Check for
Updates

Ideals, Determinants, and Straightening: Proving and Using
Lower Bounds for Polynomial Ideals

Robert Andrews
University of Illinois Urbana-Champaign
Department of Computer Science
Urbana, IL, USA
rgandre2@illinois.edu

ABSTRACT

We show that any nonzero polynomial in the ideal generated by
the r X r minors of an n X n matrix X can be used to efficiently
approximate the determinant. Specifically, for any nonzero poly-
nomial f in this ideal, we construct a small depth-three f-oracle
circuit that approximates the 0(r1/3) x ©(r1/3) determinant in the
sense of border complexity. For many classes of algebraic circuits,
this implies that every nonzero polynomial in the ideal generated
by r X r minors is at least as hard to approximately compute as the
O(r1/3) x ©(r!/3) determinant. We also prove an analogous result
for the Pfaffian of a 2n X 2n skew-symmetric matrix and the ideal
generated by Pfaffians of 2r X 2r principal submatrices.

This answers a recent question of Grochow about complexity in
polynomial ideals in the setting of border complexity. Leveraging
connections between the complexity of polynomial ideals and other
questions in algebraic complexity, our results provide a generic
recipe that allows lower bounds for the determinant to be applied
to other problems in algebraic complexity. We give several such
applications, two of which are highlighted below.

We prove new lower bounds for the Ideal Proof System of Gro-
chow and Pitassi. Specifically, we give super-polynomial lower
bounds for refutations computed by low-depth circuits. This ex-
tends the recent breakthrough low-depth circuit lower bounds of
Limaye et al. to the setting of proof complexity. Moreover, we
show that for many natural circuit classes, the approximative proof
complexity of our hard instance is governed by the approximative
circuit complexity of the determinant.

We also construct new hitting set generators for the closure of
low-depth circuits. For any ¢ > 0, we construct generators with seed
length O(n?) that hit n-variate low-depth circuits. Our generators
attain a near-optimal tradeoff between their seed length and degree,
and are computable by low-depth circuits of near-linear size (with
respect to the size of their output). This matches the seed length of
the generators recently obtained by Limaye et al., but improves on
the degree and circuit complexity of the generator.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC ’22, June 20-24, 2022, Rome, Italy

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9264-8/22/06...$15.00
https://doi.org/10.1145/3519935.3520025

389

Michael A. Forbes
University of Illinois Urbana-Champaign
Department of Computer Science
Urbana, IL, USA
miforbes@illinois.edu

CCS CONCEPTS

» Theory of computation — Algebraic complexity theory;
Problems, reductions and completeness; Pseudorandomness and
derandomization; Proof complexity.

KEYWORDS

Determinantal ideals, straightening law, polynomial identity testing,
Ideal Proof System

ACM Reference Format:

Robert Andrews and Michael A. Forbes. 2022. Ideals, Determinants, and
Straightening: Proving and Using Lower Bounds for Polynomial Ideals.
In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing (STOC °22), June 20-24, 2022, Rome, Italy. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3519935.3520025

1 INTRODUCTION

A central goal of algebraic complexity theory is to understand the
resources needed to compute multivariate polynomials in algebraic
models of computation. Typically, one attempts to determine the
complexity of a single family of polynomials { f,(X) : n € N}, such
as the n X n determinant or permanent. A generalization of this
task is to examine the complexity of a family of ideals {I,, C F[x] :
n € N} of polynomials. Recall that in a commutative ring R, an
ideal I C R is a subset of R such that (1) if a,b € I, thena + b € I,
and (2) if a € I and r € R, then ar € I. Ideals naturally arise in
commutative algebra and algebraic geometry; for example, the set
of polynomials that vanish on a subset V' C F" is an ideal. Closer
to computer science and algebraic complexity, ideals appear in
the study of polynomial identity testing, polynomial factorization,
and algebraic proof complexity, though these appearances are not
always made explicit. Due to the prominence of ideals in algebra
and algebraic complexity, it is both natural and worthwhile to study
them from a complexity-theoretic perspective.

Every nonzero ideal contains polynomials of arbitrarily large
circuit complexity. This is a straightforward consequence of the fact
that ideals are closed under multiplication by arbitrary polynomials.
A more interesting task, then, is to determine the minimum possible
complexity of a nonzero polynomial in an ideal.

Unfortunately, little is known about the complexity of ideals
aside from what is implicit in their connection to other problems of
algebraic complexity. A recent column by Grochow [33] surveyed
these connections and posed some open questions, both general
and concrete, about the complexity of ideals. In particular, he raised
the following question regarding an explicit family of ideals.

STOC ’22, June 20-24, 2022, Rome, Italy

Conjecture ([33, Conjecture 6.3]). Let X be a n X n matrix of vari-
ables and let I, be the ideal generated by the n/2 X n/2 minors of X.
For every nonzero polynomial f(X) € I, there is a small algebraic
circuit with f-oracle gates that computes the m X m determinant for
somem = n®0).

Due to the close relationship between the non-vanishing of mi-
nors and matrix rank, it is natural to conjecture that such a circuit
exists. If the oracle circuit is not restricted in any manner, then
the desired circuit exists simply because the determinant can be
computed efficiently by algebraic circuits. However, if the oracle
circuit is required to be, for example, a formula, then this ques-
tion becomes nontrivial, as the determinant is not known to be
computable by small formulas.

The main contribution of our work is to resolve this conjecture
in the setting of approximate algebraic computation.

Theorem. Grochow’s conjecture is true (with respect to border com-
plexity).

Specifically, we show that for any nonzero polynomial f € I,
the ©(n!/3) x ©(n'/?) determinant can be approximately computed
by a small depth-three f-oracle circuit with a single oracle gate.
A direct consequence of this is that for many circuit classes C, if
the determinant cannot be approximated by polynomial-size C-
circuits, then neither can any polynomial in the ideal I,,. Naturally,
this has applications to polynomial identity testing and algebraic
proof complexity by employing the supporting role played by the
complexity of ideals in those areas.

Before describing our results in more detail, we briefly survey
what is known about the complexity of ideals and its connections
to polynomial identity testing and algebraic proof complexity.

1.1 The Complexity of Ideals

Most of what is known about the complexity of ideals is limited to
ideals generated by a single polynomial. The ideal (f) generated by
a polynomial f(x) consists of all multiples of f, so questions about
the complexity of this ideal become questions about the complexity
of f and its multiples. Determining the minimum complexity of
a polynomial in (f) amounts to determining whether there is a
multiple of f that is significantly easier to compute than f itself.
This leads to the question of factoring algebraic circuits: given a
small circuit computing a polynomial g(x), can the factors of g(x)
be computed by small circuits?

This question was addressed in a celebrated result of Kaltofen
[42] (with alternate proofs by Biirgisser [12, Theorem 2.21] and
Chou et al. [16]), who showed that factors (of low multiplicity)
of small circuits can be computed by small circuits. Taking the
contrapositive, if f(x) cannot be computed by small circuits, then
neither can any polynomial g € (f) which has f as a factor of
low multiplicity. Polynomial factorization has since been studied
in restricted algebraic circuit classes, including low-depth circuits
[17, 27], formulas [25, 55], algebraic branching programs [25, 72],
and sparse polynomials [8]. This is motivated in part by the use
of Kaltofen’s theorem to establish hardness-to-pseudorandomness
results for polynomial identity testing, as done in the work of
Kabanets and Impagliazzo [41].

390

Robert Andrews and Michael A. Forbes

Kaltofen’s result gives us a strong understanding of the com-
plexity of the low-degree polynomials in a principal ideal. Because
algebraic complexity theory is primarily interested in the computa-
tion of low-degree polynomials, this suffices for most applications.
However, the situation would be cleaner if lower bounds on the
complexity of a polynomial f implied comparable lower bounds
on the complexity of all polynomials in the ideal (f), not just for
those polynomials g € (f) for which f is a factor of low multiplic-
ity. Kaltofen [42] asked in the language of factorization whether
this is the case; this question remains open and is now known as
the Factor Conjecture. In the setting of approximative algebraic
computation, the analogue of the Factor Conjecture was proved by
Birgisser [13]. It is interesting to note that, coincidentally, we also
make essential use of approximative computation in our work.

For non-principal ideals, much less is known. What knowledge
we do have stems from connections to polynomial identity testing
and the Ideal Proof System. We defer our explanation of these
connections to Subsection 1.2 and Subsection 1.3, respectively.

Approximate algebraic computation will play a key role in our
work, so we briefly discuss it here. For simplicity, we will focus on
circuits and polynomials defined over the complex numbers. We say
that a polynomial f(x) can be approximately computed by small
algebraic circuits if there is a collection of polynomials { f; : ¢ > 0}
such that (1) for all ¢ > 0, the polynomial f; can be computed by a
small circuit, and (2) we have lim,_,¢ f; = f, where convergence is
coefficient-wise. Over the complex numbers, this can be interpreted
as saying that f lies in the closure (with respect to the Euclidean
topology) of the set of polynomials computable by small circuits. If
f can be approximated well by polynomials from a circuit class C,
then we say that f is in C, the closure of C. The circuit complexity
of the approximating polynomials f; is referred to as the border
complexity of f. Naturally, one can also consider border complexity
with respect to other classes of algebraic circuits, such as formulas
or branching programs.

Border complexity appeared as early as the late 1970s, when
Bini et al. [9] improved upon the state-of-the-art algorithms for
matrix multiplication by considering an approximative version of
the problem. The notion of border complexity also plays a promi-
nent role in the geometric complexity theory program of Mulmuley
and Sohoni [54]. Roughly speaking, the goal of that program is to
prove super-polynomial lower bounds on the border complexity
of the permanent using techniques from algebraic geometry and
representation theory.

In general, the relationship between exact and border complexity
is not well-understood. Forbes [28] (see also Blaser et al. [11]) ob-
served that exact and border complexity are equivalent for read-one
oblivious algebraic branching programs. Dutta et al. [23] recently
showed that polynomials in the border of depth-three circuits of
bounded top fan-in can be computed exactly by small algebraic
branching programs. However, for classes like VP and VNP (the
algebraic analogues of P and NP), it is not clear how they relate to
their closure.

Returning to the complexity of ideals, if we are content to operate
in the setting of border complexity, then the work of Biirgisser [13]
shows that up to polynomial factors, the complexity of a principal
ideal (f) is governed by the border complexity of its generator f.

Ideals, Determinants, and Straightening: Proving and Using Lower Bounds for Polynomial Ideals

Unfortunately, this seems to be where our understanding of the
complexity of ideals stops. Even ideals generated by two polyno-
mials are not well-understood structurally from the viewpoint of
complexity theory. There are examples of explicit ideals, coming
from polynomial identity testing, that are not principal and for
which we can prove lower bounds; see Subsection 1.2 below for
more.

1.2 Polynomial Identity Testing

Polynomial identity testing (which we abbreviate as PIT) is the al-
gorithmic problem of testing whether an algebraic circuit computes
the zero polynomial. Typically, one assumes that the circuit com-
putes a polynomial of degree at most n°1), where n is the number
of input variables. A simple coRP algorithm for this problem fol-
lows from the Schwartz-Zippel lemma [68, 75]. When the input is
allowed to be an algebraic circuit without further structural restric-
tions, no deterministic algorithm is known that improves on the
naive derandomization of this randomized algorithm. In fact, even
obtaining a nondeterministic algorithm running in subexponential
time is known to imply circuit lower bounds that lie beyond the
reach of current techniques [41].

More is known for many restricted classes of circuits, includ-
ing sparse polynomials [47], depth-three [26, 44-46, 65-67] and
depth-four [24, 57, 58, 69] circuits of bounded top fan-in, read-
once formulas [53, 70], read-once oblivious algebraic branching
programs [1, 4, 10, 29, 30, 35, 37, 38], low-depth multilinear circuits
[5, 43, 56, 64], and low-depth circuits [50]. In general, algorithms
for PIT are designed by giving an efficient construction of a hitting
set generator. That is, we construct a low-degree polynomial map
G : FY — F" with £ < n such that if (X) is a nonzero polynomial
computable by a small circuit, then f(G(y)) # 0. This reduces the
number of variables in the circuit without increasing the degree
too much. We then obtain a faster deterministic algorithm by using
the brute-force derandomization of the Schwartz-Zippel lemma to
test F(G@)).

In fact, constructing such a generator G corresponds to proving
lower bounds against a polynomial ideal. Fix a circuit class C (for
example, the class of n?-size circuits) and let G be a hitting set
generator for C. Let G(y) = (G1(Y), . . ., Gn(y)) and consider the
ideal of polynomials f(x) that vanish on G(y), i.e., polynomials
such that f(G(y)) = 0. This ideal can be written as the intersection

Ig = (xi = Gi(y) : i € [n]) NFI],

and in general is not generated by a single polynomial. Suppose f
is a nonzero polynomial in the ideal I. Because we assumed G to
be a hitting set generator for the circuit class C, this means that f
cannot be computed by circuits from C. That is, proving that G is
a generator for C is equivalent to proving that no element of Ig
can be computed by a circuit from C. To the best of our knowledge,
this connection accounts for almost all known examples of lower
bounds for non-principal ideals. We remark that this approach can
prove lower bounds against “natural” non-principal ideals. For ex-
ample, [32, Corollary 6.7] easily generalizes to prove lower bounds
against determinantal ideals for weak circuit classes. However, this
approach does not necessarily allow one to choose an ideal and
subsequently prove a lower bound against that particular ideal.

391

STOC 22, June 20-24, 2022, Rome, Italy

One can also construct hitting set generators using lower bounds
for ideals. Kabanets and Impagliazzo [41] used Kaltofen’s factoriza-
tion result to show that circuit lower bounds for explicit families of
polynomials can be used to derandomize PIT. In the analysis of the
Kabanets—-Impagliazzo generator, what is really needed is a lower
bound for all low-degree multiples of a polynomial f, which is ex-
actly what Kaltofen’s theorem provides if f is assumed to be hard
to compute. Further work on the algebraic hardness-randomness
paradigm in the setting of low-depth circuits [17, 27] followed the
approach of Kabanets and Impagliazzo [41], proving analogues of
Kaltofen’s factoring result for bounded-depth circuits.

One can also consider PIT for polynomials of small border com-
plexity. Even in the randomized setting, the complexity of this
problem is unclear, as it is not obvious how to evaluate a polyno-
mial f(x) given only a circuit that approximates f(x), nor is it clear
that such an approximating circuit even has a succinct descrip-
tion. However, one can still try to construct hitting set generators
for polynomials of small border complexity. Forbes and Shpilka
[31] and Guo et al. [36] gave PSPACE constructions of hitting set
generators for polynomials with small border circuit complexity.
One of the primary conceptual contributions of Forbes and Shpilka
[31] was the definition of a robust hitting set generator. Roughly, a
generator G for a class C is robust if for every nonzero polynomial
f € C, the composition f(G(y)) is “far” from the zero polynomial
(after f has been suitably normalized). It is not hard to show that,
over a field of characteristic zero, a generator G for C is robust
if and only if G hits the closure C of C. Over an arbitrary field,
one can likewise consider the problem of constructing hitting set
generators for the closures of circuit classes, although the notion of
f(G(y)) being far from the zero polynomial is not as clear. In this
setting we drop the adjective “robust” and focus simply on hitting
sets for the closure of a circuit class. The preceding discussion on
the relationship between PIT and the complexity of ideals extends
to border complexity.

Designing hitting sets for the closures of circuit classes has been
explored as a possible avenue towards resolving grand challenges
in polynomial identity testing. Recent work by Medini and Shpilka
[52] and Saha and Thankey [61] studied PIT for orbits of various
classes C. The orbit orb(C) of a class C corresponds to polynomials
of the form f(Ax + b), where f(x) € C and A is an invertible
n X n matrix. Studying PIT for orbits is motivated by the fact that
for many simple classes C, there is a far richer class O such that
orb(C) = D. That is, in order to derandomize PIT for a powerful
class D, it suffices to construct hitting set generators for the closure
of the much simpler class orb(C). Unfortunately, this is not always
feasible; for example, Medini and Shpilka [52] showed that at least
one instantiation of their hitting sets does not extend to the closure
of the circuit class it hits.

1.3 The Ideal Proof System

A central question of proof complexity is the following: given an
unsatisfiable CNF formula ¢, what is the length of the shortest
proof of the unsatisfiability of ¢? This question can be instantiated
with a myriad of different proof systems rooted in logic, algebra,
and geometry. Our focus in this work will be on a proof system
based in algebra, namely the Ideal Proof System of Grochow and

STOC ’22, June 20-24, 2022, Rome, Italy

Pitassi [34]. For a more comprehensive treatment of other proof
systems (and proof complexity in general), see the recent book of
Krajicek [49].

Let ¢ be an unsatisfiable 3CNF formula. One way to prove that
¢ is unsatisfiable is to translate ¢ into a system of polynomial
equations, swapping the roles of 0 and 1, as follows. The literals x
and —x are translated into the polynomials 1 —x and x, respectively.
A clause {1 V {3 V {3 becomes the polynomial pg, pe, pe,, where pe,
is the polynomial corresponding to the literal ¢;. Let fi, ..., fi; be
the polynomials obtained from the clauses of ¢. It is not hard to see
that ¢ is satisfiable if and only if there is a {0, 1}-valued solution
to the system of equations fi; = - -+ = f; = 0; equivalently, ¢ is
satisfiable if and only if there is a solution to the system f; = - --
fm =xf—x1 =---=x,21—xn =0.

Thus, to show that ¢ is unsatisfiable, it suffices to prove that a
system of polynomial equations is unsatisfiable. This can be done
by finding polynomials g (X), . . ., gm(¥) and hy(X), . . ., hp(X) such
that 37, g:(%) fi(x) + X1, hi(f)(xl? — xj) = 1, or more succinctly,
by showing that 1 is in the ideal generated by {fi, ..., fm,xf -

X1y. .. ,xfl — xp}. As a consequence of Hilbert’s Nullstellensatz,
such a refutation always exists, provided the system is unsatisfiable.
These refutations and various notions of their complexity give
rise to the Nullstellensatz [7] and Polynomial Calculus [18] proof
systems, both of which are well-studied and for which lower bounds
are known [7, 15, 40, 60].

The recent Ideal Proof System (abbreviated as IPS) of Grochow
and Pitassi [34] measures the complexity of a refutation by the
algebraic circuit complexity of the certificate }; g; fi+>.; hi (xl2 —xj)
when the f; and xl.2 —x; are provided as part of the input to the circuit.
Because a refutation in the IPS is written as an algebraic circuit,
there are connections between algebraic circuit lower bounds and
lower bounds for the IPS. Grochow and Pitassi [34] proved that
super-polynomial lower bounds on the size of IPS refutations of a
family of CNF formulas imply VP # VNP. As a proof system, the
IPS is very powerful: Grochow and Pitassi [34] showed that the IPS
polynomially simulates Extended Frege, itself a strong logic-based
proof system. This simulation also behaves nicely if we consider IPS
refutations coming from a restricted circuit class C. For example,
over a field of characteristic p > 0, the constant-depth version of the
IPS polynomially simulates AC®[p]-Frege, a proof system notorious
for its current lack of super-polynomial lower bounds.

Lower bounds, both conditional and unconditional, are known
for the IPS. Conditionally, Alekseev et al. [3] showed that the Shub—
Smale hypothesis implies super-polynomial lower bounds on the
size of IPS refutations of a particular instance of subset sum. Later
work by Santhanam and Tzameret [62] showed that over finite
fields, if there is an explicit family of polynomials that cannot
be computed by polynomial-size algebraic circuits, then a partic-
ular family of CNF formulas cannot be refuted by polynomial-
size IPS refutations. Combined with earlier work by Grochow and
Pitassi [34], this establishes that over finite fields, proving super-
polynomial lower bounds for the IPS is equivalent to proving super-
polynomial lower bounds for algebraic circuits. Forbes et al. [32]
used techniques from algebraic circuit complexity to prove uncondi-
tional lower bounds for restricted subsystems of the IPS, including

392

Robert Andrews and Michael A. Forbes

those computed by depth-three powering formulas, read-once alge-
braic branching programs, and multilinear formulas.

The Ideal Proof System is defined in terms of algebraic circuits,
so it is natural to expect progress on IPS lower bounds to mirror
progress on lower bounds for algebraic circuits. Empirically, this
has been the case, although additional effort is required to translate
circuit lower bounds into IPS lower bounds. To prove circuit lower
bounds, one only needs to show that a single polynomial cannot
be computed by small circuits. In contrast, to prove lower bounds
on the circuit size of IPS refutations of a system of polynomials, it
is necessary to show that small circuits cannot compute any valid
refutation.

Luckily, the set of IPS refutations of a fixed system of equa-
tions exhibits some algebraic structure: all refutations of a fixed
system of polynomials lie in a coset of a particular ideal, as ob-
served by Grochow and Pitassi [34, Section 6]. Thus, one can try
to prove lower bounds for the IPS by proving circuit lower bounds
for nonzero cosets of ideals. To the best of our knowledge, the only
known lower bounds for nonzero cosets of ideals are those that fol-
low from previously-mentioned lower bounds on the IPS. Notably,
these proofs do not directly establish lower bounds for cosets of
ideal, but rather reduce the task of proving IPS lower bounds to the
more-tractable task of proving algebraic circuit lower bounds. One
could hope that by better understanding the complexity of (cosets
of) ideals, this progress could be used to prove lower bounds for
IPS and restricted variants thereof. We refer the interested reader
to Grochow and Pitassi [34] and Grochow [33] for further details.

For more on the Ideal Proof System, see the recent survey of
Pitassi and Tzameret [59].

1.4 Our Results

We now describe our results in more detail. Throughout this subsec-
tion, we let X denote an nx m matrix of variables and Igf}n’ » CF[X]
the ideal generated by the r X r minors of X. For simplicity, we state
our results over fields of characteristic zero (such as the rational or

complex numbers).

1.4.1 Complexity of Determinantal Ideals. Our main theorem con-
structs, for any nonzero polynomial f(X) € I Se,tn > asmall f-oracle
circuit that approximately computes the s X s determinant for
s = ©(r1/3). This answers a question of Grochow [33, Conjecture

6.3] in the setting of border complexity.

Theorem 1.1 (Informal version of Theorem 3.15 and Corollary 3.16).
Let F be a field of characteristic zero. Let X be an n X m matrix of
variables and let I,d:'}n,r C F[X] be the ideal generated by ther X r
minors of X. Let f(X) € Isf’,tmr
is a depth-three f-oracle circuit of size O(n>m?) that approximately
computes the s X s determinant for s = ©(r'/3).

be a nonzero polynomial. Then there

More generally, the conclusion of Theorem 1.1 holds if the deter-
minant is replaced by any polynomial g that can be approximately
computed by an algebraic branching program with r vertices. The
conclusion of Theorem 1.1 also holds if we have oracle gates that
approximately compute f instead of oracles that compute f exactly.

An immediate consequence of Theorem 1.1 is that for formu-
las and low-depth circuits, the border complexity of any nonzero

Ideals, Determinants, and Straightening: Proving and Using Lower Bounds for Polynomial Ideals

Idet

polynomial in IS, . is at least as large as the border complex-
ity of the ©(r!/3) x ©(r!/3) determinant, up to polynomial factors.
To the best of our knowledge, the only complexity lower bounds
for the ideal Ige,tn » known prior to this work are due to Wiersig
[74] and Forbes et al. [32, Corollary 6.7], who showed that every
nonzero polynomial in Ig’eﬁn’, is exp(Q(r))-hard for several weak
circuit classes.

To prove Theorem 1.1, we have to reason about arbitrary poly-
nomials in Ige;n, That is, if {g1, . .
we have to consider all nonzero polynomials of the form Zﬁ.\i 1 figi,
where the f; are arbitrary polynomials. This is difficult in part be-
cause if we apply a linear change of variables X +— L(X), it is not
clear how to control the behavior of the f;. To circumvent this, we
use an alternate basis for F[X] instead of the monomial basis. This
alternate basis consists of products of minors (of possibly different
sizes) of X that satisfy a particular combinatorial condition; these
products are known as standard bideterminants. Working in this
basis, we gain a better understanding of how the multiplicands f;
behave under a change of variables.

The proof of Theorem 1.1 then proceeds in two steps. First, we
find a change of variables that takes a polynomial f € Ig?;n’r to
an approximation (in the border complexity sense) of a standard
bideterminant A(X) in the support of f. The analysis of this step
crucially relies on the use of the standard bideterminant basis and
its properties, which we describe in Subsection 3.1. Because f lies
in the ideal I,‘lie,tnr one can show that h(X) is divisible by a t x ¢
minor of X for some ¢ > r. The second step is to find a projection
of h(X) to the ©(r'/3) x ©(r!/?) determinant. Since h may be a
product of minors of varying sizes, we need to find a projection
that (1) behaves nicely on small minors of X and (2) allows us to
deal with the possibility that h may be a large power of a minor.
We accomplish this by modifying an argument of Valiant [73].

.,gN } are the r X r minors of X,

1.4.2 Pfaffian Ideals. Let Y be a 2n X 2n skew-symmetric matrix.

It is well-known that the determinant of Y is the square of another
polynomial, the Pfaffian PE(Y) of Y. Let 2% ' F[Y] be the ideal
generated by the Pfaffians of the 2r X 2r principal submatrices of Y.

faff
Jis

Our next result is an analogue of Theorem 1.1 for the ideal I ..

Theorem 1.2. LetF be a field of characteristic zero. LetY be a2nx2n

skew-symmetric matrix of variables and let Igiagfr C F[Y] be the ideal

generated by the Pfaffians of the 2r X 2r principal submatrices of Y. Let

f
f(Y) € Igne,er

f-oracle circuit of size O(n*) that approximately computes the s X s

Pfaffian fors = e(r'/?).

be a nonzero polynomial. Then there is a depth-three

The proof of Theorem 1.2 is similar to that of Theorem 1.1. The

. pfaff .
primary difference is that we now express polynomials in I, n, 2 i
an alternate basis consisting of products of Pfaffians of principal
submatrices of Y. Along the way, we modify some of the technical
details of the construction to accommodate for Pfaffians instead of
determinants.

We remark that because the Pfaffian is the square root of the
skew-symmetric determinant (in the sense that Pf(Y)? = det(Y)),
it is natural to attempt proving Theorem 1.2 using Theorem 1.1.
For any polynomial f(X), one can use the Taylor series expansion

393

STOC 22, June 20-24, 2022, Rome, Italy

of V1 + x2 to construct a small f(x)%-oracle circuit that computes
f(x). Combining this with Theorem 1.1, one obtains an analogue of
Theorem 1.1 for the ideal generated by the squares of sub-Pfaffians
of Y, which is weaker than Theorem 1.2 above.

1.4.3 The Space of Partial Derivatives in Determinantal Ideals. The
remainder of our work consists of three applications of Theorem 1.1
and its proof, the first of which is to algebraic circuit complexity.
For a polynomial f € F[X], let d<c(f) denote the span of the
partial (Hasse) derivatives of f. The dimension of d<(f) and
related spaces has been used successfully as a complexity measure in
proving lower bounds for restricted classes of algebraic circuits (see

the survey of Saptharishi [63] for more on this). While Theorem 1.1
Idet

nem, r is not much harder

shows that computing a polynomial in
than computing the 0(r1/3) x ©(r'/3) determinant, it is natural to
ask if there are polynomials in I, 2% , that are “simpler” than the rxr
determinant with respect to complexity measures like dim(d<co(9)).

Our next result shows that among nonzero polynomials in the

ideal Igeﬁn, the r X r determinant in fact minimizes the value of
dim(d<co(®)).
Theorem 1.3. For every nonzero polynomial f(X) € Ig’e}n’r, we

have dim(d<co(f)) > dim(d<co(det,)) = (¥).

Using tools developed in the proof of Theorem 1.1, we can easily
reduce the task of proving Theorem 1.3 to the case where f(X) is
a product of minors of X. As f is in the ideal Ig?fn’,,
factor of f must be an s X s minor of X for some s > r. We can then
directly bound dim(d<c(f)) from below by a slight generalization
of the argument used to bound dim(d<c(dets)).

We note that one can easily prove a lower bound of 2" on
dim(d<w(f)) using observations due to Forbes et al. [32]. Our result

improves on this, obtaining an optimal bound of (er) = 04" /).

at least one

1.4.4 Polynomial Identity Testing for Low-Depth Circuits and For-
mulas. Next, we use Theorem 1.1 to derandomize special cases of
polynomial identity testing. It is a straightforward consequence
of Theorem 1.1 that for circuit classes like low-depth circuits and
formulas, computing any nonzero element of Ige}n , is effectively
as hard as computing the @(r1/3) x ©(r!/3) determinant. Over an
algebraically closed field, the ideal I,‘,l’e;n, , can be equivalently de-
scribed as the ideal of polynomials that vanish on matrices of rank
less than r. Using this alternate description, we construct hitting set
generators that unconditionally hit the closure of small low-depth

circuits and conditionally hit the closure of small formulas.

Theorem 1.4. LetF be a field of characteristic zero. For every k € N,

there is a hitting set generator Gy with seed length nl/25+0() gng
degree 2 that hits the closure of polynomial-size low-depth algebraic
circuits. The generator Gy can be computed by either (1) a circuit
of product-depth k and size n'*°Y), or (2) a formula of size n'*°().
Assuming the border formula complexity of the determinant is super-
polynomial, the generator Gy. is also a hitting set generator for the
closure of polynomial-size algebraic formulas.

Our hitting set generators are very simple to describe. For k = 1,
our generator takes as input two matrices of variables Y and Z,
where Y is a yn x n°Y matrix and Z is an n°() x yn matrix,
and outputs the matrix product YZ. For k > 2, we construct the

STOC ’22, June 20-24, 2022, Rome, Italy

generator Gy by arranging the input variables of Gy _ into a square
matrix and replacing them with the product of an n'/ 25+o(1) 5 po(1)
matrix and an n°0) x n1/2"+0() matrix.

To prove that our generators correctly hit polynomial-size low-
depth circuits, we must show that every small low-depth circuit
does not vanish on the output of our generator. Using the descrip-
tion of I,‘,l’e,th as the ideal of polynomials vanishing on matrices
of rank at most r, establishing the correctness of our generators
equates to proving that no small low-depth circuit can compute a
polynomial in the ideal Iii/%t’ Vno”
a straightforward manner by combining our Theorem 1.1 with the
recent breakthrough lower bounds of Limaye et al. [50].

Such a lower bound follows in

In the regime of n®W seed length, our generators attain a near-
optimal tradeoff between seed length and degree. It is not hard to

1/2%+0(1)

show that a generator of seed length n must be of degree

at least 2, and conversely that any generator of degree 2¥ must
have seed length at least Q(nt/ 2k). We also note that the circuit
complexity of our generators is near-optimal, as any function with
n outputs necessarily requires size Q(n) to compute.

Prior to this, the best-known hitting set generator for low-depth
circuits was given by Limaye et al. [50], using the hardness-to-
randomness results of Chou et al. [17]. They obtained, for ev-
ery fixed ¢ > 0, a generator with seed length O(n?) and degree
O(log n/loglog n). Our construction attains the same seed length,
but improves on the degree (as remarked above) and the circuit
complexity of the generator. When instantiated to hit circuits of
size s, the generator of Limaye et al. [50] necessarily has circuit
complexity Q(s). In contrast, our generator can be computed by a

constant-depth circuit or formula of size nlto®)

100
10)

even when hitting
low-depth circuits of size O(n

For formulas, the best-known (conditional) constructions of hit-
ting set generators prior to our work are due to Dvir et al. [27]
and Chou et al. [17]. Both works yield generators with parameters
similar to the low-depth generator of Limaye et al. [50] mentioned
above (although the generator of [27] can only hit formulas of small
individual degree). While our construction has better parameters,
we use a stronger hardness assumption than what is needed by
prior work. The constructions of Dvir et al. [27] and Chou et al. [17]
can be instantiated with any explicit family of polynomials that
requires formulas of super-polynomial size. In contrast, our con-
struction depends crucially on super-polynomial lower bounds on
the border formula complexity of the determinant. This is a stronger
assumption, as the determinant is computable by polynomial-size
branching programs and circuits, a fact which likely does not hold
for all explicit families of polynomials.

1.4.5 Lower Bounds for the Ideal Proof System. Finally, we use
Theorem 1.1 to prove lower bounds for the Ideal Proof System.
Let X and Y be n X n matrices of variables and let I,, be the n X n
identity matrix. Consider the system of polynomial equations given
by {det,(X) = 0,XY — I, = 0}. This system is unsatisfiable, as
det,(X) = 0 if and only if X is non-invertible, while XY — I,, =
0 implies that X is invertible with inverse Y. We show that the
constant-depth version of the Ideal Proof System cannot efficiently
refute this system. Assuming lower bounds on the border formula
complexity of the determinant, we also show that formula-IPS

394

Robert Andrews and Michael A. Forbes

cannot efficiently refute this system. We remark that our lower
bounds also hold when the boolean axioms xiz’ ;= Xij = 0are
included in the system of equations, but we suppress these here for
brevity.

Theorem 1.5. Let F be a field of characteristic zero. Let X and Y be
nXn matrices of variables and let I, be the nX n identity matrix. Then
any IPS refutation of the system {det(X) = 0, XY — I, = 0} cannot be
approximately computed by a constant-depth circuit of polynomial
size. Assuming the border formula complexity of the determinant is
super-polynomial, then any IPS refutation of this system cannot be
approximately computed by a formula of polynomial size.

We do this by following the approach of Forbes et al. [32], who
showed that lower bounds for the IPS can be derived from circuit
lower bounds for multiples of a polynomial. Our choice of the
system {det,(X) = 0,XY — I, = 0} is motivated by the fact that,
using the techniques of [32], the desired IPS lower bounds follow
from circuit lower bounds for multiples of the determinant. We can
obtain the necessary lower bounds by combining our Theorem 1.1
with lower bounds against the determinant. In the case of low-
depth circuits, our IPS lower bounds are unconditional thanks to
the recent breakthrough circuit lower bounds of Limaye et al. [50].
For formula-IPS, our lower bounds remain conditional.

We also show that computing an IPS refutation of our hard
instance {det,(X) = 0,XY — I, = 0} reduces to computing the
determinant. Namely, we give a small depth-three circuit with det;,-
oracle gates that computes an IPS refutation of our hard instance.
Passing to border complexity, this shows that the approximative
complexity of the smallest IPS refutation of {det,(X) = 0, XY -1, =
0} is sandwiched between the approximative complexity of the
0(n!/?) x ©(n!/3?) and n x n determinants.

The strongest unconditional lower bounds for the IPS prior to
our work are due to Forbes et al. [32], who proved lower bounds
for subsystems of the IPS computed by restricted classes of cir-
cuits, including read-once oblivious algebraic branching programs
and multilinear formulas. Impagliazzo et al. [39] showed that the
constant-depth version of Polynomial Calculus (PC) over finite
fields is surprisingly strong. The size of a constant-depth IPS refu-
tation is essentially the number of lines in a constant-depth PC
refutation, so lower bounds for constant-depth IPS over finite fields
imply comparable lower bounds for constant-depth PC. However,
our lower bounds do not extend to finite fields, nor do our lower
bounds hold for refutations of an unsatisfiable CNF, so we are un-
able to conclude lower bounds for constant-depth PC and related
proof systems.

We also mention a recent work of Alekseev [2], who proved lower
bounds on the bit-size of refutations in a version of PC augmented
with an extension rule. This is somewhat incomparable to our
result: Alekseev’s proof system allows for proofs of arbitrary depth,
but must pay to use constants of large bit complexity; on the other
hand, we work with a low-depth proof system that can use arbitrary
rational numbers (or even arbitrary complex numbers) for free. Our
lower bound is on circuit size, which is analogous to the number of
lines in PC, whereas Alekseev’s lower bound is on the number of
bits needed to write down a refutation, which does not necessarily
imply a lower bound on the number of proof lines.

Ideals, Determinants, and Straightening: Proving and Using Lower Bounds for Polynomial Ideals

1.5 Organization

In the remainder of this paper, we give a proof of Theorem 1.1.
Proofs of the other results can be found in the full version of this
work available on arXiv.!

2 PRELIMINARIES

For a natural number n € N, we write [n] = {1,2,...,n}. We
use X = (x1,...,xp) to denote a vector of variables and X =
(xi,j)ieln),je[m] to denote a matrix of variables. Given a field F
and an indeterminate x, we write F[x] for the ring of polynomi-
als in x with coefficients from F and F(x) for the field of rational
functions in x with F-coefficients. For a matrix A € F™™ and sets
R C [n], C C [m], we denote by Ag ¢ the submatrix of A whose
rows and columns are taken from the sets R and C, respectively. If
X is an n X m matrix of variables, then for r < min(n, m) we denote
by Ige,tn » C F[X] the ideal of F[X] generated by the r X r minors
of X.

We endow F[X] with a (N” @ N")-grading in the following way.
Let g; € N” denote the element of N” with 1 in the i position and
zeroes elsewhere. By abuse of notation, we also use €; to denote
the corresponding element of N™. We assign degree e; @ ¢; to the
variable x; ; and extend this to F[X] in the natural way. The degree
of an element f € F[X] with respect to this grading is called the
multidegree of f, written multideg(f). We say an element of F[X] is
multihomogeneous if it is homogeneous with respect to this grading.

We assume familiarity with the basic notion of an algebraic
circuit and restricted classes thereof, including formulas, branching
programs, and bounded-depth circuits. The interested reader may
consult the surveys of Shpilka and Yehudayoff [71] and Saptharishi
[63] or the text of Biirgisser et al. [14] for more on algebraic circuits.
We also use the notion of monomial orders; for definitions, we refer
the reader to Cox et al. [19, Chapter 2].

A key notion in this work is border complexity, a modification of
the standard definition of algebraic computation. Briefly, a circuit
C border computes a polynomial f(x) if C is defined over F(¢) and
computes a polynomial such that

Cx) = f(x) +&-g(x.0),

where g € F[Xx, €], i.e., there are no negative powers of ¢ appearing
in g. We abbreviate this as C(x) = f(x) + O(¢). Over the complex
numbers (or more generally, over a field of characteristic zero), one
can think of C as computing f in the limit as ¢ — 0.

3 HARDNESS OF DETERMINANTAL IDEALS

Recall that X denotes an nxm matrix of variables and I ge,tn » € F[X]
is the ideal generated by the r X r minors of X. In this section,
we study the minimum possible border complexity of a nonzero
polynomial in I,@'}f,tn,,. Our main result is that, up to polynomial
factors, there is no polynomial f € Ig’e,tn’ , that is easier to compute
than the r X r determinant. We do this by constructing, for every
nonzero f € Ig’e,tn’r, a depth-three f-oracle circuit that border
computes the o(rl/?) x ®(r1/3) determinant.

The argument proceeds in two steps. First, we show that for
every f(X) € It there is a linear change of variables that takes

n,m,r>

Thttps://arxiv.org/abs/2112.00792

395

STOC 22, June 20-24, 2022, Rome, Italy

f(X) to (S|T)X) + O(¢) for some bideterminant (S|T) of width at
least r. The analysis of this step crucially relies on the so-called
straightening law, which we describe in Subsection 3.1. Second, for
any ¢(y) computed by an ABP of size at most r and any bidetermi-
nant (S|T)(X) of width r, we construct a depth-three (S|T)-oracle
circuit computing ¢g(y) + O(¢). As the determinant can be efficiently
computed by ABPs, composing these steps yields an f-oracle circuit
for det®(r1/3)(X) + O(¢).

3.1 Bideterminants and the Straightening Law

The proof of Theorem 3.15 relies on understanding how a polyno-
mial f € Igf’,tn’, behaves under the map X +— AXB for invertible
matrices A and B. For example, it is easy to see that f(AXB) also lies
in Igf’}n’,, However, it is not clear if there is other structure we may
take advantage of. By working in a different basis of F[X], we can
better understand how f(AXB) relates to f(X). Before describing
this basis, we recall the notions of a Young diagram and Young

tableau.

Definition 3.1. A partitiono = (o1, 02, .
sequence of natural numbers. If Zile 0;j = n, we write o F n.
The transpose of o, denoted &, is the partition given by &;
|{j foj > i}|. Associated with a partition o is its Young diagram
Dy C N XN, givenby Dy = {(i,)) : j < 0i}. o

.., 0k)isanon-increasing

Note that 61 counts the number of rows in the Young diagram
of 0. We graphically depict the Young diagram of a partition as a
collection of boxes. For example, the Young diagram of the partition
(4,2,2,1) is

This partition has transpose (4, 3, 1, 1), with Young diagram given
by

The lexicographic ordering on integer sequences induces an order-
ing on partitions, which we denote by <jey.

We now define Young tableaux, which can be obtained by writing
a number in each cell of the Young diagram of some partition o.

Definition 3.2. Given a partition o, a Young tableau T of shape
cisamap T : Dy — N assigning a natural number to each cell
of the Young diagram of . We denote the i row of T by T(i, e),
which we will view as either a set or a one-row Young tableau
depending on context. A Young tableau is standard if its entries are
strictly increasing along each column and along each row. A Young
tableau is semistandard if its entries are strictly increasing along
each column and are nondecreasing along each row. If T : Dy — N
is a Young tableau, its conjugate tableau T : D; — N is given by

(3, j) = TG,). o

STOC ’22, June 20-24, 2022, Rome, Italy

Continuing the example above, one Young tableau (of many) of
shape (4,2, 2, 1) is given by

4[3]

NN

PN .

[

Next, we introduce bitableaux and bideterminants. A bitableau
is simply a pair of Young tableau of the same shape, while a bideter-
minant is a natural polynomial associated to this pair of tableaux.

Definition 3.3. Let X = (x1,1,...,Xn,) be an n X n matrix of
variables. A bitableau (S, T) is a pair of Young tableaux of the same
shape o. If the entries of S and T are from [n], we associate to (S, T)
the bideterminant (S|T)(X), defined as

SIT(X) =

XS(i,1),T(i,1)
XS(i,2),T(i,1)

XS(i,1),T(i,2)
XS(i,2),T(i,2)

XS(i,1),T(i,0;)

= X8(i,2), TG, ;)

i=1

XS(i,07),T(i,1) XS(i,07),T(i,2) XS(i,07),T(i,0%)

The i term in this product is the determinant of the submatrix
whose rows and columns are listed in the i™ row of the tableaux S
and T, respectively. The width of the bideterminant (S|T) is given
by o1. We say that the bitableau (S, T) and bideterminant (S|T) are
standard if, as tableaux, both S and T are increasing along each row
and nondecreasing along each column (equivalently, that S and T
are both the conjugate of a semistandard Young tableau). O

For example, associated to the bitableau

1]2]3] [1]3]4]
1|3 , 1214
14] 3]
is the bideterminant
X1,1 X1,3 X1,4
X x
det X2,1 X2,3 X2.4 det L2 L4 det(x4,3).
X32 X34
X31 X33 X34

Note that a bideterminant (S|T) is multihomogeneous of degree
(sie1+ -+ +spen) ® (t1€1 + - - - + then), where s; and t; count the
number of occurrences of i in S and T, respectively.

It is easy to see that the bideterminants span F[X], since a mono-
mial]_[?:l Xr,,¢; is the bideterminant corresponding to the bitableau

Perhaps surprisingly, there is a natural subset of the bideterminants
which form a basis of F[X].

Theorem 3.4 ([22]). The standard bideterminants form a basis of
F[X].

To show F[X] is spanned by standard bideterminants, it suffices
to express non-standard bideterminants as linear combinations of
standard bideterminants. The fact that this can be done, along with
some additional structural information, is known as the straight-
ening law. For more on the straightening law, including its history

396

Robert Andrews and Michael A. Forbes

and its applications to invariant theory, see the introduction of
Désarménien et al. [21].

Theorem 3.5 ([22], see also [20, 21]). Let (S|T)(X) be a bidetermi-
nant of shape o. Then (S|T)(X) can be expressed as a linear combina-
tion
SITX) = D capAB)X).
(A, B)
where the ca g are integers and the sum ranges over all standard
bitableaux (A, B) of shape t such that t >ex 0.

One immediate corollary of this is a characterization of polynomi-
als in the ideal 1€

nom,r by their support in the standard bideterminant
basis.

Corollary 3.6. A polynomial f € F[X] is an element of the ideal
Iﬂfﬁn,, if and only if f is supported on bideterminants of width at
least r.

3.2 Transforming to a Single Bideterminant

For i,j € [n] with i # j, we define the substitution operator Sub;—;
acting on a conjugate semistandard Young tableau T as follows:
for every row in T containing i but not j, substitute i with j and
re-order the row to be in increasing order. Let h]l. (T) denote the
number of rows of T changed by applying Sub;_,; to T. In general,
themap T + (Sub;—;(T), hg (T)) may not be injective. However, the
following lemma shows that mapping is injective when restricted
to tableaux satisfying a particular property.

Lemma 3.7 ([20, Proposition 1.6]). Leti,j € [n]. Suppose T is a
conjugate semistandard tableau with entries in [n] with the property
that if a row of T contains an integer k < i, then that row contains all
integers in {i,i +1,...,j — 1}. Then Sub;—;(T) is also a conjugate
semistandard tableau and T is determined by Sub;_, ;(T) and hi(T).

While the condition in the above lemma seems strange at first,
it arises in a natural way when one repeatedly applies the Sub;;
operators as described by the next claim.

Claim 3.8 (implicit in proof of [20, Corollary 1.7]). Let T be a
conjugate semistandard tableau with entries in [n]. Let

(1,2) < (1,3) < ---<(1,n) < (2,3) < - -~
<(m-2,n-1)<(n-2,n)<(n-1n)

be a partial order on [n]?. Let i,j € [n] be such that i < j and let
(i’,j") be the immediate predecessor of (i, j) in the < order. Then the
tableau

T = Sub,-r_,j' o---08Subj30 Subl_)z(T)

satisfies the hypothesis of Lemma 3.7 for (i, j). In other words, if a row
of T’ contains an integer k < i, then that row contains all integers in
(ii+1,...,j—1}.

For a partition o and natural number n € N, we let K, and
K denote the conjugate semistandard tableaux whose i row has
entries (1,...,03) and (n — 0; + 1,n — 0; + 2,. .., n), respectively.
For example, if 0 = (4,3, 1) and n = 5, we have
1]2[3]4] 2[3

213 I?(4, 3,1) =

~

5]

K31 =

1 3
1] 3]

Ideals, Determinants, and Straightening: Proving and Using Lower Bounds for Polynomial Ideals

The operators Sub;_,; provide a convenient way to transform an
arbitrary conjugate semistandard tableau into K .

Lemma 3.9 ([20, Corollary 1.7]). Let T be a conjugate semistandard
tableau of shape o. Then

(Subp—1—p © -+ 0 Subz_43 0 Subj s 0 - -+ 0 Suby2)(T) = K.

Moreover, if we denote by h]l: the number of times i is replaced by j in
the application of Sub;_,; above, then T is determined by o and the

.

We are now ready to progress towards the main result of this
section. Namely, for any nonzero f € Iﬂ?ﬁn’ > we will find a linear
change of variables that sends f to (Ks|Ks) + O(¢) where o is the
shape of some standard bideterminant in the support of f when
f is written in the standard bideterminant basis. For comparison,
it is easy to do something similar in the monomial basis: given a

polynomial f(x) of degree d, there is some m € N such that

€mf(€_(d+1)xl, E_(d+l)2X2, o g—(d+1)"xn)

= LCIex(f) LMlex(f) +0(e)

where LCyey (f) and LMy (f) are the leading coefficient and leading
monomial, respectively, of f in the lexicographic monomial order
induced by x; > x > --- > x5, and O(¢) denotes a polynomial
in F[e, x| divisible by ¢. To some extent, we are constructing an
analogous change of variables in the bideterminant basis.

The main difficulty lies in finding a useful change of variables.
In the monomial basis, individual terms can be distinguished by
their degree, so it suffices to use a change of variables that only
involves multiplying each x; by some power of ¢. However, in the
bideterminant basis, multidegree is too coarse a notion to distin-
guish between bideterminants, so it seems that finding a clever
substitution x; j + e%./x; ; will not be enough.

We start by working in a larger polynomial ring F[X, A, E]. We
will give two changes of variables: one that enforces structure on
the tableaux encoding the rows of the bideterminants in the support
of a polynomial f, and another that handles the tableaux encoding
the columns of the bideterminants. The proof of this lemma is
inspired by and borrows ideas from the proof of [20, Theorem 3.3].

Lemma 3.10. Let A = (A; j) be an n X n matrix of variables and
let <, be the lexicographic monomial order on F[A] induced by the
order Ajj > Ak ¢ ifi <k ori=kandj <. Likewise, let = = (&; j)
be an m X m matrix of variables and let <= be the corresponding
lexicographic monomial order on F[Z]. Then there are matrices M €
F[A]™" and N € F[E]™™ with det(M) = +1 and det(N) = *1
such that the following holds.

Let f(X) € I;‘}?}n,, be a nonzero polynomial and let f(X) =
Yke[s] 2k (Sk|Ti)(X) be the expansion of f in the standard bide-
terminant basis. For k € [s], let o be the shape of the bideterminant
(Sk|Tk). Then there are nonempty sets A, B C [s] such that

LC<,(f(MX)) = " (Ko ITe)(X)
keA

LC< (f(XN)) =)" ag(S|Ko)X,
keB

where we take leading coefficients in the rings F[X][A] and F[X][Z],
respectively.

397

STOC 22, June 20-24, 2022, Rome, Italy

Proor. We first construct the matrix M and prove the corre-
sponding claim. For i,j € [n] with i # j, let E; j(z) be the n x n
matrix with ones on the diagonal and z in the (i, j) entry. Let J,
be the n X n matrix whose (i, j) entry is 1 if i + j = n + 1 and zero
otherwise. We define the matrix M as

M = E1,2(A1,2) - E1,n(A1,n)E2,3(A2,3) * * En—1,n(An—1,n)J -
Since det(J,) = +1 and det(E; j(z)) = 1 for i # j, it follows that
det(M) = +1.

We now analyze the polynomial f(MX). Recall that for a tableau
S, we denote by hé (S) the number of entries changed from i to
j when we apply the operator Sub;_,; to S. Observe that for a
bideterminant (S|T), it follows from properties of the determinant
that

(SITYE:1(2)X) = 24 (Subi ()| THX) + OGO,
where O(zh{(s)fl) denotes a polynomial in F[X][z] of degree at
¢ poly g

most h;(S) — 1. For i,j € [n] with i # j, define
fi.,jXA) = f(E1,2(A1,2) - E1,n(A1,n)E2,3(A2,3) - - - Ei j (A, j)X).

Note that f(MX) = fn-1,n(JnX, A).
We claim that for every i, j € [n] with i < j, there is a non-empty
set A; j C [s] such that

LC<, (fi,j(X, M)

Z ak(subi*)j O:-+-0 Subzﬁ3
keA; ;

0 Subsy © -+ © Subi—y2(Sp)| Tp)(X).

By Lemma 3.9, this implies

L (ot nXGA) = D7 k(Ko ITR)(X).
kEAn—l, n

Using the fact that (Ko, |T)(JnX) = (Ko, | T)(X), this yields

LC<, (f(MX)) = LC<,(fa-1,nUnX, A) = D k(K IT)(X)
kEAn—l,n

as desired.

We now prove the claim by induction on (i, j) in the order (1, 2) <
(1,3) < --- < (1,n) < (2,3) < --- < (n—1,n). Let (i’,j") be the
predecessor of (i, j) in the < order. In the case that (i, j) = (1, 2), we
abuse notation and set f y = f and Ay j = [s]. Let

H max K Sub;s—i7 o +-- 0 Sub S
VokeAyy i(Subir—j 1-2(5)

and
Ajj={keAyj: h]i(subi'_y‘/ o---08Sub;2(Sk)) = H{}
Note that A; j is necessarily non-empty, as Hf is a maximum over

a finite nonempty set. By induction, there is some e € N*" such
that

S,y X, N)

= A€ Z ak(Subi/_>j/ 0 -+ 0 Suby2(SE)| TR)(X) + g(X, A),
kGAi/’j/

where g(X,A) € F[X][A] is a polynomial in which every mono-

mial is smaller than A® in the < order. Since f j» only depends

STOC ’22, June 20-24, 2022, Rome, Italy

on Ay 2,..., Ay j, it follows that A€ is a monomial in only these
variables. We then apply the definition of f; ; to obtain

fij(XA)
= fir, jr(Ei,j(Ai,j)X, A)

=N > a(Subyy o+ 0 Suby (ST (B j(Ai)X)
k€Ail’j1

+9(E;, j(Ai,)X, A)

z H
= A°Ny) D ax(Subisj o -0 Subia(S)ITR)(X)
keA; ;

+ Ap(X, A j) + 9(Ei,j(Ai,)X, A),

where p(X, 4; ;) € F[X][A] is a polynomial of degree at most H{ -1
in A; j. This implies that every monomial of A®p(X, A) is smaller

than Az/l?j. in the <, order. Observe that the substitution X +—
E; j(A;, j)X’ only changes the A; j-degree of any A-monomial in
g(X, A). In particular, because every monomial of g(X, A) is smaller
than A€ in the <, order, the same holds true for every A-monomial
of g(E;, j(Ai,j)X, A). This implies that

LC<,(fi) =), @(Subjj o -+ 0 Subia(Sp)|Tk)(X)
keA; ;

as claimed. This establishes the claimed properties of M.

To construct the matrix N, we overload notation and let E; j(z)
be the mXxm matrix with ones on the diagonal and z in the (i,) entry.
Just as the matrix M consisted of a sequence of row operations, the
matrix N will be composed of a sequence of column operations. We
define N as

N = JmEm-1,m(Em-1,m) - - E2,3(£2,3)E1,m(§1,m) - - - E1,2(&1,2).

Since det(J;;) = *1 and det(E; j(z)) = 1 fori < j, we get that
det(N) = +1.

As in the previous case, it follows from properties of the deter-
minant that for a bideterminant (S|T), we have

(SIT)(XE; j(2)) = 28D)(S|Subj,(T))(X) + 0" D1,

Using this, the analysis of the leading coefficient of f(XN) €
F[X][Z] proceeds in a manner analogous to the case of f(MX),
so we omit the details. O

We will need the following lemma, which says that given a
polynomial f(x) € R[x] where R is a commutative ring, we can
substitute the x variables by powers of a new indeterminate ¢ to
isolate the leading coefficient of f. The proof'is similar to the process
described following the statement of Lemma 3.9, but we omit it due
to space constraints.

Lemma 3.11. Let R be a commutative ring. Let f(x) € R[x] and let
< be a lexicographic monomial order on x. Then there are natural

numbers m,dq, . ..,d, € N such that
e (e, .. %) = LC(f) + O(e),

where LC(f) € R is the leading coefficient of f with respect to < and
O(e™*1) denotes a polynomial in R[¢] divisible by €.

398

Robert Andrews and Michael A. Forbes

We now come to the main result of this subsection: a change
of variables that sends a polynomial f(X) to (K4|Ks)(X) + O(¢)
where o is the shape of some standard bideterminant in the support

of f.
Idet

Proposition 3.12. Let f(X) € I%, , be nonzero. There is a collec-
tion of nm linearly independent linear functions {; j(X, €) € F(e)[X]
indexed by (i, j) € [n] X [m], an integer q € Z, a nonzero o € F, and
a partition o with o1 > r such that

f (X). .. brm(X,) = e9a(Ko |Kg)(X) + O(T).

Proor. Let f = Y ies] @k (Sk|Tk) be the expansion of f in the
standard bideterminant basis. Let M and N be the matrices con-
structed in Lemma 3.10. Let < denote the lexicographic order on
FIX][A, E] induced by A1,2 > A1,3 > -+ > Ap—1,n > E12 > -+ >
&m—1,m. Lemma 3.10 implies that there is a non-empty set A C [s]
such that

9(X) = LC<(FIMX)) =)" ot (Koy IT)(X),
keA

and likewise that there is a non-empty set B C A such that

LC<(g(XN)) = ' ax (Ko, Ko)(X).
keB

This implies that

LC<(F(MXN)) = 3" o (Ko |Kor J(X),
keB
where o} denotes the shape of the bideterminant (Sg |Tj). By Corol-
lary 3.6, each bideterminant in the above sum has width at least r,
so we have (o)1 > rforallk € A.
Let y and z be new indeterminates and let D := deg(f(X)). Con-
sider the change of variables

D+1)! _(D+1)
xij o y PP s

Let h(X, A, E,y, z) be the image of f(MXN) under this map. By
construction, an X-monomial of multidegree (3;; aje;) ® (3; bie;)
is multiplied by a factor of yZi ai(D+1)" %, bj(D+1Y 1y particular,
since max; a; < D and max; b; < D, X-monomials of distinct
multidegree have distinct (y, z)-degree under this mapping. Observe
that multideg((Ks |K5)(X)) # multideg((K;|K;)(X)) for distinct
partitions o # 7. Since each bideterminant (K4 |K)(X) is mapped
to a unique (y, z)-degree under this substitution, we get that the
polynomial

P(X) = LC(y,)(LC(a,5)(h(X, A, E, y, 2)))

is a nonzero multiple of the bideterminant (K¢, |Ks,)(X) for some
k € B.If we augment the monomial order < by setting A > = >
y > z and taking the corresponding lexicographic order, we then
have
LC<(h(Xa Av E? Y, Z)) = ak(KO'k |K0'k)(X)

for some k € B.

Applying Lemma 3.11 to h(X, A, E, y, z) viewed as an element of
FIX][A, &, y, z], we getamap ¢ : (AUEU{y,z}) — {e9:deN}
such that

o(h(X, A, E,y,2)) = elar (Ko, [Kop)(X) + O(e7H)

for some integer q.

Ideals, Determinants, and Straightening: Proving and Using Lower Bounds for Polynomial Ideals

Note that h(X, A, E, y, z) was obtained from f(X) by an invertible
linear transformation of the X variables. That is, there are nm
linearly independent linear polynomials £] ;(X),...,{; ,(X) €
F[A, E, y, z][X] such that

h(Xa Av E’ Y, Z) = f(gi,l(X)’ e ’{;r’l,m(X))
Set £; j(X,¢) = (p(flf’j(X)) € F(e)[X] for each (i,j) € [n] X [m].
Since the transformation x; j +— f{‘j(X) is invertible as long as

y # 0 and z # 0, the transformation x; j — ¢; j(X,¢) remains
invertible under ¢. Finally, it follows from the definition of ¢ that

Fl1X),y b m(X,€)) = fl@(l] ;X)) s 0L (X))
= o(f(€] (XD, £ (X))
= o(h(X, A, B, y,2))
= e9a1 (Ko, |[Kop)(X) + O(e9M1). @

3.3 Projecting to the Determinant

So far, we have constructed a linear change of variables taking
a polynomial f € Ig’e,tn’, to (K5 |Ks) + O(e) for a bideterminant
(K& |Ks) of width at least r. Next, we show that a (K |K)-oracle
can be used to compute g(y) + O(¢), where g is any polynomial com-
putable by an algebraic branching program on r vertices. Ideally,
one would like to appeal to the VBP-completeness of the determi-
nant, which gives a projection from det,(X) to g(y), to prove such
a result. The difficulty lies in the fact that a bideterminant may be a
product of multiple determinants of varying sizes. Because of this,
we need a projection that behaves well on proper minors of X and
also allows us to deal with the possibility that we may be projecting
from a power of the determinant as opposed to the determinant
itself. We almost construct such a projection, but we will need some
post-processing in the form of an extra addition gate in order to
handle powers of the determinant.

Let g(y) be computable by a small algebraic branching program.
We begin by describing a projection ¢ : X — F[y] of a generic
matrix X where each ¢(x; ;) is a linear polynomial in g such that
det(p(X)) = 1 + g(y) and the leading principal minors of ¢(X)
have determinant 1. This is a small modification of an argument
due to Valiant [73, Theorem 1]; we include a proof for the sake of
completeness.

Lemma 3.13. Let g(y) € F[y] and suppose g can be computed by a
layered algebraic branching program on m vertices. Then there is an
m X m matrix A € F[y]™™ whose entries are linear polynomials in
y such that

(1) det(A) =1+ ¢(y), and

(2) for every k € [m — 1], we have det(A[x,[k]) = 1.

Proor. We first recall the correspondence between cycle covers
in graphs and the determinant. Let G be a weighted directed graph
on m vertices and denote the weight of the edge (i, j) by w(i, j). Let
A(G) = (aj,j) be the m X m matrix given by

L wep ahero
Yolo G eEG)
Recall that a cycle cover C of G is a collection of vertex-disjoint

cycles in G which span the vertices of G. Let CC(G) denote the
collection of all cycle covers of G. Given a cycle cover C of G, let

399

STOC 22, June 20-24, 2022, Rome, Italy

7(C) denote the product of the edge weights in C. If every cycle
cover of G consists of odd-length cycles, then the definitions of
A(G) and the determinant imply that

det(A(G)) = ().
CeCC(G)

We now proceed with the proof of Lemma 3.13. Suppose g(y)
can be computed by a layered algebraic branching program on m
nodes. Let s and t be the start and end nodes of this branching
program, respectively. Since the program is layered, every s-t path
has the same length. If the length of each s-t path is even, we add
an edge of weight 1 from ¢ to s and a self-loop of weight 1 to every
vertex (including s and t); if the length of each s-t path is odd, we
identify the vertices s and ¢t with one another (resulting in a graph
on m — 1 nodes), add an isolated vertex r, and then add a self-loop
to every vertex. Denote the resulting graph by G. In both cases, G
has one cycle cover for every s-t path in the branching program, as
well as a single cycle cover corresponding to the set of self-loops
in the graph. Moreover, every cycle cover in G consists solely of
odd-length cycles.

For a cycle cover C corresponding to an s-t path P in the branch-
ing program, it follows from the definition of G that z(C) = =(P),
where 7(P) is the product of the weights on the edges of P. If C
is the all-self-loops cycle cover, then 7(C) = 1. Since every cycle
cover in G consists of odd-length cycles, we have

det(AG) = D) #(O)=1+ Y a(P)=1+¢().
P

CeCC(G)

where the second summation is over all s-¢ paths P in the branching
program. This proves the first part of the lemma.

To prove the second part, let vy, . . ., v, be a topological ordering
of the vertices in the algebraic branching program. Note that vy =s
and vy, = t. If every s-t path in the branching program has even
length, we order the rows and columns of A(G) such that A(G); j =
w(vi, vj). If instead every s-t path in the branching program has
odd length, we set

i=1
j=1

w(r,vj)
A(G)i,j = yw(vi,r)

w(vi,vj) otherwise,

where r is the isolated vertex with a self-loop. In either case, note
that if i > j and A(G);; # 0, then we must have i = m. This
implies that for every k € [m — 1], the matrix A(G)[] [x] is upper-
triangular with ones along the diagonal. Thus det(A(G)[x1,[x]) = 1
as desired. O

Although we want to construct an (K4 |K4)-oracle circuit that
computes any polynomial g(y) that is computable by a small lay-
ered algebraic branching program, it will be convenient for us to
assume that g is homogeneous. This is not restrictive, as one can
always introduce a new variable z and consider the homogeneous
polynomial §(7, z) = z489g(y, /z, . .., yn/z), which specializes to
g(y) under the map z > 1. One needs to show that §(1, z) is as easy
to compute as g(y). This can be done for layered ABPs by relabeling
the edges of the ABP: if £ (1) = ao + X7 ; a;y; is the polynomial

STOC ’22, June 20-24, 2022, Rome, Italy

labeling edge e, replacing it with £.(3,z) = aoz + P aiy; re-
sults in a layered ABP that computes z%¢(y1 /z, . .
d > deg(g). We record this as a lemma.

., Yn/z) for some

Lemma 3.14. Let g(y) € Fly] be a polynomial and suppose that
g can be computed by a layered algebraic branching program on
m vertices. Let z be a new variable. Then there is a homogeneous
polynomial §(y, z) € Fly, z] such that § can be computed by a layered
algebraic branching program on m vertices and that §(y, 1) = g(y).

Given a nonzero f(X) € Ig’e,tn’r, we will use the preceding lem-

mas together with Proposition 3.12 to construct a depth-three f-
oracle circuit computing det®<r1 /3)(X) + O(¢). In fact, for any poly-
nomial ¢g(y) computable by a layered algebraic branching program
on r vertices, we can construct an f-oracle circuit computing g.

Theorem 3.15. Let f(X) € I;‘}j‘,;,, be a nonzero polynomial.Let

g(y) € Fly] be a polynomial computable by a layered algebraic
branching programs with at most r vertices. Then there is a depth-
three f-oracle circuit ® defined over F(e) such that the following
hold.

(1) ® has nm addition gates at the bottom layer, a single f-oracle
gate in the middle layer, and a single addition gate at the top
layer.

(2) If char(F) = 0, then ® computes g(y) + O(¢).

(3) If char(F) = p > 0, then ® computes g@)l’k + O(¢) for some

k eN.
ProoF. Applying Proposition 3.12 to f(X), we obtain linear func-
tions €1,1(X, ¢€),...,fn,m(X,¢), anonzero a € F, and some q € Z
such that

fl1(X). bam(X,) = e9a(Kq |Ko)(X) + O(e9)

for some partition o of width at least r.

Lemma 3.14 implies that there is a homogeneous polynomial
§(y, z) € Fly, z] computable by a layered algebraic branching pro-
gram on at most r vertices such that §(y, 1) = g(y). Since §(y, z) can
be computed by a layered algebraic branching program on at most
r vertices, we can obtain a layered ABP on exactly r vertices com-
puting §(y, z) by adding isolated vertices. Let A(y, z) € F[y, z]™"
be the matrix obtained by applying Lemma 3.13 to (7, z). Extend
A(y, z) to an n X m matrix by adding ones along the main diagonal
and zeroes elsewhere. Then we have

f(fl,l(A@, Z)’ 8)7 R] fn,m(A@7 Z)’ {;‘))
= e9a(Ko Ko (A, 2)) + O(e7)

01
=elq]—[deto, (A, 2)(0,.[0,]) + O(TH)
i=1

=cla | | deto,(A@ Dio,110) | | deto, (AT 1)
iio; >r i:o;<r
+0(e71)
=l I_[(1 + §(7, 2)) + O(7™).
i:o;>r
Let h(y,¢,2) = f(€1,1(A(Y, 2),€), ..., Cn,m(A(Y, 2),¢)) and let t =
|{i : o; > r}|. The above establishes (7, ¢, z) = e9a(1 + §(y, z))* +
O(e9™).

400

Robert Andrews and Michael A. Forbes

Suppose char(F) = 0. Under the substitution y; +— § - y; and
z — §, we have

h(S -F.e,8) = ela(1 + (5 - 5., 8)) + O(e2*)
= e9a(1 + 598947, 1))" + 0(e7*)
= e%a(1 + 6989g@))! + 0(£7*1)

t
=l)’ (:)51"0‘6%(-‘?)9@)" +0(e9)
i=0

= e90 + £9598 9 q1g(y) + O(£9529°89)) 4 O(e7*1).

Performing the substitution

8}—>€N

S ¢
for N sufficiently large yields

he-7,eN,e) = eWN o + INT8W) grg(7) + O(eIN +deB9)+1),
The desired f-oracle circuit for g is then given by

_ h(£~_,sN,£)—€qNa _
o(y) = gz Nrdeg@rg - I®) + 00

If instead char(F) = p > 0, the above proof only needs to be
modified in the case that p divides t. Let k € N be the largest natural
number such that pk divides t and write ¢t = pkb. In this case, we
instead get

WG, ,8) = e9a+e9598DP" gbg(m)P" +0(e952 48P) 10911,

Again, for N sufficiently large, we obtain an f-oracle circuit for g
via

B h(e-7,eN,e) —eNa

%]
gqN+deg(9)P ab

— ok
() : =g@P +0().
We now instantiate Theorem 3.15 with the determinant and
iterated matrix multiplication polynomials. These corollaries are
essentially obvious, but seem interesting in their own right.

Corollary 3.16. Let f(X) € Ig,e}n’r be a nonzero polynomial and let

h(X,¢) € F[e][X] be any polynomial such that h(X, €) = f(X)+O(e).
Lett < O(r'/?). Then there is a depth-three h-oracle circuit ® defined
over F(e) with the following properties.

(1) The bottom layer of @ consists of nm addition gates, the middle
layer has a single h-oracle gate, and the top layer has a single
addition gate.

(2) If char(F) = 0, then ® computes det(Y) + O(e).

(3) If char(F) = p > 0, then ® computes dett(Y)pk + O(e) for
somek € N.

ProoOF. Mahajan and Vinay [51, Theorem 2] constructed a lay-
ered ABP on O(t%) < r vertices that computes det;(Y). The corol-
lary then follows from Theorem 3.15. O

Corollary 3.17. Let f(X) € Igf,tn’, be a nonzero polynomial and let

h(X,¢) € F[e][X] be any polynomial such that h(X, €) = f(X)+O0(e).
Let w,d € N satisfy w(d — 1) + 2 < r. Then there is a depth-three
h-oracle circuit ® defined over F(e) with the following properties.
(1) The bottom layer of ® consists of nm addition gates, the middle
layer has a single h-oracle gate, and the top layer has a single
addition gate.
(2) If char(F) = 0, then ® computes IMM,, 4(y) + O(¢).

Ideals, Determinants, and Straightening: Proving and Using Lower Bounds for Polynomial Ideals

(3) Ifchar(F) = p > 0, then ® computes IMMW,d@)Pk + O(e) for
somek € N.

Proor. It is clear that IMM,, 4(y) is computable by a layered
algebraic branching program on w(d — 1) + 2 < r vertices. Theo-
rem 3.15 completes the proof. O

We conclude this section with a remark on the fact that in char-
acteristic p > 0, we only obtain an oracle circuit for a p power of
the target polynomial g(7).

Remark 3.18. LetF be a field of characteristic p > 0.If we interpret
19¢t then the

n,m,r»
appearance of pth powers in the “factors” is not too surprising. Most
results on polynomial factorization [17, 27, 42, 48] only guarantee
a circuit that computes a pth power of a factor if the multiplicity
of this factor is a multiple of p¥ for some k > 0. In fact, if f(x)?
can be computed by a size s circuit, it is open whether f(x) can
be computed by a circuit of size poly(n, deg(f), s), although some
results are known when n is small compared to s [6]. O

Theorem 3.15 as a result on “factoring” a polynomial

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation under
grants CCF-1755921, CCF-1814788, and CAREER award 2047310.

REFERENCES

[1] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. 2015. Hitting-
Sets for ROABP and Sum of Set-Multilinear Circuits. SIAM J. Comput. 44, 3 (2015),
669-697. https://doi.org/10.1137/140975103

Yaroslav Alekseev. 2021. A Lower Bound for Polynomial Calculus with Exten-
sion Rule. In 36th Computational Complexity Conference (CCC 2021) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 200), Valentine Kabanets
(Ed.). Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl, Germany,
21:1-21:18. https://doi.org/10.4230/LIPIcs.CCC.2021.21

Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. 2020.
Semi-Algebraic Proofs, IPS Lower Bounds, and the 7-Conjecture: Can a Natural
Number Be Negative?. In Proceedings of the 52nd Annual ACM Symposium on
Theory of Computing (STOC 2020) (Chicago, IL, USA). Association for Computing
Machinery, New York, NY, USA, 54-67. https://doi.org/10.1145/3357713.3384245
Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka,
and Ben Lee Volk. 2018. Identity Testing and Lower Bounds for Read-k Oblivious
Algebraic Branching Programs. ACM Trans. Comput. Theory 10, 1, Article 3
(2018), 30 pages. https://doi.org/10.1145/3170709

Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. 2015. Determin-
istic polynomial identity tests for multilinear bounded-read formulae. Computa-
tional Complexity 24 (2015), 695-776. https://doi.org/10.1007/s00037-015-0097-4
Robert Andrews. 2020. Algebraic Hardness Versus Randomness in Low Char-
acteristic. In 35th Computational Complexity Conference (CCC 2020) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 169), Shubhangi Saraf (Ed.).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 37:1-
37:32. https://doi.org/10.4230/LIPIcs.CCC.2020.37

Paul Beame, Russell Impagliazzo, Jan Krajicek, Toniann Pitassi, and Pavel
Pudlak. 1996. Lower bounds on Hilbert’s Nullstellensatz and propositional
proofs. Proceedings of the London Mathematical Society 73, 3 (1996), 1-26.
https://doi.org/10.1112/plms/s3-73.1.1 Preliminary version in the 35th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 1994).

Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. 2020. Deterministic
Factorization of Sparse Polynomials with Bounded Individual Degree. 7. ACM 67,
2 (2020), 8:1-8:28. https://doi.org/10.1145/3365667 Preliminary version in the
59th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2018).
Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. 1979.
O(n?7%) complexity for n X n approximate matrix multiplication. Inform.
Process. Lett. 8,5 (1979), 234-235. https://doi.org/10.1016/0020-0190(79)90113-3
Pranav Bisht and Nitin Saxena. 2021. Blackbox identity testing for sum of
speacial ROABPs and its border class. Computational Complexity 30, 8 (2021),
1-48. https://doi.org/10.1007/s00037-021-00209-y

Markus Blaser, Julian Dérfler, and Christian Ikenmeyer. 2021. On the Complexity
of Evaluating Highest Weight Vectors. In 36th Computational Complexity Confer-
ence (CCC 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 200),

[2

—

3

=

[4

=

[10]

(11

401

[12

(13

[14

[16

(17

(18

[19

[20

[21

[22

[24

[25

[27

[28

[29

[31

[32

]

]

STOC 22, June 20-24, 2022, Rome, Italy

Valentine Kabanets (Ed.). Schloss Dagstuhl — Leibniz-Zentrum fir Informatik,
Dagstuhl, Germany, 29:1-29:36. https://doi.org/10.4230/LIPIcs.CCC.2021.29
Peter Birgisser. 2000. Completeness and Reduction in Algebraic Complexity Theory.
Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04179-6
Peter Buirgisser. 2004. The complexity of factors of multivariate polynomials.
Foundations of Computational Mathematics 4, 4 (2004), 369-396. https://doi.org/
10.1007/s10208-002-0059-5

Peter Biirgisser, Michael Clausen, and M. Amin Shokrollahi. 1997. Algebraic com-
plexity theory. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], Vol. 315. Springer-Verlag, Berlin. xxiv+618
pages. https://doi.org/10.1007/978-3-662-03338-8 With the collaboration of
Thomas Lickteig.

Sam Buss, Russell Impagliazzo, Jan Krajicek, Pavel Pudlak, Alexander A. Razborov,
and Jifi Sgall. 1996. Proof complexity in algebraic systems and bounded depth
Frege systems with modular counting. Computational Complexity 6 (1996), 256~
298. https://doi.org/10.1007/BF01294258

Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. 2019. Closure of VP under
taking factors: a short and simple proof. https://doi.org/10.48550/arXiv.1903.
02366 arXiv:1903.02366

Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. 2019. Closure Results for
Polynomial Factorization. Theory of Computing 15, 13 (2019), 1-34. https:
//doi.org/10.4086/toc.2019.v015a013 Preliminary version in the 33rd Annual
Computational Complexity Conference (CCC 2018).

Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. 1996. Using the
Groebner Basis Algorithm to Find Proofs of Unsatisfiability. In Proceedings of the
28th Annual ACM Symposium on Theory of Computing (STOC 1996) (Philadelphia,
Pennsylvania, USA). Association for Computing Machinery, New York, NY, USA,
174-183. https://doi.org/10.1145/237814.237860

David A. Cox, John Little, and Donal O’Shea. 2015. Ideals, varieties, and algorithms
- an introduction to computational algebraic geometry and commutative algebra (4
ed.). Springer.

Corrado de Concini, David Eisenbud, and Claudio Procesi. 1980. Young diagrams
and determinantal varieties. Invent. Math. 56, 2 (1980), 129-165. https://doi.org/
10.1007/BF01392548

Jacques Désarménien, Joseph P. S. Kung, and Gian-Carlo Rota. 1978. Invariant
theory, Young bitableaux, and combinatorics. Advances in Math. 27, 1 (1978),
63-92. https://doi.org/10.1016/0001-8708(78)90077-4

Peter Doubilet, Gian-Carlo Rota, and Joel Stein. 1974. On the foundations of
combinatorial theory. IX. Combinatorial methods in invariant theory. Studies in
Applied Mathematics 53 (1974), 185-216. https://doi.org/10.1002/sapm1974533185
Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. 2021. Demystifying the
border of depth-3 algebraic circuits. In Proceedings of the 62nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2021). 92-103. https:
//doi.org/10.1109/FOCS52979.2021.00018

Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. 2021. Deterministic Identity
Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits. In 36th Compu-
tational Complexity Conference (CCC 2021) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 200), Valentine Kabanets (Ed.). Schloss Dagstuhl
— Leibniz-Zentrum fir Informatik, Dagstuhl, Germany, 11:1-11:27. https:
//doi.org/10.4230/LIPIcs.CCC.2021.11

Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. 2018. Discovering the roots:
uniform closure results for algebraic classes under factoring. In Proceedings of the
50th Annual ACM Symposium on Theory of Computing (STOC 2018). 1152-1165.
https://doi.org/10.1145/3188745.3188760

Zeev Dvir and Amir Shpilka. 2007. Locally decodable codes with two queries
and polynomial identity testing for depth 3 circuits. SIAM J. Comput. 36, 5 (2007),
1404-1434. https://doi.org/10.1137/05063605X

Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. 2009. Hardness-Randomness
Tradeoffs for Bounded Depth Arithmetic Circuits. SIAM J. Comput. 39, 4 (2009),
1279-1293. https://doi.org/10.1137/080735850

Michael A. Forbes. 2016. Some concrete questions on the border complexity of
polynomials. Talk presented at the Workshop on Algebraic Complexity Theory
(WACT), Tel Aviv.

Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. 2014. Hitting
sets for multilinear read-once algebraic branching programs, in any order. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC
2014). 867-875. https://doi.org/10.1145/2591796.2591816

Michael A. Forbes and Amir Shpilka. 2013. Quasipolynomial-Time Identity
Testing of Non-commutative and Read-Once Oblivious Algebraic Branching
Programs. In Proceedings of the 54th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2013). 243-252. https://doi.org/10.1109/FOCS.2013.34
Michael A. Forbes and Amir Shpilka. 2018. A PSPACE Construction of a Hitting
Set for the Closure of Small Algebraic Circuits. In Proceedings of the 50th Annual
ACM Symposium on Theory of Computing (STOC 2018) (Los Angeles, CA, USA).
Association for Computing Machinery, New York, NY, USA, 1180-1192. https:
//doi.org/10.1145/3188745.3188792

Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. 2016. Proof
Complexity Lower Bounds from Algebraic Circuit Complexity. In Proceedings

STOC ’22, June 20-24, 2022, Rome, Italy

[33]

[34

[35]

[36

[37]

[38]

[39

[40]

(41

[42]

[43]

[44

[45

[46]

[47]

[52]

[53

of the 31st Annual Computational Complexity Conference (CCC 2016). 32:1-32:17.
https://doi.org/10.4230/LIPIcs.CCC.2016.32

Joshua A. Grochow. 2020. Complexity in ideals of polynomials: questions on
algebraic complexity of circuits and proofs. Bull. EATCS 130 (2020).

Joshua A. Grochow and Toniann Pitassi. 2018. Circuit Complexity, Proof Com-
plexity, and Polynomial Identity Testing: The Ideal Proof System. J. ACM 65, 6,
Article 37 (Nov. 2018), 37:1-37:59 pages. https://doi.org/10.1145/3230742

Zeyu Guo and Rohit Gurjar. 2020. Improved Explicit Hitting-Sets for ROABPs.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2020) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 176), Jarostaw Byrka and Raghu Meka (Eds.). Schloss
Dagstuhl-Leibniz-Zentrum fir Informatik, Dagstuhl, Germany, 4:1-4:16. https:
//doi.org/10.4230/LIPIcs. APPROX/RANDOM.2020.4

Zeyu Guo, Nitin Saxena, and Amit Sinhababu. 2019. Algebraic Dependencies
and PSPACE Algorithms in Approximative Complexity over Any Field. Theory
of Computing 15, 16 (2019), 1-30. https://doi.org/10.4086/toc.2019.v015a016
Rohit Gurjar, Arpita Korwar, and Nitin Saxena. 2017. Identity Testing for
Constant-Width, and Any-Order, Read-Once Oblivious Arithmetic Branching
Programs. Theory of Computing 13, 1 (2017), 1-21. https://doi.org/10.4086/toc.
2017.v013a002

Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. 2017. Deter-
ministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching
Programs. Computational Complexity 26, 4 (2017), 835-880. https://doi.org/10.
1007/s00037-016-0141-z

Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. 2020. The Surprising
Power of Constant Depth Algebraic Proofs. In Proceedings of the Thirty fifth
Annual IEEE Symposium on Logic in Computer Science (LICS 2020) (Saarbrucken,
Germany). IEEE Computer Society Press, 591-603. https://doi.org/10.1145/
3373718.3394754

Russell Impagliazzo, Pavel Pudlak, and Jifi Sgall. 1999. Lower bounds for the
polynomial calculus and the Grobner basis algorithm. Computational Complexity
8(1999), 127-144. https://doi.org/10.1007/s000370050024

Valentine Kabanets and Russell Impagliazzo. 2004. Derandomizing Polynomial
Identity Tests Means Proving Circuit Lower Bounds. Computational Complexity
13, 1-2 (2004), 1-46. https://doi.org/10.1007/s00037-004-0182-6

Erich Kaltofen. 1987. Single-Factor Hensel Lifting and its Application to the
Straight-Line Complexity of Certain Polynomials. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA.
443-452. https://doi.org/10.1145/28395.28443

Zohar S. Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya Volkovich. 2013.
Deterministic Identity Testing of Depth-4 Multilinear Circuits with Bounded
Top Fan-in. SIAM J. Comput. 42, 6 (2013), 2114-2131. https://doi.org/10.1137/
110824516

Zohar S. Karnin and Amir Shpilka. 2011. Black box polynomial identity testing of
generalized depth-3 arithmetic circuits with bounded top fan-in. Combinatorica
31,3 (2011), 333-364. https://doi.org/10.1007/s00493-011-2537-3

Neeraj Kayal and Shubhangi Saraf. 2009. Blackbox polynomial identity testing for
depth 3 circuits. In Proceedings of the 50th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2009). IEEE Computer Soc., Los Alamitos, CA, 198-207.
https://doi.org/10.1109/FOCS.2009.67

Neeraj Kayal and Nitin Saxena. 2007. Polynomial identity testing for depth 3
circuits. Comput. Complexity 16, 2 (2007), 115-138. https://doi.org/10.1007/
500037-007-0226-9

Adam R. Klivans and Daniel Spielman. 2001. Randomness Efficient Identity
Testing of Multivariate Polynomials. In Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing (STOC 2001) (Hersonissos, Greece). As-
sociation for Computing Machinery, New York, NY, USA, 216-223. https:
//doi.org/10.1145/380752.380801

Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. 2015. Equivalence of Poly-
nomial Identity Testing and Polynomial Factorization. Computational Complexity
24, 2 (2015), 295-331. https://doi.org/10.1007/s00037-015-0102-y

Jan Krajicek. 2019. Proof Complexity. Cambridge University Press.

Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. 2021. Superpolyno-
mial Lower Bounds Against Low-Depth Algebraic Circuits. In Proceedings of the
62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2021).
804-814. https://doi.org/10.1109/FOCS52979.2021.00083

Meena Mahajan and V. Vinay. 1997. Determinant: Combinatorics, Algorithms,
and Complexity. Chicago Journal of Theoretical Computer Science 1997, 5 (1997).
https://doi.org/10.4086/cjtcs.1997.005

Dori Medini and Amir Shpilka. 2021. Hitting Sets and Reconstruction for Dense
Orbits in VP, and XIIX Circuits. In 36th Computational Complexity Conference
(CCC 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 200),
Valentine Kabanets (Ed.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 19:1-19:27. https://doi.org/10.4230/LIPIcs.CCC.2021.19
Daniel Minahan and Ilya Volkovich. 2018. Complete Derandomization of Identity
Testing and Reconstruction of Read-Once Formulas. ACM Trans. Comput. Theory
10, 3, Article 10 (2018), 11 pages. https://doi.org/10.1145/3196836

402

(54

[55

[56

[57

[58

(59

[60

=N
=

[62

[63

[64

[66

[67]

[68]

[69

[70

[71

(72

Robert Andrews and Michael A. Forbes

Ketan Mulmuley and Milind A. Sohoni. 2001. Geometric Complexity Theory I:
An Approach to the P vs. NP and Related Problems. SIAM J. Comput. 31, 2 (2001),
496-526. https://doi.org/10.1137/S009753970038715X

Rafael Oliveira. 2016. Factors of low individual degree polynomials. Compu-
tational Complexity 25, 2 (2016), 507-561. https://doi.org/10.1007/s00037-016-
0130-2

Rafael Oliveira, Amir Shpilka, and Ben Lee Volk. 2016. Subexponential Size
Hitting Sets for Bounded Depth Multilinear Formulas. Computational Complexity
25 (2016), 455-505. https://doi.org/10.1007/s00037-016-0131-1

Shir Peleg and Amir Shpilka. 2020. A Generalized Sylvester-Gallai Type Theorem
for Quadratic Polynomials. In 35th Computational Complexity Conference (CCC
2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 169), Shub-
hangi Saraf (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, Dagstuhl,
Germany, 8:1-8:33. https://doi.org/10.4230/LIPIcs.CCC.2020.8

Shir Peleg and Amir Shpilka. 2021. Polynomial Time Deterministic Identity
Testing Algorithm for 3[3]IIZII[2] Circuits via Edelstein-Kelly Type Theorem
for Quadratic Polynomials. In Proceedings of the 53rd Annual ACM Symposium on
Theory of Computing (STOC 2021). Association for Computing Machinery, New
York, NY, USA, 259-271. https://doi.org/10.1145/3406325.3451013

Toniann Pitassi and Iddo Tzameret. 2016. Algebraic Proof Complexity: Progress,
Frontiers and Challenges. ACM SIGLOG News 3, 3 (Aug. 2016), 21-43. https:
//doi.org/10.1145/2984450.2984455

Alexander A. Razborov. 1998. Lower bounds for the polynomial calculus. Com-
putational Complexity 7 (1998), 291-324. https://doi.org/10.1007/s000370050013
Chandan Saha and Bhargav Thankey. 2021. Hitting Sets for Orbits of Circuit
Classes and Polynomial Families. In Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 207), Mary Wootters and
Laura Sanita (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl,
Germany, 50:1-50:26. https://doi.org/10.4230/LIPIcs. APPROX/RANDOM.2021.50
Rahul Santhanam and Iddo Tzameret. 2021. Iterated Lower Bound Formulas: A
Diagonalization-Based Approach to Proof Complexity. In Proceedings of the 53rd
Annual ACM Symposium on Theory of Computing (STOC 2021). Association for
Computing Machinery, New York, NY, USA, 234-247. https://doi.org/10.1145/
3406325.3451010

Ramprasad Saptharishi. 2019. A survey of lower bounds in arithmetic circuit
complexity. https://github.com/dasarpmar/lowerbounds-survey

Shubhangi Saraf and Ilya Volkovich. 2018. Black-Box Identity Testing of Depth-4
Multilinear Circuits. Combinatorica 38 (2018), 1205-1238. https://doi.org/10.
1007/s00493-016-3460-4

Nitin Saxena and C. Seshadhri. 2011. An almost optimal rank bound for depth-
3 identities. SIAM J. Comput. 40, 1 (2011), 200-224. https://doi.org/10.1137/
090770679

Nitin Saxena and C. Seshadhri. 2012. Blackbox identity testing for bounded
top-fanin depth-3 circuits: the field doesn’t matter. SIAM J. Comput. 41, 5 (2012),
1285-1298. https://doi.org/10.1137/10848232

Nitin Saxena and C. Seshadhri. 2013. From Sylvester-Gallai configurations to
rank bounds: improved blackbox identity test for depth-3 circuits. J. ACM 60, 5
(2013), 33:1-33:33. https://doi.org/10.1145/2528403

Jacob T. Schwartz. 1980. Fast Probabilistic Algorithms for Verification of Poly-
nomial Identities. J. ACM 27, 4 (1980), 701-717. https://doi.org/10.1145/322217.
322225

Amir Shpilka. 2019. Sylvester-Gallai Type Theorems for Quadratic Polynomials.
In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC
2019) (Phoenix, AZ, USA). Association for Computing Machinery, New York, NY,
USA, 1203-1214. https://doi.org/10.1145/3313276.3316341

Amir Shpilka and Ilya Volkovich. 2015. Read-once polynomial identity testing.
Computational Complexity 27 (2015), 477-532. https://doi.org/10.1007/s00037-
015-0105-8

Amir Shpilka and Amir Yehudayoff. 2010. Arithmetic Circuits: A survey of recent
results and open questions. Foundations and Trends in Theoretical Computer
Science 5, 3-4 (2010), 207-388. https://doi.org/10.1561/0400000039

Amit Sinhababu and Thomas Thierauf. 2020. Factorization of Polynomials Given
By Arithmetic Branching Programs. In Proceedings of the 35th Annual Compu-
tational Complexity Conference (CCC 2020) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 169), Shubhangi Saraf (Ed.). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, Dagstuhl, Germany, 33:1-33:19. https://doi.org/10.4230/
LIPIcs.CCC.2020.33

Leslie G. Valiant. 1979. Completeness Classes in Algebra. In Proceedings of the
11th Annual ACM Symposium on Theory of Computing (STOC 1979) (Atlanta,
Georgia, USA). Association for Computing Machinery, New York, NY, USA,
249-261. https://doi.org/10.1145/800135.804419

Finn Wiersig. 2020. Sparse Polynomials in Polynomial Ideals.

Richard Zippel. 1979. Probabilistic algorithms for sparse polynomials. In Pro-
ceedings of the International Symposium on Symbolic and Algebraic Computation,
EUROSAM 1979. 216-226. https://doi.org/10.1007/3-540-09519-5_73

	Abstract
	1 Introduction
	1.1 The Complexity of Ideals
	1.2 Polynomial Identity Testing
	1.3 The Ideal Proof System
	1.4 Our Results
	1.5 Organization

	2 Preliminaries
	3 Hardness of Determinantal Ideals
	3.1 Bideterminants and the Straightening Law
	3.2 Transforming to a Single Bideterminant
	3.3 Projecting to the Determinant

	Acknowledgments
	References

