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Abstract—The rapid pace of the development of artificial
intelligence (AI) solutions is enabled by leveraging foundational
tools and frameworks that allow AI developers to focus on
application logic and rapid prototyping. However, the security
vulnerabilities present in foundation repositories might cause
irreparable damage due to the Al solutions built using these
libraries being deployed in production environments. Our
research leverages source code hosted on the prevailing social
coding platform GitHub to identify vulnerabilities in foundational
repositories commonly used for modern Al development (Linux,
BERT, PyTorch, and Transformers), as well as the Al repositories
that utilize foundation repositories as dependencies. Using an
unsupervised graph embedding approach, we generate graph
embeddings that capture vulnerability information and the
relationships between repositories. Based on these embeddings, we
performed clustering as our downstream task to group similarly
vulnerable repositories. Our research identifies patterns and
similarities between repositories and will help develop effective
mitigation of vulnerabilities present in groups of repositories
based on foundational Al repositories. We also discuss the
implications of identifying such clusters of vulnerable repositories.

Keywords—Artificial Intelligence, machine learning, GitHub,
vulnerability scanning, graph embedding, clustering, open source
software security

I. INTRODUCTION

Artificial intelligence (Al) is "the ability of a machine to
perform cognitive functions that we associate with human
minds, such as perceiving, reasoning, learning, interacting with
the environment, problem-solving, decision-making, and even
demonstrating creativity" [1, p. iii]. Creating computer programs
and machines capable of performing tasks that humans are
naturally capable of imparts cognitive capabilities to machines
such as sensing, comprehending, acting, and learning [2, 3].
Within Al, machine learning (ML) is an umbrella term for a set
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of techniques and tools that help computers learn and adapt on
their own [4, 5]. A resurgence in Al use is attributed to the
subclass of machine learning known as deep learning (DL),
because of its advances and phenomenal successes in fields such
as computer vision, boosting its application across multiple
industries [6].

Al research finds itself in the third boom of its history, fueled
by increased funding, scientific breakthroughs, and widespread
public speculation about the scope and impact of these
breakthroughs [7]. AI’s use in production business systems is
increasing rapidly, with estimates that it may increase the global
GDP by $15.7 trillion by 2030 [8]. Applications of Al are
becoming ubiquitous across financially critical business
processes, safety-critical systems like transportation and
medicine, as well as business applications, making the reliability
and safety of its performance essential [9]. New machine
learning methods have revolutionized many industries,
including smart healthcare, financial technology, and
surveillance [10].

The rapid development of applied Al-based solutions across
many domains has been made possible due to foundational
open-source libraries and DL frameworks available on GitHub,
such as Torch, TensorFlow, and transformers [11]. These
frameworks accelerate Al development since they have pre-
implemented neural network layers and can allow developers to
focus on the application of the method. Therefore, they can build
models by training them on specific use cases without worrying
about low-level implementation such as input parsing, matrix
operations, or optimization [12]. However, one downside of the
rapid and passionate implementation of Al applications is
overlooking the software security vulnerabilities present in
foundational libraries. These repositories are often referred to
(i.e., depended on) when many Al researchers are developing
their models. As such, vulnerabilities (e.g., insecure coding
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practices, secrets such as passwords, and API keys) within these
foundational repositories could be propagated to applications
utilizing them [12]. Exploiting these issues can lead to software
supply chain cyber-attacks and significant information and
financial losses [13-16].

In this research, we aim to identify vulnerable clusters of
repositories that depend upon foundational repositories
commonly used in the Al model development process (e.g.,
Linux, BERT, PyTorch, Transformers). We focus on GitHub,
one of the most prominent host of publicly available Al and ML
software, with 700 Al tools (i.e., frameworks and libraries) and
4,524 applied Al repositories hosted in 2020 [17]. Further, as
determined by the number of stars, i.e. a measure of popularity
on GitHub, foundational machine learning repositories comprise
6 of the 10 most popular repositories [18]. We use a sample of
207 repositories that had forked the four foundational
repositories and conduct a vulnerability assessment on these
repositories using an open-source static application security
testing (SAST) tool. We represent the relationships between the
repositories as a graph and utilize vulnerability assessment
results as nodal features. A downstream clustering task identifies
four distinct clusters of repositories.

The remainder of this paper is organized as follows. First,
we review the literature on vulnerabilities in foundational
GitHub repositories and graph embedding techniques. Second,
we present our research gaps and questions. Third, we describe
our methodology. Fourth, we summarize our results. Finally, we
discuss the implications of our research and future work.

II. PRIOR RESEARCH

To set the foundation for this research, we review two areas
of literature. First, we describe previous research that analyzes
vulnerabilities in foundational GitHub repositories. Next, we
summarize graph embedding techniques that can allow for
identifying similarities between the repositories.

A. Vulnerabilities in Foundational GitHub Repositories

We summarize selected studies related to vulnerability
analysis in foundational libraries and repositories on GitHub,
specifically ML/ DL frameworks. Early research sought to
identify vulnerabilities within foundational Al repositories
through conventional software bug identification processes. For
example, in an empirical study by Jia et al. [19] on
implementation bugs of the foundational framework, the authors
discovered that TensorFlow (used by over 36K projects) has
bugs similar to traditional software systems. Di Franco et al. [20]
studied bugs in foundational libraries such as NumPy and SciPy
and found that a third of the bugs were related to Numeric.
Focusing on a broader array of foundational repositories, Guo et
al. [21] systematically study the impact of four DL frameworks,
i.e., TensorFlow, PyTorch, CNTK, and MXNET, on software
development and deployment processes.

Despite revealing essential insights, the studies above did not
examine the contents within the vulnerable repositories to
identify potential vulnerabilities. Recent research has utilized
natural language processing (NLP) techniques to study the
discourse concerning foundational ML/ DL repositories. Han et
al. [22] applied Latent Dirichlet Allocation (LDA) to compare
the discussion topics for TensorFlow, PyTorch, and Theano on
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GitHub and Stack Overflow. Harzevili et al. [23] study GitHub
commits in foundational repositories, namely Pandas, NumPy,
Scikit-Learn, PyTorch, and TensorFlow, that mention CVEs
present in the National Vulnerability Database (NVD).
Following a similar approach, some studies have also studied
open-source operating systems and protocols. An exemplar
study is Jimenez et al. [24], which analyzed git commit
messages of the Linux kernel and OpenSSL that reported CVE
numbers. Alfadel et al. [25] studied the time taken to fix
vulnerabilities in PyPi projects. They discovered that Cross-
Site-Scripting (XSS) was the most common vulnerability
reported in PyPi projects.

Dependency networks for DL libraries are crucial to identify
given the rapid development of DL libraries. Recognizing this,
Han et al. [26] explored dependency networks for foundational
DL libraries, specifically TensorFlow, PyTorch, and Theano.
However, this study did not capture the vulnerabilities of each
repository when examining dependency networks. This,
combined with the focus of prior studies examining foundational
Al repositories, underscores the need for an approach that can
examine the repositories based on foundational Al repositories
to identify groups of repositories sharing similar sets of
vulnerabilities that could be remediated in a targeted fashion.

GitHub has several code collaboration and social network
features, and those rich relationships must be captured [27].
Foundational repositories on GitHub are often forked or
declared as dependencies, such that they can be built upon or
used for an applied Al task [28]. These relationships can
effectively be captured using a graph representation, where the
repositories are represented as nodes, and relationships between
them, such as forks and dependencies, are represented as edges.
The generation of these networks can enable downstream tasks
such as clustering [29]. Facilitating these tasks requires a
mechanism to automatically represent each node as a low-
dimensional feature vector (i.e., embedding). Therefore, we
review the principles of graph embedding techniques in the
following sub-section.

B. Graph Embedding Techniques

Graph embedding methods seek to use a set of functions to
automatically produce a low-dimensional feature vector (i.e.,
embedding) for an aspect of a graph (e.g., node, edge, sub-graph,
etc.). Since we need to capture information about the
repositories, i.e., we need to incorporate features at the nodal
level, we focus on methods that can account for that. Further, the
information in the neighboring repositories is essential when
considering the spread and incidence of vulnerabilities from
foundational repositories. We focus on unsupervised graph
representation learning techniques since we lack labels for the
data and seek to transform graph components into a lower
dimensional vector space while maximally preserving
information about the repositories and the relationships between
repositories [30].

One of the proposed taxonomies to classify graph
embedding methods differentiates techniques into spatial and
spectral categories [31]. Spatial graph embeddings place graphs
in space such that nodes that are connected should be placed near
each other, while nodes that are not connected are placed apart
in the n-dimensional space [32]. On the other hand, spectral
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embedding algorithms preserve network structure by generating
vector representations of nodes from eigenvectors of an
adjacency matrix or the Laplacian matrix [33].

In our review of GCN methods, we provide an overview of
two spatial embedding techniques and one spectral embedding
technique. The two spatial embedding techniques reviewed were
GraphSAGE and DeepGraph InfoMax, and the spectral
embedding technique reviewed was ConvGNN.

e maximizing the information that is common across the
nodes [35].

e ConvGNNs are a representative spectral method that
utilizes graph-based analogs of convolutional
architectures, similar to the domain of signal
processing [36, 37].

For our use case, we use a spatial model and use
GraphSAGE to create graph embeddings. Spatial models are
efficient and flexible, they are more scalable, and are not
limited to operating on undirected graphs [38].

III. RESEARCH GAPS AND QUESTIONS

We identified several research gaps in our literature
review. First, prior research on identifying vulnerabilities in
foundational Al repositories is mostly limited to utilizing
empirical methods, and relationships between the repositories
are not captured when analyzing the vulnerabilities. Second,
most studies rely on developer-reported vulnerabilities, such
as CVE information that is shared in commit messages, and
do not scan the repositories for vulnerabilities. Third,
vulnerability information is not used to identify groups of
repositories that would be very beneficial to mitigate these
vulnerabilities systematically. Based on these gaps, we
propose the following research questions:

e How can we identify vulnerabilities in foundational Al
development repositories on GitHub?
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e GraphSAGE is a general inductive framework that uses
aggregator functions to learn the aggregator feature
information from the node’s local neighborhood for node
embeddings [34].

e Deep Graph InfoMax constructs a graph embedding by
relying on mutual information maximization, i.e.,

e How can we identify groups of repositories that
depend on foundational Al repositories based on their
vulnerabilities?

IV. METHODOLOGY

We present our proposed research framework in Fig. 1.
Research Testbed, Graph Construction, Graph Embedding,
and Downstream Task. We describe each component of the
proposed framework in further detail in the following sub-
sections.

A. Research Testbed

Our initial data collection consisted of three phases to
identify and collect all ML/DL repositories on GitHub from
the Al community: (1) AI GitHub repository identification, (2)
foundational repository identification, and (3) vulnerability
assessment. For the Al GitHub repository identification, we
identified top Al conferences to identify Al papers from the
past two years to collect. We focus on Al models published in
top Al conferences as these are important repositories that will
be used for several applied Al tasks. Next, we extracted
GitHub links from the identified Al papers and downloaded
all associated repositories. Overall, we collected 9,422 paper
PDFs from ICLR, KDD, NeurlPs, AAAI, CVPR, CIKM,
ICML, and SigGraph. From the papers collected in phase 1,
we identified and cloned 3,393 GitHub repositories. Out of the
3,393 repositories, 2,792 have been updated in 2021. This
indicates that a significant portion of the repositories collected
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have seen recent development and are used by a significantly
large community.

The most commonly used language was Python across the
collected GitHub repositories. We sought to identify the top
foundational repositories that the collected GitHub
repositories depended on. In this research, we focus on
vulnerabilities in repositories that utilize widely used libraries
and frameworks. e.g., PyTorch and Transformers [39, 40]. We
also include BERT due to the applicability of large language
models, and Linux, since many machine learning toolboxes
are developed for Linux. We focused on the top four
foundational repositories to help control the scope of our study
and analysis. These repositories are as follows:

e Linux: The Linux kernel repository was created in
2005 and had over 136k stars (a measure of
popularity) on GitHub. As a highly configurable
open-source operating system, a large number of out-
of-the-box ML toolboxes are developed for Linux
[41].

e BERT: BERT is a pre-trained text encoder used for
natural language processing (NLP) tasks [42, 43].
Created in October 2018, it has 32.2k stars on GitHub.

e PyTorch: PyTorch is a foundational ML Python
package that provides tensor computation with GPU
acceleration and deep neural networks [44]. Created
in May 2016, it has 58.9k stars on GitHub.

e Transformers: The transformers library provides
thousands of pre-trained models to perform deep
learning tasks on different modalities such as text,
vision, and audio. It was created in October 2018 and
has 70.4k stars [45].

From our initial collection, we sampled 207 repositories
that had forked the four foundational repositories. We
executed a vulnerability assessment on these repositories
using an open-source static application security testing
(SAST) tool, Bandit [46]. Bandit is a security scanner from
OpenStack [47]. It is specifically designed to find common
security issues in Python code. Bandit scans Python files for
secrets, insecure coding, and attack susceptibilities [48].
Potential security problems it scans for include SQL
injections,  the use of unsafe libraries, the existence of
unreachable code, and bad file permissions [47]. The scanner
returns a severity score for each scanned vulnerability based
on the Common Vulnerabilities and Enumeration (CVE) score
listed in the National Vulnerability Database (NVD). The
results of the vulnerability scans, broken down by severity
level, have been provided in Table 1.

To help protect the privacy of the scanned repositories and
reduce the possibility of them getting attacked, we do not
report the specific vulnerabilities associated with each of the
vulnerabilities. Instead, we present a summary of the
vulnerability assessment results at an aggregate level. The
foundational repositories had a total number of 46 low severity
vulnerabilities, followed by 16 medium vulnerabilities, and no
high severity vulnerabilities. The repositories that depend on
these foundational repositories had a similar distribution,
wherein 856 vulnerabilities were low, 431 fell into the
medium category, and five vulnerabilities were rated as high.

B. Graph Construction

The relationships between the repositories that use the
foundational Al repositories, and the foundational repositories
themselves, can be represented using a bipartite graph. The
motivation behind representing the data as a bipartite graph is
to distinguish between the foundational repositories and the
repositories that build upon the foundational repositories. We
determine edges as the repositories either forking the
foundational repositories or explicitly declaring a dependency
on a foundational repository.

We denote the bipartite graph as G= (U, V, E, F) where G
represents the bipartite graph, U is the node set of all the
foundational repositories, V is the node set of all the other
repositories that depend on the foundational repositories, E is
the edge set of all the edges between the repositories, F is the
feature set that contains the vulnerability scan information.
The feature sets contain the vulnerability tests done on the
repositories. The feature matrix F contains all the vulnerability
information for each repository in our collection and is
formatted as an NxF size matrix where N is the number of
nodes and F is the number of features or vulnerabilities
returned by Bandit (e.g., insecure method, insecure file
permission, potential secret, etc.). Each row in the feature
matrix contains the number of times each vulnerability in our
assessment occurs in the corresponding repository. Metrics for
the constructed graph are shown in Table 2.

TABLE II. GRAPH METRICS AND STATISTICS
Graph Number of Nodes 211
p Number of Edges 213
Level -
Metrics Graph Density 0.1
Connected Components 2
Maximum Degree 169
Node Level Minimum Degree 1
Metrics Average Degree 1.98
Maximum Betweenness 0.9
Average Betweenness 0.08

TABLE L. VULNERABILITY SCANNER RESULTS
Repository Severity Count
Type
Foundational LOW. 46
Repositories Medium 16
P High 0
Low 856
et N
P High 5
TOTAL 1354

Overall, the constructed graph has 211 nodes and 213
edges. The graph density is 0.1. This relatively low graph
density indicates that the repositories have very specific and
limited connections with other repositories. The maximum
degree represents a repository's maximum number of forks
and 169. The average degree, or the number of repositories a
repository is connected to, is 1.98. This indicates that the
graph follows a power-law distribution.
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C. Graph Embedding

For our graph, we used the GraphSAGE method for
generating nodal embeddings [34]. GraphSAGE accounts for
nodal features and operates on undirected graphs. Since it is
an unsupervised method, it allows us to create embeddings
that will facilitate the grouping of repositories based on their
relationships and vulnerabilities without a priori knowledge.
Given a graph, GraphSAGE learns embeddings of the nodes
using only the graph structure and the node features. As such,
it is ideal for our context since there is a lack of ground-truth
datasets and a need to capture the graph structure (repository
relationships) and nodal attributes (vulnerabilities for each
repository).

The working process of GraphSAGE is mainly divided
into two steps. The first performs neighborhood sampling of
an input graph. The second one is learning aggregation
functions at each search depth [34]. The GraphSAGE
embedding process is described in the subsequent paragraphs
in a stepwise manner:

e Context construction: According to GraphSAGE,
nodes that live in the same neighborhood should have
similar embeddings. So, the algorithm has a parameter
k that controls the neighborhood depth. If k is 1, only
the immediately adjacent nodes are considered, if k is
2, the nodes with a distance of 2 are considered, and so
on. Therefore, selecting k is very important in the
GraphSAGE algorithm as increasing the k value can
introduce irrelevant or undesired information sharing
between nodes that can cause a reduction in quality for
the embeddings generated for all the nodes [34].

e Information aggregation: Once the neighborhood is
defined, aggregators are used to accept the information
from the neighborhood as input, and then the
embeddings are generated as the output. The
information aggregation process works as follows: For
each neighborhood until k, a neighborhood embedding
is created based on the aggregator function for every
node and combined with the exiting node embedding.
There can be several aggregators but the pooling
aggregator offers the highest efficiency and
performance. In the pooling aggregator, the
embedding is passed through the neural network layer
to update the node embedding. Each neighbor’s vector
is independently fed through a fully-connected neural
network;  following  this  transformation, an
elementwise max-pooling operation is applied to
aggregate information across the neighbor set [34].
The equation for the aggregation function is given
below (Equation 1), wherein max denotes the element-
wise max operator and ¢ is a nonlinear activation
function.

AGGREGATER™" = max({o(Woo hE, +b), Vi
EN®)}) ®

e Loss function: Finally, to know the weights of the

aggregators and the embeddings we need a

differentiable loss function as we want neighboring
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nodes to have similar embeddings and independent
nodes to have distant embeddings.

J5(z,) = —log (0(2;2,)) — Q
“ By, ~p,108 (0(_2511:,1)) 2

Equation 2 is the loss function for the GraphSAGE
algorithm. In the equation node, u and node v are two
neighbors. The Q in the equation represents a negative
sample. A negative sample means a non-neighbor node. Q is
used to set apart embeddings of the nodes u and v. Lastly, the
6 denotes the sigmoid function [34].

V. RESULTS AND EVALUATION

To evaluate the quality of our graph embeddings generated

Fig. 2. Clustering Results

via GraphSAGE, we conduct a subsequent downstream task
of clustering. The quality of clusters generated from a set of
graph embeddings can be used to identify the utility the
embeddings provide in downstream tasks. In our context, the
aim of conducting clustering as our downstream task is to
identify groups of ML/ DL repositories on GitHub that contain
similar sets of vulnerabilities and identify repositories that are
most similar to foundational ML repositories based on
network characteristics and vulnerability scan information.

We use k-means clustering to identify our graph
embedding clusters, and the Silhouette score and Dunn index
were calculated to evaluate the cluster quality [49]. The
Silhouette score and the Dunn Index are used to measure the
goodness of the split between clusters and are calculated as the
ratio of the smallest inter-cluster distance to the largest intra-
cluster distance [49]. It can range from 0 to infinity, with a
larger value indicating a better clustering split. A silhouette
score ranges between (—1, +1), where a higher value indicates
better matching of a member to its cluster [50]. Using the
elbow method, we identified that the optimal number of
clusters is four (as generated by k-means, a prevailing
unsupervised clustering technique), with a Silhouette score of
0.920 and a Dunn index of 0.271.

A. Clustering Results

Our clustering results are presented in Fig. 2. Each cluster
is color coded, circled, and labeled. Cluster 1 contains 28
repositories, cluster 2 contains 34 repositories, cluster 3
contains 61 repositories, and cluster 4 contains 88 repositories.
In the following paragraphs, we discuss each cluster and
provide the most common vulnerabilities in the cluster.
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Cluster 1 contains two of the four foundational repositories
in our graph, i.e., Linux and BERT. The two most prevalent
vulnerabilities in Cluster 1 are #ry except pass and
subprocess_without _shell_equals_true. try_except pass tests
for a pass in the except block, i.e. the exception is not handled

10

-10

T T T T T T

10 5 0 S5 W 5 B B
X

[51]. subprocess_without _shell equals true tests for the
spawning of a subprocess without using a command shell.
This presents a security issue if appropriate care is not taken
to sanitize any user-provided or variable input. Hackers could
exploit this vulnerability to insert malicious input into shell
commands. Both prevalent vulnerabilities in Cluster 1 have
been classified as low severity by Bandit [51]. Cluster 1 does
not have any medium or high severity vulnerabilities.

Cluster 2 has a total of 34 repositories, and contains the
other two foundational repositories, i.e., PyTorch and
Transformers. The most prevalent vulnerability was
assert_used, or CWE-703, when assert is used to enforce
interface constraints. This is problematic due to these
protections being removed when compiled to byte code [51].
The second-most prevalent vulnerability is blacklist, or
imports that make code susceptible to injection attacks [51].
For example, being susceptible to untrusted data means
hackers could execute data poisoning attacks. These
vulnerabilities are respectively classified as low severity and
medium severity.

Clusters 3 and 4 do not contain any foundational
repositories and have a total of 61 and 88 repositories,

respectively. Bandit discovered that
subprocess_without _shell equals true  was the most
prevalent vulnerability in Cluster 3, while it was

start_process_with_partial _path in Cluster 4.

VI. CONCLUSION AND FUTURE WORK

In this research, we identify vulnerabilities present in
foundational repositories that represent the tools used for Al
development. These include specifically PyTorch, BERT,
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Linux, and Transformers. We analyze the foundational
repositories and scientific Al papers for vulnerabilities and
create a graph representation. Using an unsupervised graph
embedding method, GraphSAGE, we create graph
embeddings, to perform the downstream task of clustering
repositories with similar vulnerabilities. We identify four
different clusters of repositories and characterize the kinds of
vulnerabilities present in the repositories.

We believe our findings can be used to improve the
security of foundational AI development repositories and
provide a targeted way to fix the vulnerabilities. As we
characterize the types of vulnerabilities present in each cluster,
strategies to improve them can be developed for efficiently
remediation of software vulnerabilities. Such remediation
strategies can play an essential role in effectively mitigating
software supply chain vulnerabilities, particularly for AL
Overall, our research contributes to using Al techniques for
security analysis [52-56].

Some directions for future work include using different
graph embedding methods, taking into account a more
significant number of nodal features in the form of the
characteristics of the repositories, and undertaking more
extensive data collection. We also only use a static analysis
tool, Bandit. Given the rapid development of tools that can
potentially dynamically scan for Al-specific vulnerabilities,
we can further explore how software vulnerabilities can be
linked to exploits in Al models. Ultimately, such advances can
help to further shed light on how to improve the security of Al
software development processes.
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