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Abstract
Denote by qn(G) the smallest eigenvalue of the signless Laplacian matrix of an n-vertex graph

G. Brandt conjectured in 1997 that for regular triangle-free graphs qn(G) Æ 4n
25 . We prove a

stronger result: If G is a triangle-free graph then qn(G) Æ 15n
94 < 4n

25 . Brandt’s conjecture is a
subproblem of two famous conjectures of Erdős:

(1) Sparse-Half-Conjecture: Every n-vertex triangle-free graph has a subset of vertices of
size Á n

2 Ë spanning at most n2/50 edges.
(2) Every n-vertex triangle-free graph can be made bipartite by removing at most n2/25

edges.
In our proof we use linear algebraic methods to upper bound qn(G) by the ratio between the

number of induced paths with 3 and 4 vertices. We give an upper bound on this ratio via the
method of flag algebras.

1 Introduction
We prove a result on eigenvalues of triangle-free graphs which is motivated by the following two
famous conjectures of Erdős.

Conjecture 1.1 (Erdős’ Sparse Half Conjecture [9, 10]). Every triangle-free graph on n vertices

has a subset of vertices of size Án

2 Ë vertices spanning at most n2/50 edges.

Erdős o�ered a $250 reward for proving this conjecture. There has been progress on this
conjecture in various directions [4, 12, 14, 15, 17]. Most recently, Razborov [17] proved that every
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triangle-free graph on n vertices has an induced subgraph on n/2 vertices with at most (27/1024)n2

edges.
For a graph G, denote by D2(G) the minimum number of edges which have to be removed to

make G bipartite.

Conjecture 1.2 (Erdős [9]). Let G be a triangle-free graph on n vertices. Then D2(G) Æ n2/25.

There also has been work on this conjecture [1,3,11,13,18], most recently, Balogh, Clemen and
Lidický [3] proved D2(G) Æ n2/23.5.

Brandt [5] found a surprising connection between these two conjectures and the eigenvalues of
triangle-free graphs. Denote by ⁄n(G) Æ . . . Æ ⁄1(G) the eigenvalues of the adjacency matrix of an
n-vertex graph G. Brandt [5] proved that

D2(G) Ø ⁄1(G) + ⁄n(G)
4 · n (1)

for regular graphs and conjectured the following.

Conjecture 1.3 (Brandt [5]). Let G be a triangle-free regular n-vertex graph. Then

⁄1(G) + ⁄n(G) Æ 4
25 · n.

Towards this conjecture, Brandt [5] proved a bound ⁄1(G)+⁄n(G) Æ (3≠2
Ô

2)n ¥ 0.1715n for
regular triangle-free graphs, which was very recently shown to hold also in the non-regular setting
by Csikvári [7]. Brandt also noted that ⁄1(GHS)+⁄n(GHS) = 0.14n for the so-called Higman-Sims
graph GHS , which is the unique strongly regular graph with parameters (n, d, t, k) = (100, 22, 0, 6).
Recall that an (n, d, t, k)-strongly regular graph is an n-vertex d-regular graph, where the number
of common neighbors of every pair of adjacent vertices is t and the number of common neighbors
of a non-adjacent pair of vertices is k.

The value 4/25 is motivated by the fact that if either of Conjectures 1.1 or 1.2 were true, it
would imply Conjecture 1.3. As observed by Brandt [5], Conjecture 1.1 implies Conjecture 1.3 by
applying the following version of the Expander Mixing Lemma for a set S µ V (G) of size n/2 with
e(S) Æ n2/50.

Lemma 1.4 (Bussemaker-Cvetković-Seidel [6], Alon-Chung [2]). Let G be an n-vertex d-regular

graph. Then, for every S ™ V (G), we have

e(S) Ø |S| · |S|d + (n ≠ |S|)⁄n(G)
2n

.

Given a graph G, denote by Q = A + D the signless Laplacian matrix of G, where D is the
diagonal matrix of the degrees of G and A is the adjacency matrix of G. Let qn(G) Æ . . . Æ q1(G)
be the eigenvalues of Q. By considering the signless Laplacian matrix, De Lima, Nikiforov and
Olivera [8] extended (1) beyond regular graphs as follows.

Theorem 1.5 (De Lima, Nikiforov and Olivera [8]). For every n-vertex graph G we have

D2(G) Ø qn(G)
4 · n.
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By Theorem 1.5, if Conjecture 1.2 holds then qn(G) Æ 4n

25 for every triangle-free n-vertex graph
G. Motivated by this observation De Lima, Nikiforov and Olivera [8] proposed investigating upper
bounds on qn(G), and proved qn(G) Æ 2n

9 for n-vertex triangle-free graphs G. Our main result is
an improvement of this bound, which solves Conjecture 1.3.

Theorem 1.6. If G is a triangle-free n-vertex graph, then

qn(G) Æ 15
94 · n < 0.1596n.

Note that, if G is d-regular, then ⁄1(G) = d and qn(G) = ⁄n(G) + d = ⁄n(G) + ⁄1(G). Thus
Theorem 1.6 implies that ⁄1(G) + ⁄n(G) < 0.1596n < 4n

25 for every regular triangle-free n-vertex
graph G, confirming Conjecture 1.3 in strong form.

It remains open to determine a sharp upper bound for qn(G)/n for triangle-free n-vertex graph
G. While we only prove Theorem 1.6 with the constant 15

94 ¥ 0.1596, a larger flag algebra com-
putation yields qn(G) < 0.15467n. Also, one can additionally assume that G is regular and use
flag algebras to show a slightly stronger bound qn(G) = ⁄1(G) + ⁄n(G) < 0.15442n. As we believe
neither of these two bounds are sharp (see Section 3), we omit presenting their proofs.

2 Proof of Theorem 1.6
Our proof is based on bounding the ratio between the number of induced paths with 3 and 4 vertices
in triangle-free graphs. On one hand, we upper bound qn(G) in terms of this ratio in Lemma 2.1
and Corollary 2.2. On the other hand, Lemma 2.3, which is proved using flag algebras, gives a
su�ciently good bound on the ratio.

For an edge e = xy of a graph G, let mxy be the number of edges uv œ E(G) such that
ux, vy œ E(G). For a vertex x œ V (G), let wx to be the number of walks of length two starting in
x, i.e. wx is the number of edges uv œ E(G) such that xu œ E(G).

Lemma 2.1. If G is an n-vertex triangle-free graph and xy œ E(G), then

(deg(x) + deg(y)) · qn(G) Æ wx + wy ≠ 2mxy . (2)

Proof. Define a vector z = (zv)vœV (G) œ RV (G) by

zv =

Y
__]

__[

+1, if xv œ E(G),
≠1, if yv œ E(G),
0, otherwise.

The vector z is well-defined since G is triangle-free. Also note that ÎzÎ2 = deg(x) + deg(y). Let Q
be the signless Laplacian matrix of G. We have

zT Qz =
ÿ

u,vœV (G)
Quvzuzv =

ÿ

uœV (G)
(zu)2 deg(u) + 2 ·

ÿ

uvœE(G)
zuzv

= wx + wy + 2 ·
ÿ

uvœE(G)
zuzv = wx + wy ≠ 2mxy,
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where in the last equality we used that G is triangle-free. Since Q is symmetric, qn(G) is upper
bounded by the Rayleigh-Ritz quotient of z, i.e.

qn(G) Æ zT Qz

ÎzÎ2 = wx + wy ≠ 2mxy

deg(x) + deg(y) ,

as desired. ⇤

A map Ï : V (H) æ V (G) is a strong homomorphism from a graph H to a graph G if for every
pair of vertices u, v œ V (H) we have uv œ E(H) if and only if Ï(u)Ï(v) œ E(G). Let homs(H, G)
denote the number of strong homomorphisms from H to G. Let Pk denote the k-vertex path.
Summing the bound from Lemma 2.1 over all the edges of G yields the following.

Corollary 2.2. If G is an n-vertex triangle-free graph, then

homs(P3, G) · qn(G) Æ homs(P4, G) . (3)

Proof. First, note that
ÿ

xyœE(G)
(deg(x) + deg(y)) =

ÿ

xœV (G)
deg2(x) = homs(P3, G), (4)

where in the last equality we used that G is triangle-free. Meanwhile,
q

xyœE(G)(wx +wy) is equal to
the number of walks of length three in G, i.e. the number of maps „ : {1, 2, 3, 4} æ V (G) such that
{„(1)„(2), „(2)„(3), „(3)„(4)} µ E(G). Similarly, the expression 2

q
xyœE(G) mxy is equal to the

number of maps „ : {1, 2, 3, 4} æ V (G) such that {„(1)„(2), „(2)„(3), „(3)„(4), „(4)„(1)} µ E(G).
It follows that

q
xyœE(G)(wx + wy ≠ 2mxy) counts the maps Â : {1, 2, 3, 4} æ V (G) such that

{Â(1)Â(2), Â(2)Â(3), Â(3)Â(4)} µ E(G) and Â(4)Â(1) < E(G), i.e.,
ÿ

xyœE(G)
(wx + wy ≠ 2mxy) = homs(P4, G). (5)

Summing (2) over all xy œ E(G) and using (4) and (5), we obtain (3). ⇤

Theorem 1.6 is an immediate consequence of the above corollary and the following lemma which
is proved using standard, albeit computer-assisted flag-algebra calculation.

Lemma 2.3. If G is an n-vertex triangle-free graph, then

homs(P4, G) Æ 15n

94 · homs(P3, G). (6)

Proof. Suppose the lemma is false, and let G be an n-vertex triangle-free graph such that

homs(P4, G) = 15n

94 · homs(P3, G) + Án4 , (7)

for some Á > 0. Let G(b) be the b-blowup of G, obtained by replacing every vertex of G by b
pairwise non-adjacent vertices. Then homs(Pk, G(b)) = homs(Pk, G) · bk for k = 3, 4. In particular,
for every b œ N, the graph G(b) satisfies the analogue of (7) as well.

Let us now reformulate (7) in the flag algebra language [16]. Given a graph H, let p
1

, H
2

be the probability that a 3-vertex subset of V (H) chosen uniformly at random induces exactly
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F1 F2 F3 F4 F5 F6

F7 F8 F9 F10 F11 F12

Figure 1: The set F of 5-vertex triangle-free graphs with at least 2 edges.

two edges. Analogously, let p
1

, H
2

be the probability that a randomly chosen 4-vertex subset
induces a path of length 3.

For every fixed ¸-vertex graph F and a k-vertex graph H, only O(k¸≠1) maps V (F ) æ V (H)
are non-injective. Therefore, homs(F, H) = | Aut(F )| ·p(F, H) ·

!
k

¸

"
+O(k¸≠1), so in particular every

k-vertex triangle-free graph H satisfies

homs(P4, H) = k4

12 · p
1

, H
2

+ O
1
k3

2
and homs(P3, H) = k3

3 · p
1

, H
2

+ O
1
k2

2
.

Therefore, the fact G(b) satisfies (7), after multiplying by 564/(bn)4 and rearranging, translates to

lim
bæŒ

30 · p
1

, G(b)
2

≠ 47 · p
1

, G(b)
2

= ≠564Á4.

In order to derive a contradiction, we present a flag algebra computation proving that an inequality

30 · ≠ 47 · Ø 0 (8)

asymptotically holds in the theory of triangle-free graphs. To see that, consider the following
6 flag-algebra expressions, which are all non-negative:

1)
3

13 ·
3

1 32
+

1 32
+

1 32

4
≠ 52 ·

3

1 32
+

1 32
+

1 32

4
+ 84 ·

1 32

42

2)
1
31 ·

1
1

2 3
+ 1

2 3

2
≠ 63 ·

1
1

2 3
+ 1

2 3

2
+ 3 · 1

2 3

22

3)
1
94 ·

1
≠ 55 ·

1
≠ 14 ·

1
+ 58 ·

1

22

4)
1 2

◊
1
2 ·

1 2
+ 10 ·

1 2
≠ 24 ·

1 2

22

5)
1 2

◊
1
14 ·

1 2
+ 19 ·

1 2
≠ 44 ·

1 2

22

6)
1 2

◊
1
9 ·

1 2
≠ 14 ·

1 2
≠ 3 ·

1 2

22

Let F be the set of all the 5-vertex triangle-free graphs with at least 2 edges. A case analysis
yields |F| = 12; see Figure 1. Now observe that averaging over all choices of the labelled vertices in
each of the 6 expressions yields a linear combination of subgraph densities, where every term has
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5 vertices and at least 2 edges. Thus a flag algebra argument yields that the average of the i-th
expression is equal to the i-th coordinate of M · (vF )T , where vF = (F1, . . . , F12) and

M = 1
30 ◊

Q

a

R

b

507 2028 0 ≠4056 ≠3549 0 1248 8112 16224 ≠13104 0 21168
0 0 2883 381 961 0 ≠3906 ≠4098 3844 63 19845 0

12100 ≠23688 ≠19140 ≠23620 12172 20184 ≠37248 17486 47664 2956 86730 ≠7392
0 0 6 140 0 0 ≠48 ≠100 0 358 ≠1200 0

196 0 798 196 ≠420 2166 762 ≠1036 ≠2464 ≠702 ≠3080 792
81 0 ≠378 81 54 1176 ≠165 27 ≠108 ≠87 ≠135 279

.

On the other hand, another flag algebra argument yields that the left-hand side of (8) is equal to

3 · F1 + 9 · F3 + 3 · F4 ≠ 17
5 · F5 + 18 · F6 ≠ 34

5 · F7 ≠ 49
5 · F8 + 12 · F9 ≠ 4

5 · F10 ≠ 32 · F11 + 27 · F12.

A tedious yet straightforward calculation reveals the following coordinate-wise inequality
3 1

33 ,
12
209 ,

3
1147 ,

231
163 ,

17
84 ,

12
293

4
· M <

3
3, 0, 9, 3, ≠17

5 , 18, ≠34
5 , ≠49

5 , 12, ≠4
5 , ≠32, 27

4
,

which in turn shows that (8) asymptotically holds in the theory of triangle-free graphs. ⇤

The flag algebra calculations used in the proof of Lemma 2.3 can be independently verified by
a SAGE script, which is available as an ancillary file of the arXiv version of this manuscript.

3 Concluding remarks
As we have already mentioned in the introduction, a significantly larger flag algebra computation
than the one used in our proof yields that qn(G) < 0.15467n for every triangle-free n-vertex graph.
Similarly, assuming that G is regular allows us to show ⁄1(G) + ⁄n(G) < 0.15442n. On the other
hand, our method will be able to get neither of the coe�cients below 42/275 = 0.1527.

Indeed, consider the Higman-Sims graph GHS . It is edge-transitive so mxy = 21 · 6 + 22 for
every xy œ E(GHS), and wx = 222 for every x œ V (G), where mxy and wx are defined as before
Lemma 2.1. Therefore,

wx + wy ≠ 2mxy

(deg(x) + deg(y)) · |V (GHS)| = 2(222 ≠ 21 · 6 ≠ 22)
2 · 22 · 100 = 42

275 ,

for every xy œ E(GHS), and so Lemma 2.1 only yields qn(GHS) Æ 42
275 · |V (GHS)|. However, we

have qn(GHS) = ⁄1(GHS) + ⁄n(GHS) = 0.14 · |V (GHS)|. It might be that qn(G) Æ 0.14n holds for
every triangle-free graph G on n vertices.
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