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ABSTRACT

Deep neural networks achieve state-of-the-art performance on
many tasks, but require increasingly complex architectures and
costly training procedures. Engineers can reduce costs by reusing a
pre-trained model (PTM) and fine-tuning it for their own tasks. To
facilitate software reuse, engineers collaborate around model hubs,
collections of PTMs and datasets organized by problem domain.
Although model hubs are now comparable in popularity and size
to other software ecosystems, the associated PTM supply chain has
not yet been examined from a software engineering perspective.

We present an empirical study of artifacts and security features
in 8 model hubs. We indicate the potential threat models and show
that the existing defenses are insufficient for ensuring the security
of PTMs. We compare PTM and traditional supply chains, and
propose directions for further measurements and tools to increase
the reliability of the PTM supply chain.
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1 INTRODUCTION

Deep Neural Networks (DNNs) are widely used, from image recog-
nition in autonomous vehicles [24] to detecting anomalies in sys-
tem logs [16]. Making or training DNNs is challenging for reasons
including the high cost of model training and evaluation [30], vari-
ation in DL libraries [60], and mismatch between the needs of re-
search and practice [74]. Additionally, training large DNNs incurs a
large carbon footprint [59]. Reusing pre-trained models (PTMs) can
address some of these problems, enabling engineering teams across
different organizations to share the economic and environmental
burden [72, 87]. PTMs are reused through Model Hubs — collections
of PTMs and datasets organized by problem domain. Hugging Face
is the largest model hub with 60,904 public PTMs [19]. As shown
in Figure 1, the most popular PTMs in Hugging Face are down-
loaded at rates comparable to the popular packages in npm [54]
and PyPI [61]. This indicates that the model hubs also make up a
significant portion of software supply chain.

However, DL model hubs are in their infancy. Despite the increas-
ing importance of PTMs (Figure 1), there has been no systematic
investigation of the artifacts and security risks in the PTM supply
chain. Prior works have examined the security risks in traditional
software registries such as NPM [47, 86, 89]. On the other hand, the
machine learning community has studied adversarial attacks on
DNNs [1, 38] and PTMs [31]. In this work, we synthesize techniques
from traditional package ecosystem security studies and DL attacks
to understand the risks of the PTM supply chain.

To characterize the PTM supply chain, we conducted an empiri-
cal study of artifacts (i.e., the contents of model hubs) and security
risks in popular model hubs. As a first step, we filtered 8 model
hubs by searching for key words in a major search engine. Further-
more, we measured the artifacts in these model hubs, identified the
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Figure 1: Monthly downloads of top-20 packages in Hugging
Face, NPM, and Pypi. Download rates of Hugging Face PTMs
are comparable to popular traditional package registries.

similarities and differences between different kinds of model hubs,
and depicted the PTM supply chain. Finally, we studied the security
features in place to improve the security of the model hubs, and
analyzed the potential threat.

Our results introduce three types of model hubs (open, gated,
and commercial), with varying security properties by type. We
summarized two threat models and measured potential risks in the
form of model discrepancies and maintainer reach. We observed two
main differences between the PTM supply chain and the traditional
software supply chain: versioning and security properties.

Our contributions are:

e We measure the artifacts in 8 model hubs, identify their
typical structures, and depict the PTM supply chain.

o We indicate the security features on different model hubs,
and summarize the threat models.

e We show the differences of versioning and security risks
between PTM supply chain and traditional supply chain.

2 BACKGROUND AND RELATED WORKS

In this section we describe background on pre-trained models and
software supply chains.

2.1 Pre-Trained Models (PTMs)

Various factors have led to the rise of PTMs. Large PTMs, such as
BERT [14] and GPT [6], are recent milestones for the DL commu-
nity; they can be used off-the-shelf and tuned to more specific tasks
with little effort [36]. Meanwhile, compared to traditional software,
deep learning software is hard and expensive to build [30] and
reproduce [2, 60] from scratch. Deep learning models also present
unique debugging and testing challenges beyond traditional soft-
ware, owing to the probabilistic nature of machine learning (3, 5, 15].
PTMs partially address these issues [68].

In light of these properties, engineers have begun to rely on
model hubs offering a collection of PTMs and datasets organized by
problem domain [37, 83]. We define a Model Hub Ecosystem as: the
interaction of a set of actors on top of the model hub that results in
a number of machine learning solutions or services [50]. Since 2018,
model hubs have been built to help engineers better reuse these
costly artifacts [28, 37, 83]. These hubs offer PTMs applicable to
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many domains including reinforcement learning [12], computer
vision [71], and natural language processing [10, 63]. However,
there has not yet been a study that explores the characteristics of
model hubs. We explore their characteristics and security risks.

2.2 Pre-Trained Model Re-use

Engineers reuse DL models in various ways, including in transfer
learning, dataset labeling, and knowledge distillation [29, 34, 85, 88]
PTM reuse reduces the need for users to train their own models
and allows models to be quickly developed for a greater variety
of tasks [34, 51]. Figure 2 displays methods of PTM reuse. Initially,
a PTM provider trains a DL model on a dataset to create a model
checkpoint (i.e., PTM) with its associated architecture and weights.
A PTM reuser can implement one of the methods below to transfer
information to the new model. This model can be reused for either
the same task or a novel application. The new model can be smaller,
more manageable, and resource-efficient [29, 34].

PTM Provider

PTM Re-user (Transfer Learning)
Feature Extended
extracting Model Inference
layers Architecture
quantization

& pruning l PTM Re-user (Dataset Generation/Labeling)

New Downstream tasks
Dataset

PTM Re-user (Knowledge Distillation)

Inference L Student Inference
Model

Figure 2: APTM can be used in four different ways, including
transfer learning, dataset generation and labeling, quantiza-
tion and pruning, and knowledge distillation.

Dataset

PTM Re-user
(Model compression)

Output layer

Another milestone for DL model reuse is the introduction of
transfer learning through knowledge transfer [58, 77]. Transfer
learning can reduce computation cost by avoiding expensive data-
labeling tasks [58]. Han et al. indicated that adopting a PTM’s
feature extraction layers for downstream tasks rather than learning
models from scratch has become the consensus of the Al commu-
nity [34]. For example, ResNet [35] pre-trained on ImageNet [44]
can quickly advance various tasks [40, 64, 65].

PTMs can also be reused for automatically generating data. Au-
tomated dataset labelling can reduce the cost of dataset creation,
while increasing the quantity of data, and can result in a high de-
gree of accuracy dependent upon the models performance [18, 42].
Generative models can also help generate new data [9, 70].

Model compression approaches can make the model portable
to edge devices [27]. Reusers can apply quantization or pruning
techniques on the PTMs directly to make it more portable [76].
By training a student model to mimic the behavior of its teacher,
knowledge distillation can receive richer information from its loss
function and can learn quicker than it normally would [29]. For
smaller mobile applications and systems with limited computational
capacity, knowledge distillation allows for a comparatively smaller
model to learn from a larger network.
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Name # Models # Datasets Categories # Tasks Contribution Distribution
Computer Vision, Natural Language Pro-
Hugging Face [19] 60,904 7,759 cessing, Audio, Multi-modal, Tabular, Re- 28 Open Hub APIs
inforcement Learning
TensorFlow Hub [75] 1,273 87 Image, Text, Video, Audio 39 Gated Hub APIs
Computer Vision, Natural Language Pro-
cessing, Audio, Generative, Reinforce-
Model Zoo [41] 1,211 0 ment Learning, Unsupervised Learning, 8 Gated GitHub
Graph, Self-supervised Learning, Health
and Bioscience
Computer Vision, Natural Language Pro-
Pytorch Hub [62] 8 0 cessing, Audio, Generative, Scriptable N/A Gated Hub APIs
ision, N: 1L Pro-
ONNX Model Zoo [57] 11 0 Computer Vision, Natural Language Pro 10 Gated GitHub
cessing, Audio
t ision, N: 1L Pro-
Modelhub [46] 6 0 Computer Vision, Natural Language Pro 3 Gated Hub APIs
cessing
ter Vision, N 1L Pro-
NVIDIA NGC [55] 450 1 Computer Vision, Natural Language Pro 10 Commercial  Hub APIs
cessing, Audio, Other
C ter Vision, Natural L Pro-
MATLAB Model Hub [52] 60 0 omputer vision, Natural Language £ro N/A  Commercial  Hub APIs

cessing, Audio, Lidar

Table 1: Contents and artifacts of 8 popular model hubs. The hubs are grouped by contribution type, and sorted by the number
of PTMs. Categories define the applications/uses of the machine learning models (i.e. computer vision, natural language
processing). Tasks are actions that are required by categories (i.e. image classification, text generation).

2.3 Secure PTM Software Supply Chains
The aforementioned types of model reuses result in a PTM supply
chain, where new models rely on the extension of existing artifacts.
Some of the most popular models on Hugging Face (i.e., one of the
most popular model hubs), such as bert-base-uncased" and gpt2?,
are PTMs that are frequently fine-tuned for a downstream task
because they excel at extracting important features from natural
language. As a result, the PTM supply chain exists, because any
PTM Re-users can apply reuse techniques on open-source PTMs and
datasets (Figure 2) [4] which could then be deployed in downstream
applications, such as autonomous vehicles [25]. The vulnerability
of PTM supply chain can pose a hazard to the real-world systems,
but there is no study about the secure PTM supply chain yet.
Prior work has been done to study the inheritance of security
vulnerabilities in software supply chains. Zimmermann et al. an-
alyzed the metadata of 5,386,239 versions of NPM packages and
reported that NPM based supply chains have single points of failure.
Furthermore, they depicted the maintainers’ reach (i.e., the number
of packages per maintainer) graph and identified that unmaintained
packages threaten substantial downstream users [89]. We also de-
picted the maintainers’ reach graph to explore the potential risks
of PTM supply chain. Ladisa et al. proposed a general taxonomy
for attacks on open-source supply chains which covers all supply
chain stages from code contributions to package distribution. They
then validated the taxonomy via a user survey of 17 domain experts
and 134 software developers [47]. Zahan et al. proposed six signals
of security weaknesses and identified 11 malicious packages from
the install scripts signal [86]. However, the security vulnerabilities
of PTMs could be different due to the probabilistic nature [82] and
huge training cost [30, 32]. We are building on knowledge from

1See https://huggingface.co/bert-base-uncased.
2See https://huggingface.co/gpt2.

the traditional software supply chain and package registries, and
determining the characteristics of them in the PTM context.

Model hub use is increasing (Figure 1), but the security features
surrounding the usage of PTMs are unclear [31]. Only Tan et al.
have conducted an exploratory study on the deep learning supply
chain. Their data is focused on deep learning frameworks, not
PTMs [73]. However, model hubs also contribute to a significant
part of DL software supply chain (Figure 1). With that in mind, our
work aims to help the community better understand the practices
of pre-trained model supply chain and inform further studies.

2.4 Adversarial Attacks On and With PTMs

Following the reuse cases in Figure 2, an attacker can target either
datasets or PTMs. First, it is possible to attack a model indirectly,
via its training dataset in a dataset poisoning attack, which is an
essential part in Figure 2. This attack involves mislabelling data
manually or by a malicious PTM, resulting in future models that
train off of this dataset to have poisoned values [26]. Second, some
attacks directly target PTMs and can either modify the models’
I/O behavior® (known as a backdoor/Trojan attack [48, 66]) or add
side-effects. It is possible to construct weight poisoning attacks
by injecting pre-trained weights with vulnerabilities that expose
backdoors after fine-tuning, even with limited knowledge of the
training dataset [45]. This form of attack is further discussed by Gu
et al. as a generalized malicious model, called a BadNet [31], and it
can also affect the I/O behavior of downstream models. Another
malicious attack, the EvilModel, produces side-effects instead. Wang
et al. show a PTM with malware bytes embedded into its neurons’
parameters, which are extracted and assembled into malware at
runtime [80]. Both BadNets and EvilModels can cause performance

3The 1/O behavior means the prediction of specific input patterns can be affected.
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drops. However, recent studies have also shown that it is possible
to attack the PTMs without affecting their performance [49, 81].

These attacks can be mapped to real-world examples. Compro-
mised PTMs can bypass the anti-malware protections provided by
Hugging Face [43]. Bias in Al systems [23] may result from dataset
poisoning [26]. Beyond the malicious modification of PTMs and
training datasets, bad actors can also abuse the widespread avail-
ability of PTMs in problematic applications. For example, a PTM
was trained to be rude and then deployed as a conversation bot
on a web forum [22]. PTMs have also been used to refine phishing
attacks [69]. However, we note that compared to abuses of tradi-
tional software, the abuse of PTMs (either in supply chain or in
application) appears to be relatively rare. The PTM supply chain is
still in its infancy and we expect the relevant issues will increase
soon. We report on security aspects of the PTM supply chain and
indicate potential threats in the model hubs.

3 RESEARCH QUESTIONS

To the best of our knowledge, the characteristics and practices of

secure PTM supply chain have not been studied before, as current

work either focuses on traditional software supply chain attacks [47,

86, 89] or supply chain for major deep learning frameworks [73].
To characterize the PTM supply chain, we ask:

RQ1 What is the typical structure of model hubs?

RQ2 What practices are in place to improve security among users
of the model hubs?

RQ3 What are the potential threats in model hubs?

In §4, we discuss our methodology. In §5, we identify the charac-
teristics of model hubs and depict the PTM supply chain. In §5.1,
we measure these model hubs, indicate the artifacts in each of them,
and analyze the possible explanations based on their characteristics.
In §6, we indicate the security features in different model hubs, indi-
cate four security defenses and potential risks. Finally, we analyze
the threat models in §7 and imply future directions in §8.

4 METHODOLOGY

Model Hub Selection: First, we search for keywords* in a major
search engine (Google). Then we use three criteria to filter the
resulted pages: (1) There is a model hub matching our definition; (2)
The model hub should have a website. (3) The documentation should
be accessible. Finally, we got 8 model hubs: Hugging Face [19],
TensorFlow Hub [75], Pytorch Hub [62], MATLAB Model Hub [52],
ONNX Model Zoo [57], NVIDIA NGC [55], Modelhub [46], model
200 [41]. All of the accessible model hubs are listed in Table 1.

RQ1: To understand the typical structure of model hubs, we looked
at each of them and collected the categories (e.g., computer vision,
natural language processing), tasks (e.g., image classification, to-
kenization), models, and datasets. Our analysis of these artifacts
appears in Table 1. We analyze the artifacts, properties, and cat-
egorize them into three different types, similar to prior work on
APP stores [39]. Then we describe the model contributing workflow,
model distribution workflow, and model versioning.

RQ2: We also tried to identify the existing security features of
model hubs. The Hugging Face ecosystem has open access where

4Search terms were “Machine learning model hub” and “Deep learning model hub”.
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anyone can publish their own models, thus it is more complex and
more likely to have security risks than the others. Hugging Face
briefly indicates their security features in documentations [21]. We
looked at these documentations and investigated into the security
features in Hugging Face ecosystem.

RQ3: To measure the potential security risks, we first measured the
existence of discrepancies in Hugging Face. We audited 53 object
detection models, 26 image classification models, and 160 sentiment
analysis models from Hugging Face. We set up the test dataset and
obtained the claimed metrics from the YAML file. Then we compare
the actual accuracy to the claims and indicate whether there are
any discrepancies.

Each repository on Hugging Face is managed by a set of main-
tainers. We measured the number of repositories per maintainer by
looking at the commit histories from all PTMs in Hugging Face.

5 ROQ1: WHAT IS THE TYPICAL STRUCTURE
OF MODEL HUBS?

Finding 1: The artifacts and properties of model hubs differ
depending on their types. All model hub host models and other
artifacts, and function as a research-to-practice pipeline. The
contribution workflow differs by model hub types, but the mech-
anisms of distribution workflow and versioning are the same.

Model hubs can be implemented in different ways to achieve
the goals of a particular community. To identify the collaboration
model of model hubs, we first analyzed the artifacts in 8 different
model hubs in §5.1. Based on our study on the artifacts, we identify
the common properties of model hubs in §5.2. The differences we
observe between model hub types is how models are contributed to
the hub and distributed to end users. We discuss the contribution
workflow in §5.3 and the distribution workflows in §5.4.

5.1 Model Hub Artifacts

Following the methodology outlined in §4, we found and analyzed
8 different deep learning model hubs, which are outlined in Table 1.
We extracted the information about how each model hub operates
and how users depend on these model hubs using the Web UI tools
and/or available API endpoints.

Table 1 contains information about the name of categories and
number of tasks offered by model hubs. We found that all model
hubs had similar categories to offer (e.g., Computer Vision, Natural
Language Processing, etc.), but the model hubs that offered the
greatest flexibility (i.e., Hugging Face) in community contributions
were found to have more tasks and models associated with each
category, a clear advantage of open source model hubs. For example
Hugging Face is an open hub that offers 60,904 models and tasks
while Modelhub is a gated hub that only offers 6 models and tasks.

We found that different types of model hubs differ by the number
of PTMs, datasets, and model types available. For example, Hug-
ging Face and Model Zoo provide a breadth of machine learning
model tasks and datasets for categories which are not included in
other model hubs, such as reinforcement learning. While model
hubs offer PTMs across a variety of tasks, the number of tasks of-
fered does not necessarily indicate a large number of models. For
example, in Hugging Face, there exists a large number of PTMs
for NLP tasks (e.g., 9,734 text classification PTMs), but relatively



An Empirical Study of Artifacts and Security Risks in the Pre-trained Model Supply Chain

few PTMs for other model tasks (e.g., only 840 image classification
PTMs). Hugging Face only offers about 1% of its models for the
reinforcement learning category, while it offers 53% of its models
for the computer vision category.

5.2 Common properties

Based on the qualitative data obtained from the documentations,
we were able to categorize these model hubs into three types: open,
gated, and commercial. For the open model hub, anyone can con-
tribute to it. The gated model hub allows only restricted contri-
butions. For the commercial model hub, it only accept internal
contributions. These model hubs share two common properties:

Common Property 1: A model hub hosts pre-trained models. It
may host other artifacts (e.g., datasets, source code).

Common Property 2: Model hubs function as a research-to-
practice pipeline, more so than in the traditional software supply
chain. Model contributors are either the authors of a model, or are
maintaining or fine-tuning an existing model [21]. An author is the
researcher(s) who created the original implementation of a model,
typically released alongside an academic work [21]. A maintainer
is the individual(s) who maintain and expand the properties of an
author’s work [89]. This could be done through resolving bugs, im-
proving model performance and accuracy, or providing alternative
implementations of the model.

5.3 Model Contribution Workflow

Depending on the model hub type, contributing a model may re-
quire an author or maintainer to undergo varying levels of scrutiny
prior to a model being accepted. Models may also have to adhere
to a standard before being accepted. The contribution workflow is
modeled in Figure 3.

Open model hubs: Contributions are freely accepted in open model
hubs. Both the uploader of a model and the model itself do not have
to undergo any scrutiny or review prior to acceptance. However,
user access management systems can be in place to prevent users
from changing others’ models without permission. In addition,
these models are freely distributed to reusers.

Gated model hubs: These model hubs require models to adhere to
hub specific criteria before acceptance. While the uploader is not
scrutinized, the submitted PTM model must be verified by hub staff
members prior to acceptance to ensure that it aligns with the hubs
goals. Should the repository be approved of, it is accepted into the
hub and made available for reuse.

Commercial model hubs: This is a model hub where contributions
from the community are not accepted or made public. It is similar
to a gated model hub in that models must adhere to specific criteria,
but differs in that the uploader of the model must be a staff member
of the model hub itself.

5.4 Model Distribution Workflow
While model hubs can be differentiated by type, we found that
they distribute models similarly. Models are distributed through
either client libraries or via repositories typically hosted on a cloud
version control system (VCS) such as GitHub. A visualization of
the distribution workflow is modeled in Figure 3.

Client libraries refer to a precompiled package that acts as an in-
terface into a model hubs library of models. These allow for reusers
to download and implement models in a standardized manner that
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adheres to the model hubs guidelines. They also provide additional
security and verification features to ensure that the model and
reuser are not malicious, indicated in §6. Examples of client li-
braries include TensorFlow Hub [28, 75], PyTorch Hub [62], and
HuggingFace Transformers [19, 83].

As mentioned prior, model hubs can distribute models through
cloud VCSs, specifically GitHub. In doing so, they are relying upon
the end user’s technical prowess to implement a model. In addition,
they are relying on the cloud VCSs security and verification fea-
tures to ensure that a model is what it seems to be once a reusers
downloads it. Model hubs that utilize cloud VCSs include ONNX
Model Zoo [57] and Model Zoo [41].

5.5 Model Versioning

Model hubs host multiple versions of the same model. This is useful
for re-users as they can select a specific version to meet their needs.
Additionally, depending on how models are released to the hubs,
it provides users with additional security via versioning. However,
open, gated, and commercial model hubs implement different model
release schemes, even within the same classification.

Open model hubs (i.e., Hugging Face) version their models by
commit®. In other words, a release tag does not have to be associated
with a model to be released on the hub. Gated model hubs (i.e.,
Pytorch Hub, Tensorflow Hub) implement different model release
schemes. Pytorch Hub implements a system similar to Hugging
Face®, whereas Tensorflow Hub requires new documentation to be
published describing how to checkout a model prior to releasing a
new model’. Additionally, model updates need to be approved for
the Tensorflow Hub prior to release. Commercial model hubs (i.e.,
MATLAB Model Hub) utilize develop, extend, or optimize existing
PTMs to fit their hub’s niche(s).

6 ROQ2: WHAT PRACTICES ARE IN PLACE TO
IMPROVE SECURITY AMONG USERS OF THE
MODEL HUBS?

Finding 2: Open model hubs are vulnerable due to its open
nature and thus multiple security features have been applied.
Many of the vulnerabilities of an open model hub are mitigated
in gated/commercial model hubs due to controlled access.

To better understand the security features, we studied different
model hubs separately. We will discuss the security features in open
model hubs in §6.1 and gated/commercial model hubs in §6.2.

6.1 Security Feature in Open Model Hubs

Hugging Face is the only example of an open model hub that we
identified, so we complete a case study of its ecosystem. Hugging
Face provides model owners and users several security defense
mechanisms in order to prevent malicious maintainers from cor-
rupting their models. These defenses include: organization user
permission handling, organization verification, automatic malware
scanning, and commit signing. However, each of these defenses
present potential risks and vulnerabilities for the ecosystem’s users.

5See https://huggingface.co/docs/transformers/custom_models#using-a-model-with-
custom-code.

®See https://pytorch.org/docs/stable/hub.html#torch.hub.load.

7See https://www.tensorflow.org/hub/writing_documentation.
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Figure 3: PTM supply chain of open, commercial, and gated model hubs.

6.1.1 Permission Model Hugging Face has two types of accounts:

e Personal account: an account owned by a single user and
stores repositories developed and managed by that user.

o Organizational account: an account groups personal user
accounts which manage shared repositories.

The different user roles in an organizational account are: admins,
readers, and writers. The admin role is the most permissive role; with
it, a user can view an account's private repositories, and change
both repository and account settings. The reader role allows for
an account to view private and public repositories of an account.
However, they cannot directly contribute to the repository. Instead,
they need to open a pull request to submit repository changes. The
writer role is similar to the admin role, with the exception that it
cannot change account settings. User permissions for organizational
accounts are assigned globally so that users will have the same
permissions to all the repositories hosted under that organization.
The only user role defined in personal account is the author, which
is the user of that personal account.

6.1.2 Organization verification This is an optional feature that
organizations can opt into to provide a verification badge on their
accounts. The purpose of verification is to prevent other organiza-
tions from squatting on well known companies or organizations.
Furthermore, by verifying the authenticity of an organization, users
of can hold an organization liable for malicious models.

To become verified, an organization submits its domain name
to Hugging Face. From there, Hugging Face manually confirms
that the domain name originates from the organization. Assuming
proper verification, Hugging Face then assigns a verified badge
next to an organization’s name on their page. However, as this
is an optional feature, many organizations have not opted into
it. Nonetheless, Hugging Face provides other markers that could
provide organization legitimacy. An organization can provide a link
to a website and GitHub account without having to go through
Hugging Face manual verification.

6.1.3 Commit Signing Hugging Face implements an optional
verification feature for commits, called commit signing. Commit
signing involves configuring both git and a Hugging Face profile
to use a GPG, validating that a commit originated from a specific
individual on a specific machine. These commits are marked as
verified in a repositories history when viewed through the Web UI,

and are marked as signed when viewed through the git interface.
In addition to commit signing, users of the Hub Client Library
and Transformers library can specify a particular revision of a file
or PTM via a commit hash when downloading. By doing so, a user
can have a consistent version of a PTM is used in development.
When combined with a signed commit, users of a model have the
ability to choose a verified commit to checkout from.

6.2 Security Features in Gated/Commercial
Model Hubs

Due to the controlled access of gated/commercial model hubs, we
could not study their practical security features. Therefore, we
discuss the accessibility-security tradeoff they offer. Commercial
and gated model hubs decrease the availability of its models to
potential users. However, by the same token they mitigate many
of the risks of an open model hub. Since commercial and gated
model hubs restrict access to a trusted set of users. there is less risk
that a change to a model is malicious. Conversely, since the set of
contributors are limited, so is the potential for innovation. These
tradeoffs are analogous to those of app stores, e.g., Apple offers a
gated store and Android has an open one.

7 RQ3: WHAT ARE THE POTENTIAL THREATS
IN MODEL HUBS?

Finding 3: Insider and outsider attackers can both exist in the
PTM supply chain, but perform different attacks. We proved the
possibility of potential risks by analyzing the model discrepan-
cies and repositories per maintainer graph.

Based on our analysis of the artifacts (§5) and security features
(§6), we mapped the attacker profiles of existing threats to the PTM
supply chain in §7.1. We also pointed out the potential risks by
analyzing the model discrepancies and maintainers’ reach.

7.1 Threat Models
To understand more about how a PTM supply chain could be poten-
tially attacked, we should not only study the existing practices, but
also the attacker profiles. Here, we outline two different attacker
profiles: insider and outsider threats.

An insider attacker profile is one that exists within the model
hub organization themselves. In the case of an open model hub,
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this would be a rogue employee or someone with access to hub’s
servers. With such permissions, the attacker could directly change
files on the servers, altering model checkpoints or datasets. Since
many open model hubs do not maintain a proper file checksum
verification, i.e. making sure that the file downloaded is the same
as the file uploaded, a malicious insider could easily manipulate
model checkpoints. On the other hand, for other commercial and
gated model hubs, an insider would be maintainers with access to
editing model repositories and the hub itself. All three types of
model hubs open the gate for weight poisoning attacks, BadNets,
and data manipulation when an insider is in play.

Outsider attacker profiles are derived from the model hub users.
In an open model hub, maintainers of model repositories are con-
sidered outsiders, whereas for other types of model hubs, outsiders
are those who do not have access to the ecosystem. For an open
hub, this profile can cause damage by maliciously changing data
within specific artifacts to affect users and the ecosystem. This can
be through the previously discussed threat models, or it can be
through another method, such as typosquatting [78]. For commer-
cial and gated model hubs, the definition of an outsider attacker is
a bit different, and instead describes a user who do not have more
than a "read-only" access to the models. An outsider in a gated or
commercial model hub can perform a model stealing attack, where
they could rebuild the data and model from the weights itself [67].

7.2 Potential Risks

We also conducted quantitative measurements on the risks in model
hubs to identify the vulnerabilities in the PTM supply chain. We
measured the existence of discrepancies of PTMs from three tasks,
and depicted the effects of maintainers. Our results indicate the
potential risks to the PTM supply chain.

Model discrepancies: Documented and actual performance of PTMs
may be different when users run the models. These differences are
described as model discrepancies and can be caused by either insider
or outsider attackers. Attackers can easily modify a model by adding
backdoor behavior or side-effects. When a model’s documentation
is thorough and accurate, model discrepancies are more likely to
indicate potential PTM attacks. However, the lack of proper doc-
umentation prevents users from adequately assessing the models
they use. We identified the existence of inaccurate documentation
in Hugging Face. This could decrease users’ awareness of potential
risks, allowing attackers to substitute EvilModels or BadNets for
the original models.

In this measurement, 8/53 object detection models, 4/26 image
classification models, and 136/160 sentiment analysis models made
claims we could validate. We were unable to reproduce the docu-
mented performances of a large number of PTMs, as shown in Fig-
ure 4. Some of the models we looked at had a difference of more
than 5% accuracy, even when they were from major technology
companies (i.e., Facebook/Meta). Our result shows the presence of
performance discrepancies which could either decrease the users’
awareness or the detectability of PTM attacks.

Maintainers’ reach: Maintainers are one of the most significant
components in the PTM supply chain (Figure 3). The maintainers’
misbehavior can become an insider attack and do harm to PTM
users. Similar to the npm ecosystem [89], maintainer accounts
with access to a large number of PTMs increase risk in the model
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Figure 4: Discrepancies for (a) mAP in 8 object detection (b)
top-1 accuracy in 4 image classification (c) accuracy in 136
sentiment analysis PTMs.

hub ecosystem. As discussed in §2.3, a graph of the maintainers’
reach can help us understand their influence on the ecosystem. We
depict the correlation between maintainers and PTMs in Figure 5
by looking at the commit histories from all Hugging Face PTMs.

Figure 5 demonstrates how many Hugging Face repositories
each maintainer has access to. Within the Hugging Face ecosystem,
a small number of maintainers have access to a disproportionate
number of repositories. These maintainers are hazardous to the
robustness of the PTM supply chain — by compromising one of
these accounts, attackers could influence hundreds of models and
thus do harm to the PTM supply chain.
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Figure 5: Maintainers’ reach in the Hugging Face model hub.

8 DISCUSSION

8.1 Comparison to Traditional Software Supply

Chain

Comparing to traditional software supply chain, the PTM supply
chain has different characteristics, in terms of the nature of software
versioning and security risks.

The requirements for time and computational resources in the
PTM training mean it is hard to regularly update the PTM versions.
The time to release traditional software versions is much less since
test cases can be written to validate the changes to the software.
Furthermore, updates to traditional software can more closely fol-
low semantic versioning practices since patch, minor, and major
changes can be quantified easily. Based on §2.1 and §5, we notice
that while PTMs can follow semantic versioning, it is more difficult
to quantify the change because differences between the training
datasets, methodologies, or code improvements can dramatically
impact the quality of the resulting model [68]. Moreover, due to the
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obfuscated nature of PTMs, it is difficult to identify security issues
within them [31, 80].

PTM attacks are highly variable and have significant impacts
since they are deployed in safety-critical systems, such as autonomous
vehicles [25]. PTM software have many important components like
dataset, weights and configurations which can be attacked in dif-
ferent ways, including poisoning [26, 45] and backdoors [48, 79].
Moreover, the manifestation of PTM attacks can be different from
traditional attacks, as shown in §2.4 and Figure 4. Therefore, the
traditional scanning tools are incomplete in the PTM context. Fig-
ure 5 shows similar results as npm ecosystem [89]. It shows that the
traditional attacks happened in traditional software supply chain
can also happen in the PTM supply chain, such as account takeover
and collusion attack. Moreover, the complexity of PTM components
may make it harder to detect the threats in the PTM supply chain.

Two main differences between PTM supply chain and traditional
software supply chain are versioning and security properties. The
traditional software supply chain allows traceability between ver-
sions to verify the integrity and security of the software. Due to the
obfuscated nature of PTMs, the PTM supply chain struggles with
these validations. For security properties, PTM attacks are harder
to detect and they can significantly affect the applications.

8.2 Implications

Based on our results and analysis, we highlight future directions
for empirical study and automated tools.

8.2.1 Empirical Study We identified the PTM supply chain con-
tribution and distribution workflows, and analyzed the security
features. Our results indicates the insufficiency of security defenses
on PTM supply chain. However, the security characteristics of PTM
supply chain remain under-discovered. We call for expanding our
knowledge of traditional supply chain management [17, 84] to en-
compass DL software supply chains. Researchers have analyzed
dependencies, maintainers, and security issues in traditional soft-
ware packages (e.g., NPM, Pypi, RubyGems) [11, 13, 47, 56, 86, 89].
Model hub ecosystems need similar studies.

Dependencies: The dependencies of PTMs include model structures,
pre-trained weights, and datasets. Measurement on each aspect
would help the community understand more about the potential
threats in model hub ecosystems. Moreover, the potential security
risks of a ecosystem also depends on the behavior of maintainers.

Maintainers: Prior works indicated that in NPM ecosystem, few
maintainers — who have access to over 3K models — could impact
amuch larger fraction of the repositories [89]. We hypothesize that
the number of PTMs per maintainer (i.e., maintainers’ reach [89])
may be more evenly distributed in model hubs due to a greater
complexity and cost of developing PTM packages than traditional
software packages. If true, both insider and outsider attacks on
model hubs may be less significant than on NPM. We suggest more
studies to measure maintainers’ reach on model hubs and evaluating
the risk relative to that on traditional software supply chains. We
also note that researchers play an unusually prominent role in
model hubs compared to traditional software package registries;
this may diminish the engineering quality of their packages.

8.2.2 Automated Tool Our analysis of threat models indicate that
Model audit and automated model scanning could help detect the

Wenxin Jiang et al.

security issues in the PTM supply chain. However, there have not
been any comprehensive tools developed for these issues.

Model audit: Checking of different PTM behavior (i.e., model au-
dit) is a necessary approach to validate existing PTMs. Prior works
have already indicated that adversarial attacks could affect the ac-
curacy of PTMs [1, 7]. Montes et al. shows preliminary results of
non-trivial discrepancies existing among different model hubs [53].
Their results reveal the problems on the reliability of PTM supply
chain. Hamon et al. proposed the three levels of Al transparency,
including implementation, specifications, and interpretability [33].
Recently, Hugging Face released an auto-evaluator to audit model
performance [20]. However, the tool only supports pre-defined met-
rics focused on accuracy. Even were the tool widely used, the third
level (interpretability) of PTMs would remain under-audited. We
propose future works on automated audit tools for the measurement
of interpretability of PTMs.

Model scanning: In addition to model audits, specific integrated
scanning tools for PTMs are needed for improving the security
of model hubs. ClamAYV is an existing practice in Hugging Face,
but it originated in traditional software [8] and could not detect
the DL-specific threat models. It has been proved that EvilModels
can still be uploaded to Hugging Face. For example, arbitrary code
could be executed when loading a model from Hugging Face® and
there is no warning about this misbehavior. As a result, we suggest
future works on more specific scanning tools for attacks on PTMs
(i.e., weights, datasets, configurations).

9 CONCLUSION

To have a better understanding of the role of model hubs in the
secure DL supply chain, we examined 8 model hubs, proposed
three model hub types, and summarized the PTM supply chain.
Furthermore, we did the first study on model hubs and show that
the PTM supply chain is an essential part of DL software supply
chain. We also reviewed existing defenses and analyzed potential
threat models. Our analysis shows that the existing defenses are
insufficient for ensuring the security of PTMs distributed through
model hubs since state-of-the-art attacks can be performed without
detection and have effects on downstream models. We inform future
research on model supply chains and suggest that a model audit and
further empirical studies are needed to fully address the security
vulnerabilities on model hubs.
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