Snapshot Metrics Are Not Enough: Analyzing Software
Repositories with Longitudinal Metrics

Nicholas Synovic
Loyola University Chicago
Chicago, IL, USA

Sohini Thota
Loyola University Chicago

Chicago, IL, USA

Wenxin Jiang
Purdue University
West Lafayette, IN, USA

Konstantin Laufer
Loyola University Chicago
Chicago, IL, USA

James C. Davis
Purdue University
West Lafayette, IN, USA

ABSTRACT

Software metrics capture information about software development
processes and products. These metrics support decision-making,
e.g., in team management or dependency selection. However, ex-
isting metrics tools measure only a snapshot of a software project.
Little attention has been given to enabling engineers to reason
about metric trends over time—longitudinal metrics that give in-
sight about process, not just product. In this work, we present PRIME
(PRocess MEtrics), a tool to compute and visualize process metrics.
The currently-supported metrics include productivity, issue density,
issue spoilage, and bus factor. We illustrate the value of longitudinal
data and conclude with a research agenda. The tool’s demo video
can be watched at https://bit.ly/ase2022-prime. Source code can be
found at https://github.com/SoftwareSystemsLaboratory/prime.

CCS CONCEPTS

« Software and its engineering; - General and reference —
Metrics;

KEYWORDS

Software metrics; Empirical software engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10...$15.00
https://doi.org/10.1145/3551349.3559517

Matt Hyatt
Loyola University Chicago
Chicago, IL, USA

Shilpika
University of California at Davis
Davis, CA, USA

Emmanuel S. Amobi
Loyola University Chicago
Chicago, IL, USA

Nicholas J. Hayward
Loyola University Chicago
Chicago, IL, USA

Rohan Sethi
Loyola University Chicago
Chicago, IL, USA

Allan J. Miller
Loyola University Chicago
Chicago, IL, USA

Austin Pinderski
Loyola University Chicago
Chicago, IL, USA

Neil Klingensmith
Loyola University Chicago
Chicago, IL, USA

George K. Thiruvathukal
Loyola University Chicago

Chicago, IL, USA

ACM Reference Format:

Nicholas Synovic, Matt Hyatt, Rohan Sethi, Sohini Thota, Shilpika, Al-
lan J. Miller, Wenxin Jiang, Emmanuel S. Amobi, Austin Pinderski, Kon-
stantin Laufer, Nicholas J. Hayward, Neil Klingensmith, James C. Davis,
and George K. Thiruvathukal. 2022. Snapshot Metrics Are Not Enough: An-
alyzing Software Repositories with Longitudinal Metrics. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE "22), Oc-
tober 10-14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3551349.3559517

1 INTRODUCTION

An effective software engineering process is correlated with high
software quality [18]. Measurements of software processes there-
fore give engineers insight into software quality [7]. Software met-
rics characterize the software engineering process (e.g., time to
fix a defect) and the engineered product (e.g., cyclomatic complex-
ity). Using software metrics, engineers and managers may improve
products and assess the risks of external software dependencies.

Tools for software metrics typically provide metrics on the cur-
rent project state, or “snapshot metrics,” rather than longitudinal
metrics (§2). While a snapshot can be useful—for example, it can
quickly reveal if a project has no test suite—it does not provide a
full picture of the longitudinal evolution of a software project. We
conjecture that engineers will make different decisions when presented
with snapshot metrics compared to longitudinal metrics (§5).

To evaluate a development process, one needs to measure the
history of the code. The classic Fenton & Bieman reference on
software metrics [7] establishes that measurement needs to be
related to a time range and scale for a meaningful longitudinal
assessment of software quality. Tools that measure quality need
to calculate both direct measurements and derived calculations at
consistent intervals to evaluate the process properly. Trends in
metrics can quantify software engineering decisions.


https://orcid.org/0000-0003-0413-4594
https://orcid.org/0000-0003-2608-8576
https://orcid.org/0000-0003-2495-686X
https://orcid.org/0000-0002-0452-5571
https://bit.ly/ase2022-prime
https://github.com/SoftwareSystemsLaboratory/prime
https://doi.org/10.1145/3551349.3559517
https://doi.org/10.1145/3551349.3559517

ASE 22, October 10-14, 2022, Rochester, MI, USA

To support our investigation of this research question, we present
PRIME [12] (PRocess MEtrics): an open-source tool that enables
engineers and researchers to analyze software projects with longitu-
dinal metrics. PRIME uses a modular Extract-Transform-Load (ETL)
pipeline architecture for ease of adoption and extension (§3), PRIME
currently supports the following metrics: code size, productivity,
bus factor, issue count, issue spoilage, and issue density (§4).

We close by proposing three studies facilitated by PRIME (§6):
(1) exploring engineers’ use of longitudinal metrics when assessing
their products; (2) exploring their use of longitudinal metrics during
dependency selection; and (3) analyzing the software supply chain
to identify potential weak links.

2 BACKGROUND AND RELATED WORK

Process metrics are critical for improving software quality as agile
repositories may eventually become more established and require
regular maintenance. Although numerous efforts have focused on
mining open-source repositories, the current support for process
metrics—and visualizing them longitudinally—is mixed. In our sur-
vey of related efforts, we identified various tool types, including
scorecards, frameworks, dashboards, and platform monitors.
Scorecards assign a risk score for open source projects to assess
security risks and project health [3]. However, they are computed
as a snapshot metric and cannot easily express longitudinal effects.
Frameworks simplify the process of developing tools for mining
software repositories (MSR). Frameworks are typically libraries and
domain-specific languages (DSL) that researchers and engineers
integrate into their tools. The ISHEPARD/PYDRILLER [19] library and
the Boa [5] DSL meet this criterion. These frameworks are not
ready-to-use MSR tools but provide building blocks for developing
new MSR tools for the analysis of version control systems (VCS).
Dashboards are built into online VCS platforms and visualize
repository and issue tracker trends. GitHub Insights [2] and GitLab
Insights [8] provide longitudinal metrics for hosted projects. How-
ever, these tools provide limited insights when it comes to process
metrics but can be expanded upon by the community [9].
Platform monitors are third-party analysis tools that compute
metrics for hosted packages. NPM [14] provides the NPM Search [15]
analyzer for JavaScript packages, which tracks process metrics re-
garding issue trackers. The GoReportCard [10] is a monitor for Go
projects hosted on GitHub, which tracks code metrics. Aside from
dashboards, these tools compute process metrics as snapshots and
do not make longitudinal and trends visualization easy for users.

3 ARCHITECTURE

PRIME follows an Extract, Transform, Load (ETL) architecture (Fig-
ure 1). The ETL phases of the pipeline are each module or collection
of modules. In addition, the extraction and transformation stages of
the pipeline store data in text-encoded JSON files. By storing mea-
surements in a file rather than in memory during pipeline execution,
PRIME can be integrated with existing tools and pipelines.

PRIME extracts base measurements from a project’s version con-
trol system (VCS) and issue tracker during the API Phase. Here,
using the external cLoc [1] and sLoccounT [17] utilities, PRIME
measures each commit of a repository and measures the size of
the repository in lines of code (LOC), thousands of lines of code
(KLOC), and the size difference between each sequential commit as

Synovic et al.

API Phase Metrics Phase Output Phase
GitRepo = @ @ - - - m — - = — -
: 1
| JSON | |

Metrics Storage
| Modules I
| I_,ﬁ l

<>

GitHub Issue I “ |
Tracker e e - - — = Data Viz_ |

Figure 1: System architecture of PRIME.

the delta thousands of lines of code (DKLOC). PRIME also extracts
issue report metadata by utilizing the REST API of a repository’s
host issue tracker.

PRIME transforms the extracted base measurements into derived
metrics during its Metrics Phase. At the moment, PRIME can
compute the following metrics: issue spoilage, issue/defect density,
productivity, and bus factor, which we will define below. Each met-
ric module takes in a text-encoded JSON file containing the base
measurements for commits, issues, or both.

After both the API and Metrics phases, data is loaded into either
text-encoded JSON files or visualized with MatPlotLib [11] in the
Output Phase. PRIME can export the JSON and visualization files
to integrate with other pipelines. Additionally, the visualizations
can be customized using style sheets, thereby allowing engineering
teams to implement style standards for their visualizations.

The ETL architecture allows engineers to use individual PRIME
modules for the metrics of interest. Furthermore, each phase of
the pipeline is configurable, reducing the time engineering teams
need to post-process the data to match their specific needs. Finally,
PRIME can be run on private repositories without exposing any
data or metrics charts for any given project.

4 METRICS IMPLEMENTED

To address the limitations of existing tools, PRIME computes longi-
tudinal process metrics. We chose the current set of metrics by their
ability to provide insights into the development process as well as
their ability to compute derived metrics. A prior survey informs
our choice of these metrics [6], where research software engineers
indicated that process metrics can be helpful. PRIME computes two
types of software metrics: (1) Direct metrics, which are measure-
ments of internal attributes of the process, and (2) derived metrics,
which are computed metrics from two or more direct metrics.

4.1 Direct Metrics

Direct metrics are measurements of a particular attribute of the
process involving no other attribute [7]. These measurements are
the foundation for the more complex metrics that PRIME computes.

1. Code Size: PRIME measures the size of a repository in terms
of the number of source lines of code normalized by 1000 reported
as KLOC. Changes in the KLOC (DKLOC) show the growth (or
shrinkage) of a repository over time.

2. Developer Count: PRIME measures this metric as the number
of unique developers who contribute code to a repository within a
time interval. By measuring developer count, engineering teams



Snapshot Metrics Are Not Enough: Analyzing Software Repositories with Longitudinal Metrics

redis/redis Issue Density

ASE ’22, October 10-14, 2022, Rochester, MI, USA

coin-or/pulp Issue Density

2
= 10 - 7
44
§ 5
a
@ 5 @
g g5
04
T T T T T T T T T T T
0 1000 2000 3000 4000 0 500 1000 1500 2000 2500
Days Days
faker-js/faker Issue Spoilage swisstph/openmalaria Issue Spoilage
e 200 % 40 4
£ 150 5
& &
@100 + g 207
=
& 50 &
0 o0-
T T T T T T T T T T T T T T T
] 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500
Days Days
dronekit/dronekit-python Productivity curl/curl Productivity
0.4
80
2 0.3 )
:E g 60
S 0.2+ S 404
g S
"o i HIE
0.0 1 al 1 Lo J 0 .
: T T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 0 1000 2000 3000 4000 5000 6000 7000 8000
Days Days
coin-or/pulp Bus Factor redis/redis Bus Factor
4
53 4]
< ]
£ g
@ P
3 El
!
0
0 10 20 30 40 50 60 70 0 20 40 60 80 100 120 140 160

Days (Binned Every 30 Days)

Days (Binned Every 30 Days)

Figure 2: This figure shows the PRIME tool’s output for each supported longitudinal derived process metric applied to several
sample projects. The first pair depicts contrasting issue densities. The second pair depicts two projects with contrasting trends
in resolving issues. The third pair depicts two projects with contrasting productivity trends. The fourth pair depicts two projects
with contrasting bus factor binned to measure the number of core contributors each month.

can determine the amount of developer support in contributing
new code, maintaining existing code, and resolving bugs.

3. Issue Count: PRIME measures this as the count of the number
of open and closed issues reported in an issue tracker, including
feature requests, tasks, and bug reports, in addition to potential and
confirmed defects. If an online VCS has an issue tracker, this metric
also reports the count of open and closed pull requests.

4.2 Derived Metrics

Derived metrics capture interactions between direct metrics [7].
PRIME computes derived metrics to analyze and subsequently visu-
alize changes in the development process of a software product.

1. Issue Density: This metric tracks a project’s total number of
issues normalized by project size. Because we are interested in
open-source repositories on GitHub, we use the more general issue
density rather than defect density, which refers only to the ratio
of bug count to repository size. A high issue density, regardless
of confirmed defects, could signify an unhealthy repository. For

example, if there are many feature requests that are never acted
upon, then the development team is not implementing the features
that users want. This would be a possible warning sign for poor
customer support and, eventually, would lead to low customer or
user satisfaction [16].

2. Issue Spoilage: Issue spoilage is the weighted average age
of unresolved issues at a given time in the project timeline. With
further analysis, this metric calculates the age of issues with respect
to the project timeline to measure how quickly a project’s team
resolves issues. Issue spoilage can serve as a gauge of customer
support and the efficiency of software teams in resolving issues. For
instance, if issue spoilage increases in a time interval, new issues
are being created faster than the team can resolve old ones. On the
other hand, if the issue spoilage drops in a time interval, the team
resolves previous issues faster than new ones are created.

3. Productivity: Productivity measures the rate at which a de-
velopment team adds KLOC within a time interval [7]. Healthy
repositories will typically have high productivity. However, low



ASE 22, October 10-14, 2022, Rochester, MI, USA

productivity is not always a sign of a lack of productiveness, as
when efficient development teams are refactoring code KLOC may
not change significantly.

4. Bus Factor: Bus factor [4] is the number of developers on
a project team who would have to be “hit by a bus” to cause the
project to fail. This metric measures the employee turnover risk of
a project. However, as our work focuses on open-source projects,
we propose that this is a metric of the development community’s
interest as well. By analyzing bus factor longitudinally, users gain
insight into potential risks of the software development process.
While bus factor is not a classical process metric, it is well known
in the general SE literature that under-resourced projects carry a
high risk of falling out of maintenance [7].

5 DEMONSTRATION

Figure 2 shows all four process metrics for several repositories over
their entire project history. We chose projects from the REPORE-
APERS/REAPER data set [13] in pairs that showed contrasting trends
in their process metrics to demonstrate possible insights from longi-
tudinal analysis. We have organized this figure to demonstrate the
potential for comparative analysis of process effectiveness, even
among projects that have a good score using existing scorecard
apps. The addition of process metrics clearly demonstrates that all
of these otherwise good projects may benefit from further exam-
ining their development process. This examination is especially
prudent when it comes to managing development while addressing
issues (issue density), addressing issues (issue spoilage),ensuring
appropriate resources (bus factor), or managing group priorities to
avoid team burnout (productivity).

6 PLANNED STUDIES

In the first study, we pose the research question: How do engineers
use longitudinal process metrics during their development process?
We hypothesize that basic metrics are used in many open-source
projects today, but the use of longitudinal metrics, particularly
process metrics, is limited. To perform this study, we will measure
the number of process metrics utilized and survey open-source
developers on established projects about why and how they use
these metrics in their development process.

In a second study, we pose the research question: Do longitudinal
metrics contribute to selecting dependencies in software composition?
Based on our survey of tools, we hypothesize that engineers take
little consideration of derived longitudinal process metrics but will
consider direct longitudinal process metrics as those are more preva-
lent when selecting dependencies for software development. To
perform this study, we intend to survey the current state of soft-
ware metrics tooling, and survey open-source engineers about their
utilization of longitudinal process metrics for dependency selection.

In our third study, we pose the research question: What role
can longitudinal process metrics play in analyzing dependencies in
open-source software? We hypothesize that many projects are likely
to depend on other projects that require process improvement, e.g.,
a third-party library with a risky bus factor. To perform this study,
we will examine the dependencies of well-known projects by using
PRIME to analyze each of the dependent projects for process-related
concerns. With PRIME, we can autonomously and automatically
compute the longitudinal metrics that are of concern to our study.

Synovic et al.

7 ACKNOWLEDGMENTS

Davis acknowledges support from NSF OAC-2107230; Thiruvathukal
acknowledges NSF OAC-2107020 and NSF OAC-1445347; Davis and
Thiruvathukal acknowledge the Google TensorFlow Model Garden.

8 CONCLUSION

PRIME is an ongoing development effort to understand process ef-
fectiveness beyond snapshots of process metrics and support more
longitudinal analysis and visualization. This paper demonstrates
working software to compute four process metrics, which repre-
sent classical (e.g., issue density, issue spoilage, productivity) and
modern/agile (e.g., bus factor) metrics. We argue for the potential
of these tools to support future planned studies by showing their
ability to visualize long and short-term trends via simple and in-
tuitive charts. Future development efforts will include expanding
PRIME with support for more process metrics, emphasizing com-
parative visualizations, and expanding the number of data sources.
Future studies will build on this foundation to study the usage of
longitudinal metrics in practice, longitudinal metrics in selecting
dependencies, and the software supply chain.

REFERENCES

[1] cloc Contributors. 2021. AlDanial/cloc: 1.92.  https://doi.org/10.5281/zenodo.
5760077

[2] GitHub Insights Contributors. 2022. GitHub Insights for Projects.  https:
//docs.github.com/en/issues/planning-and- tracking-with-projects/viewing-
insights-from-your-project/about- insights- for- projects

[3] Scorecard Contributors. 2022. Security Scorecards. https://github.com/ossf/
scorecard original-date: 2020-10-09T14:48:27Z.

[4] Valerio Cosentino, Javier Luis Canovas Izquierdo, and Jordi Cabot. 2015. Assessing
the bus factor of Git repositories. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). SANER, Unknown,
499-503. https://doi.org/10.1109/SANER.2015.7081864 ISSN: 1534-5351.

[5] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.
Boa: A language and infrastructure for analyzing ultra-large-scale software
repositories. In 2013 35th International Conference on Software Engineering (ICSE).
ACM, Unknown, 422-431. https://doi.org/10.1109/ICSE.2013.6606588 ISSN:
1558-1225.

[6] Nasir U. Eisty, George K. Thiruvathukal, and Jeffrey C. Carver. 2018. A Sur-
vey of Software Metric Use in Research Software Development. In 2018 IEEE
14th International Conference on e-Science (e-Science). IEEE, Amsterdam, 212-222.
https://doi.org/10.1109/eScience.2018.00036

[7] Norman Fenton and James Bieman. 2014. Software Metrics: A Rigorous and
Practical Approach, Third Edition (3rd edition ed.). CRC Press, Boca Raton.

[8] GitLab. 2019. GitLab Insights Documentation. https://docs.gitlab.com/ee/user/
project/insights

[9] GitLab. 2020. GitLab Insights Video.  https://www.youtube.com/watch?v=
OMT{PsLa98I

[10] Go Report Card Contributors. 2022. Go Report Card. https://goreportcard.com/

[11] John D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in
Science Engineering 9, 3 (May 2007), 90-95. https://doi.org/10.1109/MCSE.2007.55
Conference Name: Computing in Science Engineering.

[12] Matt Hyatt, Amy Kuhl, Jake Palmer, Rohan Sethi, Ethan Stoneman, Nicholas Syn-
ovic, Sohini Thota, and George K. Thiruvathukal. 2022. clime-metrics. Software
and Systems Laboratory. https://doi.org/10.5281/zenodo.6587880

[13] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.

Curating GitHub for engineered software projects. Empirical Software Engineering

22, 6 (Dec. 2017), 3219-3253. https://doi.org/10.1007/s10664-017-9512-6

npm contributors. 2022. npm. https://www.npmjs.com/

npms.io contributors. 2018. npms. https://npms.io/

William Scherkenbach. 2011. The Deming Route to Quality and Productivity.

WWS, Inc., Unknown.

SLOCCount Contributors. 2016. SLOCCount. https://dwheeler.com/sloccount/

Ian Sommerville. 2015. Software engineering 10th Edition. ISBN-10 137035152

(2015), 18.

Davide Spadini, Mauricio Aniche, and Alberto Bacchelli. 2018. PyDriller: Python

framework for mining software repositories. In Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. ACM, Lake Buena Vista FL USA, 908-911.

https://doi.org/10.1145/3236024.3264598

—=
o

==
2.

[19


https://doi.org/10.5281/zenodo.5760077
https://doi.org/10.5281/zenodo.5760077
https://docs.github.com/en/issues/planning-and-tracking-with-projects/viewing-insights-from-your-project/about-insights-for-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects/viewing-insights-from-your-project/about-insights-for-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects/viewing-insights-from-your-project/about-insights-for-projects
https://github.com/ossf/scorecard
https://github.com/ossf/scorecard
https://doi.org/10.1109/SANER.2015.7081864
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1109/eScience.2018.00036
https://docs.gitlab.com/ee/user/project/insights
https://docs.gitlab.com/ee/user/project/insights
https://www.youtube.com/watch?v=OMTfPsLa98I
https://www.youtube.com/watch?v=OMTfPsLa98I
https://goreportcard.com/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.6587880
https://doi.org/10.1007/s10664-017-9512-6
https://www.npmjs.com/
https://npms.io/
https://dwheeler.com/sloccount/
https://doi.org/10.1145/3236024.3264598

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Architecture
	4 Metrics Implemented
	4.1 Direct Metrics
	4.2 Derived Metrics

	5 Demonstration
	6 Planned Studies
	7 Acknowledgments
	8 Conclusion
	References

