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ABSTRACT the costs of training [13]. In particular, transfer learning can result

Training deep neural networks (DNNs) takes significant time and
resources. A practice for expedited deployment is to use pre-trained
deep neural networks (PTNNs), often from model zoos—collections
of PTNNGs; yet, the reliability of model zoos remains unexamined. In
the absence of an industry standard for the implementation and per-
formance of PTNNS, engineers cannot confidently incorporate them
into production systems. As a first step, discovering potential dis-
crepancies between PTNNSs across model zoos would reveal a threat
to model zoo reliability. Prior works indicated existing variances in
deep learning systems in terms of accuracy. However, broader mea-
sures of reliability for PTNNs from model zoos are unexplored. This
work measures notable discrepancies between accuracy, latency,
and architecture of 36 PTNNs across four model zoos. Among the
top 10 discrepancies, we find differences of 1.23%-2.62% in accuracy
and 9%-131% in latency. We also find mismatches in architecture
for well-known DNN architectures (e.g., ResNet and AlexNet). Our
findings call for future works on empirical validation, automated
tools for measurement, and best practices for implementation.
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1 INTRODUCTION

With the growing energy consumption of training DNNs [26], tak-
ing advantage of the re-usability of PTNNs can significantly reduce
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in shorter training times and higher asymptotic accuracies com-
pared to other weight initialization methods [22, 36]. This kind
of technique accelerates model reuse and development. The his-
tory of PTNNs and their impact on the development of artificial
intelligence has been extensively documented [13, 25]. As such,
collections of PTNNSs have been created, referred to as model zoos.
Notably, maintainers of popular machine learning frameworks, such
as TensorFlow [2], maintain corresponding model zoos developed
with their framework, such as the TensorFlow Model Garden [38].

There are many model zoos [1, 18, 23, 38] and an expanding use
of PTNN s in production systems [13]. Past work has emphasized the
difficulties in adopting software engineering practices in machine
learning, and specifically, the challenges with reproducing machine
learning research papers [4, 17]. These reproducibility issues may
affect PTNNS, leading to variations across model zoos [28]. Dis-
parities in the accuracy, latency, or architecture of a PTNN could
negatively affect a deep learning system, threatening PTNNS’ reuse
potential. Consider a model zoo that has an incorrect implemen-
tation of a well-known DNN architecture, which has increased its
latency significantly. If an engineer were to use the PTNN from
this zoo, they would unknowingly be receiving a lower quality
PTNN than they might otherwise have from a different model
zoo. The engineer’s effort to enable a quick turnaround time with
a PTNN would have become harmful. Discovering discrepancies
would shine a light on the reliability of model zoos.

To explore the reliability of model zoos, we performed a measure-
ment study to identify discrepancies among 36 image classification
PTNN architectures across four model zoos: TensorFlow Model Gar-
den (TFMG) [38], ONNX Model Zoo (ONNX) [1], Torchvision Models
(Torchvision) [23], and Keras Applications (Keras) [18]. The PTNNs
were measured along three dimensions: accuracy, latency, and archi-
tecture. We find the differences in accuracies on ILSVRC-2012-CLS
dataset (ImageNet) can be as large as 2.62% [10].! Similarly, over
20% of the PTNNs measured had latency differences (FLOPs) of
10% or more when comparing PTNNs of the same name across the
model zoos. Lastly, we discover architectural differences in several
PTNNSs, including implementations of AlexNet and ResNet V2. We
conclude with an agenda for future research on further empirical
validation, automated tools for measurement, and best practices for
implementing model zoo PTNNS.

I The ILSVRC-2012-CLS image dataset has 50,000 validation images. A 1% accuracy
difference is equivalent to 500 images.
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2 BACKGROUND AND RELATED WORK

PTNNs are applied in a wide variety of domains [13]. With the
demand for engineers far exceeding supply [32], companies are
looking for best practices that can boost the productivity of their en-
gineers. Major companies (e.g., Google and Microsoft) have shared
best practices on machine learning development and informed
future directions on model reuse [3, 8]. A case study from SAP indi-
cates possible compatibility, portability, and scalability challenges
in machine learning model deployment, which may affect their
performance [30]. There have been many efforts to improve the
quality of model zoos. For example, IBM has developed a tool to
extract model metadata [37] to support better model management.
Banna et al. promote best practices for reproducing and publishing
high-quality PTNNSs [4]. However, the reliability of model zoos has
not been validated by prior works.

The ability to replicate the accuracy of a DNN in identical train-
ing environments is hindered by non-deterministic factors. Ac-
curacy differences of up to 10.8%, stemming purely from non-
determinism, have been reported with popular DNN architectures
[28]. Closely related, research has investigated and benchmarked
the performance variances tied to deep learning frameworks [21,
33]. This variability threatens the reliability of new deep learning
techniques. As such, automated variance testing [27] has been pro-
posed to assure the validity of these comparisons. However, PTNNs
in model zoos may also suffer from varying architectural imple-
mentations, affecting more than just accuracy. Our work measures
the disparities in PTNNSs across different model zoos as opposed
to attempting to improve the standard in just one [4]. Our results
enlighten future works validating the quality and promoting the
standardization of model zoos.

3 METHODOLOGY

We perform a measurement study to assess our problem statement:
whether discrepancies exist between the accuracy, latency, and
architecture of PTNNSs across different model zoos.

3.1 Subjects

A model zoo is a collection of PTNNs for various tasks. We carry
out a selection process for four model zoos. Our selection crite-
ria included the model zoo being maintained alongside a machine
learning framework: this increases the likelihood of the model zoo
being actively maintained. Furthermore, to ensure the popularity of
the model zoo, the zoo must have a public GitHub repository with
at least three thousand stars [7]. Using GitHub search? to identify
potential model zoo candidates, 11 model zoos were selected that
met the criteria.> The PTNNs within the 11 model zoos were cat-
egorized into deep learning tasks, including image classification,
object detection, and natural language processing. We focused on
image classification models because it is the most common type in
8 of the 11 model zoos.

A PTNN availability analysis was done on the candidate model
200s to assess how many model zoos offered the same image classifi-
cation PTNN architectures. Based on the largest shared availability,
we chose TensorFlow Model Garden, ONNX Model Zoo, Torchvision

Zhttps://github.com/search

3The 11 identified potential model zoos are as follows: TensorFlow Model Garden,
ONNX Model Zoo, Torchvision Models, Keras Applications, TensorFlow Model Hub,
PyTorch Model Zoo, MXNet Model Zoo, Gluon Model Zoo, Deeplearning4j Model Zoo,
Caffe Model Zoo, and OpenVINO Model Zoo.
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Figure 1: Overview of the measurement process. We gather
PTNNs from the model zoos with the same name, perform
measurements on each PTNN, and compare for discrepancies.

Models, and Keras Applications. Within these model zoos, we se-
lected all the image classification PTNN architectures that were
present in at least two of the four model zoos, yielding 36 PTNN
architectures. The selected PTNNS are either directly downloadable
from the model zoos’ GitHub repositories or can be pulled using
the model zoos” APIs.

3.2 Evaluation Metrics

Accuracy. Image classification DNNs’ effectiveness is measured in
accuracy, which is a critical component of a PTNN. We are measur-
ing discrepancies between the claims of model zoos as opposed to
verifying them. Top-1 accuracy is the conventional accuracy where
model prediction must exactly match the expected label, while
top-5 accuracy measures the fraction of images where any of the
top five predicted labels matches the target label [9, 10]. 35 image
classification PTNN architectures reported top-1 ImageNet classi-
fication accuracies, meanwhile only 32 reported top-5 ImageNet
classification accuracies.

Latency. The latency of a DNN is a key factor that engineers
consider [11]. For example, MobileNet is a DNN image classification
architecture that prioritizes low latency on mobile and embedded
systems [16]. We used open-source tools [5, 34, 35] to measure
the latency by counting the floating point operations (FLOPs) [6].
FLOPs are framework and hardware-agnostic, allowing for unbiased
comparisons.

Architecture. PTNNs are trained weights based on research papers
that propose DNN architectures. As a result, model zoos advertise
PTNNs by their architecture name. The observed accuracy dif-
ferences and past work on DNN vulnerabilities motivated us to
examine architecture [12]. Qualitative observations of discrepan-
cies in the descriptions, source code, and visualizations of PTNN
architectures were employed. Specifically, netron, an open-source
neural network visualizer, was used to inspect the architecture
of the PTNNSs [31]. However, not all neural network weight for-
mats are supported, so all PTNNs were converted to the ONNX
format for architectural analysis using an appropriate tool for each
framework [24, 29]. The source code for the implementations of
the PTNNs are present in the model zoos” GitHub repositories and
was used as an additional form of PTNN inspection.
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Table 1: Frequency at which each model zoo had the most or
least accurate model ordered by highest top-1 accuracy.
Highest Top-1

Lowest Top-1 Highest Top-5 Lowest Top-5

48%
40%
37%
35%

41%
33%
44%
41%

52%
36%
36%
31%

36%
43%
40%
44%

Torchvision Models
TF Model Garden
Keras Applications
ONNX Model Zoo

4 RESULTS AND ANALYSIS

4.1 Accuracy

We compared the top-1 accuracy of 35 PTNN architectures and
the top-5 accuracy of 32 PTNN architectures by using ImageNet.
Notably, 12 of the 35 profiled PTNN architectures had top-1 accu-
racy differences greater than 0.96%. For top-5 accuracies, 6 of the 32
PTNN architectures had differences greater than 0.94%. The large
differences present in Figure 2 have significant consequences. For
example, ResNet V1 152 from Keras is noticeably less accurate than
the PTNN by the same name from Torchvision, with top-1 accura-
cies of 76.6% and 78.31%, respectively. This difference is pronounced
enough that ResNet V1 101 from Torchvsion with top-1 accuracy of
77.37% is more accurate than ResNet V1 152 from Keras.*

2.5
2.0
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w

1.

o

0.
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0.0

Range in Top-1 Accuracy Among the Model Zoos

Figure 2: Top 10 largest top-1 accuracy differences. For a
PTNN architecture, the accuracy of the PTNN with the lowest
reported top-1 accuracy is subtracted from that of the PTNN
with the largest top-1 accuracy.

Table 1 shows the aggregation of accuracy differences across
model zoos, highlighting how often a model zoo had the highest
or lowest top-1 or top-5 accuracy for a given PTNN architecture.
As seen, 48% of the PTNNSs that were available on Torchvision had
the highest top-1 accuracy among the model zoos. On the other
hand, Keras had the lowest top-1 accuracy 44% of the time for its
selection of PTNNS.

4.2 Latency

36 PTNN architectures were measured for their FLOPs. Figure 3
shows that there are 8 PTNN architectures where the PTNN with the
highest amount of FLOPs had greater than 10% more FLOPs than the

4ResNet V1 101 was originally reported to be 0.32% less accurate than ResNet V1
152 [14].
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Figure 3: Top 10 largest FLOPs differences. For a PTNN archi-
tecture, the FLOP count of the PTNN with the most FLOPs is
divided by the FLOPs of the PTNN with the fewest.

PTNN with the lowest FLOP count. At the extreme, Torchvision’s
SqueezeNet 1.0, sitting at 819.08 million FLOPs, had 2.31x the FLOPs
of ONNX’s SqueezeNet 1.0. Likewise, the three PTNN architectures
from the ResNet V2 family all had greater than 85% more FLOPs
than the lowest FLOPs PTNN. All the high FLOP-count ResNet V2
come from TFMG.

We discuss the possible explanations for the FLOPs differences
seen in Figure 3. The high FLOPs difference measured in SqueezeNet
1.0 can be explained by looking at its successor, SqueezeNet 1.1.
SqueezeNet 1.11s advertised by ONNX to contain 2.4X less computa-
tion than the former. However, SqueezeNet 1.1 from ONNX has the
same number of measured FLOPs as the 1.0 PTNN offered. ONNX
has been advertising SqueezeNet 1.1 as its 1.0 counterpart. Similarly,
looking at the ResNet V2 from TFMG: a primary contributor to the
large amount of FLOPs is the input shape. ResNet V2 architectures,
according to the origin paper, accept 224x224 inputs [15]; however,
TFMG states that the ResNet V2 PTNNSs it provides use Inception
pre-processing and an input image size of 299x299. A trade-off
between accuracy and throughput, FLOPs, was potentially made
here by the model zoo maintainers.

Across all FLOP-counted PTNNSs, Torchvision had the highest
FLOPs PTNNSs for 78% of the PTNNSs it offered. Close behind, TFMG
had 69%. Pointedly, Keras never had the highest FLOPs PTNN and
had the lowest FLOPs implementation 81% of the time.

4.3 Architecture

We frame our results for architecture in terms of the discrepancies
we discovered in our analysis. Specifically, we discuss differences
among PTNNs for AlexNet, ResNet V1 101, ResNet V2 50, and ResNet
V2 101 and against the PTNNSs’ origin papers.

The AlexNet from Torchvision cites a different origin paper than
other model zoos [19, 20]. Both papers contain the same first author;
however, only the latter contains an explicit description of a DNN
architecture. As such, our analysis pegs the PTNN against the latter
paper [20]. We notice two main discrepancies: the PTNN is missing
the response normalization layers and the kernel-size and number
of kernels for the convolution layers are incorrect. For instance,
Torchvision’s PTNN has 64 kernels in the first convolution layer as
opposed to the 96 that are described in the origin paper.
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Figure 4: ResNet V2 50 architecture differences between Keras
Applications (left) and ONNX Model Zoo (right). The top-right
convolution on the left has a stride size of 2, while the top-
right convolution on the right has a stride size of 1.

MaxPool

The ResNet V1 101 from ONNX and Keras contain convolution
shortcuts, which were only introduced in the ResNet V2 paper, but
not in the ResNet V1 origin paper [14, 15]. Torchvision’s and TFMG’s
ResNet V1 101 do not include this shortcut. Also in the ResNet family,
both the ResNet V2 50 and ResNet V2 101 have a shared discrepancy.
As seen in Figure 4, Keras’ ResNet V2 50 implementation contains
max pool skip connections, which are not present in the paper, and
uses convolutions with larger strides in these residual blocks [15].

The observed discrepancies in architecture may affect the accu-
racy and latency. For example, the larger convolution strides and
max pool skip connection in the ResNet V2 50 from Keras allows
the network to use less compute, FLOPs, compared to the PTNN
from ONNX. This can be seen in the FLOP measurements of the
ResNet V2 50 from Keras and ONNX. ONNX’s ResNet V2 50 has
4.12 billion FLOPs while Keras’ PTNN only has 3.49 billion FLOPs,
an 18.1% difference. Moreover, the Keras PTNN did not sacrifice
accuracy through this implementation, reporting a 76% top-1 accu-
racy, which is greater than ONNX’s ResNet V2 50 top-1 accuracy
of 75.81%. While the Keras maintainers did not implement ResNet
V2 50 faithfully to the origin paper, they produced a more accurate
PTNN with lower latency.

5 DISCUSSION AND FUTURE WORK

Empirical Validation. The top-1 accuracy differences depicted in
Figure 2 suggest that the choice of model zoo matters. Specifically,
34% of the PTNN architectures having top-1 accuracy differences
greater than 0.96% is not easily overlooked. An engineer may re-
ceive a PTNN that incorrectly classifies greater than 500 validation
images on ImageNet more than a PTNN from a different model zoo.
Model zoo choice should not result in a noticeable impact on the
accuracy of PTNNs that engineers receive. Although model zoos
currently report the accuracy of the PTNN s they offer, our work has
shown that this does not guarantee that there is not another model
zoo with the same PTNN at a higher accuracy. Publicly available
and actively maintained comparisons of model zoo PTNNs would
allow engineers to be more informed when choosing a model zoo.
Furthermore, we only studied the accuracies of image classification
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models at face value. We recommend future works focus on empir-
ical validation on the claims of PTNNs in model zoos to check for
the existence of false advertising.

New Metrics and Automated Tools. The measured FLOP dis-
parities seen in Figure 3 have consequences, especially in edge
devices with limited compute. For example, ONNX incorrectly list-
ing SqueezeNet 1.1as SqueezeNet 1.0 may lead to confusion when an
engineer switches to SqueezeNet 1.1 from SqueezeNet 1.0 expecting
a drop in latency. Similar confusion may arise from instances like
the one seen in TFMG’s selection of ResNet V2. While the increased
input size is stated, the impact on latency is not made clear. To
effectively inform engineers of the latency of PTNNs, model zoos
should report FLOP counts alongside accuracy. Also of interest is
the energy usage of these PTNNSs, another important property for
edge devices. The lack of reporting of these properties may make
choosing PTNNs more difficult. We recommend future works create
new metrics to measure the reliability and quality of PTNNs from
model zoos and develop tools for automatically measuring these
properties. Publishing updated results frequently can support easier
decision-making of models for deployment.

Naming Conventions. The differences in the architectures of
PTNNs may indicate an underlying improper documentation stan-
dard and a need for improved naming conventions in model zoos.
As indicated in §4.3, Torchvision’s AlexNet did not adhere to the
origin paper while still claiming to be AlexNet. Seemingly, model
zoos are advertising PTNNs labeled as well-known DNN architec-
tures, like ResNet and AlexNet, but when they do this, they really
mean that the PTNNs are based on the DNN architecture and are
not strict implementations. This inadequate naming convention
leads to a false sense of equality and thus confusion. We recom-
mend the community comprehensively document PTNN naming
conventions to increase cohesion among model zoos. Likewise, we
suggest future works investigate the expectations of engineers with
regards to the PTNNs from model zoos to see whether they prefer
exact reproductions or more accurate and lower latency PTNNs.
The result of such a study would inform model zoo maintainers on
how to best implement and train PTNNs.

6 CONCLUSION

We present an investigation of the discrepancies between 36 image
classification PTNN architectures from four popular model zoos
through accuracy, latency, and architecture analyses. We find sev-
eral significant discrepancies among these three axes that challenge
the well-established use of PTNNs from model zoos, suggesting
that an engineer will receive a PTNN with different characteristics
based on the model zoo. The PTNN’s goal of shortening model
deployment time is diminished because of the time investment
needed to verify the properties of the PTNN. We discuss the impor-
tance of future works to validate the claims of model zoos, develop
automated tools for measurement, and explore best practices for
implementing model zoo PTNNS.
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