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Conjecture ([33, Conjecture 6.3]). Let X be a n × n matrix of vari-

ables and let In be the ideal generated by the n/2 × n/2 minors of X .

For every nonzero polynomial f (X ) ∈ In , there is a small algebraic

circuit with f -oracle gates that computes them ×m determinant for

somem = nΘ(1).

Due to the close relationship between the non-vanishing of mi-

nors and matrix rank, it is natural to conjecture that such a circuit

exists. If the oracle circuit is not restricted in any manner, then

the desired circuit exists simply because the determinant can be

computed e�ciently by algebraic circuits. However, if the oracle

circuit is required to be, for example, a formula, then this ques-

tion becomes nontrivial, as the determinant is not known to be

computable by small formulas.

The main contribution of our work is to resolve this conjecture

in the setting of approximate algebraic computation.

Theorem. Grochow’s conjecture is true (with respect to border com-

plexity).

Speci�cally, we show that for any nonzero polynomial f ∈ In ,

the Θ(n1/3) ×Θ(n1/3) determinant can be approximately computed

by a small depth-three f -oracle circuit with a single oracle gate.

A direct consequence of this is that for many circuit classes C, if
the determinant cannot be approximated by polynomial-size C-
circuits, then neither can any polynomial in the ideal In . Naturally,

this has applications to polynomial identity testing and algebraic

proof complexity by employing the supporting role played by the

complexity of ideals in those areas.

Before describing our results in more detail, we brie�y survey

what is known about the complexity of ideals and its connections

to polynomial identity testing and algebraic proof complexity.

1.1 The Complexity of Ideals

Most of what is known about the complexity of ideals is limited to

ideals generated by a single polynomial. The ideal ïf ð generated by
a polynomial f (x) consists of all multiples of f , so questions about

the complexity of this ideal become questions about the complexity

of f and its multiples. Determining the minimum complexity of

a polynomial in ïf ð amounts to determining whether there is a

multiple of f that is signi�cantly easier to compute than f itself.

This leads to the question of factoring algebraic circuits: given a

small circuit computing a polynomial д(x), can the factors of д(x)
be computed by small circuits?

This question was addressed in a celebrated result of Kaltofen

[42] (with alternate proofs by Bürgisser [12, Theorem 2.21] and

Chou et al. [16]), who showed that factors (of low multiplicity)

of small circuits can be computed by small circuits. Taking the

contrapositive, if f (x) cannot be computed by small circuits, then

neither can any polynomial д ∈ ïf ð which has f as a factor of

low multiplicity. Polynomial factorization has since been studied

in restricted algebraic circuit classes, including low-depth circuits

[17, 27], formulas [25, 55], algebraic branching programs [25, 72],

and sparse polynomials [8]. This is motivated in part by the use

of Kaltofen’s theorem to establish hardness-to-pseudorandomness

results for polynomial identity testing, as done in the work of

Kabanets and Impagliazzo [41].

Kaltofen’s result gives us a strong understanding of the com-

plexity of the low-degree polynomials in a principal ideal. Because

algebraic complexity theory is primarily interested in the computa-

tion of low-degree polynomials, this su�ces for most applications.

However, the situation would be cleaner if lower bounds on the

complexity of a polynomial f implied comparable lower bounds

on the complexity of all polynomials in the ideal ïf ð, not just for
those polynomials д ∈ ïf ð for which f is a factor of low multiplic-

ity. Kaltofen [42] asked in the language of factorization whether

this is the case; this question remains open and is now known as

the Factor Conjecture. In the setting of approximative algebraic

computation, the analogue of the Factor Conjecture was proved by

Bürgisser [13]. It is interesting to note that, coincidentally, we also

make essential use of approximative computation in our work.

For non-principal ideals, much less is known. What knowledge

we do have stems from connections to polynomial identity testing

and the Ideal Proof System. We defer our explanation of these

connections to Subsection 1.2 and Subsection 1.3, respectively.

Approximate algebraic computation will play a key role in our

work, so we brie�y discuss it here. For simplicity, we will focus on

circuits and polynomials de�ned over the complex numbers. We say

that a polynomial f (x) can be approximately computed by small

algebraic circuits if there is a collection of polynomials { fε : ε > 0}
such that (1) for all ε > 0, the polynomial fε can be computed by a

small circuit, and (2) we have limε→0 fε = f , where convergence is

coe�cient-wise. Over the complex numbers, this can be interpreted

as saying that f lies in the closure (with respect to the Euclidean

topology) of the set of polynomials computable by small circuits. If

f can be approximated well by polynomials from a circuit class C,
then we say that f is in C, the closure of C. The circuit complexity

of the approximating polynomials fε is referred to as the border

complexity of f . Naturally, one can also consider border complexity

with respect to other classes of algebraic circuits, such as formulas

or branching programs.

Border complexity appeared as early as the late 1970s, when

Bini et al. [9] improved upon the state-of-the-art algorithms for

matrix multiplication by considering an approximative version of

the problem. The notion of border complexity also plays a promi-

nent role in the geometric complexity theory program of Mulmuley

and Sohoni [54]. Roughly speaking, the goal of that program is to

prove super-polynomial lower bounds on the border complexity

of the permanent using techniques from algebraic geometry and

representation theory.

In general, the relationship between exact and border complexity

is not well-understood. Forbes [28] (see also Bläser et al. [11]) ob-

served that exact and border complexity are equivalent for read-one

oblivious algebraic branching programs. Dutta et al. [23] recently

showed that polynomials in the border of depth-three circuits of

bounded top fan-in can be computed exactly by small algebraic

branching programs. However, for classes like VP and VNP (the

algebraic analogues of P and NP), it is not clear how they relate to

their closure.

Returning to the complexity of ideals, if we are content to operate

in the setting of border complexity, then the work of Bürgisser [13]

shows that up to polynomial factors, the complexity of a principal

ideal ïf ð is governed by the border complexity of its generator f .
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Unfortunately, this seems to be where our understanding of the

complexity of ideals stops. Even ideals generated by two polyno-

mials are not well-understood structurally from the viewpoint of

complexity theory. There are examples of explicit ideals, coming

from polynomial identity testing, that are not principal and for

which we can prove lower bounds; see Subsection 1.2 below for

more.

1.2 Polynomial Identity Testing

Polynomial identity testing (which we abbreviate as PIT) is the al-

gorithmic problem of testing whether an algebraic circuit computes

the zero polynomial. Typically, one assumes that the circuit com-

putes a polynomial of degree at most nO (1), where n is the number

of input variables. A simple coRP algorithm for this problem fol-

lows from the Schwartz–Zippel lemma [68, 75]. When the input is

allowed to be an algebraic circuit without further structural restric-

tions, no deterministic algorithm is known that improves on the

naïve derandomization of this randomized algorithm. In fact, even

obtaining a nondeterministic algorithm running in subexponential

time is known to imply circuit lower bounds that lie beyond the

reach of current techniques [41].

More is known for many restricted classes of circuits, includ-

ing sparse polynomials [47], depth-three [26, 44–46, 65–67] and

depth-four [24, 57, 58, 69] circuits of bounded top fan-in, read-

once formulas [53, 70], read-once oblivious algebraic branching

programs [1, 4, 10, 29, 30, 35, 37, 38], low-depth multilinear circuits

[5, 43, 56, 64], and low-depth circuits [50]. In general, algorithms

for PIT are designed by giving an e�cient construction of a hitting

set generator. That is, we construct a low-degree polynomial map

G : Fℓ → Fn with ℓ j n such that if f (x) is a nonzero polynomial

computable by a small circuit, then f (G(y)) , 0. This reduces the

number of variables in the circuit without increasing the degree

too much. We then obtain a faster deterministic algorithm by using

the brute-force derandomization of the Schwartz–Zippel lemma to

test f (G(y)).
In fact, constructing such a generator G corresponds to proving

lower bounds against a polynomial ideal. Fix a circuit class C (for

example, the class of n2-size circuits) and let G be a hitting set

generator for C. Let G(y) = (G1(y), . . . ,Gn (y)) and consider the

ideal of polynomials f (x) that vanish on G(y), i.e., polynomials

such that f (G(y)) = 0. This ideal can be written as the intersection

IG B ïxi − Gi (y) : i ∈ [n]ð ∩ F[x],

and in general is not generated by a single polynomial. Suppose f

is a nonzero polynomial in the ideal IG . Because we assumed G to

be a hitting set generator for the circuit class C, this means that f

cannot be computed by circuits from C. That is, proving that G is

a generator for C is equivalent to proving that no element of IG
can be computed by a circuit from C. To the best of our knowledge,
this connection accounts for almost all known examples of lower

bounds for non-principal ideals. We remark that this approach can

prove lower bounds against “natural” non-principal ideals. For ex-

ample, [32, Corollary 6.7] easily generalizes to prove lower bounds

against determinantal ideals for weak circuit classes. However, this

approach does not necessarily allow one to choose an ideal and

subsequently prove a lower bound against that particular ideal.

One can also construct hitting set generators using lower bounds

for ideals. Kabanets and Impagliazzo [41] used Kaltofen’s factoriza-

tion result to show that circuit lower bounds for explicit families of

polynomials can be used to derandomize PIT. In the analysis of the

Kabanets–Impagliazzo generator, what is really needed is a lower

bound for all low-degree multiples of a polynomial f , which is ex-

actly what Kaltofen’s theorem provides if f is assumed to be hard

to compute. Further work on the algebraic hardness-randomness

paradigm in the setting of low-depth circuits [17, 27] followed the

approach of Kabanets and Impagliazzo [41], proving analogues of

Kaltofen’s factoring result for bounded-depth circuits.

One can also consider PIT for polynomials of small border com-

plexity. Even in the randomized setting, the complexity of this

problem is unclear, as it is not obvious how to evaluate a polyno-

mial f (x) given only a circuit that approximates f (x), nor is it clear
that such an approximating circuit even has a succinct descrip-

tion. However, one can still try to construct hitting set generators

for polynomials of small border complexity. Forbes and Shpilka

[31] and Guo et al. [36] gave PSPACE constructions of hitting set

generators for polynomials with small border circuit complexity.

One of the primary conceptual contributions of Forbes and Shpilka

[31] was the de�nition of a robust hitting set generator. Roughly, a

generator G for a class C is robust if for every nonzero polynomial

f ∈ C, the composition f (G(y)) is “far” from the zero polynomial

(after f has been suitably normalized). It is not hard to show that,

over a �eld of characteristic zero, a generator G for C is robust

if and only if G hits the closure C of C. Over an arbitrary �eld,

one can likewise consider the problem of constructing hitting set

generators for the closures of circuit classes, although the notion of

f (G(y)) being far from the zero polynomial is not as clear. In this

setting we drop the adjective “robust” and focus simply on hitting

sets for the closure of a circuit class. The preceding discussion on

the relationship between PIT and the complexity of ideals extends

to border complexity.

Designing hitting sets for the closures of circuit classes has been

explored as a possible avenue towards resolving grand challenges

in polynomial identity testing. Recent work by Medini and Shpilka

[52] and Saha and Thankey [61] studied PIT for orbits of various

classes C. The orbit orb(C) of a class C corresponds to polynomials

of the form f (Ax + b), where f (x) ∈ C and A is an invertible

n × n matrix. Studying PIT for orbits is motivated by the fact that

for many simple classes C, there is a far richer class D such that

orb(C) = D. That is, in order to derandomize PIT for a powerful

classD, it su�ces to construct hitting set generators for the closure

of the much simpler class orb(C). Unfortunately, this is not always
feasible; for example, Medini and Shpilka [52] showed that at least

one instantiation of their hitting sets does not extend to the closure

of the circuit class it hits.

1.3 The Ideal Proof System

A central question of proof complexity is the following: given an

unsatis�able CNF formula φ, what is the length of the shortest

proof of the unsatis�ability of φ? This question can be instantiated

with a myriad of di�erent proof systems rooted in logic, algebra,

and geometry. Our focus in this work will be on a proof system

based in algebra, namely the Ideal Proof System of Grochow and
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Pitassi [34]. For a more comprehensive treatment of other proof

systems (and proof complexity in general), see the recent book of

Krajíček [49].

Let φ be an unsatis�able 3CNF formula. One way to prove that

φ is unsatis�able is to translate φ into a system of polynomial

equations, swapping the roles of 0 and 1, as follows. The literals x

and ¬x are translated into the polynomials 1−x and x , respectively.

A clause ℓ1 ( ℓ2 ( ℓ3 becomes the polynomial pℓ1pℓ2pℓ3 , where pℓi
is the polynomial corresponding to the literal ℓi . Let f1, . . . , fm be

the polynomials obtained from the clauses of φ. It is not hard to see

that φ is satis�able if and only if there is a {0, 1}-valued solution

to the system of equations f1 = · · · = fm = 0; equivalently, φ is

satis�able if and only if there is a solution to the system f1 = · · · =
fm = x21 − x1 = · · · = x2n − xn = 0.

Thus, to show that φ is unsatis�able, it su�ces to prove that a

system of polynomial equations is unsatis�able. This can be done

by �nding polynomials д1(x), . . . ,дm (x) and h1(x), . . . ,hn (x) such
that

∑m
i=1 дi (x)fi (x) +

∑n
i=1 hi (x)(x2i − xi ) = 1, or more succinctly,

by showing that 1 is in the ideal generated by { f1, . . . , fm ,x21 −
x1, . . . ,x

2
n − xn }. As a consequence of Hilbert’s Nullstellensatz,

such a refutation always exists, provided the system is unsatis�able.

These refutations and various notions of their complexity give

rise to the Nullstellensatz [7] and Polynomial Calculus [18] proof

systems, both of which are well-studied and for which lower bounds

are known [7, 15, 40, 60].

The recent Ideal Proof System (abbreviated as IPS) of Grochow

and Pitassi [34] measures the complexity of a refutation by the

algebraic circuit complexity of the certi�cate
∑
i дi fi+

∑
i hi (x2i −xi )

when the fi andx
2
i −xi are provided as part of the input to the circuit.

Because a refutation in the IPS is written as an algebraic circuit,

there are connections between algebraic circuit lower bounds and

lower bounds for the IPS. Grochow and Pitassi [34] proved that

super-polynomial lower bounds on the size of IPS refutations of a

family of CNF formulas imply VP , VNP. As a proof system, the

IPS is very powerful: Grochow and Pitassi [34] showed that the IPS

polynomially simulates Extended Frege, itself a strong logic-based

proof system. This simulation also behaves nicely if we consider IPS

refutations coming from a restricted circuit class C. For example,

over a �eld of characteristicp > 0, the constant-depth version of the

IPS polynomially simulates AC0[p]-Frege, a proof system notorious

for its current lack of super-polynomial lower bounds.

Lower bounds, both conditional and unconditional, are known

for the IPS. Conditionally, Alekseev et al. [3] showed that the Shub–

Smale hypothesis implies super-polynomial lower bounds on the

size of IPS refutations of a particular instance of subset sum. Later

work by Santhanam and Tzameret [62] showed that over �nite

�elds, if there is an explicit family of polynomials that cannot

be computed by polynomial-size algebraic circuits, then a partic-

ular family of CNF formulas cannot be refuted by polynomial-

size IPS refutations. Combined with earlier work by Grochow and

Pitassi [34], this establishes that over �nite �elds, proving super-

polynomial lower bounds for the IPS is equivalent to proving super-

polynomial lower bounds for algebraic circuits. Forbes et al. [32]

used techniques from algebraic circuit complexity to prove uncondi-

tional lower bounds for restricted subsystems of the IPS, including

those computed by depth-three powering formulas, read-once alge-

braic branching programs, and multilinear formulas.

The Ideal Proof System is de�ned in terms of algebraic circuits,

so it is natural to expect progress on IPS lower bounds to mirror

progress on lower bounds for algebraic circuits. Empirically, this

has been the case, although additional e�ort is required to translate

circuit lower bounds into IPS lower bounds. To prove circuit lower

bounds, one only needs to show that a single polynomial cannot

be computed by small circuits. In contrast, to prove lower bounds

on the circuit size of IPS refutations of a system of polynomials, it

is necessary to show that small circuits cannot compute any valid

refutation.

Luckily, the set of IPS refutations of a �xed system of equa-

tions exhibits some algebraic structure: all refutations of a �xed

system of polynomials lie in a coset of a particular ideal, as ob-

served by Grochow and Pitassi [34, Section 6]. Thus, one can try

to prove lower bounds for the IPS by proving circuit lower bounds

for nonzero cosets of ideals. To the best of our knowledge, the only

known lower bounds for nonzero cosets of ideals are those that fol-

low from previously-mentioned lower bounds on the IPS. Notably,

these proofs do not directly establish lower bounds for cosets of

ideal, but rather reduce the task of proving IPS lower bounds to the

more-tractable task of proving algebraic circuit lower bounds. One

could hope that by better understanding the complexity of (cosets

of) ideals, this progress could be used to prove lower bounds for

IPS and restricted variants thereof. We refer the interested reader

to Grochow and Pitassi [34] and Grochow [33] for further details.

For more on the Ideal Proof System, see the recent survey of

Pitassi and Tzameret [59].

1.4 Our Results

We now describe our results in more detail. Throughout this subsec-

tion, we letX denote an n×mmatrix of variables and Idetn,m,r ¦ F[X ]
the ideal generated by the r ×r minors ofX . For simplicity, we state

our results over �elds of characteristic zero (such as the rational or

complex numbers).

1.4.1 Complexity of Determinantal Ideals. Our main theorem con-

structs, for any nonzero polynomial f (X ) ∈ Idetn,m,r , a small f -oracle

circuit that approximately computes the s × s determinant for

s = Θ(r1/3). This answers a question of Grochow [33, Conjecture

6.3] in the setting of border complexity.

Theorem1.1 (Informal version of Theorem 3.15 andCorollary 3.16).

Let F be a �eld of characteristic zero. Let X be an n ×m matrix of

variables and let Idetn,m,r ¦ F[X ] be the ideal generated by the r × r

minors of X . Let f (X ) ∈ Idetn,m,r be a nonzero polynomial. Then there

is a depth-three f -oracle circuit of size O(n2m2) that approximately

computes the s × s determinant for s = Θ(r1/3).

More generally, the conclusion of Theorem 1.1 holds if the deter-

minant is replaced by any polynomial д that can be approximately

computed by an algebraic branching program with r vertices. The

conclusion of Theorem 1.1 also holds if we have oracle gates that

approximately compute f instead of oracles that compute f exactly.

An immediate consequence of Theorem 1.1 is that for formu-

las and low-depth circuits, the border complexity of any nonzero
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polynomial in Idetn,m,r is at least as large as the border complex-

ity of the Θ(r1/3) × Θ(r1/3) determinant, up to polynomial factors.

To the best of our knowledge, the only complexity lower bounds

for the ideal Idetn,m,r known prior to this work are due to Wiersig

[74] and Forbes et al. [32, Corollary 6.7], who showed that every

nonzero polynomial in Idetn,m,r is exp(Ω(r ))-hard for several weak

circuit classes.

To prove Theorem 1.1, we have to reason about arbitrary poly-

nomials in Idetn,m,r . That is, if {д1, . . . ,дN } are the r × r minors of X ,

we have to consider all nonzero polynomials of the form
∑N
i=1 fiдi ,

where the fi are arbitrary polynomials. This is di�cult in part be-

cause if we apply a linear change of variables X 7→ L(X ), it is not
clear how to control the behavior of the fi . To circumvent this, we

use an alternate basis for F[X ] instead of the monomial basis. This

alternate basis consists of products of minors (of possibly di�erent

sizes) of X that satisfy a particular combinatorial condition; these

products are known as standard bideterminants. Working in this

basis, we gain a better understanding of how the multiplicands fi
behave under a change of variables.

The proof of Theorem 1.1 then proceeds in two steps. First, we

�nd a change of variables that takes a polynomial f ∈ Idetn,m,r to

an approximation (in the border complexity sense) of a standard

bideterminant h(X ) in the support of f . The analysis of this step

crucially relies on the use of the standard bideterminant basis and

its properties, which we describe in Subsection 3.1. Because f lies

in the ideal Idetn,m,r , one can show that h(X ) is divisible by a t × t

minor of X for some t ⩾ r . The second step is to �nd a projection

of h(X ) to the Θ(r1/3) × Θ(r1/3) determinant. Since h may be a

product of minors of varying sizes, we need to �nd a projection

that (1) behaves nicely on small minors of X and (2) allows us to

deal with the possibility that h may be a large power of a minor.

We accomplish this by modifying an argument of Valiant [73].

1.4.2 Pfa�ian Ideals. Let Y be a 2n × 2n skew-symmetric matrix.

It is well-known that the determinant of Y is the square of another

polynomial, the Pfa�an Pf(Y ) of Y . Let Ipfa�2n,2n ¦ F[Y ] be the ideal
generated by the Pfa�ans of the 2r × 2r principal submatrices of Y .

Our next result is an analogue of Theorem 1.1 for the ideal I
pfa�
2n,2r .

Theorem1.2. Let F be a �eld of characteristic zero. LetY be a 2n×2n
skew-symmetric matrix of variables and let I

pfa�
2n,2r ¦ F[Y ] be the ideal

generated by the Pfa�ans of the 2r×2r principal submatrices ofY . Let

f (Y ) ∈ I
pfa�
2n,2r be a nonzero polynomial. Then there is a depth-three

f -oracle circuit of size O(n4) that approximately computes the s × s

Pfa�an for s = Θ(r1/3).

The proof of Theorem 1.2 is similar to that of Theorem 1.1. The

primary di�erence is that we now express polynomials in I
pfa�
2n,2r in

an alternate basis consisting of products of Pfa�ans of principal

submatrices of Y . Along the way, we modify some of the technical

details of the construction to accommodate for Pfa�ans instead of

determinants.

We remark that because the Pfa�an is the square root of the

skew-symmetric determinant (in the sense that Pf(Y )2 = det(Y )),
it is natural to attempt proving Theorem 1.2 using Theorem 1.1.

For any polynomial f (x), one can use the Taylor series expansion

of
√
1 + x2 to construct a small f (x)2-oracle circuit that computes

f (x). Combining this with Theorem 1.1, one obtains an analogue of

Theorem 1.1 for the ideal generated by the squares of sub-Pfa�ans

of Y , which is weaker than Theorem 1.2 above.

1.4.3 The Space of Partial Derivatives in Determinantal Ideals. The

remainder of our work consists of three applications of Theorem 1.1

and its proof, the �rst of which is to algebraic circuit complexity.

For a polynomial f ∈ F[X ], let ∂<∞(f ) denote the span of the

partial (Hasse) derivatives of f . The dimension of ∂<∞(f ) and
related spaces has been used successfully as a complexitymeasure in

proving lower bounds for restricted classes of algebraic circuits (see

the survey of Saptharishi [63] for more on this). While Theorem 1.1

shows that computing a polynomial in Idetn,m,r is not much harder

than computing the Θ(r1/3) × Θ(r1/3) determinant, it is natural to

ask if there are polynomials in Idetn,m,r that are “simpler” than the r×r
determinant with respect to complexity measures like dim(∂<∞(•)).
Our next result shows that among nonzero polynomials in the

ideal Idetn,m,r , the r × r determinant in fact minimizes the value of

dim(∂<∞(•)).

Theorem 1.3. For every nonzero polynomial f (X ) ∈ Idetn,m,r , we

have dim(∂<∞(f )) ⩾ dim(∂<∞(detr )) =
(2r
r

)
.

Using tools developed in the proof of Theorem 1.1, we can easily

reduce the task of proving Theorem 1.3 to the case where f (X ) is
a product of minors of X . As f is in the ideal Idetn,m,r , at least one

factor of f must be an s × s minor of X for some s ⩾ r . We can then

directly bound dim(∂<∞(f )) from below by a slight generalization

of the argument used to bound dim(∂<∞(dets )).
We note that one can easily prove a lower bound of 2r on

dim(∂<∞(f )) using observations due to Forbes et al. [32]. Our result
improves on this, obtaining an optimal bound of

(2r
r

)
= Θ(4r /

√
r ).

1.4.4 Polynomial Identity Testing for Low-Depth Circuits and For-

mulas. Next, we use Theorem 1.1 to derandomize special cases of

polynomial identity testing. It is a straightforward consequence

of Theorem 1.1 that for circuit classes like low-depth circuits and

formulas, computing any nonzero element of Idetn,m,r is e�ectively

as hard as computing the Θ(r1/3) × Θ(r1/3) determinant. Over an

algebraically closed �eld, the ideal Idetn,m,r can be equivalently de-

scribed as the ideal of polynomials that vanish on matrices of rank

less than r . Using this alternate description, we construct hitting set

generators that unconditionally hit the closure of small low-depth

circuits and conditionally hit the closure of small formulas.

Theorem 1.4. Let F be a �eld of characteristic zero. For every k ∈ N,
there is a hitting set generator Gk with seed length n1/2

k
+o(1) and

degree 2k that hits the closure of polynomial-size low-depth algebraic

circuits. The generator Gk can be computed by either (1) a circuit

of product-depth k and size n1+o(1), or (2) a formula of size n1+o(1).
Assuming the border formula complexity of the determinant is super-

polynomial, the generator Gk is also a hitting set generator for the

closure of polynomial-size algebraic formulas.

Our hitting set generators are very simple to describe. For k = 1,

our generator takes as input two matrices of variables Y and Z ,

where Y is a
√
n × no(1) matrix and Z is an no(1) ×

√
n matrix,

and outputs the matrix product YZ . For k ⩾ 2, we construct the
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generator Gk by arranging the input variables of Gk−1 into a square
matrix and replacing them with the product of an n1/2

k
+o(1) ×no(1)

matrix and an no(1) × n1/2
k
+o(1) matrix.

To prove that our generators correctly hit polynomial-size low-

depth circuits, we must show that every small low-depth circuit

does not vanish on the output of our generator. Using the descrip-

tion of Idetn,m,r as the ideal of polynomials vanishing on matrices

of rank at most r , establishing the correctness of our generators

equates to proving that no small low-depth circuit can compute a

polynomial in the ideal Idet√
n,
√
n,no(1)

. Such a lower bound follows in

a straightforward manner by combining our Theorem 1.1 with the

recent breakthrough lower bounds of Limaye et al. [50].

In the regime of nΘ(1) seed length, our generators attain a near-

optimal tradeo� between seed length and degree. It is not hard to

show that a generator of seed length n1/2
k
+o(1) must be of degree

at least 2k , and conversely that any generator of degree 2k must

have seed length at least Ω(n1/2k ). We also note that the circuit

complexity of our generators is near-optimal, as any function with

n outputs necessarily requires size Ω(n) to compute.

Prior to this, the best-known hitting set generator for low-depth

circuits was given by Limaye et al. [50], using the hardness-to-

randomness results of Chou et al. [17]. They obtained, for ev-

ery �xed ε > 0, a generator with seed length O(nε ) and degree

O(logn/log logn). Our construction attains the same seed length,

but improves on the degree (as remarked above) and the circuit

complexity of the generator. When instantiated to hit circuits of

size s , the generator of Limaye et al. [50] necessarily has circuit

complexity Ω(s). In contrast, our generator can be computed by a

constant-depth circuit or formula of size n1+o(1), even when hitting

low-depth circuits of size O(n10100 ).
For formulas, the best-known (conditional) constructions of hit-

ting set generators prior to our work are due to Dvir et al. [27]

and Chou et al. [17]. Both works yield generators with parameters

similar to the low-depth generator of Limaye et al. [50] mentioned

above (although the generator of [27] can only hit formulas of small

individual degree). While our construction has better parameters,

we use a stronger hardness assumption than what is needed by

prior work. The constructions of Dvir et al. [27] and Chou et al. [17]

can be instantiated with any explicit family of polynomials that

requires formulas of super-polynomial size. In contrast, our con-

struction depends crucially on super-polynomial lower bounds on

the border formula complexity of the determinant. This is a stronger

assumption, as the determinant is computable by polynomial-size

branching programs and circuits, a fact which likely does not hold

for all explicit families of polynomials.

1.4.5 Lower Bounds for the Ideal Proof System. Finally, we use

Theorem 1.1 to prove lower bounds for the Ideal Proof System.

Let X and Y be n × n matrices of variables and let In be the n × n

identity matrix. Consider the system of polynomial equations given

by {detn (X ) = 0,XY − In = 0}. This system is unsatis�able, as

detn (X ) = 0 if and only if X is non-invertible, while XY − In =

0 implies that X is invertible with inverse Y . We show that the

constant-depth version of the Ideal Proof System cannot e�ciently

refute this system. Assuming lower bounds on the border formula

complexity of the determinant, we also show that formula-IPS

cannot e�ciently refute this system. We remark that our lower

bounds also hold when the boolean axioms x2i, j − xi, j = 0 are

included in the system of equations, but we suppress these here for

brevity.

Theorem 1.5. Let F be a �eld of characteristic zero. Let X and Y be

n×n matrices of variables and let In be the n×n identity matrix. Then

any IPS refutation of the system {det(X ) = 0,XY − In = 0} cannot be
approximately computed by a constant-depth circuit of polynomial

size. Assuming the border formula complexity of the determinant is

super-polynomial, then any IPS refutation of this system cannot be

approximately computed by a formula of polynomial size.

We do this by following the approach of Forbes et al. [32], who

showed that lower bounds for the IPS can be derived from circuit

lower bounds for multiples of a polynomial. Our choice of the

system {detn (X ) = 0,XY − In = 0} is motivated by the fact that,

using the techniques of [32], the desired IPS lower bounds follow

from circuit lower bounds for multiples of the determinant. We can

obtain the necessary lower bounds by combining our Theorem 1.1

with lower bounds against the determinant. In the case of low-

depth circuits, our IPS lower bounds are unconditional thanks to

the recent breakthrough circuit lower bounds of Limaye et al. [50].

For formula-IPS, our lower bounds remain conditional.

We also show that computing an IPS refutation of our hard

instance {detn (X ) = 0,XY − In = 0} reduces to computing the

determinant. Namely, we give a small depth-three circuit with detn -

oracle gates that computes an IPS refutation of our hard instance.

Passing to border complexity, this shows that the approximative

complexity of the smallest IPS refutation of {detn (X ) = 0,XY −In =
0} is sandwiched between the approximative complexity of the

Θ(n1/3) × Θ(n1/3) and n × n determinants.

The strongest unconditional lower bounds for the IPS prior to

our work are due to Forbes et al. [32], who proved lower bounds

for subsystems of the IPS computed by restricted classes of cir-

cuits, including read-once oblivious algebraic branching programs

and multilinear formulas. Impagliazzo et al. [39] showed that the

constant-depth version of Polynomial Calculus (PC) over �nite

�elds is surprisingly strong. The size of a constant-depth IPS refu-

tation is essentially the number of lines in a constant-depth PC

refutation, so lower bounds for constant-depth IPS over �nite �elds

imply comparable lower bounds for constant-depth PC. However,

our lower bounds do not extend to �nite �elds, nor do our lower

bounds hold for refutations of an unsatis�able CNF, so we are un-

able to conclude lower bounds for constant-depth PC and related

proof systems.

We alsomention a recentwork of Alekseev [2], who proved lower

bounds on the bit-size of refutations in a version of PC augmented

with an extension rule. This is somewhat incomparable to our

result: Alekseev’s proof system allows for proofs of arbitrary depth,

but must pay to use constants of large bit complexity; on the other

hand, we work with a low-depth proof system that can use arbitrary

rational numbers (or even arbitrary complex numbers) for free. Our

lower bound is on circuit size, which is analogous to the number of

lines in PC, whereas Alekseev’s lower bound is on the number of

bits needed to write down a refutation, which does not necessarily

imply a lower bound on the number of proof lines.
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1.5 Organization

In the remainder of this paper, we give a proof of Theorem 1.1.

Proofs of the other results can be found in the full version of this

work available on arXiv.1

2 PRELIMINARIES

For a natural number n ∈ N, we write [n] B {1, 2, . . . ,n}. We

use x = (x1, . . . ,xn ) to denote a vector of variables and X =

(xi, j )i ∈[n], j ∈[m] to denote a matrix of variables. Given a �eld F

and an indeterminate x , we write F[x] for the ring of polynomi-

als in x with coe�cients from F and F(x) for the �eld of rational

functions in x with F-coe�cients. For a matrix A ∈ Fn×m and sets

R ¦ [n], C ¦ [m], we denote by AR,C the submatrix of A whose

rows and columns are taken from the sets R and C , respectively. If

X is an n×m matrix of variables, then for r ⩽ min(n,m) we denote
by Idetn,m,r ¦ F[X ] the ideal of F[X ] generated by the r × r minors

of X .

We endow F[X ] with a (Nn ·Nm )-grading in the following way.

Let ei ∈ Nn denote the element of Nn with 1 in the ith position and

zeroes elsewhere. By abuse of notation, we also use ei to denote

the corresponding element of Nm . We assign degree ei · e j to the

variable xi, j and extend this to F[X ] in the natural way. The degree

of an element f ∈ F[X ] with respect to this grading is called the

multidegree of f , writtenmultideg(f ). We say an element of F[X ] is
multihomogeneous if it is homogeneous with respect to this grading.

We assume familiarity with the basic notion of an algebraic

circuit and restricted classes thereof, including formulas, branching

programs, and bounded-depth circuits. The interested reader may

consult the surveys of Shpilka and Yehudayo� [71] and Saptharishi

[63] or the text of Bürgisser et al. [14] for more on algebraic circuits.

We also use the notion of monomial orders; for de�nitions, we refer

the reader to Cox et al. [19, Chapter 2].

A key notion in this work is border complexity, a modi�cation of

the standard de�nition of algebraic computation. Brie�y, a circuit

C border computes a polynomial f (x) if C is de�ned over F(ε) and
computes a polynomial such that

C(x) = f (x) + ε · д(x , ε),

where д ∈ F[x , ε], i.e., there are no negative powers of ε appearing

in д. We abbreviate this as C(x) = f (x) +O(ε). Over the complex

numbers (or more generally, over a �eld of characteristic zero), one

can think of C as computing f in the limit as ε → 0.

3 HARDNESS OF DETERMINANTAL IDEALS

Recall thatX denotes ann×mmatrix of variables and Idetn,m,r ¦ F[X ]
is the ideal generated by the r × r minors of X . In this section,

we study the minimum possible border complexity of a nonzero

polynomial in Idetn,m,r . Our main result is that, up to polynomial

factors, there is no polynomial f ∈ Idetn,m,r that is easier to compute

than the r × r determinant. We do this by constructing, for every

nonzero f ∈ Idetn,m,r , a depth-three f -oracle circuit that border

computes the Θ(r1/3) × Θ(r1/3) determinant.

The argument proceeds in two steps. First, we show that for

every f (X ) ∈ Idetn,m,r , there is a linear change of variables that takes

1https://arxiv.org/abs/2112.00792

f (X ) to (S |T )(X ) +O(ε) for some bideterminant (S |T ) of width at

least r . The analysis of this step crucially relies on the so-called

straightening law, which we describe in Subsection 3.1. Second, for

any д(y) computed by an ABP of size at most r and any bidetermi-

nant (S |T )(X ) of width r , we construct a depth-three (S |T )-oracle
circuit computing д(y)+O(ε). As the determinant can be e�ciently

computed by ABPs, composing these steps yields an f -oracle circuit

for det
Θ(r 1/3)(X ) +O(ε).

3.1 Bideterminants and the Straightening Law

The proof of Theorem 3.15 relies on understanding how a polyno-

mial f ∈ Idetn,m,r behaves under the map X 7→ AXB for invertible

matricesA and B. For example, it is easy to see that f (AXB) also lies
in Idetn,m,r . However, it is not clear if there is other structure we may

take advantage of. By working in a di�erent basis of F[X ], we can
better understand how f (AXB) relates to f (X ). Before describing
this basis, we recall the notions of a Young diagram and Young

tableau.

De�nition 3.1. A partitionÃ = (Ã1,Ã2, . . . ,Ãk ) is a non-increasing
sequence of natural numbers. If

∑k
i=1 Ãi = n, we write Ã ¢ n.

The transpose of Ã , denoted Ã̂ , is the partition given by Ã̂i =��{j : Ãj ⩾ i}
��. Associated with a partition Ã is its Young diagram

DÃ ¦ N × N, given by DÃ = {(i, j) : j ⩽ Ãi }. ♢

Note that Ã̂1 counts the number of rows in the Young diagram

of Ã . We graphically depict the Young diagram of a partition as a

collection of boxes. For example, the Young diagram of the partition

(4, 2, 2, 1) is

.

This partition has transpose (4, 3, 1, 1), with Young diagram given

by

.

The lexicographic ordering on integer sequences induces an order-

ing on partitions, which we denote by <lex.

We now de�ne Young tableaux, which can be obtained by writing

a number in each cell of the Young diagram of some partition Ã .

De�nition 3.2. Given a partition Ã , a Young tableau T of shape

Ã is a map T : DÃ → N assigning a natural number to each cell

of the Young diagram of Ã . We denote the ith row of T by T (i, •),
which we will view as either a set or a one-row Young tableau

depending on context. A Young tableau is standard if its entries are

strictly increasing along each column and along each row. A Young

tableau is semistandard if its entries are strictly increasing along

each column and are nondecreasing along each row. IfT : DÃ → N
is a Young tableau, its conjugate tableau T̂ : DÃ̂ → N is given by

T̂ (i, j) = T (j, i). ♢
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Continuing the example above, one Young tableau (of many) of

shape (4, 2, 2, 1) is given by

1 2 4 3
1 2
4 1
3

.

Next, we introduce bitableaux and bideterminants. A bitableau

is simply a pair of Young tableau of the same shape, while a bideter-

minant is a natural polynomial associated to this pair of tableaux.

De�nition 3.3. Let X = (x1,1, . . . ,xn,n ) be an n × n matrix of

variables. A bitableau (S,T ) is a pair of Young tableaux of the same

shape Ã . If the entries of S andT are from [n], we associate to (S,T )
the bideterminant (S |T )(X ), de�ned as

(S |T )(X ) B

Ã̂1∏
i=1

det

©­­­­«

xS (i,1),T (i,1) xS (i,1),T (i,2) · · · xS (i,1),T (i,Ãi )
xS (i,2),T (i,1) xS (i,2),T (i,2) · · · xS (i,2),T (i,Ãi )

...
...

. . .
...

xS (i,Ãi ),T (i,1) xS (i,Ãi ),T (i,2) · · · xS (i,Ãi ),T (i,Ãi )

ª®®®®¬
.

The ith term in this product is the determinant of the submatrix

whose rows and columns are listed in the ith row of the tableaux S

and T , respectively. The width of the bideterminant (S |T ) is given
by Ã1. We say that the bitableau (S,T ) and bideterminant (S |T ) are
standard if, as tableaux, both S andT are increasing along each row

and nondecreasing along each column (equivalently, that S and T

are both the conjugate of a semistandard Young tableau). ♢

For example, associated to the bitableau(
1 2 3
1 3
4

,
1 3 4
2 4
3

)

is the bideterminant

det
©­«
x1,1 x1,3 x1,4
x2,1 x2,3 x2,4
x3,1 x3,3 x3,4

ª®¬
det

(
x1,2 x1,4
x3,2 x3,4

)
det

(
x4,3

)
.

Note that a bideterminant (S |T ) is multihomogeneous of degree

(s1e1 + · · · + snen ) · (t1e1 + · · · + tnen ), where si and ti count the
number of occurrences of i in S and T , respectively.

It is easy to see that the bideterminants span F[X ], since a mono-

mial
∏d

i=1 xri ,ci is the bideterminant corresponding to the bitableau

©­­«
r1
r2
· · ·
rd

,

c1
c2
· · ·
cd

ª®®¬
.

Perhaps surprisingly, there is a natural subset of the bideterminants

which form a basis of F[X ].

Theorem 3.4 ([22]). The standard bideterminants form a basis of

F[X ].

To show F[X ] is spanned by standard bideterminants, it su�ces

to express non-standard bideterminants as linear combinations of

standard bideterminants. The fact that this can be done, along with

some additional structural information, is known as the straight-

ening law. For more on the straightening law, including its history

and its applications to invariant theory, see the introduction of

Désarménien et al. [21].

Theorem 3.5 ([22], see also [20, 21]). Let (S |T )(X ) be a bidetermi-

nant of shape Ã . Then (S |T )(X ) can be expressed as a linear combina-

tion

(S |T )(X ) =
∑
(A,B)

cA,B (A|B)(X ),

where the cA,B are integers and the sum ranges over all standard

bitableaux (A,B) of shape Ä such that Ä ⩾lex Ã .

One immediate corollary of this is a characterization of polynomi-

als in the ideal Idetn,m,r by their support in the standard bideterminant

basis.

Corollary 3.6. A polynomial f ∈ F[X ] is an element of the ideal

Idetn,m,r if and only if f is supported on bideterminants of width at

least r .

3.2 Transforming to a Single Bideterminant

For i, j ∈ [n] with i , j, we de�ne the substitution operator Subi→j

acting on a conjugate semistandard Young tableau T as follows:

for every row in T containing i but not j, substitute i with j and

re-order the row to be in increasing order. Let h
j
i (T ) denote the

number of rows of T changed by applying Subi→j to T . In general,

themapT 7→ (Subi→j (T ),hji (T ))may not be injective. However, the

following lemma shows that mapping is injective when restricted

to tableaux satisfying a particular property.

Lemma 3.7 ([20, Proposition 1.6]). Let i, j ∈ [n]. Suppose T is a

conjugate semistandard tableau with entries in [n] with the property

that if a row ofT contains an integer k ⩽ i , then that row contains all

integers in {i, i + 1, . . . , j − 1}. Then Subi→j (T ) is also a conjugate
semistandard tableau and T is determined by Subi→j (T ) and hji (T ).

While the condition in the above lemma seems strange at �rst,

it arises in a natural way when one repeatedly applies the Subi→j

operators as described by the next claim.

Claim 3.8 (implicit in proof of [20, Corollary 1.7]). Let T be a

conjugate semistandard tableau with entries in [n]. Let
(1, 2) z (1, 3) z · · · z (1,n) z (2, 3) z · · ·

z (n − 2,n − 1) z (n − 2,n) z (n − 1,n)

be a partial order on [n]2. Let i, j ∈ [n] be such that i < j and let

(i ′, j ′) be the immediate predecessor of (i, j) in the z order. Then the

tableau

T ′
B Subi′→j′ ◦ · · · ◦ Sub1→3 ◦ Sub1→2(T )

satis�es the hypothesis of Lemma 3.7 for (i, j). In other words, if a row

of T ′ contains an integer k ⩽ i , then that row contains all integers in

{i, i + 1, . . . , j − 1}.

For a partition Ã and natural number n ∈ N, we let KÃ and

KÃ denote the conjugate semistandard tableaux whose ith row has

entries (1, . . . ,Ãi ) and (n − Ãi + 1,n − Ãi + 2, . . . ,n), respectively.
For example, if Ã = (4, 3, 1) and n = 5, we have

K(4,3,1) =
1 2 3 4
1 2 3
1

K (4,3,1) =
2 3 4 5
3 4 5
5

.
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The operators Subi→j provide a convenient way to transform an

arbitrary conjugate semistandard tableau into KÃ .

Lemma 3.9 ([20, Corollary 1.7]). LetT be a conjugate semistandard

tableau of shape Ã . Then

(Subn−1→n ◦ · · · ◦ Sub2→3 ◦ Sub1→n ◦ · · · ◦ Sub1→2)(T ) = KÃ .

Moreover, if we denote by h
j
i the number of times i is replaced by j in

the application of Subi→j above, then T is determined by Ã and the

h
j
i .

We are now ready to progress towards the main result of this

section. Namely, for any nonzero f ∈ Idetn,m,r , we will �nd a linear

change of variables that sends f to (KÃ |KÃ ) +O(ε) where Ã is the

shape of some standard bideterminant in the support of f when

f is written in the standard bideterminant basis. For comparison,

it is easy to do something similar in the monomial basis: given a

polynomial f (x) of degree d , there is somem ∈ N such that

εm f (ε−(d+1)x1, ε−(d+1)
2
x2, . . . , ε

−(d+1)nxn )
= LClex(f ) LMlex(f ) +O(ε)

where LClex(f ) and LMlex(f ) are the leading coe�cient and leading

monomial, respectively, of f in the lexicographic monomial order

induced by x1 { x2 { · · · { xn , and O(ε) denotes a polynomial

in F[ε,x] divisible by ε . To some extent, we are constructing an

analogous change of variables in the bideterminant basis.

The main di�culty lies in �nding a useful change of variables.

In the monomial basis, individual terms can be distinguished by

their degree, so it su�ces to use a change of variables that only

involves multiplying each xi by some power of ε . However, in the

bideterminant basis, multidegree is too coarse a notion to distin-

guish between bideterminants, so it seems that �nding a clever

substitution xi, j 7→ εdi, jxi, j will not be enough.

We start by working in a larger polynomial ring F[X ,Λ,Ξ]. We

will give two changes of variables: one that enforces structure on

the tableaux encoding the rows of the bideterminants in the support

of a polynomial f , and another that handles the tableaux encoding

the columns of the bideterminants. The proof of this lemma is

inspired by and borrows ideas from the proof of [20, Theorem 3.3].

Lemma 3.10. Let Λ = (¼i, j ) be an n × n matrix of variables and

let zΛ be the lexicographic monomial order on F[Λ] induced by the

order ¼i, j { ¼k, ℓ if i < k or i = k and j < ℓ. Likewise, let Ξ = (Ài, j )
be an m ×m matrix of variables and let zΞ be the corresponding

lexicographic monomial order on F[Ξ]. Then there are matricesM ∈
F[Λ]n×n and N ∈ F[Ξ]m×m with det(M) = ±1 and det(N ) = ±1
such that the following holds.

Let f (X ) ∈ Idetn,m,r be a nonzero polynomial and let f (X ) =∑
k ∈[s] ³k (Sk |Tk )(X ) be the expansion of f in the standard bide-

terminant basis. For k ∈ [s], let Ãk be the shape of the bideterminant

(Sk |Tk ). Then there are nonempty sets A,B ¦ [s] such that

LCzΛ
(f (MX )) =

∑
k ∈A

³k (KÃk |Tk )(X )

LCzΞ
(f (XN )) =

∑
k ∈B

³k (Sk |KÃk )(X ),

where we take leading coe�cients in the rings F[X ][Λ] and F[X ][Ξ],
respectively.

Proof. We �rst construct the matrix M and prove the corre-

sponding claim. For i, j ∈ [n] with i , j, let Ei, j (z) be the n × n

matrix with ones on the diagonal and z in the (i, j) entry. Let Jn
be the n × n matrix whose (i, j) entry is 1 if i + j = n + 1 and zero

otherwise. We de�ne the matrixM as

M B E1,2(¼1,2) · · · E1,n (¼1,n )E2,3(¼2,3) · · · En−1,n (¼n−1,n )Jn .
Since det(Jn ) = ±1 and det(Ei, j (z)) = 1 for i , j, it follows that

det(M) = ±1.
We now analyze the polynomial f (MX ). Recall that for a tableau

S , we denote by h
j
i (S) the number of entries changed from i to

j when we apply the operator Subi→j to S . Observe that for a

bideterminant (S |T ), it follows from properties of the determinant

that

(S |T )(Ei, j (z)X ) = zh
j
i (S )(Subi→j (S)|T )(X ) +O(zh

j
i (S )−1),

where O(zh
j
i (S )−1) denotes a polynomial in F[X ][z] of degree at

most h
j
i (S) − 1. For i, j ∈ [n] with i , j, de�ne

fi, j (X ,Λ) B f (E1,2(¼1,2) · · · E1,n (¼1,n )E2,3(¼2,3) · · · Ei, j (¼i, j )X ).
Note that f (MX ) = fn−1,n (JnX ,Λ).

We claim that for every i, j ∈ [n]with i < j , there is a non-empty

set Ai, j ¦ [s] such that

LCzΛ
(fi, j (X ,Λ))

=

∑
k ∈Ai, j

³k (Subi→j ◦ · · · ◦ Sub2→3

◦ Sub1→n ◦ · · · ◦ Sub1→2(Sk )|Tk )(X ).
By Lemma 3.9, this implies

LCzΛ
(fn−1,n (X ,Λ)) =

∑
k ∈An−1,n

³k (KÃk |Tk )(X ).

Using the fact that (KÃk |T )(JnX ) = (KÃk |Tk )(X ), this yields

LCzΛ
(f (MX )) = LCzΛ

(fn−1,n (JnX ,Λ)) =
∑

k ∈An−1,n
³k (KÃk |Tk )(X )

as desired.

We now prove the claim by induction on (i, j) in the order (1, 2) z
(1, 3) z · · · z (1,n) z (2, 3) z · · · z (n − 1,n). Let (i ′, j ′) be the
predecessor of (i, j) in the z order. In the case that (i, j) = (1, 2), we
abuse notation and set fi′, j′ B f and Ai′, j′ B [s]. Let

H
j
i B max

k ∈Ai′, j′
h
j
i (Subi′→j′ ◦ · · · ◦ Sub1→2(Sk ))

and

Ai, j = {k ∈ Ai′, j′ : h
j
i (Subi′→j′ ◦ · · · ◦ Sub1→2(Sk )) = H

j
i }.

Note that Ai, j is necessarily non-empty, as H
j
i is a maximum over

a �nite nonempty set. By induction, there is some e ∈ Nn×n such

that

fi′, j′(X ,Λ)

= Λ
e

∑
k ∈Ai′, j′

³k (Subi′→j′ ◦ · · · ◦ Sub1→2(Sk )|Tk )(X ) + д(X ,Λ),

where д(X ,Λ) ∈ F[X ][Λ] is a polynomial in which every mono-

mial is smaller than Λ
e in the zΛ order. Since fi′, j′ only depends
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on ¼1,2, . . . , ¼i′, j′ , it follows that Λ
e is a monomial in only these

variables. We then apply the de�nition of fi, j to obtain

fi, j (X ,Λ)
= fi′, j′(Ei, j (¼i, j )X ,Λ)

= Λ
e

∑
k ∈Ai′, j′

³k (Subi′→j′ ◦ · · · ◦ Sub1→2(Sk )|Tk )(Ei, j (¼i, j )X )

+ д(Ei, j (¼i, j )X ,Λ)

= Λ
e¼

H
j
i

i, j

∑
k ∈Ai, j

³k (Subi→j ◦ · · · ◦ Sub1→2(Sk )|Tk )(X )

+ Λ
ep(X , ¼i, j ) + д(Ei, j (¼i, j )X ,Λ),

where p(X , ¼i, j ) ∈ F[X ][Λ] is a polynomial of degree at mostH
j
i −1

in ¼i, j . This implies that every monomial of Λep(X ,Λ) is smaller

than Λ
e¼

H
j
i

i, j in the zΛ order. Observe that the substitution X 7→
Ei, j (¼i, j )X only changes the ¼i, j -degree of any Λ-monomial in

д(X ,Λ). In particular, because every monomial of д(X ,Λ) is smaller

than Λ
e in the zΛ order, the same holds true for every Λ-monomial

of д(Ei, j (¼i, j )X ,Λ). This implies that

LCzΛ
(fi, j ) =

∑
k ∈Ai, j

³k (Subi→j ◦ · · · ◦ Sub1→2(Sk )|Tk )(X )

as claimed. This establishes the claimed properties ofM .

To construct the matrix N , we overload notation and let Ei, j (z)
be them×mmatrix with ones on the diagonal and z in the (i, j) entry.
Just as the matrixM consisted of a sequence of row operations, the

matrix N will be composed of a sequence of column operations. We

de�ne N as

N B JmEm−1,m (Àm−1,m ) · · · E2,3(À2,3)E1,m (À1,m ) · · · E1,2(À1,2).

Since det(Jm ) = ±1 and det(Ei, j (z)) = 1 for i < j, we get that

det(N ) = ±1.
As in the previous case, it follows from properties of the deter-

minant that for a bideterminant (S |T ), we have

(S |T )(XEi, j (z)) = zh
j
i (T )(S |Subi→j (T ))(X ) +O(zh

j
i (T )−1).

Using this, the analysis of the leading coe�cient of f (XN ) ∈
F[X ][Ξ] proceeds in a manner analogous to the case of f (MX ),
so we omit the details. □

We will need the following lemma, which says that given a

polynomial f (x) ∈ R[x] where R is a commutative ring, we can

substitute the x variables by powers of a new indeterminate ε to

isolate the leading coe�cient of f . The proof is similar to the process

described following the statement of Lemma 3.9, but we omit it due

to space constraints.

Lemma 3.11. Let R be a commutative ring. Let f (x) ∈ R[x] and let
z be a lexicographic monomial order on x . Then there are natural

numbersm,d1, . . . ,dn ∈ N such that

εm f (ε−d1 , . . . , ε−dn ) = LC(f ) +O(ε),

where LC(f ) ∈ R is the leading coe�cient of f with respect to z and

O(εm+1) denotes a polynomial in R[ε] divisible by ε .

We now come to the main result of this subsection: a change

of variables that sends a polynomial f (X ) to (KÃ |KÃ )(X ) + O(ε)
where Ã is the shape of some standard bideterminant in the support

of f .

Proposition 3.12. Let f (X ) ∈ Idetn,m,r be nonzero. There is a collec-

tion of nm linearly independent linear functions ℓi, j (X , ε) ∈ F(ε)[X ]
indexed by (i, j) ∈ [n] × [m], an integer q ∈ Z, a nonzero ³ ∈ F, and
a partition Ã with Ã1 ⩾ r such that

f (ℓ1,1(X , ε), . . . , ℓn,m (X , ε)) = εq³(KÃ |KÃ )(X ) +O(εq+1).

Proof. Let f =
∑
k ∈[s] ³k (Sk |Tk ) be the expansion of f in the

standard bideterminant basis. Let M and N be the matrices con-

structed in Lemma 3.10. Let z denote the lexicographic order on

F[X ][Λ,Ξ] induced by ¼1,2 { ¼1,3 { · · · { ¼n−1,n { À1,2 { · · · {
Àm−1,m . Lemma 3.10 implies that there is a non-empty set A ¦ [s]
such that

д(X ) B LCz(f (MX )) =
∑
k ∈A

³k (KÃk |Tk )(X ),

and likewise that there is a non-empty set B ¦ A such that

LCz(д(XN )) =
∑
k ∈B

³k (KÃk |KÃk )(X ).

This implies that

LCz(f (MXN )) =
∑
k ∈B

³k (KÃk |KÃk )(X ),

where Ãk denotes the shape of the bideterminant (Sk |Tk ). By Corol-
lary 3.6, each bideterminant in the above sum has width at least r ,

so we have (Ãk )1 ⩾ r for all k ∈ A.

Let y and z be new indeterminates and let D B deg(f (X )). Con-
sider the change of variables

xi, j 7→ y(D+1)
i

z(D+1)
j

xi, j .

Let h(X ,Λ,Ξ,y, z) be the image of f (MXN ) under this map. By

construction, an X -monomial of multidegree (∑i aiei ) · (∑i biei )
is multiplied by a factor of y

∑
i ai (D+1)i z

∑
j bj (D+1)j . In particular,

since maxi ai ⩽ D and maxi bi ⩽ D, X -monomials of distinct

multidegree have distinct (y, z)-degree under this mapping. Observe

that multideg((KÃ |KÃ )(X )) , multideg((KÄ |KÄ )(X )) for distinct
partitions Ã , Ä . Since each bideterminant (KÃ |KÃ )(X ) is mapped

to a unique (y, z)-degree under this substitution, we get that the
polynomial

p(X ) = LC(y,z)(LC(Λ,Ξ)(h(X ,Λ,Ξ,y, z)))
is a nonzero multiple of the bideterminant (KÃk |KÃk )(X ) for some

k ∈ B. If we augment the monomial order z by setting Λ { Ξ {
y { z and taking the corresponding lexicographic order, we then

have

LCz(h(X ,Λ,Ξ,y, z)) = ³k (KÃk |KÃk )(X )
for some k ∈ B.

Applying Lemma 3.11 to h(X ,Λ,Ξ,y, z) viewed as an element of

F[X ][Λ,Ξ,y, z], we get a map φ : (Λ∪Ξ∪ {y, z}) → {ε−d : d ∈ N}
such that

φ(h(X ,Λ,Ξ,y, z)) = εq³k (KÃk |KÃk )(X ) +O(εq+1)
for some integer q.
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Note thath(X ,Λ,Ξ,y, z)was obtained from f (X ) by an invertible
linear transformation of the X variables. That is, there are nm

linearly independent linear polynomials ℓ′1,1(X ), . . . , ℓ′n,m (X ) ∈
F[Λ,Ξ,y, z][X ] such that

h(X ,Λ,Ξ,y, z) = f (ℓ′1,1(X ), . . . , ℓ′n,m (X )).
Set ℓi, j (X , ε) B φ(ℓ′i, j (X )) ∈ F(ε)[X ] for each (i, j) ∈ [n] × [m].
Since the transformation xi, j 7→ ℓ′i, j (X ) is invertible as long as

y , 0 and z , 0, the transformation xi, j 7→ ℓi, j (X , ε) remains

invertible under φ. Finally, it follows from the de�nition of φ that

f (ℓ1,1(X , ε), . . . , ℓn,m (X , ε)) = f (φ(ℓ′1,1(X )), . . . ,φ(ℓ′n,m (X )))
= φ(f (ℓ′1,1(X ), . . . , ℓ′n,m (X )))
= φ(h(X ,Λ,Ξ,y, z))
= εq³k (KÃk |KÃk )(X ) +O(εq+1). □

3.3 Projecting to the Determinant

So far, we have constructed a linear change of variables taking

a polynomial f ∈ Idetn,m,r to (KÃ |KÃ ) + O(ε) for a bideterminant

(KÃ |KÃ ) of width at least r . Next, we show that a (KÃ |KÃ )-oracle
can be used to compute д(y)+O(ε), where д is any polynomial com-

putable by an algebraic branching program on r vertices. Ideally,

one would like to appeal to the VBP-completeness of the determi-

nant, which gives a projection from detr (X ) to д(y), to prove such

a result. The di�culty lies in the fact that a bideterminant may be a

product of multiple determinants of varying sizes. Because of this,

we need a projection that behaves well on proper minors of X and

also allows us to deal with the possibility that we may be projecting

from a power of the determinant as opposed to the determinant

itself. We almost construct such a projection, but we will need some

post-processing in the form of an extra addition gate in order to

handle powers of the determinant.

Let д(y) be computable by a small algebraic branching program.

We begin by describing a projection φ : X → F[y] of a generic

matrix X where each φ(xi, j ) is a linear polynomial in y such that

det(φ(X )) = 1 + д(y) and the leading principal minors of φ(X )
have determinant 1. This is a small modi�cation of an argument

due to Valiant [73, Theorem 1]; we include a proof for the sake of

completeness.

Lemma 3.13. Let д(y) ∈ F[y] and suppose д can be computed by a

layered algebraic branching program onm vertices. Then there is an

m ×m matrix A ∈ F[y]m×m whose entries are linear polynomials in

y such that

(1) det(A) = 1 + д(y), and
(2) for every k ∈ [m − 1], we have det(A[k ],[k ]) = 1.

Proof. We �rst recall the correspondence between cycle covers

in graphs and the determinant. Let G be a weighted directed graph

onm vertices and denote the weight of the edge (i, j) byw(i, j). Let
A(G) = (ai, j ) be them ×m matrix given by

ai, j =

{
w(i, j) (i, j) ∈ E(G)
0 (i, j) < E(G).

Recall that a cycle cover C of G is a collection of vertex-disjoint

cycles in G which span the vertices of G. Let CC(G) denote the

collection of all cycle covers of G. Given a cycle cover C of G, let

Ã (C) denote the product of the edge weights in C . If every cycle

cover of G consists of odd-length cycles, then the de�nitions of

A(G) and the determinant imply that

det(A(G)) =
∑

C ∈CC(G)
Ã (C).

We now proceed with the proof of Lemma 3.13. Suppose д(y)
can be computed by a layered algebraic branching program onm

nodes. Let s and t be the start and end nodes of this branching

program, respectively. Since the program is layered, every s-t path

has the same length. If the length of each s-t path is even, we add

an edge of weight 1 from t to s and a self-loop of weight 1 to every

vertex (including s and t ); if the length of each s-t path is odd, we

identify the vertices s and t with one another (resulting in a graph

onm − 1 nodes), add an isolated vertex r , and then add a self-loop

to every vertex. Denote the resulting graph byG. In both cases,G

has one cycle cover for every s-t path in the branching program, as

well as a single cycle cover corresponding to the set of self-loops

in the graph. Moreover, every cycle cover in G consists solely of

odd-length cycles.

For a cycle coverC corresponding to an s-t path P in the branch-

ing program, it follows from the de�nition of G that Ã (C) = Ã (P),
where Ã (P) is the product of the weights on the edges of P . If C

is the all-self-loops cycle cover, then Ã (C) = 1. Since every cycle

cover in G consists of odd-length cycles, we have

det(A(G)) =
∑

C ∈CC(G)
Ã (C) = 1 +

∑
P

Ã (P) = 1 + д(y),

where the second summation is over all s-t paths P in the branching

program. This proves the �rst part of the lemma.

To prove the second part, letv1, . . . ,vm be a topological ordering

of the vertices in the algebraic branching program. Note thatv1 = s

and vm = t . If every s-t path in the branching program has even

length, we order the rows and columns of A(G) such that A(G)i, j =
w(vi ,vj ). If instead every s-t path in the branching program has

odd length, we set

A(G)i, j =


w(r ,vj ) i = 1

w(vi , r ) j = 1

w(vi ,vj ) otherwise,

where r is the isolated vertex with a self-loop. In either case, note

that if i > j and A(G)i, j , 0, then we must have i = m. This

implies that for every k ∈ [m − 1], the matrix A(G)[k ],[k ] is upper-
triangular with ones along the diagonal. Thus det(A(G)[k ],[k ]) = 1

as desired. □

Although we want to construct an (KÃ |KÃ )-oracle circuit that
computes any polynomial д(y) that is computable by a small lay-

ered algebraic branching program, it will be convenient for us to

assume that д is homogeneous. This is not restrictive, as one can

always introduce a new variable z and consider the homogeneous

polynomial д̂(y, z) B zdeg(д)д(y1/z, . . . ,yn/z), which specializes to
д(y) under the map z 7→ 1. One needs to show that д̂(y, z) is as easy
to compute as д(y). This can be done for layered ABPs by relabeling

the edges of the ABP: if ℓe (y) = ³0 +
∑n
i=1 ³iyi is the polynomial
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labeling edge e , replacing it with ℓ̂e (y, z) = ³0z +
∑n
i=1 ³iyi re-

sults in a layered ABP that computes zdд(y1/z, . . . ,yn/z) for some

d ⩾ deg(д). We record this as a lemma.

Lemma 3.14. Let д(y) ∈ F[y] be a polynomial and suppose that

д can be computed by a layered algebraic branching program on

m vertices. Let z be a new variable. Then there is a homogeneous

polynomial д̂(y, z) ∈ F[y, z] such that д̂ can be computed by a layered

algebraic branching program onm vertices and that д̂(y, 1) = д(y).

Given a nonzero f (X ) ∈ Idetn,m,r , we will use the preceding lem-

mas together with Proposition 3.12 to construct a depth-three f -

oracle circuit computing det
Θ(r 1/3)(X ) +O(ε). In fact, for any poly-

nomial д(y) computable by a layered algebraic branching program

on r vertices, we can construct an f -oracle circuit computing д.

Theorem 3.15. Let f (X ) ∈ Idetn,m,r be a nonzero polynomial.Let

д(y) ∈ F[y] be a polynomial computable by a layered algebraic

branching programs with at most r vertices. Then there is a depth-

three f -oracle circuit Φ de�ned over F(ε) such that the following

hold.

(1) Φ has nm addition gates at the bottom layer, a single f -oracle

gate in the middle layer, and a single addition gate at the top

layer.

(2) If char(F) = 0, then Φ computes д(y) +O(ε).
(3) If char(F) = p > 0, then Φ computes д(y)pk +O(ε) for some

k ∈ N.

Proof. Applying Proposition 3.12 to f (X ), we obtain linear func-
tions ℓ1,1(X , ε), . . . , ℓn,m (X , ε), a nonzero ³ ∈ F, and some q ∈ Z
such that

f (ℓ1,1(X , ε), . . . , ℓn,m (X , ε)) = εq³(KÃ |KÃ )(X ) +O(εq+1)
for some partition Ã of width at least r .

Lemma 3.14 implies that there is a homogeneous polynomial

д̂(y, z) ∈ F[y, z] computable by a layered algebraic branching pro-

gram on at most r vertices such that д̂(y, 1) = д(y). Since д̂(y, z) can
be computed by a layered algebraic branching program on at most

r vertices, we can obtain a layered ABP on exactly r vertices com-

puting д̂(y, z) by adding isolated vertices. Let A(y, z) ∈ F[y, z]r×r
be the matrix obtained by applying Lemma 3.13 to д̂(y, z). Extend
A(y, z) to an n ×m matrix by adding ones along the main diagonal

and zeroes elsewhere. Then we have

f (ℓ1,1(A(y, z), ε), . . . , ℓn,m (A(y, z), ε))
= εq³(KÃ |KÃ )(A(y, z)) +O(εq+1)

= εq³

Ã̂1∏
i=1

detÃi (A(y, z)[Ãi ],[Ãi ]) +O(ε
q+1)

= εq³
∏

i :Ãi⩾r

detÃi (A(y, z)[Ãi ],[Ãi ]) ·
∏

i :Ãi<r

detÃi (A(y, z)[Ãi ],[Ãi ])

+O(εq+1)

= εq³
∏

i :Ãi⩾r

(1 + д̂(y, z)) +O(εq+1).

Let h(y, ε, z) B f (ℓ1,1(A(y, z), ε), . . . , ℓn,m (A(y, z), ε)) and let t =

|{i : Ãi ⩾ r }|. The above establishes h(y, ε, z) = εq³(1 + д̂(y, z))t +
O(εq+1).

Suppose char(F) = 0. Under the substitution yi 7→ ¶ · yi and
z 7→ ¶ , we have

h(¶ · y, ε,¶ ) = εq³(1 + д̂(¶ · y,¶ ))t +O(εq+1)

= εq³(1 + ¶deg(д̂)д̂(y, 1))t +O(εq+1)

= εq³(1 + ¶deg(д̂)д(y))t +O(εq+1)

= εq³

t∑
i=0

(
t

i

)
¶ i ·deg(д̂)д(y)i +O(εq+1)

= εq³ + εq¶deg(д̂)³tд(y) +O(εq¶2 deg(д̂)) +O(εq+1).
Performing the substitution

ε 7→ εN ¶ 7→ ε

for N su�ciently large yields

h(ε · y, εN , ε) = εqN ³ + εqN+deg(д̂)³tд(y) +O(εqN+deg(д̂)+1).
The desired f -oracle circuit for д is then given by

Φ(y) B h(ε · y, εN , ε) − εqN ³

εqN+deg(д̂)³t
= д(y) +O(ε).

If instead char(F) = p > 0, the above proof only needs to be

modi�ed in the case that p divides t . Let k ∈ N be the largest natural

number such that pk divides t and write t = pkb. In this case, we

instead get

h(¶ ·y, ε,¶ ) = εq³+εq¶deg(д̂)p
k

³bд(y)pk+O(εq¶2 deg(д̂)pk )+O(εq+1).
Again, for N su�ciently large, we obtain an f -oracle circuit for д

via

Φ(y) B h(ε · y, εN , ε) − εqN ³

εqN+deg(д̂)pk³b
= д(y)pk +O(ε). □

We now instantiate Theorem 3.15 with the determinant and

iterated matrix multiplication polynomials. These corollaries are

essentially obvious, but seem interesting in their own right.

Corollary 3.16. Let f (X ) ∈ Idetn,m,r be a nonzero polynomial and let

h(X , ε) ∈ FJεK[X ] be any polynomial such thath(X , ε) = f (X )+O(ε).
Let t ⩽ O(r1/3). Then there is a depth-three h-oracle circuit Φ de�ned

over F(ε) with the following properties.

(1) The bottom layer of Φ consists of nm addition gates, the middle

layer has a single h-oracle gate, and the top layer has a single

addition gate.

(2) If char(F) = 0, then Φ computes dett (Y ) +O(ε).
(3) If char(F) = p > 0, then Φ computes dett (Y )p

k
+ O(ε) for

some k ∈ N.

Proof. Mahajan and Vinay [51, Theorem 2] constructed a lay-

ered ABP on O(t3) ⩽ r vertices that computes dett (Y ). The corol-
lary then follows from Theorem 3.15. □

Corollary 3.17. Let f (X ) ∈ Idetn,m,r be a nonzero polynomial and let

h(X , ε) ∈ FJεK[X ] be any polynomial such thath(X , ε) = f (X )+O(ε).
Let w,d ∈ N satisfy w(d − 1) + 2 ⩽ r . Then there is a depth-three

h-oracle circuit Φ de�ned over F(ε) with the following properties.

(1) The bottom layer of Φ consists of nm addition gates, the middle

layer has a single h-oracle gate, and the top layer has a single

addition gate.

(2) If char(F) = 0, then Φ computes IMMw,d (y) +O(ε).
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(3) If char(F) = p > 0, then Φ computes IMMw,d (y)p
k
+O(ε) for

some k ∈ N.

Proof. It is clear that IMMw,d (y) is computable by a layered

algebraic branching program on w(d − 1) + 2 ⩽ r vertices. Theo-

rem 3.15 completes the proof. □

We conclude this section with a remark on the fact that in char-

acteristic p > 0, we only obtain an oracle circuit for a pth power of

the target polynomial д(y).

Remark 3.18. Let F be a �eld of characteristicp > 0. If we interpret

Theorem 3.15 as a result on “factoring” a polynomial Idetn,m,r , then the

appearance of pth powers in the “factors” is not too surprising. Most

results on polynomial factorization [17, 27, 42, 48] only guarantee

a circuit that computes a pth power of a factor if the multiplicity

of this factor is a multiple of pk for some k > 0. In fact, if f (x)p
can be computed by a size s circuit, it is open whether f (x) can
be computed by a circuit of size poly(n, deg(f ), s), although some

results are known when n is small compared to s [6]. ♢
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