
Discrepancies among Pre-trained Deep Neural Networks:
A New Threat to Model Zoo Reliability

Diego Montes
Purdue University, USA
montes10@purdue.edu

Pongpatapee Peerapatanapokin
Purdue University, USA
ppeerapa@purdue.edu

Jeff Schultz
Purdue University, USA
schul203@purdue.edu

Chengjun Guo
Purdue University, USA
guo456@purdue.edu

Wenxin Jiang
Purdue University, USA
jiang784@purdue.edu

James C. Davis
Purdue University, USA
davisjam@purdue.edu

ABSTRACT
Training deep neural networks (DNNs) takes significant time and

resources. A practice for expedited deployment is to use pre-trained

deep neural networks (PTNNs), often from model zoosÐcollections

of PTNNs; yet, the reliability of model zoos remains unexamined. In

the absence of an industry standard for the implementation and per-

formance of PTNNs, engineers cannot confidently incorporate them

into production systems. As a first step, discovering potential dis-

crepancies between PTNNs across model zoos would reveal a threat

to model zoo reliability. Prior works indicated existing variances in

deep learning systems in terms of accuracy. However, broader mea-

sures of reliability for PTNNs from model zoos are unexplored. This

work measures notable discrepancies between accuracy, latency,

and architecture of 36 PTNNs across four model zoos. Among the

top 10 discrepancies, we find differences of 1.23%ś2.62% in accuracy

and 9%ś131% in latency. We also find mismatches in architecture

for well-known DNN architectures (e.g., ResNet and AlexNet). Our

findings call for future works on empirical validation, automated

tools for measurement, and best practices for implementation.

CCS CONCEPTS
· Software and its engineering→ Reusability; · Computing

methodologies → Neural networks.

KEYWORDS
Neural networks, Model zoos, Software reuse, Empirical software

engineering

ACM Reference Format:

Diego Montes, Pongpatapee Peerapatanapokin, Jeff Schultz, Chengjun Guo,

Wenxin Jiang, and James C. Davis. 2022. Discrepancies among Pre-trained

Deep Neural Networks: A New Threat to Model Zoo Reliability. In Pro-

ceedings of the 30th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),

November 14ś18, 2022, Singapore, Singapore. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3540250.3560881

1 INTRODUCTION
With the growing energy consumption of training DNNs [26], tak-

ing advantage of the re-usability of PTNNs can significantly reduce

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3560881

the costs of training [13]. In particular, transfer learning can result

in shorter training times and higher asymptotic accuracies com-

pared to other weight initialization methods [22, 36]. This kind

of technique accelerates model reuse and development. The his-

tory of PTNNs and their impact on the development of artificial

intelligence has been extensively documented [13, 25]. As such,

collections of PTNNs have been created, referred to as model zoos.

Notably, maintainers of popularmachine learning frameworks, such

as TensorFlow [2], maintain corresponding model zoos developed

with their framework, such as the TensorFlow Model Garden [38].

There are many model zoos [1, 18, 23, 38] and an expanding use

of PTNNs in production systems [13]. Past work has emphasized the

difficulties in adopting software engineering practices in machine

learning, and specifically, the challenges with reproducing machine

learning research papers [4, 17]. These reproducibility issues may

affect PTNNs, leading to variations across model zoos [28]. Dis-

parities in the accuracy, latency, or architecture of a PTNN could

negatively affect a deep learning system, threatening PTNNs’ reuse

potential. Consider a model zoo that has an incorrect implemen-

tation of a well-known DNN architecture, which has increased its

latency significantly. If an engineer were to use the PTNN from

this zoo, they would unknowingly be receiving a lower quality

PTNN than they might otherwise have from a different model

zoo. The engineer’s effort to enable a quick turnaround time with

a PTNN would have become harmful. Discovering discrepancies

would shine a light on the reliability of model zoos.

To explore the reliability of model zoos, we performed a measure-

ment study to identify discrepancies among 36 image classification

PTNN architectures across four model zoos: TensorFlow Model Gar-

den (TFMG) [38], ONNX Model Zoo (ONNX) [1], Torchvision Models

(Torchvision) [23], and Keras Applications (Keras) [18]. The PTNNs

were measured along three dimensions: accuracy, latency, and archi-

tecture. We find the differences in accuracies on ILSVRC-2012-CLS

dataset (ImageNet) can be as large as 2.62% [10].1 Similarly, over

20% of the PTNNs measured had latency differences (FLOPs) of

10% or more when comparing PTNNs of the same name across the

model zoos. Lastly, we discover architectural differences in several

PTNNs, including implementations of AlexNet and ResNet V2. We

conclude with an agenda for future research on further empirical

validation, automated tools for measurement, and best practices for

implementing model zoo PTNNs.

1The ILSVRC-2012-CLS image dataset has 50,000 validation images. A 1% accuracy
difference is equivalent to 500 images.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1605

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7994-1281
https://orcid.org/0000-0002-8901-7495
https://orcid.org/0000-0002-1470-7897
https://orcid.org/0000-0002-6314-2028
https://orcid.org/0000-0003-2608-8576
https://orcid.org/0000-0003-2495-686X
https://doi.org/10.1145/3540250.3560881
https://doi.org/10.1145/3540250.3560881


ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Diego Montes, Pongpatapee Peerapatanapokin, Jeff Schultz, Chengjun Guo, Wenxin Jiang, and James C. Davis

2 BACKGROUND AND RELATED WORK
PTNNs are applied in a wide variety of domains [13]. With the

demand for engineers far exceeding supply [32], companies are

looking for best practices that can boost the productivity of their en-

gineers. Major companies (e.g., Google and Microsoft) have shared

best practices on machine learning development and informed

future directions on model reuse [3, 8]. A case study from SAP indi-

cates possible compatibility, portability, and scalability challenges

in machine learning model deployment, which may affect their

performance [30]. There have been many efforts to improve the

quality of model zoos. For example, IBM has developed a tool to

extract model metadata [37] to support better model management.

Banna et al. promote best practices for reproducing and publishing

high-quality PTNNs [4]. However, the reliability of model zoos has

not been validated by prior works.

The ability to replicate the accuracy of a DNN in identical train-

ing environments is hindered by non-deterministic factors. Ac-

curacy differences of up to 10.8%, stemming purely from non-

determinism, have been reported with popular DNN architectures

[28]. Closely related, research has investigated and benchmarked

the performance variances tied to deep learning frameworks [21,

33]. This variability threatens the reliability of new deep learning

techniques. As such, automated variance testing [27] has been pro-

posed to assure the validity of these comparisons. However, PTNNs

in model zoos may also suffer from varying architectural imple-

mentations, affecting more than just accuracy. Our work measures

the disparities in PTNNs across different model zoos as opposed

to attempting to improve the standard in just one [4]. Our results

enlighten future works validating the quality and promoting the

standardization of model zoos.

3 METHODOLOGY
We perform a measurement study to assess our problem statement:

whether discrepancies exist between the accuracy, latency, and

architecture of PTNNs across different model zoos.

3.1 Subjects
A model zoo is a collection of PTNNs for various tasks. We carry

out a selection process for four model zoos. Our selection crite-

ria included the model zoo being maintained alongside a machine

learning framework: this increases the likelihood of the model zoo

being actively maintained. Furthermore, to ensure the popularity of

the model zoo, the zoo must have a public GitHub repository with

at least three thousand stars [7]. Using GitHub search2 to identify

potential model zoo candidates, 11 model zoos were selected that

met the criteria.3 The PTNNs within the 11 model zoos were cat-

egorized into deep learning tasks, including image classification,

object detection, and natural language processing. We focused on

image classification models because it is the most common type in

8 of the 11 model zoos.

A PTNN availability analysis was done on the candidate model

zoos to assess howmanymodel zoos offered the same image classifi-

cation PTNN architectures. Based on the largest shared availability,

we chose TensorFlow Model Garden, ONNX Model Zoo, Torchvision

2https://github.com/search
3The 11 identified potential model zoos are as follows: TensorFlow Model Garden,
ONNX Model Zoo, Torchvision Models, Keras Applications, TensorFlow Model Hub,
PyTorch Model Zoo, MXNet Model Zoo, Gluon Model Zoo, Deeplearning4j Model Zoo,
Caffe Model Zoo, and OpenVINO Model Zoo.

Figure 1: Overview of the measurement process. We gather

PTNNs from the model zoos with the same name, perform

measurements on eachPTNN, and compare for discrepancies.

Models, and Keras Applications. Within these model zoos, we se-

lected all the image classification PTNN architectures that were

present in at least two of the four model zoos, yielding 36 PTNN

architectures. The selected PTNNs are either directly downloadable

from the model zoos’ GitHub repositories or can be pulled using

the model zoos’ APIs.

3.2 Evaluation Metrics

Accuracy. Image classification DNNs’ effectiveness is measured in

accuracy, which is a critical component of a PTNN. We are measur-

ing discrepancies between the claims of model zoos as opposed to

verifying them. Top-1 accuracy is the conventional accuracy where

model prediction must exactly match the expected label, while

top-5 accuracy measures the fraction of images where any of the

top five predicted labels matches the target label [9, 10]. 35 image

classification PTNN architectures reported top-1 ImageNet classi-

fication accuracies, meanwhile only 32 reported top-5 ImageNet

classification accuracies.

Latency. The latency of a DNN is a key factor that engineers

consider [11]. For example,MobileNet is a DNN image classification

architecture that prioritizes low latency on mobile and embedded

systems [16]. We used open-source tools [5, 34, 35] to measure

the latency by counting the floating point operations (FLOPs) [6].

FLOPs are framework and hardware-agnostic, allowing for unbiased

comparisons.

Architecture. PTNNs are trained weights based on research papers

that propose DNN architectures. As a result, model zoos advertise

PTNNs by their architecture name. The observed accuracy dif-

ferences and past work on DNN vulnerabilities motivated us to

examine architecture [12]. Qualitative observations of discrepan-

cies in the descriptions, source code, and visualizations of PTNN

architectures were employed. Specifically, netron, an open-source

neural network visualizer, was used to inspect the architecture

of the PTNNs [31]. However, not all neural network weight for-

mats are supported, so all PTNNs were converted to the ONNX

format for architectural analysis using an appropriate tool for each

framework [24, 29]. The source code for the implementations of

the PTNNs are present in the model zoos’ GitHub repositories and

was used as an additional form of PTNN inspection.

1606



Discrepancies among Pre-trained Deep Neural Networks: A New Threat to Model Zoo Reliability ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 1: Frequency at which each model zoo had the most or

least accurate model ordered by highest top-1 accuracy.

Highest Top-1 Lowest Top-1 Highest Top-5 Lowest Top-5

Torchvision Models 48% 41% 52% 36%

TF Model Garden 40% 33% 36% 43%

Keras Applications 37% 44% 36% 40%

ONNX Model Zoo 35% 41% 31% 44%

4 RESULTS AND ANALYSIS

4.1 Accuracy
We compared the top-1 accuracy of 35 PTNN architectures and

the top-5 accuracy of 32 PTNN architectures by using ImageNet.

Notably, 12 of the 35 profiled PTNN architectures had top-1 accu-

racy differences greater than 0.96%. For top-5 accuracies, 6 of the 32

PTNN architectures had differences greater than 0.94%. The large

differences present in Figure 2 have significant consequences. For

example, ResNet V1 152 from Keras is noticeably less accurate than

the PTNN by the same name from Torchvision, with top-1 accura-

cies of 76.6% and 78.31%, respectively. This difference is pronounced

enough that ResNet V1 101 from Torchvsion with top-1 accuracy of

77.37% is more accurate than ResNet V1 152 from Keras.4

Figure 2: Top 10 largest top-1 accuracy differences. For a

PTNN architecture, the accuracy of the PTNNwith the lowest

reported top-1 accuracy is subtracted from that of the PTNN

with the largest top-1 accuracy.

Table 1 shows the aggregation of accuracy differences across

model zoos, highlighting how often a model zoo had the highest

or lowest top-1 or top-5 accuracy for a given PTNN architecture.

As seen, 48% of the PTNNs that were available on Torchvision had

the highest top-1 accuracy among the model zoos. On the other

hand, Keras had the lowest top-1 accuracy 44% of the time for its

selection of PTNNs.

4.2 Latency
36 PTNN architectures were measured for their FLOPs. Figure 3

shows that there are 8 PTNN architectures where the PTNNwith the

highest amount of FLOPs had greater than 10%more FLOPs than the

4ResNet V1 101 was originally reported to be 0.32% less accurate than ResNet V1
152 [14].

Figure 3: Top 10 largest FLOPs differences. For a PTNN archi-

tecture, the FLOP count of the PTNN with the most FLOPs is

divided by the FLOPs of the PTNN with the fewest.

PTNN with the lowest FLOP count. At the extreme, Torchvision’s

SqueezeNet 1.0, sitting at 819.08 million FLOPs, had 2.31× the FLOPs

of ONNX’s SqueezeNet 1.0. Likewise, the three PTNN architectures

from the ResNet V2 family all had greater than 85% more FLOPs

than the lowest FLOPs PTNN. All the high FLOP-count ResNet V2

come from TFMG.

We discuss the possible explanations for the FLOPs differences

seen in Figure 3. The high FLOPs difference measured in SqueezeNet

1.0 can be explained by looking at its successor, SqueezeNet 1.1.

SqueezeNet 1.1 is advertised by ONNX to contain 2.4× less computa-

tion than the former. However, SqueezeNet 1.1 from ONNX has the

same number of measured FLOPs as the 1.0 PTNN offered. ONNX

has been advertising SqueezeNet 1.1 as its 1.0 counterpart. Similarly,

looking at the ResNet V2 from TFMG: a primary contributor to the

large amount of FLOPs is the input shape. ResNet V2 architectures,

according to the origin paper, accept 224×224 inputs [15]; however,

TFMG states that the ResNet V2 PTNNs it provides use Inception

pre-processing and an input image size of 299×299. A trade-off

between accuracy and throughput, FLOPs, was potentially made

here by the model zoo maintainers.

Across all FLOP-counted PTNNs, Torchvision had the highest

FLOPs PTNNs for 78% of the PTNNs it offered. Close behind, TFMG

had 69%. Pointedly, Keras never had the highest FLOPs PTNN and

had the lowest FLOPs implementation 81% of the time.

4.3 Architecture

We frame our results for architecture in terms of the discrepancies

we discovered in our analysis. Specifically, we discuss differences

among PTNNs for AlexNet, ResNet V1 101, ResNet V2 50, and ResNet

V2 101 and against the PTNNs’ origin papers.

The AlexNet from Torchvision cites a different origin paper than

other model zoos [19, 20]. Both papers contain the same first author;

however, only the latter contains an explicit description of a DNN

architecture. As such, our analysis pegs the PTNN against the latter

paper [20]. We notice two main discrepancies: the PTNN is missing

the response normalization layers and the kernel-size and number

of kernels for the convolution layers are incorrect. For instance,

Torchvision’s PTNN has 64 kernels in the first convolution layer as

opposed to the 96 that are described in the origin paper.

1607



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Diego Montes, Pongpatapee Peerapatanapokin, Jeff Schultz, Chengjun Guo, Wenxin Jiang, and James C. Davis

Figure 4: ResNet V2 50 architecture differences betweenKeras

Applications (left) and ONNXModel Zoo (right). The top-right

convolution on the left has a stride size of 2, while the top-

right convolution on the right has a stride size of 1.

The ResNet V1 101 from ONNX and Keras contain convolution

shortcuts, which were only introduced in the ResNet V2 paper, but

not in the ResNet V1 origin paper [14, 15]. Torchvision’s and TFMG’s

ResNet V1 101 do not include this shortcut. Also in the ResNet family,

both the ResNet V2 50 and ResNet V2 101 have a shared discrepancy.

As seen in Figure 4, Keras’ ResNet V2 50 implementation contains

max pool skip connections, which are not present in the paper, and

uses convolutions with larger strides in these residual blocks [15].

The observed discrepancies in architecture may affect the accu-

racy and latency. For example, the larger convolution strides and

max pool skip connection in the ResNet V2 50 from Keras allows

the network to use less compute, FLOPs, compared to the PTNN

from ONNX. This can be seen in the FLOP measurements of the

ResNet V2 50 from Keras and ONNX. ONNX’s ResNet V2 50 has

4.12 billion FLOPs while Keras’ PTNN only has 3.49 billion FLOPs,

an 18.1% difference. Moreover, the Keras PTNN did not sacrifice

accuracy through this implementation, reporting a 76% top-1 accu-

racy, which is greater than ONNX’s ResNet V2 50 top-1 accuracy

of 75.81%. While the Keras maintainers did not implement ResNet

V2 50 faithfully to the origin paper, they produced a more accurate

PTNN with lower latency.

5 DISCUSSION AND FUTUREWORK
Empirical Validation. The top-1 accuracy differences depicted in

Figure 2 suggest that the choice of model zoo matters. Specifically,

34% of the PTNN architectures having top-1 accuracy differences

greater than 0.96% is not easily overlooked. An engineer may re-

ceive a PTNN that incorrectly classifies greater than 500 validation

images on ImageNet more than a PTNN from a different model zoo.

Model zoo choice should not result in a noticeable impact on the

accuracy of PTNNs that engineers receive. Although model zoos

currently report the accuracy of the PTNNs they offer, our work has

shown that this does not guarantee that there is not another model

zoo with the same PTNN at a higher accuracy. Publicly available

and actively maintained comparisons of model zoo PTNNs would

allow engineers to be more informed when choosing a model zoo.

Furthermore, we only studied the accuracies of image classification

models at face value. We recommend future works focus on empir-

ical validation on the claims of PTNNs in model zoos to check for

the existence of false advertising.

New Metrics and Automated Tools. The measured FLOP dis-

parities seen in Figure 3 have consequences, especially in edge

devices with limited compute. For example, ONNX incorrectly list-

ing SqueezeNet 1.1 as SqueezeNet 1.0 may lead to confusion when an

engineer switches to SqueezeNet 1.1 from SqueezeNet 1.0 expecting

a drop in latency. Similar confusion may arise from instances like

the one seen in TFMG’s selection of ResNet V2. While the increased

input size is stated, the impact on latency is not made clear. To

effectively inform engineers of the latency of PTNNs, model zoos

should report FLOP counts alongside accuracy. Also of interest is

the energy usage of these PTNNs, another important property for

edge devices. The lack of reporting of these properties may make

choosing PTNNs more difficult. We recommend future works create

new metrics to measure the reliability and quality of PTNNs from

model zoos and develop tools for automatically measuring these

properties. Publishing updated results frequently can support easier

decision-making of models for deployment.

Naming Conventions. The differences in the architectures of

PTNNs may indicate an underlying improper documentation stan-

dard and a need for improved naming conventions in model zoos.

As indicated in ğ4.3, Torchvision’s AlexNet did not adhere to the

origin paper while still claiming to be AlexNet. Seemingly, model

zoos are advertising PTNNs labeled as well-known DNN architec-

tures, like ResNet and AlexNet, but when they do this, they really

mean that the PTNNs are based on the DNN architecture and are

not strict implementations. This inadequate naming convention

leads to a false sense of equality and thus confusion. We recom-

mend the community comprehensively document PTNN naming

conventions to increase cohesion among model zoos. Likewise, we

suggest future works investigate the expectations of engineers with

regards to the PTNNs from model zoos to see whether they prefer

exact reproductions or more accurate and lower latency PTNNs.

The result of such a study would inform model zoo maintainers on

how to best implement and train PTNNs.

6 CONCLUSION
We present an investigation of the discrepancies between 36 image

classification PTNN architectures from four popular model zoos

through accuracy, latency, and architecture analyses. We find sev-

eral significant discrepancies among these three axes that challenge

the well-established use of PTNNs from model zoos, suggesting

that an engineer will receive a PTNN with different characteristics

based on the model zoo. The PTNN’s goal of shortening model

deployment time is diminished because of the time investment

needed to verify the properties of the PTNN. We discuss the impor-

tance of future works to validate the claims of model zoos, develop

automated tools for measurement, and explore best practices for

implementing model zoo PTNNs.

ACKNOWLEDGMENTS
This work was supported by gifts from Google and Cisco and by

NSF-OAC award #2107230. We thank the anonymous reviewers for

their careful reading of our manuscript and their many insightful

comments and suggestions.

1608



Discrepancies among Pre-trained Deep Neural Networks: A New Threat to Model Zoo Reliability ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

REFERENCES
[1] 2019. ONNX | Home. https://onnx.ai/
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://doi.org/10.5281/zenodo.4724125

[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
https://doi.org/10.1109/ICSE-SEIP.2019.00042

[4] Vishnu Banna, Akhil Chinnakotla, Zhengxin Yan, Anirudh Vegesana, Naveen
Vivek, Kruthi Krishnappa, Wenxin Jiang, Yung-Hsiang Lu, George K. Thiru-
vathukal, and James C. Davis. 2021. An Experience Report on Machine Learning
Reproducibility: Guidance for Practitioners and TensorFlow Model Garden Con-
tributors. https://doi.org/10.48550/arXiv.2107.00821

[5] blacklong28. 2022. onnx-opcounter. https://github.com/blacklong28/onnx-
opcounter

[6] Michaela Blott, Lisa Halder, Miriam Leeser, and Linda Doyle. 2019. QuTiBench:
Benchmarking Neural Networks on Heterogeneous Hardware. Journal on Emerg-
ing Technologies in Computing Systems (JETC) (2019). https://doi.org/10.1145/
3358700

[7] Hudson Borges andMarco Valente. 2018. What’s in a GitHub Star? Understanding
Repository Starring Practices in a Social Coding Platform. Journal of Systems
and Software (2018). https://doi.org/10.1016/j.jss.2018.09.016

[8] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D. Sculley. 2017. TheML
test score: A rubric for ML production readiness and technical debt reduction. In
International Conference on Big Data (BigData). https://doi.org/10.1109/BigData.
2017.8258038

[9] Anh T. Dang. 2021. Accuracy and Loss: Things to Know about The Top 1 and
Top 5 Accuracy. https://towardsdatascience.com/accuracy-and-loss-things-to-
know-about-the-top-1-and-top-5-accuracy-1d6beb8f6df3

[10] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In IEEE conference on computer vision
and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2009.5206848

[11] Nikhil Krishna Gopalakrishna, Dharun Anandayuvaraj, Annan Detti, Forrest Lee
Bland, Sazzadur Rahaman, and James C. Davis. 2022. łIf security is requiredž:
Engineering and Security Practices for Machine Learning-based IoT Devices. In
2022 IEEE/ACM 4th International Workshop on Software Engineering Research and
Practices for the IoT (SERP4IoT). 1ś8. https://doi.org/10.1145/3528227.3528565

[12] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets: Iden-
tifying Vulnerabilities in the Machine Learning Model Supply Chain. https:
//doi.org/10.48550/arXiv.1708.06733

[13] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin,
Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie
Tang, Ji-RongWen, Jinhui Yuan, Wayne Xin Zhao, and Jun Zhu. 2021. Pre-trained
models: Past, present and future. AI Open (2021). https://doi.org/10.1016/j.aiopen.
2021.08.002

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.90

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity
Mappings in Deep Residual Networks. In European conference on computer
vision (ECCV), Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.).
https://doi.org/10.1007/978-3-319-46493-0_38

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017). https://doi.org/10.48550/arXiv.1704.04861

[17] Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis. Science
(2018). https://doi.org/10.1126/science.359.6377.725

[18] Keras. 2022. Keras Applications. https://keras.io/api/applications/
[19] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural

networks. arXiv (2014). https://doi.org/10.48550/arXiv.1404.5997
[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classifi-

cation with Deep Convolutional Neural Networks. In International Conference on
Neural Information Processing Systems (NeurIPS). https://doi.org/10.1145/3065386

[21] Ling Liu, Yanzhao Wu, Wenqi Wei, Wenqi Cao, Semih Sahin, and Qi Zhang. 2018.
Benchmarking Deep Learning Frameworks: Design Considerations, Metrics and
Beyond. In International Conference on Distributed Computing Systems (ICDCS).
https://doi.org/10.1109/ICDCS.2018.00125

[22] Tong Liu, Shakeel Alibhai, Jinzhen Wang, Qing Liu, Xubin He, and Chentao Wu.
2019. Exploring Transfer Learning to Reduce Training Overhead of HPC Data in
Machine Learning. In International Conference on Networking, Architecture and
Storage (NAS). https://doi.org/10.1109/NAS.2019.8834723

[23] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-Vision
Package of Torch. In ACM international conference on Multimedia. https://doi.
org/10.1145/1873951.1874254

[24] ONNX. 2022. tf2onnx. https://github.com/onnx/tensorflow-onnx
[25] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE

Transactions on Knowledge and Data Engineering (2010). https://doi.org/10.1109/
TKDE.2009.191

[26] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon Emissions
and Large Neural Network Training. arXiv. https://doi.org/10.48550/arXiv.2104.
10350

[27] Hung Viet Pham, Mijung Kim, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan.
2021. DEVIATE: A Deep Learning Variance Testing Framework. In International
Conference on Automated Software Engineering (ASE). https://doi.org/10.1109/
ASE51524.2021.9678540

[28] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems
and Opportunities in Training Deep Learning Software Systems: An Analysis of
Variance. In International Conference on Automated Software Engineering (ASE).
https://doi.org/10.1145/3324884.3416545

[29] PyTorch. 2022. pytorch. https://github.com/pytorch/pytorch
[30] Saidur Rahman, Emilio River, Foutse Khomh, Yann Gal Guhneuc, and Bernd Lehn-

ert. 2019. Machine learning software engineering in practice: An industrial case
study. In International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). https://doi.org/10.1109/ICSE-SEIP.2019.00042

[31] Lutz Roeder. 2022. netron. https://netron.app/
[32] Lucas Sakurada, Carla A. S. Geraldes, Florbela P. Fernandes, Joseane Pontes,

and Paulo Leitao. 2020. Analysis of New Job Profiles for the Factory of the
Future. International Workshop on Service Orientation in Holonic and Multi-Agent
Manufacturing (2020). https://doi.org/10.1007/978-3-030-69373-2_18

[33] Shayan Shams, Richard Platania, Kisung Lee, and Seung-Jong Park. 2017. Eval-
uation of Deep Learning Frameworks Over Different HPC Architectures. In
International Conference on Distributed Computing Systems (ICDCS). https:
//doi.org/10.1109/ICDCS.2017.259

[34] Facebook AI Research Team. 2022. fvcore. Facebook Research. https://github.
com/facebookresearch/fvcore

[35] Google Brain Team. 2022. TensorFlow. https://github.com/tensorflow/tensorflow
[36] Sebastian Thrun and Lorien Pratt. 1998. Learning to Learn: Introduction and

Overview. https://doi.org/10.1007/978-1-4615-5529-2_1
[37] Jason Tsay, Alan Braz, Martin Hirzel, Avraham Shinnar, and ToddMummert. 2020.

AIMMX: Artificial Intelligence Model Metadata Extractor. In International Con-
ference on Mining Software Repositories (MSR). https://doi.org/10.1145/3379597.
3387448

[38] Hongkun Yu, Chen Chen, Xianzhi Du, Yeqing Li, Abdullah Rashwan, Le Hou,
Pengchong Jin, Fan Yang, Frederick Liu, Jaeyoun Kim, and Jing Li. 2020. Tensor-
Flow Model Garden. https://github.com/tensorflow/models.

1609

https://onnx.ai/
https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.48550/arXiv.2107.00821
https://github.com/blacklong28/onnx-opcounter
https://github.com/blacklong28/onnx-opcounter
https://doi.org/10.1145/3358700
https://doi.org/10.1145/3358700
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1109/BigData.2017.8258038
https://doi.org/10.1109/BigData.2017.8258038
https://towardsdatascience.com/accuracy-and-loss-things-to-know-about-the-top-1-and-top-5-accuracy-1d6beb8f6df3
https://towardsdatascience.com/accuracy-and-loss-things-to-know-about-the-top-1-and-top-5-accuracy-1d6beb8f6df3
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3528227.3528565
https://doi.org/10.48550/arXiv.1708.06733
https://doi.org/10.48550/arXiv.1708.06733
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1126/science.359.6377.725
https://keras.io/api/applications/
https://doi.org/10.48550/arXiv.1404.5997
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICDCS.2018.00125
https://doi.org/10.1109/NAS.2019.8834723
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/1873951.1874254
https://github.com/onnx/tensorflow-onnx
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.48550/arXiv.2104.10350
https://doi.org/10.48550/arXiv.2104.10350
https://doi.org/10.1109/ASE51524.2021.9678540
https://doi.org/10.1109/ASE51524.2021.9678540
https://doi.org/10.1145/3324884.3416545
https://github.com/pytorch/pytorch
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://netron.app/
https://doi.org/10.1007/978-3-030-69373-2_18
https://doi.org/10.1109/ICDCS.2017.259
https://doi.org/10.1109/ICDCS.2017.259
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore
https://github.com/tensorflow/tensorflow
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1145/3379597.3387448
https://doi.org/10.1145/3379597.3387448
https://github.com/tensorflow/models

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Subjects
	3.2 Evaluation Metrics

	4 Results and Analysis
	4.1 Accuracy
	4.2 Latency
	4.3 Architecture

	5 Discussion and Future Work
	6 Conclusion
	References

