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Adaptive Learning and Sampled-Control for
Nonlinear Game Systems Using Dynamic
Event-Triggering Strategy

Chaoxu Mu
and Zhen Ni

Abstract— Static event-triggering-based control problems have
been investigated when implementing adaptive dynamic pro-
gramming algorithms. The related triggering rules are only
current state-dependent without considering previous values.
This motivates our improvements. This article aims to provide an
explicit formulation for dynamic event-triggering that guarantees
asymptotic stability of the event-sampled nonzero-sum differen-
tial game system and desirable approximation of critic neural
networks. This article first deduces the static triggering rule by
processing the coupling terms of Hamilton-Jacobi equations, and
then, Zeno-free behavior is realized by devising an exponential
term. Subsequently, a novel dynamic-triggering rule is devised
into the adaptive learning stage by defining a dynamic variable,
which is mathematically characterized by a first-order filter.
Moreover, mathematical proofs illustrate the system stability
and the weight convergence. Theoretical analysis reveals the
characteristics of dynamic rule and its relations with the static
rules. Finally, a numerical example is presented to substanti-
ate the established claims. The comparative simulation results
confirm that both static and dynamic strategies can reduce the
communication that arises in the control loops, while the latter
undertakes less communication burden due to fewer triggered
events.

Index Terms— Adaptive dynamic programming (ADP),
dynamic event-triggering, dynamic variable, neural networks
(NNs), nonzero-sum differential game (NZSDG).

I. INTRODUCTION

ITH the increasing complexity of control tasks,
chber—physical systems with multiple control inputs
have attracted great attention and received extensive studies,
such as multiagent systems and multiplayer differential games
[1]-[3]. This class of systems is characterized by several
control loops (or information networks) in which communica-
tion and computational resources are shared; in addition, for
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real-world applications, the controller is usually implemented
digitally by means of microprocessors [2]. Therefore, it makes
significant sense to achieve fewer control actions and infre-
quent communication while guaranteeing system performance,
and hence, the aperiodic event-triggering strategy (ETS) is
proposed to substitute the traditional time-triggering strat-
egy (TTS). This article concentrates on developing a novel
dynamic event-triggering strategy (DETS) for the multiplayer
nonzero-sum differential game (NZSDG) learning-based sys-
tems. A new dynamic variable is introduced into the triggering
rule. In order to clearly elaborate the necessity of this study
and the innovative work, literature survey and related studies
are first introduced in three aspects: the studied system,
learning control, and triggering strategies.

A. Studied System

NZSDG is used to model a system where exists multiple
players (or controllers) with different optimization goals that
are usually named as cost functions. Basar and Olsder [4]
made a comprehensive formulation of this problem and gave
some detailed theoretical analysis. It states that every player
has the equal privilege to share system information and mutual
policies and then unilaterally minimizes its cost subject to
the system dynamics. This article follows the description
in [4], saying the control input is the control policy. Early
studies focused on the mathematical formulation, such as the
literature [5] and the references therein. Recent studies pay
more attention to effectively solving NZS, namely, obtaining
Nash equilibrium, seeing [6]—[12]. It also can be known that,
for a nonlinear NZSDG, its optimal costs correspond to the
coupled Hamilton—Jacobi (HJ) equations. It may not always
be feasible to analytically derive optimal solutions to these
equations, and thus, researchers have begun to adopt a learn-
ing method named adaptive dynamic programming (ADP) to
approximately obtain the ideal equilibrium results.

B. Learning Control

ADP is a branch of reinforcement learning and is increas-
ingly prevalent in the field of optimal control, which adopts
approximation structures, such as neural networks (NNs),
to approximate a nonlinear function by iterative learning
[13]-[17]. Prokhorov et al. [18] and Si and Wang [19] have
illustrated the core idea of this learning technique: a critic
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signal evaluates the current control policy and improves it in
the next cycle, which is easy to implement. Thus, ADP-based
control algorithms and related applications have been heavily
investigated [20]-[26]. For example, Wei er al. [20] devised
the value iterative algorithm for discrete-time systems, and
Esfandiari er al. [23] studied the optimal neurocontroller for
nonaffine systems with constrained inputs. For the optimal
switching problem of the DC-DC buck circuit, the ADP-
based controller was applied to generate the desired voltage
in [25]. In addition, recent algorithm design and specific
implementation have been comprehensively surveyed in [1].
The focus of this article is not on the exploration of new algo-
rithms but on the computational improvement of adaptive critic
algorithm for NZSDG systems. To obtain efficient computation
and transmission, we feel that dynamic event-triggering rules
must be explored. This motivates the following work of
our article.

C. Triggering Strategies

In the abovementioned literature, data sampling and control
updating are both performed in a periodic form, namely
traditional TTS. However, it is desired to keep the con-
troller inactive when the system tends to be stable or the
performance is satisfied [27]-[29]. Tabuada [30] first pro-
posed a static event-triggering strategy (SETS) to manage the
sampling and ensured the system stability in the sense of
input-to-state. Specifically, the author designed a triggering
rule (condition), which latently determined a threshold. Then,
an event occurs when the current error signal exceeds this pre-
designed threshold. This idea inspired most following studies
[31]-[34]. The triggering conditions designed in [31]-[34]
have greatly reduced the total number of sampling while
excluding the instantaneous Zeno behavior. On the other hand,
due to aperiodic communication and intermittent control, ETS
is also gradually attracting attention in learning-based systems.
Recently, some researchers have explored how to introduce
an event generator (EG) when implementing ADP, so as to
ameliorate learning efficiency [35]-[39]. These event-based
ADP algorithms have improved computational performance
without seriously influencing the approximation accuracy, and
NN function approximators have also been presented with a
Zeno-free behavior. In detail, Szanto et al. [35] proposed the
event communication strategy for the strict-feedback system.
The authors [36]-[39] investigated the event-based control
policies for affine nonlinear systems, and their triggering
conditions were derived with the aid of Lipschitz assumptions
for control law or Hamiltonian. It is worth stressing that the
above-discussed ETS are considered as static mainly because
the corresponding triggering rules are only related to the values
of the current state and error signal, without concerning the
previous values.

Admittedly, SETS reduces the redundant transmissions and
updatings compared to TTS, but its rule is still worth improv-
ing. Under this motivation, in [40], by defining an internal
dynamic variable, Girard proposed a new triggering method
termed DETS that generated a larger triggering interval
(the time span between two adjacent events). Moreover,
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it relaxed the stability requirements in [30]. Subsequent studies
also confirmed this conclusion, some representatives, such as
[41]-[44]. For distributed linear multiagent systems, Ge and
Han [41] and Hu er al. [42] achieved formation control and
consensus control based on dynamic triggering communica-
tion, respectively. Their dynamic variables were affected by
the previous values of agents’ states. Moreover, Antunes and
Khashooei [44] explored the application of DETS in linear
quadratic control and checked its advantages by comparison.
The above is another motivation that we study adaptive learn-
ing from the viewpoint of dynamic triggering.

From the literature review and discussions, it can be con-
cluded that there still exist some questions in current studies:
1) existing algorithms for multiplayer NZSDG systems are all
implemented by TTS [6]-[12], where every player’s policy
must be updated in a time-triggering manner; 2) existing
methods in [30], [40], and so on need to theoretically calculate
the minimal triggering interval to avoid the trap of Zeno behav-
ior, which brings design difficulties for triggering rules; and
3) existing event-based ADP methods use SETS to improve the
computational effectiveness. In comparison, DETS is theoreti-
cally valuable and has salient advantages, and thus, it deserves
to explore in learning control. This article addresses these
issues by specializing in a nonlinear two-player NZSDG. The
contributions are condensed as follows.

1) Significantly, by extending our previous work [45] and
[30], static triggering rules are developed for players
reducing their control computation. Because existing
triggering rules may not scale well for an NZSDG
system due to its complicated coupling relations, using
the rules, two players update their control policies simul-
taneously.

2) Delicate theoretical analysis is delivered to explain char-
acteristics of triggering strategies. Theoretical results
certify that, due to fewer events and guaranteed approx-
imations, the dynamic triggering is superior to static
triggering. In addition, the Zeno behavior is effectively
avoided by adding an adjustable term in the triggering
rule.

3) Novel dynamic triggering strategy for approximating
optimal costs and an event communication protocol will
be designed. A mathematically equivalent filter structure
is adopted to generate the dynamic variable, which is
restricted by an exponential decaying signal to keep
nonnegative and can dynamically adjust the threshold.
This is the first treatment that DETS is applied to
adaptive critic learning.

The remainder of this article is arranged as follows.
Section II introduces the background of a two-player NZSDG
nonlinear system and the formulation of event-based control.
Section III shows the critic approximation learning mechanism
with event-based control policies. Section IV designs static
triggering rules and proposes the dynamic triggering rule with
guaranteed stability and convergence. Afterward, Section V
provides the simulation results and comparative analysis.
Finally, Section VI summarizes this article.
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II. BACKGROUND AND PROBLEM FORMULATION

After giving notations, some backgrounds of two-player
NZSDG are briefly recalled. Then, an associated event for-
mulation is presented.

A. Necessary Notations

In the subsequent descriptions, one lets R, R", and R"*"
be the set of real numbers, the n-dimensional Euclidean space,
and the set of real n x m matrices, respectively. Ry is
all nonnegative real numbers, while NaL means the positive
integers. Besides, “I,” denotes the n x n identity matrix. As for
mathematical operations, “T” means the transpose, and “||-||”’
means the norm; “V” is the gradient operator; “U” and “N”
are the union and intersection; and “Anin(+)” and “Anax ()"
represent the minimal eigenvalue and maximal eigenvalue,
respectively.

Define the class-K: a continuous function a : 9%8’ — SR(’]L
will be of class-K if it is strictly increasing with initial value
being a(0)=0; in addition, a class-/XC function « is seen to be
the class-K if it satisfies a(r) — co as r — oco. Define £(¢7)
as the left limit of a function f(r) when r — ¢ from the left,
ie., f(¢7) = 1irr(1]ﬁ(§—e); similarly, A(¢") denote the right
limit. A functigo_{l f(x) : R"—R"™ is Lipschitz continuous on
compact set Q € R" if the relation || f (x1)—f (x2) || < ZL||x1—x2 ||
exists for all xy, x, € Q with the constant . > 0.

B. Nonlinear Nonzero-Sum Differential Games

Consider a class of two-player nonlinear NZSDG in
input-affine form modeled by

x(0)=fx@)+g1(x()ur () +g2(x(1)ux(t), xo=x(0) (1)

where x € R" denotes the system state; f(x)€R" is the drift
dynamics; and g;(x) :9R" — 9"*7 and g»(x) :R" — R/ are
control input dynamics.! In addition, u;(¢) € R? and u,(t) €
MR! denote control policies made by P; and P, respectively.?
Let sets &, and &, be the admissible policy spaces of P
and P, i.e., u; € Y; and up € U [15]. It is assumed that
f(x) 4+ giuy + gouy is locally Lipschitz, and the system can
be stabilized and each player has access to the feedback state
information. Moreover, some standard assumptions are given
by Assumption 1.

Assumption 1 (see [7], [9]): For system (1), it has the
following properties.

1) f(x) satisfies f(0)=0and || f(x) < Zy |x].

2) gi(x) and g>(x) satisfy [[g1(x)[| =G and [g2(x)[| =G>.

Note that the multiplayer case of (1) is f (x)—l—zyzl gi(x)uj,
which can be employed to describe such a multicontroller
dynamical system with every player trying to optimize indi-
vidual performance index. In real-world scenarios, multiplayer
NZSDG can be used to design optimal motion planning for
multiple robots with different goals, coordinate the charging
of autonomous electric vehicles, and design load frequency
controllers for power systems. For example, in a multiarea

IThe time variable ¢ will be subsequently omitted for brevity.
%In the following, player 1 and player 2 are also referred to P and P;.
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power system, the states are usually defined to describe
deviations of certain variables from their target or equilibrium
values (such as frequency deviation and power deviation);
besides, frequency regulation controllers of different areas are
considered as independent players. For clear presentations,
the subsequent designs are still based on the two-player
system.

Next, for two players, define the scalar infinite-horizon cost
function J; : 4y x4, — R as

Jlé.ll(xo,ul,ug):/ ri(x (), u;(v), uz(v))dv (2a)
Jzéjg(xo,ul,uz):/ ra(x(v), uy(v), u2(v))dv (2b)

with the immediate cost r; : R"HH >R, i=1,2
T T T
ri(x,ui,up) = x Qix +u Rijjuy + uy Ripus

where x"Q;x, Q; > 0 denotes the state penalty and ulTRilul
represents the control cost caused by P;. Besides, the corre-
sponding matrices satisfy R;; = er >0, Ryp= R;z >0,Rpp=
R/,>0, and Ry =R,, >0.

Together, this game can be formally defined by

Gy ={(PrU P, {ur, uz}, {J1, 2}}, uiedh,uzells.
In Gy, every player wants to find its optimal control policy
in the process of optimizing the predefined cost, and the final
ideal gaming result can be described by Definition 1.

Definition 1 (see [4]): For an N-player NZSDG, such a
control policy set {uj,...,u},...,uy},i € Ng can be regarded
to achieve a Nash equilibrium if the following cost relations
are satisfied

* A * *
J: =J,~(ul,...,u~

k k
; l,...,uN)§J,~(ul,...,u,~,..

Luy) Vi. (3)
The associated optimal costs JJ,..
called as Nash equilibrium solutions.

Therefore, the desired equilibrium result is expressed by

SJE,. Ly are usually

Gy ={(PLU P, {uf, u3}, {U5, I3}, uiesh, ulells.

According to previous studies [6]-[12], G can be computed
by the following standard process.

1) First, by denoting VJ; £6J;/6x,i =1, 2, the Hamilton
function of player i is defined by

Hi(x: V‘liﬂ ui, ”2)
=ri(x, ur, u2) + VI (f () +81(x)u1+g2(x)uz).

“)
2) Next, optimal control policies can be derived by
0H; " 1 N
. =0 = ul(x):—ERnlng(x)le (5a)
8H2 * 1 — *
e =0 = uz(x):—ERzzl g (xXWVJ5.  (5b)
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3) Finally, the Nash equilibrium is transformed into solving
the following two coupled HJ equations:

=x Q1x+ Vi)’ (x)——(w]) g1 (OR g/ ()VIF

(

(Jf‘

820y, Rz Ry, 82" (1) VI

ng (x)R22 g5 ()C)VJ2 (6a)

(

3)

)

=x sz+(wz) f(x)——(wz) 22(0)R5, g1 (X) VIS
(V‘Il) 21 (OR; Rai Ry g1 (x) VI

—%( 5381 (R g () VI (6b)
It is obvious that the coupling terms (such as (VJ;)g2(x))
make it more difficult to solve (6) than general nonlinear
equations, which are also the biggest difficulties in designing
the triggering rule for an NZSDG system. This is why current
ETS-based studies devote to the relatively simple zero-sum and
single-player cases (such as [36]-[38] and references therein).
These motivate us to develop an ADP-based learning scheme
with event-based control policies to obtain Gy,.

C. Event Sampled-Control Method

In the above description, the state x(7) needs to be sampled
continuously. To save communication and reduce computation,
an ETS-based control method is employed such that the
sampling and updating are driven by defined events.

It is assumed that the controller is implemented on a digital
platform. An increasing sequence {z,}:2, 70 = 0, 7, 69%3 ,S €
N{ is defined to represent the triggering instants of events,
which are generated by an EG. Then, the measurement error
of (1) is computed by

es(t)y=x,—x(t); te€ [rs, Ts+1) (7)

where x, £ x(z,) is the sampled state at t = 7, and x(¢) is
the continuous state. A triggering interval [z, 7,+1) can be
thought of as a cycle, in which the error signal e,(¢) is varied
randomly and reset to O at each z;.

Due to the state-feedback structure, the system state will
influence the updating of control policies, which can be, thus,
calculated by
(8a)

MT(XS) =—5Ry gl (xs)VJl (x5)

1
- §R22 82 (xs)VJZ (xs)

with VJ*(x;) = (0J7/0x) |x=x,, i = 1,2. Evidently, one
sampling means one transmission and one calculation, which
is the main reason why ETS are favored compared to real-time
sampling or periodic TTS.

Using a zero-order holder (ZOH) obtains the piecewise
continuous control signals

uy(xy) = (8b)

ufk(xs) re [Ts» Ts+1)
uy@)y=4q 1 &)
—ER” 8i (XH_])VJ (XH_]) t = Ts41-
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To summarize, the specific event control procedure is that
an EG identifies whether the current error signal reaches the
triggering rules and then transmits the corresponding state to
all players; using new state information, players update their
control policies, which will be passed through ZOHs and even-
tually applied to the system. Therefore, in the event-sampled
context, the main design tasks can be given more precisely as
follows.

1) How to design an adaptive learning structure using
event control signals to approximate the solutions of
equation (6)?

2) How to design static triggering rules that can natu-
rally avoid the Zeno behavior to help EG generate the
required events?

3) How to design a more efficient dynamic triggering rule
with equivalent stability and convergence?

III. EVENT-SAMPLED APPROXIMATOR DESIGN AND
CORRESPONDING WEIGHT TUNING LAWS

This section is dedicated to complete the first task proposed
in Section II-C.

A. Implementation of Critic Neural Networks

According to [46], there exists a three-layer feedforward
NN that can approximate the optimal solution J;"(x) and its
gradient VJ*(x),i = 1,2 on Q by

JHx) = wlpi(x) + ci(x)
VJF = Vpw; + V.

(10)
(1)

This NN is usually termed “critic” NN, and its ideal weight
is w; € M, besides, ¢;(x) : W* — R is the activation
function with /. denoting the neuron number of hidden layer
and ¢;(x) € MR is the reconstruction error. In addition, for any
x €Q, Vp; £0¢;(x)/ox and V¢; £d¢;(x)/ox.

Then, referring to (8), the optimal ETS-based control poli-
cies can be derived as

1
ul(xs)——ER llng(xs)[V(/) (xg)wl—i—Vgl(xé)] (12a)

1
3 (1) = = R 83 (x0) [V (x0) w2 +-Veaxo)]. - (12b)

One can let the practical weight ©; estimate w;, and thus,
the approximated ETS-based control policy pair is deduced as

i (x;)=—R 1 gl(xs)v¢1(xs)w1 (13a)

1
12 (x;) = — Ry 85 () Vi () 2. (13b)

These two control laws will be employed to update control
signals when the sampled state x, is transmitted to players.
Furthermore, similar to (9), one can get ii;(¢), which is the
actual control signal applied to the system when learning goes.
Note that the critic signal is actually continuous, i.e., ©;(t),
and ¢ is omitted in case of no ambiguity. When an event is
triggered, the current value @; (zy) |,=,, Will be transmitted for
players to update the control policies.
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Substituting ideal cost (11) and actual control (13) into (4)
gives the event-version Hamilton function

Hi(x, w, iy, i) = X' Qx4+ Riyity +ity Rioil
+ w, Vi (f (g1 () +82(x)ika) £ &,
(14)
where &y, = —Ve, (f(x) + g1(x)@1; + g2(x)i12) denote the
unavoidable residual error. In addition, for compact display,

a120,(xy) and ,24,(x,) are also adopted in the follow-up
expressions. Next, we present how to achieve ; — w;.

B. Critic Weight Tuning Laws
Analogously, substituting estimated weight ©;,i = 1,2

and actual control (13) into (4) gives the approximated
event-version Hamilton function

Hi(x, d;, 1, 2) = x'Qux+it| Riyfiy+ity Rinfia
+ 0, Vi (f () +&1(0)1 +82(x)2) £ e;
(15)
where ¢; is the real-time learning error, and it will be fed
back to the approximator. Therefore, one can minimize the
square error E = (1/2)ee; + (1/2)e; e to minimize these
two learning errors. The associated weight tuning laws can,
thus, be derived by using the gradient-descent adaptation

2 oFE 661 23]

b= -0~ =—a———e (16)
oey 0y (Ule + 1)

A OFE oOe o

= —tr——F=—m————e  (7)
dey Oty (az—raz + 1)

with the variable ¢;,i =1, 2 being defined by

oe;
612; =Voi (f (x)+g1 ()1 +g2(x)2) = 0.

(18)

Besides, the term (g,'0; +1)? in the denominator is functioned
as normalization [7], and a; > 0 and a, > 0O are learning rates
of two critic NNs.

Define the weight error as @©; =w; — ©;, and the following

relation can be derived by combining (14) and (15):
ei=—] Vi (f (¥)+81 ()1 + g (X)) + En. (19)

Integrating (16), (17), and (19), the weight error dynamics are

o]

K - ~T ~

0 =—a1616, 01 + a1 — &y, (20)
23]

. &2

K - ~T ~

0y = —020626, W2 + 0r—&x, (21)
02

where 6; and ;,i = 1, 2 signify

Gi=0i/(0;'0;+1). (22)

— T
oi=0;0i+1,

It is worth noting that this critic learning method with fewer
parameters does not need actors, which excludes some inter-
ferences and, hence, is effective for analyzing event-triggering
strategies. At the same time, this learning is carried out online
and requires persistency-of-excitation (PE) noises. Up until
now, the overall learning framework of this event-sampled
NZSDG system has been completed, and it is depicted by
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ZOH 1

lﬁ, 0

NZSDG x>
system

i : T’Iz(f)
50 Lo, B
(e Zom

Triggering :
: module

Real-time error 1
Hy(x, Wity i)
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== computation :

module

Real-time error 2
Hy (0, 0, 115)

Dynamic
variable <(*)

continuous signals — — — — discrete signals — == tainingerrors U (x,) = [ (x, ).ty (x,)]

Fig. 1. Schematic.

Fig. 1. As can be seen, this event system is composed of 2
ZOHs, two critic NNs, two players (controllers), and one EG.
By computing the error in real time, EG determines whether
an event is triggered and then passes the sampled state to two
players. Subsequently, two players simultaneously update their
control policies, which become continuous control inputs after
passing through ZOHs. Also, note that the weight signal is
continuous and will be transmitted for players after receiving
event signals. In this way, the communication of two loops is
reduced, and control computation is also cut down.

IV. IMPROVED EVENT TRIGGERING RULES AND DYNAMIC
TRIGGERING STRATEGY

This section concentrates on tasks 2 and 3. The dynamic
triggering rule is proposed, and some theoretical results are
provided.

A. “Dynamic Triggering” Versus “Static Triggering”

We begin our design by illustrating the differences between
DETS and SETS.

1) Mathematically, the dynamic triggering rule usually
involves a differential equation. Such a problem related
to differential equations, whose current solutions depend
on previous values, can be seen as “dynamic.”

2) Formally, static triggering rules only include the current
values of x and es(¢), while previous values are not
considered.

3) Fundamentally, the static triggering threshold is adap-
tively adjusted and only time-varying. In contrast,
the dynamic triggering threshold includes a dynamic
variable.

B. Static Event-Triggering Strategy

1) Normal SETS (NSETS): In the ADP event research,
the current work [36]-[39] is devoted to devising SETS rules
for single player (ordinary optimal control) and zero-sum
cases, and we have also studied the zero-sum problem in recent
work [45]. However, these problems are relatively simpler
than that of the NZSDG system with complicated coupling
relations. Therefore, based on the recent progress and the work
of [30], we first devise an NSETS triggering rule.
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The first event is thought of to occur at t =79=0 (i.e., give
initial values in the algorithm), and subsequent event instants
are generated by the following triggering rule:
tp1 =inf{t € R [t > 1, N[(1 — O)x" Qx + U(x,)

~Lslles()1I* < 0]}
where 0 € (0, 1) is a conservative design, and Q; + O, = Q
and U(x,), Ly satisfy
UCx) = rill () 17 +r3 12 () I
Lz = Lyl >+ Lzl

(23)

(24)
(25)

The rule in (23) indicates that an event is generated whenever
(1 —O)x"Ox + U(xy,) = Lslles(t)||*. Therefore, if we use
this NSETS, the value of (1 —60)x" Qx +U(x;) — L |les (1) ||?
remains nonnegative for all ¢ € [0, 7o), which means that this
rule is the counterpart to the following triggering condition:

lles)1* < 7. (26)

and the triggering threshold of NSETS can be calculated by

(1—0)x"Qx +U (x,)
Ly '

It is easy to understand that the larger this threshold,
the larger the triggering interval, which also means fewer
events. Next, Theorem 1 illustrates that the rule (23) can guar-
antee the system’s asymptotic stability when critic NNs are
trained. Before this, the following assumptions are commonly
required (see [7], [9], [36], [39]).

Assumption 2: For system (1), each player satisfies the
following conditions.

7\ = 27)

1) The residual error and ideal critic weight are constrained
by [|8n, || <& and |Jw;|| < Wi, respectively.
2) Vg; is upper bounded by ||V¢;| <B,,.
3) The gradient Vip; (x) is Lipschitz on x € Q by conform-
ing || V; (x)Vo; (x,)|| <2, lles(t) ], and it is also limited
by || Vi 1< B,
4) Control input dynamics g;(x) is also considered to be
Lipschitz on x € Q by [l (x)—gi(x,)l| < &illes (0)]]-
Theorem 1: For the two-player NZSDG system (1), two
costs are defined by (2) and are approximated using (10). Let
two critic NN train their weights according to (16)—(17); let
EG trigger events in the light with rule (23), and two players
update their policies using (13). Then, this closed-loop event
system will be asymptotically stable, and the weight error ;
will be uniformly ultimately bounded (UUB) if it satisfies

=1,2. (28)

i | e i

wi || > , 1
aiimm (5i5'iT) - 2‘3,‘

Proof: By considering the requirements of stability and

learning, one can select the Lyapunov candidate as
Li(t)=L(1)+Li2(t)+Li3(t)+ L1a(t) (29)
with
Li(t)=J(x)+J;(x), Lin@)=J7x)+I5(xs)

Lis) = 307 OB (), Lis()= 5 0] ()20,
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After making some operations, it yields

Li(r) < —0x"Ox < 0. (30)

For detailed mathematical operations and the related variables
(r1,r2, L1, L2, By, B;), please see the Appendix.

Remark 1: Note that (1 —0)x T Qx +U(x,) and Ly |les (1) ]
both can satisfy characteristics of class-K,, so if we let a (]|
xl) = (1 =0)x"Qx +U(x) and y(ll es ) = Lxlles @),
then we can think that the rule (23) is equivalent to (8) of
[30]. The difference is that this design does not rely on the
input-to-state stable (ISS) [47] analysis.

Remark 2: The above design still needs to address an
important issue, namely, how to exclude Zeno behavior. This
is an indispensable theoretical guarantee, and the later proof
is relatively difficult. Of course, the rule (23) is Zeno-free (see
[45] for a similar proof). Noticeably, the following improved
rule can avoid it from the design perspective.

2) Improved SETS (ISETS): By introducing an exponential
signal de ', where the parameter J 9{(’; affects the amplitude,
while & €R} determines the decaying rate, the triggering rule
of ISETS is presented as

to =inf{t € RY [ 1> 7, N[(1—0)x"Ox +U(x,)

+de™" — Lxlles)|* < 0]}.  (31)

The following Lemma 1 reveals that the design of this
improved triggering rule is also reasonable.

Lemma 1: On the basis of Theorem 1, one uses the trig-
gering rule (31), and then, the system (1) also has asymptotic
stability, while the weight error is UUB if (28) holds.

Proof: Consider the following Lyapunov candidate:
o _s

Lg(t):Ll(t)—f-Ee_gl. (32)

It is clear that L,(r) is positive definite and radially
unbounded. Taking its time derivative obtains:

Lo(t) = Ly (1) — de™<". (33)

Evidently, if (1 —8)x"Ox +U(x;) +de™'—Lsx |les(1)||* keeps
nonnegative for all # € [0, 7), then it derives

La(t) < —0x"Ox < 0. (34)

This result is consistent with Theorem 1, and this lemma is,
thus, established.

Next, we explain why this rule can naturally preclude the
Zeno behavior without giving a minimal triggering interval.

Proposition 1: For the proposed ISETS, its triggering
rule (31) can avoid the trap of the Zeno behavior.

Proof: Note that, in (23), the variable (1—0)x"Qx+U (x;)

may become O during the regulation, which means that the
triggering condition may become

—Ls|les(1)]* <0. (35)

It is obvious that it is always satisfied, which may cause the
accumulations of events in a very short interval, also known as
the Zeno behavior. In this case, it is necessary to theoretically
prove that there exists a explicit minimal triggering interval
Tmin =Mmin[ 7,1 —74] > 0.
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Therefore, we introduce the exponential term de<' > 0 to
deal with this problem. It can be seen that the relationship (35)
now becomes de<'—Ls ||e, (t)]|> <0, which avoids the infinite
loop, which accomplishes this proof.

Remark 3: 1t is worth emphasizing that this exponential
term just plays an adjusting role, so its magnitude should be
controlled by ¢ to be relatively small; in addition, the decaying
rate ¢ should be selected to be asymptotically convergent
according to the system operation.

C. Dynamic Event-Triggering Strategy

As can be seen from (23) and (31), SETS rules only depend
on x(t) and e,(¢t) without considering previous values. This
design leads to the fact that the SETS rule fails to adjust its
triggering threshold according to the system’s overall circum-
stances, and hence, ISETS can be further improved. Using the
dynamic idea in [40], one defines an internal dynamic variable
n, described by the following differential equation:

fe = —Ane+ 4 (1= O)x"Qx +U(x,) + de " — L |le(t)])?

I(x,e5)

710 =n:(0) > 0. (36)

Intuitively, (36) can be regarded as a first-order filter, where 7,
is the filtered value of T'(x, e;). In other words, this dynamic
variable is actually a processed signal. The parameter A > 0
represents the filtering coefficient that characterizes the extent
to which I'(x, ey) affects 7.

A straightforward advantage behind the proposed DETS is
that it relaxes the stability requirement, that is to say, it is
unnecessary to keep I'(x,e;) always nonnegative. This can
be achieved by ensuring that 7, is nonnegative for all time.
Therefore, events can be triggered using such a DETS defined
by the following rule:

=inf{t € R§ | 1 > 7, N[ (t) + B((1 — O)x'Ox
+U(x) + de ™ =Ly |les(1)*) <0]}

Ts+1
(37)

where € R{ is an adjustment parameter that provides
a bridge between SETS and DETS; if f — oo, then the
rule (37) becomes (31). Refer to Remark 6 for a detailed analy-
sis. Proposition 2 states why 7,(¢#) can remain nonnegative
throughout the control stage.

Proposition 2: Let es(t) and 7,(t) be computed by (7)
and (36). If the system adopts (37) to generate events, then
7, (t) >0 always holds.

Proof: Note that when EG triggers events with the dynamic
rule (37), for any ¢ € [0, 7o), this inequality

Mot B((1=0)x"Qu+U(x,) +e™ =Lz les (1)) =0 (38)

is obvious. First, if f=0, then #,(¢) >0 is true.
Second, if f #0, by combining (36) and (38) and consid-
ering B €, it can ensure the following relation:

Ny () 0

fvx(t)Hrzx(t)z—T, n > 0. (39)
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Then, by means of the comparison lemma [47], it follows:

ne@) = e U e 10, 0) (40)

which means that 7, (¢) is restricted by a positive exponential
signal, so one can obtain 7, () >0.

On this basis, we give Theorem 2 to illustrate the dynamic
variable (36), and the rule (37) can also ensure the performance
of the learning-based system.

Theorem 2: Based on Lemma 1, let EG generate events
by (37), the system variables x () and 7, (¢) are asymptotically
stable, the error e,(¢) is asymptotically convergent, and the
weight error @;(t) is convergent in the sense of UUB if (28)
holds.

Proof: Select the following Lyapunov candidate function
Li(t) : Ry x Ry — R

L3(t) = La(t) + nx(2). (41)

_ Considering related derivations of Theorem 1 and Lemma 1,
L(t) can be developed as

Li(t) < —(1—0)x"Qx —U(x,) —de "+ Ly |les (1) |*+DBs

- Z|:( i j~mm T)—%i)||17)i||2i|—0xTQX—i’7x

+(1=0)x"Qx+U(x)+de " —Ls|les(D)]>.  (42)

It is clear that, as long as (28) is satisfied, one can obtain

Li(t) < —0x"Qx— Ay, < 0. (43)

According to the Lyapunov theory, it can be concluded that
L3(t) decreases along with x(¢) and #,(r) asymptotically
converging to the origin; in addition, note that x(t)= —é,(r),
and thus, e,(¢) is also asymptotically convergent.

This proof is, thus, completed.

Remark 4: It can be seen from (36) that the calculation of
7, needs previous system information, which exactly explains
that the rule (37) does not only focus on the current triggering
information. In addition, compared to Lemma 1, Theorem 2
relaxes the requirement for signal I'(x, e;).

Remark 5: So far, the asymptotically stable issue of
two-player NZSDG has been investigated based on dynamic
triggering. An important motivation behind this is that the
current research efforts are mainly focused on ultimately
bounded stability analysis, minimal triggering interval, and
static triggering design. This scheme can be easily extended
to the multiplayer case because the coupling terms are similar.
As for further finite-time stability, time-varying HJ equations
and some constraint conditions must be handled [48]. If it
comes to exponential stability, the triggering rule is required
to improve and maybe controllers need to be redesigned.

Another important motivation that the DETS is devised into
the NN learning is to obtain fewer events than SETS and,
of course, fewer than TTS. As mentioned earlier, fewer events
mean that the triggering interval 7y = 7,4 — 7, is greater. The
triggering intervals of three strategies (NSETS, ISETS, and
DETS) are denoted by TV, T/, and TP, respectively. Their
relationship is explained by Proposition 3.
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Proposition 3: Let (23), (31), and (37) determine the arrival
of next event 7y, respectively; let J,¢&, S, 5, € 9{(’; and 0 €
(0, 1), and then, it has TSD > TSI > TSN.

Proof: By referring to the triggering condition (26) and
the expression (27), it can deduce the triggering thresholds for
the three strategies

_ (1—0)x"Qx + U(x,)

7" o (44)
_ T =&t
Tl = (1-0)x %;c + U (xg) n 522 45)
(1—0)x"Qx +U(x;) e ! Nx
TP = . 46
‘ Ls Ly — Lsp (o)

It is obvious that, for a given state x; and error e,(t), the rela-
tion 7P > T! > TN establishes. An intuitive interpretation
is that a smaller threshold determines that the next triggering

instant will come earlier, so it further derives 7\, < 7/ | <
D . D ! N
7,4, which means 7, — 7, > 7, | — 7, > 7.} | —7,, and thus,

this proposition is confirmed.

Next, some discussions are attached to provide some insight
on how to tune parameters in order to realize conversion
between different strategies and how to adjust the controller.

Remark 6: By comparatively analyzing (44)—(46), one can
conclude that: 1) when 6 — 0, (45)—(44), and thus, ISETS
becomes NSETS; 2) when & — o0, (45)—(44), and thus,
ISETS becomes NSETS; 3) when f — oo, (46)—(45), and
thus, DETS becomes ISETS. Therefore, DETS will achieve
the smallest cumulative number of events and obtain more
sophisticated controllers. Furthermore, just for NSETS only,
it indicates in (44) that smaller values of £; and @ result in
fewer events.

Remark 7: Relying on event triggering and critic learning,
the controller is parameterized in (13), and the control per-
formance is mainly determined by two parameters: ©; and
xs. For the former, it is desired to get a convergence value
that is very close to w;; for the latter, the sampling can be
flexibly adjusted (see Remark 6). Frequent sampling benefits
the learning accuracy while bringing more communication
burden; a good compromise can be obtained by selections.

By incorporating the dynamic triggering strategy, the entire
flow of the learning algorithm is presented as Algorithm 1.
In the end, the main advantages are summarized as follows.

1) By freeing players from frequent computation, the pro-
posed DETS algorithms can be more efficiently executed
than those in [10]-[12]. It is of great sense for multi-
player games with multiple control loops.

2) Unlike previously discussed ADP event designs [35]—
[39], the proposed triggering rules overcome the diffi-
culty brought by coupling terms while maintaining the
desired stability.

3) Compared with the static triggering in [36]-[39],
the designed DETS rule can further reduce control com-
putation, certainly premised on accurate approximate
learning. This shows that it is feasible to apply dynamic
triggering to adaptive learning.

4) In contrast to the static rules [37]-[39] or dynamic rules
[40]-[42], an additional exponential term is incorporated
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Algorithm 1 Dynamic Event-Triggering-Based Adaptive
Critic Learning Algorithm

Input: 7%, ¢,(0) = 0, ®;(0) and T (the running time).
Output: w; ~ ;(T) and S (total number of samples).
1: Initialization:
system settings: xo and R;;, Q;, a;; i, j =1,2.
triggering parameters: A, 5,0, Ly, L>, &, 0.
2: while r < T do
3 Calculate the state error e,(r) adopting (7);
4 Train the critic weights from (16)—(17) using i; (x);
5:  Compute the dynamic variable 7, () by (36).
6 fori =1,2 do
7 if the triggering rule (37) is satisfied, then
8 Record the number s + 1 and update S;
9 Update 7,4 =1, X541 = x(1), €541 (t) = 0;
10: Compute new policies @, (xs41) by (13).
11: end if
12:  end for
13: end while

to help the triggering rule naturally avoid the Zeno
behavior, which does not impair the asymptotic stability.
5) Different from the classic dynamic triggering [41]-[43],
our rule design does not need to rely on ISS analysis;
besides, we give an explicit lower bound of the dynamic
variable 7, [see (40)], and the simulation will verify this

property.

V. SIMULATION AND ANALYSIS

In this section, a numerical two-player system is simulated
using TTS, NSETS, ISETS, and DETS, respectively; some
results are provided for substantiating the claimed theoretical
achievements. Note that TTS is run by the equidistant period
of 0.01 s.

Consider a widely adopted differential game (similar games
can refer to [9]-[12]) with nonlinear dynamics

X = f(x)+ g1(x)u; + g2(x)uz 47)

with

f( . x2—2x1
x) = —x2—0.5x1+0.25x200s2(x1)+0.25x2sin2(2x1+1)

0 0
gi1x) = |:cos(x1)i|’ gZ(x):[sin(le + 1)}'

It can be known that when the system parameters are config-
ured according to R11 = R12 = 2]1, R21 = R22 = I], Ql =
21, Q> = I, the optimal Nash costs are J;(x) = 1/2x? + x3
and J5(x) = 1/4x? + 1/2x3. The entire learning stage lasts
for T = 150 s starting with xo = [0.1, —0.51".

In addition, two critic NNs adopt such settings: activation
functions are ¢;(x) = @2(x) = [x7, x1x2, x7]7, learning rates
are a; =a, =0.1, two sets of estimated weight are denote by
1 =[11, D12, D131 and By =21, 22, 23]", and finally,
probing noises are injected in the first 140 s.
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TABLE I

COMPARATIVE RESULTS OF THREE STRATEGIES
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Strategies | Samples | Average interval | Minimal interval Structure System variables | Converged weights | Errors:|| @1 ||| @2 ||
TTS 15000 0.01s 0.01s 2NN z(t) wl wl 0.0027, 0.0012
NSETS 2551 0.0588s 0.02s 2NN+2ZOH x(t), es(t) wi, wl 0.0037, 0.0015
ISETS 2391 0.0606s 0.03s 2NN+2ZOH x(t), es(t) w{, wé 0.0037, 0.0016
DETS 1380 0.1079s 0.03s 2NN+2ZOH | z(t),es(t), n=(t) wP, wP 0.0102, 0.0041
14 0.025 oy
m—dn wio w13 | (a) 0.01h ]
g "% o L
1217 1.001 1 £ 0015 50 502 504 506 508 51 E
1 B\ g
1h 2
g | 0.005
> =
o o8fs ! g
o -
2 L 0.510\
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2 0617 ~iy 3
o L B £
[T} Q
S 04bf ey \ , £
g ) . 0.5009 s
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o2 ~0.0003 \ 1
- \ 0.2540
o - T e ————— e
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]
Fig. 2. Two sets of critic weight signals obtained by DETS.
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Fig. 4. Triggering comparison of four strategies. (a) TTS. (b) NSETS.
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Fig. 3. Responses of dynamic variable and triggering process.

A. Triggering Results During the Learning Stage

1) Triggering Results of DETS: First, by comparing with
TTS, which is run by the equidistant period of 0.01 s,
the triggering effect of DETS is analyzed by executing (36)
and (37). Basic triggering parameters are selected as 5° =
1, =03, =050 =05,L, = L, = 15,¢ = 0.015,
and 0 = 0.005, which is a benchmark for later comparison.
Run Algorithm 1 to acquire the learning results, as displayed
in Figs. 2 and 3. It can be seen that this learning finishes with
the converged weights w;” ~®;=[0.5100, —0.0003, 1.0018]"

(c) ISETS. (d) DETS.

and w? ~ ,=1[0.2540, —0.0003, 0.5009] ", and these values
of DETS closely approximate the ideal weights. The evolving
trajectory of 7, is drawn by the magenta line in Fig. 3(a),
and obviously, 7, () > 0. At the same time, the close-up of
triggering logic relation is given in Fig. 3(b), which indicates
that es(¢) and 7,” comply with the condition (26).

Next, in order to objectively appraise the proposed DETS,
its features and advantages will be illustrated by comparing
with TTS, NSETS, and ISETS. Their parameters are exactly
consistent with DETS. The total number of samples (events)
and the average triggering interval, as well as other compar-
isons, are listed in Table I, where converged weights are

wT=[0.5025,-0.0008,1.0004], w!=[0.2510,-0.0007,0.5002]"
w=[0.5030,-0.0014,1.0017],w)=[0.2512,-0.0005,0.5008]"
w] =[0.5029,-0.0014,1.0018],w3=[0.2512,-0.0005,0.50097".

The interevent periods of four strategies are recorded
in Fig. 4. It is noticeable that the largest average interval and
smallest samples are achieved by the DETS in all strategies,
and hence, the DETS algorithm is capable of further reducing
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TABLE II
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ISETS-BASED TRS

TRS UNDER DIFFERENT PARAMETERS. (A) PARAMETERS AND TRS OF

TR (%) \ 0
0.005 | 0.015 0.15 0.3
£
0.005 15.79 | 1535 | 1326 | 12.13
0.015 1594 | 1570 | 1422 | 13.44
0.15 16.77 | 16.72 | 16.61 | 16.55
0.3 17.01 | 17.00 | 16.99 | 16.97
TABLE III

DETS. (B) PARAMETERS AND TRS OF NSETS

(a)

Fig.

Triggering rate

NSETS 0a] i _os
L; =20 1025 | |
02 ! |
0.15) 1 1
o1f ! 1
» :
5] o |oosf! 1
@ ---8 b E=0015
£ — 0 ;
s i 16 165  17(%)
g (j (a) ISETS
k] -o 7
2 §
E] 3 6
o
> 5
4
3
2
=1 ;
——»-——% :
. . ol
22 24(%) 16 165 17(%)

(b) ISETS

5. Strategy partition based on basic triggering parameters.

B 0.1 0.5 3 7 10 20
TR (%) | 1097 | 9.20 | 10.21 | 11.47 | 12.03 | 13.04
A 0.1 0.3 5 9 12 20
TR (%) 8.43 9.20 | 1479 | 1541 | 15.58 | 15.72
(b)
L;1=1,2 15 16 17 18 19 20
TR (%) 17.01 | 17.67 | 1832 | 19.00 | 15.95 | 20.09
0 0.5 0.6 0.7 0.8 0.9 1
TR (%) 17.01 | 17.85 | 18.87 | 20.21 | 22.01 | 24.86

the computational burden. Therefore, the salient advantage
of the dynamic rule (37) is that it finds a compromise
between the allowed triggered intervals and the approximate
performance, which is also corroborated by Fig. 2 and weight
errors in Table I. On the other hand, for a time span from
50 to 51 s, starting with TTS, one can see that there are many
events that are triggered periodically. Moving on to DETS,
one can find that only a few events are triggered.

2) Analysis of the Exponential Term Under ISETS: Under
the ISETS-based communication protocol, we analyze the
influences of the designed exponential term on the triggering
result, which is evaluated by triggering rate (TR). This rate is
calculated based on the total number of TTS samples S7. For
example, for basic ISETS, it has

TR = §7/ST = 2391/15000 x 100% = 15.94%.

Combined with (45) and Table II, one can conclude that
the faster the exponential signal decays (¢ 1), the shorter
it lasts, and then, the rate increases; the larger its amplitude
(0 1), the greater the impact on the threshold, and the rate
consequently decreases. These results experimentally confirm
the theoretical analysis in Remark 6.

It is also worth noting that 0.3 is seemingly the limit of ¢
when 6 =0.005, with the current TR being equal to NSETS,
i.e., 2551/15000 x 100% = 17.01%.

3) Partition Analysis: Note that three triggering rules (23),
(31), and (37) are progressively derived, so there should be
some specific switching relationships among them. Think of

0.1
\ s
0 - [
E 5 0.06
T -0.1 °
12 / §
£ -02f o 004
2 °
@ o3|/ S
[2) 1 © 0.02
-0.4 T1 £
)
-05 0
0 2 8 10
tIs—> (a)
o 05
% [
" £ 04
9 o 03t
o €
8 02
>
O o1
0
0 2 4 6 8 10 0 2 4 6 8 10
tls—> (c) ts—> (d)

Fig. 6. Event control performance during the testing stage obtained by DETS.
(a) Optimal states. (b) Triggering process. (c) Optimal costs. (d) Dynamic
variable.

the basic triggering parameters in Section V-Al as a bench-
mark, by varying related parameters; the resulting strategy
partition is depicted by Fig. 5 (so different basic parameters
definitely mean different partitions). Fig. 5(a) and (b) shows
two close-ups because the zone of ISETS is relatively small.
Some representative data are provided in Table III additionally.
According to total samples in Table I, it can be known that
three zones are partitioned through 15.94% and 17.01%.

In Fig. 5, the blue curve corresponds to the given value
of 1 with parameter f varying from 0.1 to 20, and other
curves are similarly obtained by fixing other parameters.
In Table III, the increase caused by £ (or L;,#) is a result
of the threshold decrease shown in (46). Also, looking at
the filtering coefficient 4, a bigger value maybe weakens the
filtering effect and, thus, render DETS more static. What
needs to noticed is that it may be problematic to give a
too small value for £; (where £; = gi(osfq,%g}w?b’;i); see
the Appendix).

This partition is an intuitive description for the fact that
these three strategies have certain schedulability. Besides,
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Fig. 7. Triggering comparison of three event strategies.

using this information, practitioners can tell where the para-
meter selections are concentrated and how they evolve.

B. Triggering Results During the Testing Stage

1) Testing Results of DETS: With the converged critic
weights, we transfer to the testing phase, and the DETS-based
control performance is given in Fig. 6. The triggering compar-
ison for three event strategies is given in Fig. 7. It is obvious
that convergence processes presented by four subgraphs are
consistent. It is emphasized that the dynamic signal 7, (¢) is
indeed restricted by an exponential signal 7% e~“+/A) [see
Fig. 6(d)]. Also, note that the triggering process in Fig. 6(b)
is consistent with the sampling recorded in Fig. 7(c).

Next, looking at Fig. 7, for the same control task, NSETS
requires 54 samples, and ISETS requires 44 samples, while
DETS only requires 15, which means that the controller only
needs to calculate 15 times and the control loop conducts
15 transmissions. In addition, observing Fig. 7(c) again, it is
noted that control actions are concentrated in the initial phase,
and control updatings also reduce as the system gradually
stabilizes. In contrast, NSETS and ISETS cannot achieve this.
This exactly shows that DETS can adjust its triggering more
efficiently.

2) Testing Results of Different Initial Points: At the end,
we investigate the DETS-based control performances with dif-
ferent starting points. Our initial point is R =(0.1, —0.5), and
the common ending point is O = (0, 0). The five comparative
points are randomly selected as

A=(-1,-05), B=(-1, 1.5),C=(2, 1.6)
D=(1,-0.5), E = (—0.5, —1).

The stabilization process for these five points is exhibited
by Fig. 8, and its five subgraphs show respective triggering
interevent periods. It can be observed that DETS can achieve
stable event control for all starting points, and meanwhile,
more events are concentrated in the initial control stage. These
results to some extent show that this dynamic design does not
depend on specific initial states.
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Fig. 8.

Stabilizing processes with different initial points.

Moreover, the proposed DETS learning method also
have advantages over other reported methods, such as
identifier-based ADP (IbADP) [11] and online iterative learn-
ing (OIL) [12]. When the learning process is implemented
under the same settings, with regard to learning accuracy,
DETS and OIL are very close. In contrast, IbADP performs
worse due to the extra identifying error. It is, therefore,
concluded that the proposed DETS can maintain apprecia-
ble learning performance with lower communication and
computation.

VI. CONCLUSION

For the two-player NZSDG problem, this article studied
event-based control methods when players learn their opti-
mal cost functions. By introducing an EG and two ZOHs,
an event learning-based system was built, in which control
policies were intermittently updated. Three triggering rules
were sequentially devised: NSETS, ISETS, and DETS, where
DETS was a novel dynamic triggering strategy. This strategy
was termed dynamic because of a defined dynamic vari-
able, and it can naturally achieve Zeno-free by incorporating
an exponential term. Comparative simulation results demon-
strated that these three strategies closely learned the ideal
critic weights while ensuring the asymptotic stability, and
DETS was apparently favored because of the least samples
and lowest computational burden. In the future, we may be
consider unknown dynamics or other learning algorithms.

APPENDIX
PROOF OF THEOREM 1

Here, we elaborate how to achieve the transition from
(29)-(30). Considering that the system dynamics will jump
when an event occurs, this proof will be provided in two
aspects.

1) Events are not triggered, namely, ¥Vt € [t5, Ty11)-

Calculating the time derivative for every component of (29)
obtains

L @) = (VI7) T (F(0) + g1(0) i (x,) + g2 (¥)ita (x,))

+(VI) (f@) + 1001 (x,) + g2(0)a(x,)
(48)
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le(l) =0 - (49)
. D, G

L13(l) = —alzblT&l&szbl —+ o1 ! lgH] (50)
TN
w O

Liy(t) = —aaid) 526, 7 + aa zgﬁz (51

First, for the term (48), one makes the transformation
with (5), and it yields

Lii(2)
= (VI)'f (0)—2u " (x) Ryyity (e )+ (V) ga (x)a (xy)
IANG)
+ (VI3)T £ (x) = 2u5(x) Raofin (x5) + (VI5) g1 (x) iy (xy).
L3 ()

(52)

For the sake of clarity, we analyze L}l(t) individually, and
the transformation of L%l(t) is analogous. With (5a) and (6a),
(VJ[“)T f(x) can be easily derived. After plugging it into
L1, (t), then one can get
Li(t) = — Tle+u’fT(x)R11uT(x)T—2u’f(x)R11ﬁ1(xs)
—u3 () Ripus (x) — (VIT) "ga(x) (3 (x) — 2 (%))
—x Qx4 (u (x) —ur () Ru(u (x) — 1 (x,))
— i (xo) Rt (63) = (V) g2 () (w3 () — o (x,))
(53)
Note that @ (x) = (1/2)¢;(x)¢,(x) with the coupling term
#1(x) being ¢ (x) = (VJ]) ga(x) e R™!; by using the Cauchy
inequality, one can derive
— 1 () (3 (x) — it (x))
1
= 1) + 5 (1) — 20 (W506) — 12 (x).
Then, by denoting ri = Amin(Ri1), #Z1 = Zmax(Ri1) and
combining (54), Lh(t) in (53) can be rewritten as
Lil(t)E—xTQ1x+<%’flluT(Ji)—ﬁ1(xs)llz = rilldn ()|
+ 5||u§(X)—ftz(xs)||2+<D1(X)~

IA

(54)

(55)

Similarly, let r, = Amin (R22)9 Hr = Dmax (R22) and the coupling
be ¢ (x)=(VJ5) g1 (x) eRY, Dy (x) = (1/2)¢2(x)¢>2T(x), and
then, (52) can be initially evolved as

L) < x9x+( %)nu’f(x)—m(xx)nz+<I>1(x)

1
+ (%’5 + E)Huﬁ(x)—ﬁz(xs)||2+<Dz(x)
= i Ge) P =3 (). (56)

Next, every component of (56) is separately analyzed.
By using the relation @; = w; — ®; and the inequality
Ix-yI* < 2[|x[|*4+2]|y[|*, one can derive

(%3 + %) llu (x) =y () 1
1
< _Ql”( [ (xs)Vip | () — & (x)Vip | (x)) id1 ||

+ = QI||g1(x)VcoI(x)wﬁgl(x)Vgl(x)u2 (57)
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with p; = (%12 +
further yield

1/2)|R;}'||?. For the first term of (57), it can

1
5 (1 o)V () =/ )V () I

1
EII(V(/) X)=Vip () £1065) +V () (g1 (x5) = g1

(Y (e )=V [ (x)g1 (e 12 Vo (X1 () — g 1)
< (L3 G1+68; e

IA

(58)

Then, recalling Assumption 2, (57) can be expressed as

1
(%’12+ §)||u>1k(x)_’21(xs)||2 < LilldilPles(0)1?

+01G2B2 011> +01G2 B2

(59)
where £ = 01(Z, G +(1B;)). For the third term of (56),
using NN expression (10), it obtains

1
D (x) = E(VJI) 22(x) gy (X)VJ}
1
= 2( Vi + Ve, )gZ(x)gz(x)(v¢1wl+V§l) (60)

At this point, note the boundedness of the relevant variables in
Assumptions 1 and 2, and the result ®;(x) <®y,, is obvious.
Similarly, ®,(x) < ®,,, can also be obtained.

Taking similar operations for || u}(x) — @i2(x,) |1, (52) can
be finally transformed into

—x'Qx =l (x) IIP=r3ll 2 (x) 1P+ Bl 01 | 4B
+ (Lalldor I+ Lall D 1 lles (1) 1> + Bl o ||*
Wlth %I—ng Bgﬂ s %m—z, 1 ng28 +(D1m+q)2m

Second, we continue to analyze (50) and (51). With &, > 1,
L13(7) can be deduced as

L) <
(61)

L13(t)§ —o IT 10'1 (03] +a1w1 18w, . (62)

Applying Young’s inequality to the term 17)1 &1&w, obtains

. 1 1

Liz(t)< _Ealimin(ﬁlar)”wl||2+§a1512~ (63)
Similarly, for L14(t), it has

. 1 1

Liy(6) £ =5 62min (625, )||w2||2+5a25§. (64)

Finally, by merging (61)-(64) and noting the expres-
sions (24)—(25), the time derivative of L{(z) can be evolved
into

. 1 1
L) < —(1—Q)XTQX—U(Xs)WLﬁz||€s(f)||2+§%z+§‘Bz

- Z[( @i Zomin (& T)—asi)nw,»nz}—

where By =B,,+(1/2)a1E+(1/2)axE3. At this point, if we
let

x'Ox  (65)

—(1=0)x"Qx —U(x,)+Ls les(1)]* < 0 (66)
I%Bx - (;a i (#57) B, )uw,n2 <0 (67)
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then the result in (30) can be obtained. It is evident that
condition (66) indicates (1 —0)x"Qx +U(x;) — L |les(1)|? is
nonnegative. Mathematically, this condition corresponds to the
triggering rule (23). As for (67), it obviously corresponds to
the inequality in (28).

In addition, the parameter 6 introduces the term —@x 'Qx,
which can be considered as a conservative design to keep the
derivative term Ll(t) negative.

2) Events are triggered, namely, t =141 and s € Na’ .

In this case, one needs to pay attention to the time point
7., because the next event has been triggered when 1 =74,
and thus, the pivotal change is reflected in 7, — 7

+1-
Consequently, the difference of L;(#) can be calculated as
ALi() = ALi(7f) = ALi(75)

ALy ()+ALp()+ALi3()+ALis(t) (68)

with

ALy (1) = I (xss) =I5 (x(7,0)) + 5 Cee) =J5 (x(7,51))
ALp(t) = I (xsg1) = 7 () 4+ J5 (o) — I3 (x)
AL3(t) + ALy(t)

1
= 5[0 @i @) =] (1) @1 (2,7,)]
1
+ 5[17);(73-&-1)17)2(Ts+1) - LDZT (T;rl)ﬁ)z(f;rl)].

From (23) and (28), it can be concluded that Ll(t) <0,
and the system state is asymptotically stable. Also, note that
the state x and weight signals ©; and ®, are continuous
during the triggering process. Therefore, for V¢ = 7,41, one
can, thus, derive that J*(x1) < Jr(x(z ) @ = 1,2,
and (1/2)@; (2411 (5,21) = (1/2)] (1,3,);(z5,), and
accordingly, the difference AL, is further deduced as

AL (t) = AL (1) ==Ki(lles+1(zo) ) —Kallles+1 () )

where () and /C,(-) are class-/C, and e,y (75) = X341 — X;.
This result indicates that the Lyapunov candidate (29) is also
decreasing at every instant 7,41, s € N.

In the end, based on the analysis for two aspects, if (23)
and (28) are satisfied, then the system is asymptotically stable,
and two weight errors are UUB. This proof is, thus, completed.
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