Discrepancies among Pre-trained Deep Neural Networks:
A New Threat to Model Zoo Reliability

Diego Montes Pongpatapee Peerapatanapokin Jeft Schultz
Purdue University, USA Purdue University, USA Purdue University, USA
montes10@purdue.edu ppeerapa@purdue.edu schul203@purdue.edu
Chengjun Guo Wenxin Jiang James C. Davis
Purdue University, USA Purdue University, USA Purdue University, USA
guo456@purdue.edu jlang784@purdue.edu davisjam@purdue.edu
ABSTRACT the costs of training [13]. In particular, transfer learning can result

Training deep neural networks (DNNs) takes significant time and
resources. A practice for expedited deployment is to use pre-trained
deep neural networks (PTNNs), often from model zoos—collections
of PTNNGs; yet, the reliability of model zoos remains unexamined. In
the absence of an industry standard for the implementation and per-
formance of PTNNS, engineers cannot confidently incorporate them
into production systems. As a first step, discovering potential dis-
crepancies between PTNNSs across model zoos would reveal a threat
to model zoo reliability. Prior works indicated existing variances in
deep learning systems in terms of accuracy. However, broader mea-
sures of reliability for PTNNs from model zoos are unexplored. This
work measures notable discrepancies between accuracy, latency,
and architecture of 36 PTNNs across four model zoos. Among the
top 10 discrepancies, we find differences of 1.23%-2.62% in accuracy
and 9%-131% in latency. We also find mismatches in architecture
for well-known DNN architectures (e.g., ResNet and AlexNet). Our
findings call for future works on empirical validation, automated
tools for measurement, and best practices for implementation.

CCS CONCEPTS

« Software and its engineering — Reusability; - Computing
methodologies — Neural networks.

KEYWORDS

Neural networks, Model zoos, Software reuse, Empirical software
engineering

ACM Reference Format:

Diego Montes, Pongpatapee Peerapatanapokin, Jeff Schultz, Chengjun Guo,
Wenxin Jiang, and James C. Davis. 2022. Discrepancies among Pre-trained
Deep Neural Networks: A New Threat to Model Zoo Reliability. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),
November 14-18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3540250.3560881

1 INTRODUCTION

With the growing energy consumption of training DNNs [26], tak-
ing advantage of the re-usability of PTNNs can significantly reduce

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ESEC/FSE °22, November 14—18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3560881

1605

in shorter training times and higher asymptotic accuracies com-
pared to other weight initialization methods [22, 36]. This kind
of technique accelerates model reuse and development. The his-
tory of PTNNs and their impact on the development of artificial
intelligence has been extensively documented [13, 25]. As such,
collections of PTNNSs have been created, referred to as model zoos.
Notably, maintainers of popular machine learning frameworks, such
as TensorFlow [2], maintain corresponding model zoos developed
with their framework, such as the TensorFlow Model Garden [38].

There are many model zoos [1, 18, 23, 38] and an expanding use
of PTNN s in production systems [13]. Past work has emphasized the
difficulties in adopting software engineering practices in machine
learning, and specifically, the challenges with reproducing machine
learning research papers [4, 17]. These reproducibility issues may
affect PTNNS, leading to variations across model zoos [28]. Dis-
parities in the accuracy, latency, or architecture of a PTNN could
negatively affect a deep learning system, threatening PTNNS’ reuse
potential. Consider a model zoo that has an incorrect implemen-
tation of a well-known DNN architecture, which has increased its
latency significantly. If an engineer were to use the PTNN from
this zoo, they would unknowingly be receiving a lower quality
PTNN than they might otherwise have from a different model
zoo. The engineer’s effort to enable a quick turnaround time with
a PTNN would have become harmful. Discovering discrepancies
would shine a light on the reliability of model zoos.

To explore the reliability of model zoos, we performed a measure-
ment study to identify discrepancies among 36 image classification
PTNN architectures across four model zoos: TensorFlow Model Gar-
den (TFMG) [38], ONNX Model Zoo (ONNX) [1], Torchvision Models
(Torchvision) [23], and Keras Applications (Keras) [18]. The PTNNs
were measured along three dimensions: accuracy, latency, and archi-
tecture. We find the differences in accuracies on ILSVRC-2012-CLS
dataset (ImageNet) can be as large as 2.62% [10].! Similarly, over
20% of the PTNNs measured had latency differences (FLOPs) of
10% or more when comparing PTNNs of the same name across the
model zoos. Lastly, we discover architectural differences in several
PTNNSs, including implementations of AlexNet and ResNet V2. We
conclude with an agenda for future research on further empirical
validation, automated tools for measurement, and best practices for
implementing model zoo PTNNS.

I The ILSVRC-2012-CLS image dataset has 50,000 validation images. A 1% accuracy
difference is equivalent to 500 images.

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7994-1281
https://orcid.org/0000-0002-8901-7495
https://orcid.org/0000-0002-1470-7897
https://orcid.org/0000-0002-6314-2028
https://orcid.org/0000-0003-2608-8576
https://orcid.org/0000-0003-2495-686X
https://doi.org/10.1145/3540250.3560881
https://doi.org/10.1145/3540250.3560881

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

2 BACKGROUND AND RELATED WORK

PTNNs are applied in a wide variety of domains [13]. With the
demand for engineers far exceeding supply [32], companies are
looking for best practices that can boost the productivity of their en-
gineers. Major companies (e.g., Google and Microsoft) have shared
best practices on machine learning development and informed
future directions on model reuse [3, 8]. A case study from SAP indi-
cates possible compatibility, portability, and scalability challenges
in machine learning model deployment, which may affect their
performance [30]. There have been many efforts to improve the
quality of model zoos. For example, IBM has developed a tool to
extract model metadata [37] to support better model management.
Banna et al. promote best practices for reproducing and publishing
high-quality PTNNSs [4]. However, the reliability of model zoos has
not been validated by prior works.

The ability to replicate the accuracy of a DNN in identical train-
ing environments is hindered by non-deterministic factors. Ac-
curacy differences of up to 10.8%, stemming purely from non-
determinism, have been reported with popular DNN architectures
[28]. Closely related, research has investigated and benchmarked
the performance variances tied to deep learning frameworks [21,
33]. This variability threatens the reliability of new deep learning
techniques. As such, automated variance testing [27] has been pro-
posed to assure the validity of these comparisons. However, PTNNs
in model zoos may also suffer from varying architectural imple-
mentations, affecting more than just accuracy. Our work measures
the disparities in PTNNSs across different model zoos as opposed
to attempting to improve the standard in just one [4]. Our results
enlighten future works validating the quality and promoting the
standardization of model zoos.

3 METHODOLOGY

We perform a measurement study to assess our problem statement:
whether discrepancies exist between the accuracy, latency, and
architecture of PTNNSs across different model zoos.

3.1 Subjects

A model zoo is a collection of PTNNs for various tasks. We carry
out a selection process for four model zoos. Our selection crite-
ria included the model zoo being maintained alongside a machine
learning framework: this increases the likelihood of the model zoo
being actively maintained. Furthermore, to ensure the popularity of
the model zoo, the zoo must have a public GitHub repository with
at least three thousand stars [7]. Using GitHub search? to identify
potential model zoo candidates, 11 model zoos were selected that
met the criteria.> The PTNNs within the 11 model zoos were cat-
egorized into deep learning tasks, including image classification,
object detection, and natural language processing. We focused on
image classification models because it is the most common type in
8 of the 11 model zoos.

A PTNN availability analysis was done on the candidate model
200s to assess how many model zoos offered the same image classifi-
cation PTNN architectures. Based on the largest shared availability,
we chose TensorFlow Model Garden, ONNX Model Zoo, Torchvision

Zhttps://github.com/search

3The 11 identified potential model zoos are as follows: TensorFlow Model Garden,
ONNX Model Zoo, Torchvision Models, Keras Applications, TensorFlow Model Hub,
PyTorch Model Zoo, MXNet Model Zoo, Gluon Model Zoo, Deeplearning4j Model Zoo,
Caffe Model Zoo, and OpenVINO Model Zoo.

1606

Diego Montes, Pongpatapee Peerapatanapokin, Jeff Schultz, Chengjun Guo, Wenxin Jiang, and James C. Davis

TensorFlow|
Model
Garden

Latency
Profiling

Ty
f—

ONNX
Model Zoo
-

—
1

Architecture
Analysis

Discrepencies
between zoos?

Torchvision
Models
—_

e —
fr———

Accuracy
Measurement

Keras
IApplications|

Model Zoos
Figure 1: Overview of the measurement process. We gather
PTNNs from the model zoos with the same name, perform
measurements on each PTNN, and compare for discrepancies.

Models, and Keras Applications. Within these model zoos, we se-
lected all the image classification PTNN architectures that were
present in at least two of the four model zoos, yielding 36 PTNN
architectures. The selected PTNNS are either directly downloadable
from the model zoos’ GitHub repositories or can be pulled using
the model zoos” APIs.

3.2 Evaluation Metrics

Accuracy. Image classification DNNs’ effectiveness is measured in
accuracy, which is a critical component of a PTNN. We are measur-
ing discrepancies between the claims of model zoos as opposed to
verifying them. Top-1 accuracy is the conventional accuracy where
model prediction must exactly match the expected label, while
top-5 accuracy measures the fraction of images where any of the
top five predicted labels matches the target label [9, 10]. 35 image
classification PTNN architectures reported top-1 ImageNet classi-
fication accuracies, meanwhile only 32 reported top-5 ImageNet
classification accuracies.

Latency. The latency of a DNN is a key factor that engineers
consider [11]. For example, MobileNet is a DNN image classification
architecture that prioritizes low latency on mobile and embedded
systems [16]. We used open-source tools [5, 34, 35] to measure
the latency by counting the floating point operations (FLOPs) [6].
FLOPs are framework and hardware-agnostic, allowing for unbiased
comparisons.

Architecture. PTNNs are trained weights based on research papers
that propose DNN architectures. As a result, model zoos advertise
PTNNs by their architecture name. The observed accuracy dif-
ferences and past work on DNN vulnerabilities motivated us to
examine architecture [12]. Qualitative observations of discrepan-
cies in the descriptions, source code, and visualizations of PTNN
architectures were employed. Specifically, netron, an open-source
neural network visualizer, was used to inspect the architecture
of the PTNNSs [31]. However, not all neural network weight for-
mats are supported, so all PTNNs were converted to the ONNX
format for architectural analysis using an appropriate tool for each
framework [24, 29]. The source code for the implementations of
the PTNNs are present in the model zoos” GitHub repositories and
was used as an additional form of PTNN inspection.

Discrepancies among Pre-trained Deep Neural Networks: A New Threat to Model Zoo Reliability

Table 1: Frequency at which each model zoo had the most or
least accurate model ordered by highest top-1 accuracy.
Highest Top-1

Lowest Top-1 Highest Top-5 Lowest Top-5

48%
40%
37%
35%

41%
33%
44%
41%

52%
36%
36%
31%

36%
43%
40%
44%

Torchvision Models
TF Model Garden
Keras Applications
ONNX Model Zoo

4 RESULTS AND ANALYSIS

4.1 Accuracy

We compared the top-1 accuracy of 35 PTNN architectures and
the top-5 accuracy of 32 PTNN architectures by using ImageNet.
Notably, 12 of the 35 profiled PTNN architectures had top-1 accu-
racy differences greater than 0.96%. For top-5 accuracies, 6 of the 32
PTNN architectures had differences greater than 0.94%. The large
differences present in Figure 2 have significant consequences. For
example, ResNet V1 152 from Keras is noticeably less accurate than
the PTNN by the same name from Torchvision, with top-1 accura-
cies of 76.6% and 78.31%, respectively. This difference is pronounced
enough that ResNet V1 101 from Torchvsion with top-1 accuracy of
77.37% is more accurate than ResNet V1 152 from Keras.*

2.5
2.0

1.

w

1.

o

0.

6]

0.0

Range in Top-1 Accuracy Among the Model Zoos

Figure 2: Top 10 largest top-1 accuracy differences. For a
PTNN architecture, the accuracy of the PTNN with the lowest
reported top-1 accuracy is subtracted from that of the PTNN
with the largest top-1 accuracy.

Table 1 shows the aggregation of accuracy differences across
model zoos, highlighting how often a model zoo had the highest
or lowest top-1 or top-5 accuracy for a given PTNN architecture.
As seen, 48% of the PTNNSs that were available on Torchvision had
the highest top-1 accuracy among the model zoos. On the other
hand, Keras had the lowest top-1 accuracy 44% of the time for its
selection of PTNNS.

4.2 Latency

36 PTNN architectures were measured for their FLOPs. Figure 3
shows that there are 8 PTNN architectures where the PTNN with the
highest amount of FLOPs had greater than 10% more FLOPs than the

4ResNet V1 101 was originally reported to be 0.32% less accurate than ResNet V1
152 [14].

1607

ESEC/FSE "22, November 14-18, 2022, Singapore, Singapore

SqueezeNet 1.0
ResNet V2 50
ResNet V2 101
ResNet V2 152
ShuffleNet V2
ResNet V1 50
MobileNet V2
MobileNet V3 Small
MobileNet V3 Large

AlexNet

0.0x 0.5x 1.0x 1.5x 2.0x

Magnitude Difference between PTNN FLOPs
Figure 3: Top 10 largest FLOPs differences. For a PTNN archi-
tecture, the FLOP count of the PTNN with the most FLOPs is
divided by the FLOPs of the PTNN with the fewest.

PTNN with the lowest FLOP count. At the extreme, Torchvision’s
SqueezeNet 1.0, sitting at 819.08 million FLOPs, had 2.31x the FLOPs
of ONNX’s SqueezeNet 1.0. Likewise, the three PTNN architectures
from the ResNet V2 family all had greater than 85% more FLOPs
than the lowest FLOPs PTNN. All the high FLOP-count ResNet V2
come from TFMG.

We discuss the possible explanations for the FLOPs differences
seen in Figure 3. The high FLOPs difference measured in SqueezeNet
1.0 can be explained by looking at its successor, SqueezeNet 1.1.
SqueezeNet 1.11s advertised by ONNX to contain 2.4X less computa-
tion than the former. However, SqueezeNet 1.1 from ONNX has the
same number of measured FLOPs as the 1.0 PTNN offered. ONNX
has been advertising SqueezeNet 1.1 as its 1.0 counterpart. Similarly,
looking at the ResNet V2 from TFMG: a primary contributor to the
large amount of FLOPs is the input shape. ResNet V2 architectures,
according to the origin paper, accept 224x224 inputs [15]; however,
TFMG states that the ResNet V2 PTNNSs it provides use Inception
pre-processing and an input image size of 299x299. A trade-off
between accuracy and throughput, FLOPs, was potentially made
here by the model zoo maintainers.

Across all FLOP-counted PTNNSs, Torchvision had the highest
FLOPs PTNNSs for 78% of the PTNNSs it offered. Close behind, TFMG
had 69%. Pointedly, Keras never had the highest FLOPs PTNN and
had the lowest FLOPs implementation 81% of the time.

4.3 Architecture

We frame our results for architecture in terms of the discrepancies
we discovered in our analysis. Specifically, we discuss differences
among PTNNs for AlexNet, ResNet V1 101, ResNet V2 50, and ResNet
V2 101 and against the PTNNSs’ origin papers.

The AlexNet from Torchvision cites a different origin paper than
other model zoos [19, 20]. Both papers contain the same first author;
however, only the latter contains an explicit description of a DNN
architecture. As such, our analysis pegs the PTNN against the latter
paper [20]. We notice two main discrepancies: the PTNN is missing
the response normalization layers and the kernel-size and number
of kernels for the convolution layers are incorrect. For instance,
Torchvision’s PTNN has 64 kernels in the first convolution layer as
opposed to the 96 that are described in the origin paper.

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

1x64x56x56 1x64x56x56

Conv
W (64x64x3x3)
B (64)

1x64x28x28

W (64x64x3x3)
B (64)

1x64x56x56

1x64x56x56

1x64x28x28

Conv
W (256x64x1x1)
B (256)

1x256x28x28

Conv

W (256x64x1x1)

1x256x56x56

Figure 4: ResNet V2 50 architecture differences between Keras
Applications (left) and ONNX Model Zoo (right). The top-right
convolution on the left has a stride size of 2, while the top-
right convolution on the right has a stride size of 1.

MaxPool

The ResNet V1 101 from ONNX and Keras contain convolution
shortcuts, which were only introduced in the ResNet V2 paper, but
not in the ResNet V1 origin paper [14, 15]. Torchvision’s and TFMG’s
ResNet V1 101 do not include this shortcut. Also in the ResNet family,
both the ResNet V2 50 and ResNet V2 101 have a shared discrepancy.
As seen in Figure 4, Keras’ ResNet V2 50 implementation contains
max pool skip connections, which are not present in the paper, and
uses convolutions with larger strides in these residual blocks [15].

The observed discrepancies in architecture may affect the accu-
racy and latency. For example, the larger convolution strides and
max pool skip connection in the ResNet V2 50 from Keras allows
the network to use less compute, FLOPs, compared to the PTNN
from ONNX. This can be seen in the FLOP measurements of the
ResNet V2 50 from Keras and ONNX. ONNX’s ResNet V2 50 has
4.12 billion FLOPs while Keras’ PTNN only has 3.49 billion FLOPs,
an 18.1% difference. Moreover, the Keras PTNN did not sacrifice
accuracy through this implementation, reporting a 76% top-1 accu-
racy, which is greater than ONNX’s ResNet V2 50 top-1 accuracy
of 75.81%. While the Keras maintainers did not implement ResNet
V2 50 faithfully to the origin paper, they produced a more accurate
PTNN with lower latency.

5 DISCUSSION AND FUTURE WORK

Empirical Validation. The top-1 accuracy differences depicted in
Figure 2 suggest that the choice of model zoo matters. Specifically,
34% of the PTNN architectures having top-1 accuracy differences
greater than 0.96% is not easily overlooked. An engineer may re-
ceive a PTNN that incorrectly classifies greater than 500 validation
images on ImageNet more than a PTNN from a different model zoo.
Model zoo choice should not result in a noticeable impact on the
accuracy of PTNNs that engineers receive. Although model zoos
currently report the accuracy of the PTNN s they offer, our work has
shown that this does not guarantee that there is not another model
zoo with the same PTNN at a higher accuracy. Publicly available
and actively maintained comparisons of model zoo PTNNs would
allow engineers to be more informed when choosing a model zoo.
Furthermore, we only studied the accuracies of image classification

1608

Diego Montes, Pongpatapee Peerapatanapokin, Jeff Schultz, Chengjun Guo, Wenxin Jiang, and James C. Davis

models at face value. We recommend future works focus on empir-
ical validation on the claims of PTNNs in model zoos to check for
the existence of false advertising.

New Metrics and Automated Tools. The measured FLOP dis-
parities seen in Figure 3 have consequences, especially in edge
devices with limited compute. For example, ONNX incorrectly list-
ing SqueezeNet 1.1as SqueezeNet 1.0 may lead to confusion when an
engineer switches to SqueezeNet 1.1 from SqueezeNet 1.0 expecting
a drop in latency. Similar confusion may arise from instances like
the one seen in TFMG’s selection of ResNet V2. While the increased
input size is stated, the impact on latency is not made clear. To
effectively inform engineers of the latency of PTNNs, model zoos
should report FLOP counts alongside accuracy. Also of interest is
the energy usage of these PTNNSs, another important property for
edge devices. The lack of reporting of these properties may make
choosing PTNNs more difficult. We recommend future works create
new metrics to measure the reliability and quality of PTNNs from
model zoos and develop tools for automatically measuring these
properties. Publishing updated results frequently can support easier
decision-making of models for deployment.

Naming Conventions. The differences in the architectures of
PTNNs may indicate an underlying improper documentation stan-
dard and a need for improved naming conventions in model zoos.
As indicated in §4.3, Torchvision’s AlexNet did not adhere to the
origin paper while still claiming to be AlexNet. Seemingly, model
zoos are advertising PTNNs labeled as well-known DNN architec-
tures, like ResNet and AlexNet, but when they do this, they really
mean that the PTNNs are based on the DNN architecture and are
not strict implementations. This inadequate naming convention
leads to a false sense of equality and thus confusion. We recom-
mend the community comprehensively document PTNN naming
conventions to increase cohesion among model zoos. Likewise, we
suggest future works investigate the expectations of engineers with
regards to the PTNNs from model zoos to see whether they prefer
exact reproductions or more accurate and lower latency PTNNs.
The result of such a study would inform model zoo maintainers on
how to best implement and train PTNNs.

6 CONCLUSION

We present an investigation of the discrepancies between 36 image
classification PTNN architectures from four popular model zoos
through accuracy, latency, and architecture analyses. We find sev-
eral significant discrepancies among these three axes that challenge
the well-established use of PTNNs from model zoos, suggesting
that an engineer will receive a PTNN with different characteristics
based on the model zoo. The PTNN’s goal of shortening model
deployment time is diminished because of the time investment
needed to verify the properties of the PTNN. We discuss the impor-
tance of future works to validate the claims of model zoos, develop
automated tools for measurement, and explore best practices for
implementing model zoo PTNNS.

ACKNOWLEDGMENTS

This work was supported by gifts from Google and Cisco and by
NSF-OAC award #2107230. We thank the anonymous reviewers for
their careful reading of our manuscript and their many insightful
comments and suggestions.

Discrepancies among Pre-trained Deep Neural Networks: A New Threat to Model Zoo Reliability

REFERENCES

[1] 2019. ONNX | Home. https://onnx.ai/
[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

[4

(5

[10

[11

[12

[13

[14

[15

[16

=

=

=

]

]

]

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Jan Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://doi.org/10.5281/zenodo.4724125

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
https://doi.org/10.1109/ICSE-SEIP.2019.00042

Vishnu Banna, Akhil Chinnakotla, Zhengxin Yan, Anirudh Vegesana, Naveen
Vivek, Kruthi Krishnappa, Wenxin Jiang, Yung-Hsiang Lu, George K. Thiru-
vathukal, and James C. Davis. 2021. An Experience Report on Machine Learning
Reproducibility: Guidance for Practitioners and TensorFlow Model Garden Con-
tributors. https://doi.org/10.48550/arXiv.2107.00821

blacklong28. 2022. onnx-opcounter. https://github.com/blacklong28/onnx-
opcounter

Michaela Blott, Lisa Halder, Miriam Leeser, and Linda Doyle. 2019. QuTiBench:
Benchmarking Neural Networks on Heterogeneous Hardware. Journal on Emerg-
ing Technologies in Computing Systems (JETC) (2019). https://doi.org/10.1145/
3358700

Hudson Borges and Marco Valente. 2018. What’s in a GitHub Star? Understanding
Repository Starring Practices in a Social Coding Platform. Journal of Systems
and Software (2018). https://doi.org/10.1016/j.js5.2018.09.016

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D. Sculley. 2017. The ML
test score: A rubric for ML production readiness and technical debt reduction. In
International Conference on Big Data (BigData). https://doi.org/10.1109/BigData.
2017.8258038

Anh T. Dang. 2021. Accuracy and Loss: Things to Know about The Top 1 and
Top 5 Accuracy. https://towardsdatascience.com/accuracy-and-loss-things-to-
know-about-the-top- 1-and-top- 5-accuracy- 1d6beb8f6df3

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In IEEE conference on computer vision
and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2009.5206848
Nikhil Krishna Gopalakrishna, Dharun Anandayuvaraj, Annan Detti, Forrest Lee
Bland, Sazzadur Rahaman, and James C. Davis. 2022. “If security is required”:
Engineering and Security Practices for Machine Learning-based IoT Devices. In
2022 IEEE/ACM 4th International Workshop on Software Engineering Research and
Practices for the IoT (SERP4I0T). 1-8. https://doi.org/10.1145/3528227.3528565
Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets: Iden-
tifying Vulnerabilities in the Machine Learning Model Supply Chain. https:
//doi.org/10.48550/arXiv.1708.06733

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin,
Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie
Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin Zhao, and Jun Zhu. 2021. Pre-trained
models: Past, present and future. AT Open (2021). https://doi.org/10.1016/j.aiopen.
2021.08.002

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.90

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity
Mappings in Deep Residual Networks. In European conference on computer
vision (ECCV), Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.).
https://doi.org/10.1007/978-3-319-46493-0_38

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

1609

[17

e
)

[20

[21

[22

(37]

(38]

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017). https://doi.org/10.48550/arXiv.1704.04861
Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis. Science
(2018). https://doi.org/10.1126/science.359.6377.725

Keras. 2022. Keras Applications. https://keras.io/api/applications/

Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. arXiv (2014). https://doi.org/10.48550/arXiv.1404.5997

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In International Conference on
Neural Information Processing Systems (NeurIPS). https://doi.org/10.1145/3065386
Ling Liu, Yanzhao Wu, Wengi Wei, Wenqi Cao, Semih Sahin, and Qi Zhang. 2018.
Benchmarking Deep Learning Frameworks: Design Considerations, Metrics and

Beyond. In International Conference on Distributed Computing Systems (ICDCS).
https://doi.org/10.1109/ICDCS.2018.00125

Tong Liu, Shakeel Alibhai, Jinzhen Wang, Qing Liu, Xubin He, and Chentao Wu.
2019. Exploring Transfer Learning to Reduce Training Overhead of HPC Data in
Machine Learning. In International Conference on Networking, Architecture and
Storage (NAS). https://doi.org/10.1109/NAS.2019.8834723

Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-Vision
Package of Torch. In ACM international conference on Multimedia. https://doi.
org/10.1145/1873951.1874254

ONNX. 2022. tf2onnx. https://github.com/onnx/tensorflow-onnx

Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering (2010). https://doi.org/10.1109/
TKDE.2009.191

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon Emissions
and Large Neural Network Training. arXiv. https://doi.org/10.48550/arXiv.2104.
10350

Hung Viet Pham, Mijung Kim, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan.
2021. DEVIATE: A Deep Learning Variance Testing Framework. In International
Conference on Automated Software Engineering (ASE). https://doi.org/10.1109/
ASE51524.2021.9678540

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems
and Opportunities in Training Deep Learning Software Systems: An Analysis of
Variance. In International Conference on Automated Software Engineering (ASE).
https://doi.org/10.1145/3324884.3416545

PyTorch. 2022. pytorch. https://github.com/pytorch/pytorch

Saidur Rahman, Emilio River, Foutse Khomh, Yann Gal Guhneuc, and Bernd Lehn-
ert. 2019. Machine learning software engineering in practice: An industrial case
study. In International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). https://doi.org/10.1109/ICSE-SEIP.2019.00042

Lutz Roeder. 2022. netron. https://netron.app/

Lucas Sakurada, Carla A. S. Geraldes, Florbela P. Fernandes, Joseane Pontes,
and Paulo Leitao. 2020. Analysis of New Job Profiles for the Factory of the
Future. International Workshop on Service Orientation in Holonic and Multi-Agent
Manufacturing (2020). https://doi.org/10.1007/978-3-030-69373-2_18

Shayan Shams, Richard Platania, Kisung Lee, and Seung-Jong Park. 2017. Eval-
uation of Deep Learning Frameworks Over Different HPC Architectures. In
International Conference on Distributed Computing Systems (ICDCS). https:
//doi.org/10.1109/ICDCS.2017.259

Facebook AI Research Team. 2022. fucore. Facebook Research. https://github.
com/facebookresearch/fvcore

Google Brain Team. 2022. TensorFlow. https://github.com/tensorflow/tensorflow
Sebastian Thrun and Lorien Pratt. 1998. Learning to Learn: Introduction and
Overview. https://doi.org/10.1007/978-1-4615-5529-2_1

Jason Tsay, Alan Braz, Martin Hirzel, Avraham Shinnar, and Todd Mummert. 2020.
AIMMX: Artificial Intelligence Model Metadata Extractor. In International Con-
ference on Mining Software Repositories (MSR). https://doi.org/10.1145/3379597.
3387448

Hongkun Yu, Chen Chen, Xianzhi Du, Yeqing Li, Abdullah Rashwan, Le Hou,
Pengchong Jin, Fan Yang, Frederick Liu, Jaeyoun Kim, and Jing Li. 2020. Tensor-
Flow Model Garden. https://github.com/tensorflow/models.

https://onnx.ai/
https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.48550/arXiv.2107.00821
https://github.com/blacklong28/onnx-opcounter
https://github.com/blacklong28/onnx-opcounter
https://doi.org/10.1145/3358700
https://doi.org/10.1145/3358700
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1109/BigData.2017.8258038
https://doi.org/10.1109/BigData.2017.8258038
https://towardsdatascience.com/accuracy-and-loss-things-to-know-about-the-top-1-and-top-5-accuracy-1d6beb8f6df3
https://towardsdatascience.com/accuracy-and-loss-things-to-know-about-the-top-1-and-top-5-accuracy-1d6beb8f6df3
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3528227.3528565
https://doi.org/10.48550/arXiv.1708.06733
https://doi.org/10.48550/arXiv.1708.06733
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1126/science.359.6377.725
https://keras.io/api/applications/
https://doi.org/10.48550/arXiv.1404.5997
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICDCS.2018.00125
https://doi.org/10.1109/NAS.2019.8834723
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/1873951.1874254
https://github.com/onnx/tensorflow-onnx
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.48550/arXiv.2104.10350
https://doi.org/10.48550/arXiv.2104.10350
https://doi.org/10.1109/ASE51524.2021.9678540
https://doi.org/10.1109/ASE51524.2021.9678540
https://doi.org/10.1145/3324884.3416545
https://github.com/pytorch/pytorch
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://netron.app/
https://doi.org/10.1007/978-3-030-69373-2_18
https://doi.org/10.1109/ICDCS.2017.259
https://doi.org/10.1109/ICDCS.2017.259
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore
https://github.com/tensorflow/tensorflow
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1145/3379597.3387448
https://doi.org/10.1145/3379597.3387448
https://github.com/tensorflow/models

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Subjects
	3.2 Evaluation Metrics

	4 Results and Analysis
	4.1 Accuracy
	4.2 Latency
	4.3 Architecture

	5 Discussion and Future Work
	6 Conclusion
	References

