
A Secure Software Engineering Design Framework
for Educational Purpose

Abel A. Reyes Angulo1, Xiaoli Yang1, Quamar Niyaz1, Sidike Paheding2, Ahmad Y Javaid3
1Electrical and Computer Engineering, Purdue University Northwest, IN 46323

2Applied Computing, Michigan Technological University, MI 49931
3Electrical Engineering and Computer Science, The University of Toledo, OH 43606
{areyesan, yangx, qniyaz}@pnw.edu, spahedin@mtu.edu, ahmad.javaid@utoledo.edu

Abstract—Ensuring software security is a critical task for a
deliverable software system in today’s world, and its proper
implementation guarantees the quality and security of the infor-
mation ingested, stored, and processed by the system. It is imper-
ative to introduce computer science and computer engineering
students (CS/CE) with the secure software design practices early
in their curriculum. This approach will help them understand
fundamentals of secure programming, vulnerabilities in software
systems, and secure software development before joining the
industry workforce. In this paper, we propose an educational
framework that integrates software security concepts in a soft-
ware engineering design course. We envision that the framework
will engage CS/CE students applying security principles and
practices in different phases of the software development life cycle
(SDLC) process. Our work focuses on review of common security
requirements, policies, and mechanisms related to specific use
cases as well as how those requirements are defined during the
software design.

Index Terms—software engineering, software development life
cycle, software security, secure design.

I. INTRODUCTION

One of the primary reasons that adversaries discover and
exploit vulnerabilities in various software systems is the lack
of adoption of security principles and practices in program-
ming and software design [1]. According to Taylor and Kaza
[2], most of the successful attacks on federal computers in
the United States are resulted from software bugs and poor
quality of software, highlighting the fact that the poor quality
of delivered software in terms of security is a concern, and
the industry is in dire need of professionals with strong
knowledge of secure software design and development. It
is critical to integrate secure coding practices at the early
stages of programming training for CS/CE students in order
to academically train those professionals. According to Chi
et al. [3], students in programming classes often associate
their goals with the functionality of the software they create,
paying little attention to how the code may fail or produce
improper results. It is necessary to embrace security practices
into the entire software development process, i.e. software
development life cycle (SDLC). Looking at the recent growth
in software security issues, it is critical in the software industry
that embedding security into a system during its design and
development phases is better than adding security into a
finished product. According to Conklin and Dietrich [4], it
is essential to teach students secure programming techniques

during their first interaction with programming rather than
change their programming style later, and encourage students
to adopt these good programming practices throughout their
college education. It adds a training component to the CS/CE
education exposing students to real-world security problems
such as software vulnerabilities and teaching them how to miti-
gate those vulnerabilities without compromising the software’s
functionality. This is important for increasing the knowledge
and skills of future workforce in software development in-
dustry [3]. In this paper, we present a secure software design
framework for educational purposes to train CS/CE students
incorporating security policies and mechanisms into software
design and development. The primary goal of this project
is to promote secure software development in the CS/CE
undergraduate curriculum.

The rest of the paper is structured as follows. Section
II presents a summary of related work in secure software
design. Section III discusses the proposed framework for im-
plementing security in the SDLC. In Section IV, the proposed
framework is illustrated using a software design case study.
Finally, Section V concludes the paper with a brief overview
of future enhancement of the framework.

II. RELATED WORK

This section briefly reviews previous efforts towards secure
software development and discusses the motivation of this
work. All the works discussed in this section share a common
premise – the importance of including secure components
during the software development phase.

The Unified Modeling Language (UML) [5] assists software
engineers during the software design phase, but it does not
offer features to integrate security in the design. In order to
bring the security features in the software design, a UML
extension called UMLpac was proposed by Peterson et al.
[6]. It supports security packages that maintain all abstraction
levels and the original system diagram while providing com-
prehensive security features. In this work, we incorporate the
process described in UMLpac to integrate security components
during the static modeling of the case study used in our
framework. Jurjens et al. [7] introduced a method, UMLsec,
for effectively developing behavioral and structural UML
design models, which are based on security requirements. Each
step in the method is supported by model generation rules in

375

978-1-6654-8009-3/22/$31.00 ©2022 IEEE

the UML profile so that security requirements become less
fallible, regular, and systematic engineering activities. Hatebur
et al. [8] described the systematic approach of UMLsec step-
by-step through the implementation of a case study. In our
work, we followed a few steps from their implementation, such
as the use of functional requirements, security requirement
and security domain knowledge tables to design the dynamic
models with security components for our case study.

Lodderstedt et al. [9] incorporated security requirements
into UML, where they proposed a technique called Se-
cureUML to represent access control and authorization in
the UML. This technique can be used to supplement the
implementation of other frameworks, such as UMLpac or
UMLsec. Doan et al. [10] proposed a UML framework for
security design and constraints checking that includes role-
based control, mandatory access control, and life time sen-
sitivity. The resulting framework encourages secure software
design by tracking security requirements as UML elements are
added, modified, and removed. Georg et al. [11] proposed an
aspect-oriented modeling that allows developers to encapsulate
security concerns into a design in an effective and systematic
manner. The authors have emphasized the illustration of secu-
rity concerns in various UML models in their work.

The reviewed works assisted us in identifying the impor-
tance of security implementation during the design phase of
software development as well as provided us with the concep-
tual tools to develop this secure software design framework
for an educational purpose in undergraduate-level software
engineering courses.

III. THE PROPOSED FRAMEWORK

In this section, we describe our educational framework for
implementing security in the SDLC including security require-
ments and security packages in the design phase. The SDLC
consists of various phases including requirements gathering,
design, implementation, testing, and deployment of a software
system. There are various SDLC models (e.g., waterfall, spiral,
and agile) used for software development based on the project
size and complexity; majority of them share the common
phases. There is a need to build secure software from its
inception as it will incorporate security into each SDLC phase;
failing to do so may bring security flaws and changes must be
made once the software is deployed, which is an additional and
time-consuming task. Following are the most common phases
identified within various SDLC models [12]:

1) Requirements analysis: A requirement is defined as a set
of tasks the software should be able to do. The software
requirements are gathered, listed, and analyzed during
this phase.

2) Design: This phase defines how to design the system to
meet requirements gathered in the previous phase.

3) Implementation: In this phase, software developers im-
plement the design.

4) Testing/Assurance: During this phase, the testing or
quality assurance team ensures that the implementation

does what it is supposed to do in an efficient and error-
free manner.

Fig. 1. SDLC phases integrated with security related tasks.

The proposed educational framework will engage students
to include security components for each SDLC phase to
make their developed software robust and reduce security
vulnerabilities in the software. Fig. 1 depicts a schematic of
the key SDLC phases that will be enhanced for secure software
development. In the figure, column (a) lists the SDLC phases,
column (b) lists the tasks for each phase in a regular SDLC,
and column (c) shows the additional tasks to be completed in
each phase as part of the secure SDLC.

In this preliminary work, we focused on including security
components for the first two phases of SDLC, i.e. requirements
analysis and software design. The tasks during the require-
ments analysis phase includes not only functional requirements
gathering, but also determining security requirements based
on the functional ones. These requirements include security
policies such as confidentiality, integrity, and availability along
with the supporting mechanisms such as authentication, au-
thorization, and auditing [13]. The policies control sensitive
information from being leaked to unauthorized parties (con-
fidentiality and privacy), ensure that sensitive information is
not tampered by unauthorized parties (integrity) and a system
is responsive to requests (availability). The policies must be
supported by mechanisms; for example, an authentication
mechanism helps to prevent unauthorized users from using the
software. Furthermore, security requirements are influenced
by external factors such as general policy concerns resulting
from country regulations or organizational values. Following
the listing of security requirements, abuse cases are used
to identify tasks that a software system is not supposed to
perform [14].

During the design phase, the static and dynamic models will
be created using two approaches: architectural risk analysis
and security-oriented design. An architectural risk analysis,
also known as threat modeling, attempts to identify weakness
and vulnerabilities during the design phase so that developers
should be aware of cybersecurity issues and how they can
be exploited by different types of users during the design
phase [15]. The security-oriented design approach, also known
as threat-driven design, consists in the extended analysis

376

of system requirements, covering use cases, misuse cases
and mitigation use case [16]. It requires developers eliciting
different responses from various users, including normal users,
malicious users, and attackers, in dynamic models. Fig. 2
depicts the tasks required for the two phases of SDLC with
security components.

Fig. 2. Requirements and design phase in SDLC with secure component.

In our educational framework, we use UMLpac [9] and
UMLsec [7] approaches for integrating security in require-
ments analysis and design phases. UMLpac was presented as
an extension of UML with the capability to enable security
features in such a way that they can be easily integrated into
the traditional UML class diagrams. The main idea behind
the implementation of UMLpac is to enable software require-
ment analysts and designers to layout security components
directly into UML diagrams (i.e. class diagrams) of a system
without loosing the characteristic level of abstraction. On the
other hand, UMLsec was proposed as a profile to develop
and analyze secure system models. UMLsec is based on
elements such as stereotypes, tags, and constraints, which are
used to specify security requirements for a software system.
Stereotypes, in this context, are used to label security-critical
parts, ensure dependent parts, analyze behavior models, and
introduce attack models. The usage of stereotypes is mentioned
in UMLsec to create secure UML models based on security
requirements. The purpose of UMLsec is to identify possible
security vulnerabilities at an early stage in the SDLC.

IV. CASE STUDY FOR THE EDUCATIONAL FRAMEWORK

We incorporate security components in a software design
case study adopted from a case study based textbook on soft-
ware modeling and design [17]. In the educational framework,
secure software development will be illustrated by enhancing
activities involved in the requirement gathering and design
phases of the SDLC. The adopted case study implements

a software for an ATM banking system, which has been
described as follows in the textbook: “A bank provides several
ATMs to its customers that are linked to a centralized server
through Internet. Each ATM has a card reader, display, keypad,
cash dispenser, and receipt printer. Customers can withdraw
money from their accounts, perform balance queries, and
transfer funds to others’ accounts. An ATM operator staff can
start and stop an ATM in order to refill the cash dispenser with
bills and perform maintenance.” The reason for using this case
study is that similar case studies have been discussed in several
learning resources of software engineering design.

A. Requirements gathering

This is the first phase in the SDLC based on the problem
description. It includes the task of functional requirements and
we will include security requirements in it. System require-
ments are represented in a traditional SDLC using a system
context diagram) and a use case diagram, which describe the
functionality and behavior of the system. These diagrams serve
as reference points for the software design phase. Furthermore,
use case diagram is supplemented by the implementation of
activity diagrams that explain how each use case works as a
sequence of activities performed by the user, system(s), or in-
teraction between them. For secure SDLC, we include system
vulnerabilities and tasks that the software is not supposed to
perform in addition to functional requirements. The security
requirements describe potential vulnerabilities of the system
based on functional requirements from the problem description
and they are represented by abuse case diagram, context
diagram with environmental description, security requirement,
and security domain tables.

1) Functional Requirements: A use case diagram graph-
ically depicts the interaction between users and the system
in order to meet functional requirements [18]. The ATM
Banking system’s use case diagram is depicted in Fig. 3 (a).
According to UMLsec a table for functional requirements is
required where developers can list functional requirements
of the software system from the use case description. For
each functional requirement, this table lists the requirement
identifier (e.g. R1, R2, . . . , Rn), description of the require-
ment, list of instances involved in the requirement, and list
of constraints (e.g. physical constraints). Table I displays a
list of functional requirements for the ATM Banking system,
including constraints and the instance references that interact
with the system for each requirement.

2) Security Requirements: Security requirements for
functional requirements are expressed through stereotype
≪complements ≫. They are listed in Table II correspond-
ing to functional requirements mentioned in Table I. These
security requirements should comply with security policies as
a response to system vulnerabilities. For example, as shown
in the first row of Table II, the required integrity supports
the system’s safety and protects the system from any data
manipulation. Based on the corresponding use case diagram,
an abuse case diagram is created, and this captures security
vulnerabilities in the use case diagram. Fig. 3 (a) and (b) show

377

Fig. 3. Use case and Abuse case diagrams of an ATM Banking system

TABLE I
FUNCTIONAL REQUIREMENTS FOR ATM BANKING SYSTEM CASE STUDY

GIVEN IN [17]

Id Requirement ≪RefersTo≫ ≪ Constraints ≫
R1 System should allow

users to withdraw
funds from their
accounts

ATM Customer
and Banking
System

Keypad/Display,
Card Reader,
Banking System,
Cash Dispenser

R2 System should allow
queries from users.

ATM Customer
and Banking
System

Keypad/Display,
Card Reader,
Banking System

R3 A user should be able
to transfer funds from
his/her bank account
to another user’s bank
account.

ATM Customer
and Banking
System

Keypad/Display,
Card Reader,
Banking System

R4 An operator should be
able to add money to
ATM

ATM Operator and
Banking System

Keypad/Display,
Cash Dispenser

R5 An operator should be
able to start ATM

ATM Operator and
Banking System

Keypad/Display,
Banking System

R6 An operator should be
able shutdown ATM

ATM Operator and
Banking System.

Keypad/Display,
Banking System.

the abuse case diagram for the ATM Banking System, which
introduces potential vulnerabilities that an attacker could ex-
ploit in the ATM Banking System and possible mitigation
methods. The assailant is played by another actor intruder.
Each vulnerability is represented in orange color use case, and
the mitigation are represented in blue use case. For example,
use case Change PIN is intended to prevent use case Steal
PIN from users; thus, associated with actor ATM customer,
who will perform/request this mitigation use case via the ATM
Banking System.

B. Software Design: Static Modeling
In this section of the design phase, we leverage UMLpac

[9]. UMLPac integrated the concept of security tile/package
to maintain the level of abstraction between the system
implementation and security features. It has been analyzed
that security tiles/packages work well for object-oriented
systems. UMLpac employs a stereotype construct known as
≪security package≫ to modify class diagrams to rep-
resent security features. There are three stereotype attributes
in it that should be highlighted: ≪security tile≫,
≪risk factor≫, and ≪security descriptor≫.
A security tile defines a security package’s security descriptor.
A risk factor is a value assigned by system analysts based on
the available information about vulnerabilities. This value can
be a discrete number or a label from a finite set (i.e. dangerous,
harmless, regular). The type of security descriptor identifies
what information is in the security tile (e.g. principles, sur-
vivability, and accountability, third-party software and rules).

Fig. 4 depicts an example of a security tile called Data
Backup, which will be linked to the secure package Data
Backup and used in class diagrams with the secure component.
A class diagram is a type of static diagram that depicts the
structure of a system by illustrating classes and their attributes,
operations, and object relationships [18]. The entities that
interact for one of the listed requirements (R1) in Table
I are shown in Fig. 5 for the Withdraw Funds use case.
To ensure information security and promote security policies
such as confidentiality, integrity, and availability, the following
security packages will be related to this use case:

• Validate Input: to prevent unauthorized access during the
customer input process.

378

TABLE II
SECURITY REQUIREMENTS FOR THE ATM BANKING SYSTEM

No. Requirement ≪Complements≫ ≪RefersTo≫ ≪Constraints≫/Mechanism
1 ATM configuration should be pro-

tected from modification for cus-
tomers against attackers or ATM op-
erator should be informed.

R4, R5, R6 Configuration is asset, ATM Banking
system knows asset, ATM Operator
is stakeholder, against Attacker

Terminal/Authentication
mechanism i.e., MAC
(Message Authentication
Code).

2 PIN should be protected to be stolen
or guessed by an attacker for a cus-
tomer.

R1, R2, R3 Shared keys are assets, ATM cus-
tomer is stakeholder, against Attacker

Terminal/key exchange (KE)

3 ATM customer should be able to
cancel cards to avoid unauthorized
use.

R1 Card reader is asset, ATM customer
is stakeholder, against Attacker.

Card reader/encryption

4 System should be protected against
potential break into the ATM.

R3 Machine is asset, ATM operator is
stakeholder, against Attacker.

Machine/Authentication

5 System should provide the ability to
work consistently until failure, and
recovery to the most recent working
state.

R5, R6 Machine is asset, ATM customer is
stakeholder, against Attacker.

Machine/Auditability

6 System must avoid the injection of
improper data/script in the input
fields

R1, R2, R3 I/O devices are assets, ATM cus-
tomer is stakeholder, against At-
tacker.

Keypad/input validation

TABLE III
SECURITY DOMAIN KNOWLEDGE TABLE FOR THE ATM BANKING SYSTEM

No. Requirement ≪Complements≫ ≪RefersTo≫ ≪Constraints≫/Mechanism
1 System should protect the configura-

tion through a proper authentication
of the users and the authorization of
privileges according to each of their
roles.

R4, R5, R6 System is assets, ATM customer and
operator are stakeholder, against At-
tacker

Authentication/KE.

2 Communication between system and
database should be protected against
impersonation cases from attackers.

R1, R2, R3 System and database are assets, users
are stakeholders, against Attacker

Encryption/KE.

3 System must record and administer
the Log activities from the user for
auditability purposes.

R1, R2, R3 Machine is asset, ATM customer and
Operator are stakeholder, against At-
tacker.

Accountability/Log
Management

4 System must constantly Backup the
most recently working state to re-
cover from failure.

R5, R6 ATM Operator and Machine are as-
sets, ATM Customer is stakeholder,
against attacker.

Database survivability/Backup

Fig. 4. Data backup Security tile

• Audit Logger: to ensure integrity of the data for audit
purpose.

C. Software Design: Dynamic Modeling

This section of the design phase will be adhered with
UMLsec [7]. Sequence diagrams are used for dynamic mod-
eling as they describe how and in which order a group of
objects interact to achieve a goal. Fig. 6 shows a sequence
diagram for the use case Withdraw Funds from the banking
service with security components that employ UMLsec. To
achieve this, the security packages are adopted to mitigate
the identified potential vulnerabilities by the objects high-
lighted as green boxes. For example, to confirm requirement
R1 for authentication and authorization in Security Domain
Knowledge Table III, message 1 sent from the ATMClient
subsystem to the Withdrawal transaction manager business
logic is validated using the mechanism related toValidate
Input security package, the Withdrawal Transaction Manager
is adopting the Validate Input security package. Similarly, to
meet requirement R3 in Table III, log transaction message 1.4
is sent from the Withdrawal Transaction Manager business
logic to the Transaction Log entity using the mechanism

379

Fig. 5. Class diagram listing entities involved in Withdraw Funds with secure component

Fig. 6. Sequence Diagram: Banking service Withdraw Funds [17] with secure component

related to Audit Logger security package. Transaction Log is
adopting attributes of the Logger security package to ensure
auditability of transactions made on the system. In this way,
the sequence diagram for Withdrawal Funds use case with
UMLsec depicts the communication of various entities during
the withdrawal of funds, which is combined with the security
package required to mitigate potential intrusions/attackers to
the ATM Banking System.

In the sequence diagram integrated with UMLsec, two
distinct categories of entities are distinguished by color. The
entities in orange color remain unchanged from the original
sequence diagram. The green color entities are modified
entities from the original sequence diagram, which means
they retain their default configuration but have new methods
and/or attributes added to behave as if a security package is
embedded.

380

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we discussed a preliminary educational frame-
work for teaching secure software development that could
be integrated in a software engineering design course for
undergraduate-level CS/CE curriculum to increase security
awareness in students. The framework incorporates security
in the SDLC by modifying the use case diagram, static, and
dynamic design models for an ATM Banking system case
study. This case study will be completed with the integration of
security components into implementation and testing phases.
The enhanced case study will be used for explaining vari-
ous activities for secure software development in a software
engineering course. Two or three more case studies will be
added in the framework that will be given as projects or
hands-on assignments to students for applying the knowledge
gained from the ATM Banking case study. Students’ evaluation
will be performed for the usability of this framework for
introducing secure software practices in software engineering
design courses.

ACKNOWLEDGMENT

This project is based upon work supported by the National
Science Foundation (NSF) grants #2021345 and #2021264.
Any opinions, findings, and conclusions or recommendations
expressed in this work are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES

[1] H. Shahriar and M. Zulkernine, “Mitigating program security vulnera-
bilities: Approaches and challenges,” ACM Computing Surveys (CSUR),
vol. 44, no. 3, pp. 1–46, 2012.

[2] B. Taylor and S. Kaza, “Security injections: modules to help students
remember, understand, and apply secure coding techniques,” in Proceed-
ings of the 16th annual joint conference on Innovation and technology
in computer science education, pp. 3–7, 2011.

[11] G. Georg, I. Ray, and R. France, “Using aspects to design a secure
system,” in Eighth IEEE International Conference on Engineering of
Complex Computer Systems, 2002. Proceedings., pp. 117–126, IEEE,
2002.

[3] H. Chi, E. L. Jones, and J. Brown, “Teaching secure coding practices
to stem students,” in Proceedings of the 2013 on InfoSecCD’13: Infor-
mation Security Curriculum Development Conference, pp. 42–48, 2013.

[4] W. A. Conklin and G. Dietrich, “Secure software engineering: A new
paradigm,” in 2007 40th Annual Hawaii International Conference on
System Sciences (HICSS’07), pp. 272–272, IEEE, 2007.

[5] G. Booch, I. Jacobson, J. Rumbaugh, et al., “The unified modeling
language,” Unix Review, vol. 14, no. 13, p. 5, 1996.

[6] M. J. Peterson, J. B. Bowles, and C. M. Eastman, “Umlpac: an approach
for integrating security into uml class design,” in Proceedings of the
IEEE SoutheastCon 2006, pp. 267–272, IEEE, 2006.

[7] J. Jürjens, “Umlsec: Extending uml for secure systems development,” in
International Conference on The Unified Modeling Language, pp. 412–
425, Springer, 2002.

[8] D. Hatebur, M. Heisel, J. Jürjens, and H. Schmidt, “Systematic de-
velopment of umlsec design models based on security requirements,”
in International Conference on Fundamental Approaches to Software
Engineering, pp. 232–246, Springer, 2011.

[9] T. Lodderstedt, D. Basin, and J. Doser, “Secureuml: A uml-based mod-
eling language for model-driven security,” in International Conference
on the Unified Modeling Language, pp. 426–441, Springer, 2002.

[10] T. Doan, L. Michel, and S. Demurjian, “A formal framework for
secure design and constraint checking in uml,” in Proceedings of the
International Symposium on Secure Software Engineering (ISSSE’06),
Citeseer, 2006.

[12] Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan, “Software
development life cycle agile vs traditional approaches,” in International
Conference on Information and Network Technology, vol. 37, pp. 162–
167, 2012.

[13] R. L. Krutz and R. D. Vines, Cloud security: A comprehensive guide to
secure cloud computing. Wiley Publishing, 2010.

[14] J. McDermott and C. Fox, “Using abuse case models for security
requirements analysis,” in Proceedings 15th Annual Computer Security
Applications Conference (ACSAC’99), pp. 55–64, IEEE, 1999.

[15] G. McGraw, “Software security,” IEEE Security & Privacy, vol. 2, no. 2,
pp. 80–83, 2004.

[16] D. Xu and K. E. Nygard, “Threat-driven modeling and verification of
secure software using aspect-oriented petri nets,” IEEE transactions on
software engineering, vol. 32, no. 4, pp. 265–278, 2006.

[17] H. Gomaa, Software modeling and design: UML, use cases, patterns,
and software architectures. Cambridge University Press, 2011.

[18] B. Dobing and J. Parsons, “How uml is used,” Communications of the
ACM, vol. 49, no. 5, pp. 109–113, 2006.

381

