,t) € E and r € (0, diam(E)). By Proposition B.1

H(CH(X, 1)) NE) < c(mHy (E N Co(X, 1) < ™,

where the implicit constant depends on the p-ADR constant of E and n. To prove
the lower bound, we note that for I' € S, W;,’“IF ~ plr, with implicit constant
depending on M since any set which is p-ADR with respect to u is p-ADR with
respect to H Z” (by Proposition B.2). Then using that E is p-ADR and E is BP(S)
there exists I € S such that

P2 HT Y ENC(X, D) <0 ' H Y ENCAX, )N TD)
2y 0 WENC(X,HNT)
< 07 W(E N Co(X, 1))

This proves the proposition. O

The following corollary finishes the proof of the assertion in Remark 2.8(v).

Corollary B.6. If E is parabolic UR then ulg = 7{;}+1|E, that is, o° =~ 0. Here the
implicit constants depend on dimension and the parabolic UR constants for E.
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Proof. We have shown in Theorem 3.1 that if E is parabolic UR, then £ admits
a corona decomposition with respect to regular Lip(1,1/2) graphs, with (uniform)
control on the Lip(1,1/2) constant in terms of the parabolic UR constants for E.
Then it follows from [BHHLN1, Theorem 1.1] that E is BP*(S), where S is a
collection of Lip(1,1/2) graphs with uniform control on the Lip(1,1/2) constant. In
particular, § is a collection of sets which are uniformly p-ADR with respect to p.
Applying Proposition B.5 twice yields the corollary. |
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