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Abstract— Efficient multi-robot task allocation (MRTA) is
fundamental to various time-sensitive applications such as
disaster response, warehouse operations, and construction. This
paper tackles a particular class of these problems that we call
MRTA-collective transport or MRTA-CT – here tasks present
varying workloads and deadlines, and robots are subject to
flight range, communication range, and payload constraints.
For large instances of these problems involving 100s-1000’s of
tasks and 10s-100s of robots, traditional non-learning solvers
are often time-inefficient, and emerging learning-based policies
do not scale well to larger-sized problems without costly
retraining. To address this gap, we use a recently proposed
encoder-decoder graph neural network involving Capsule net-
works and multi-head attention mechanism, and innovatively
add topological descriptors (TD) as new features to improve
transferability to unseen problems of similar and larger size.
Persistent homology is used to derive the TD, and proximal
policy optimization is used to train our TD-augmented graph
neural network. The resulting policy model compares favorably
to state-of-the-art non-learning baselines while being much
faster. The benefit of using TD is readily evident when scaling
to test problems of size larger than those used in training.

I. INTRODUCTION & MOTIVATION

Efficient solutions based on the use of multi-robot teams

show increasing promise in a variety of applications ranging

from disaster response [1] to manufacturing [2], warehouse

logistics [3] and construction [4]. In most large-scale appli-

cations involving 100’s to 1000’s of tasks, using a centralized

command center to perform task assignments is unlikely to

be robust due to communication limitations, a single point of

failure, and the likelihood of information overloading on one

command center. This leads to the need for robots to take

decisions in a decentralized yet timely (real-time) manner.

In addition, key problem complexities include tasks with

deadlines, and heterogeneity of tasks in terms of demand
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or workload (e.g., requiring one vs. multiple robots or trips)

– such features are commonplace in the stated application

scenarios. Moreover, we must account for other practical

constraints, namely robot range, robot capacity (e.g., payload

capacity), and limited communication range of each robot.

Given this context, in this paper, we focus on a class

of multi-robot task allocation (MRTA) problems that we

call MRTA-Collective Transport (MRTA-CT). MRTA-CT

involves using a team of robots to perform tasks that are

spatially distributed, and present time deadlines and different

workloads that may require multiple visits by robots to com-

plete the task. We posit that this problem scenario generalizes

to a wide range of material transport applications, which

are discussed later in this section. In addition, to introduce

a sufficient degree of realism, we consider that decisions

must be taken in a decentralized asynchronous manner by

each robot, with robots having partial observability about

the state of peer robots and the state of tasks as they start

to get completed (due to communication range limitations).

In addition, for ease of implementation, we assume that the

robot team has full observability of tasks at the start of the

operation, and a single depot (material source and recharging

location) is used by the entire team.

Motivating examples: This paper focuses on MRTA-

CT problems that arise in real-world operations such as:

I) Disaster relief operations e.g., in a flood response sce-

nario [1], where varying amounts of relief packages from a

central depot must be time-efficiently delivered to victims

stranded in a spatially distributed manner over the region;

II) Manufacturing or construction sites, where a processed

entity has to be delivered from a single source to multiple

locations over a large site, based on their varying demand.

For disaster relief, strict time deadlines are self-evident. In

both scenarios, time constraints are crucial and tasks must

be completed before specific deadlines. These deadlines are

considered hard constraints, meaning that tasks are only

considered completed if their entire demand is met before the

deadline. The participating robots have a maximum payload

capacity and range due to battery or fuel limitations. Any

robot can partially fulfill the demand of each task location as

long as the deadline has not passed. For example, if a location

requires 10 relief kits and a robot can carry 5, multiple robots

can deliver the kits, and a robot with remaining capacity can

complete another task. If a robot carrying its full payload

selects a task that only needs a few more relief kits, it

can deliver them and select another task if it has enough

range to do so. This approach can be used in various real-

world applications, where products or raw materials must be
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delivered within specific timeframes for the timely execution

of spatially distributed jobs that depend on those products.

A. Related Works:
While very few methods exist to directly tackle this

particular MRTA-CT class of problems, there’s a rich body

of work on related methods in MRTA that could poten-

tially be transitioned to this class. These methods, namely

graph-matching methods [1], [5], mixed integer-linear pro-

gramming (MILP) approaches [6], [7], and auction-based

methods [8], [9]) typically aim to solve the combinatorial

optimization (CO) problem underlying MRTA planning.

However, these methods often do not scale well with the

number of robots and/or tasks and do not readily adapt

to complex problem characteristics without tedious hand-

crafting of the underlying heuristics.

In recent years, reinforcement learning or RL methods that

use Graph Neural Networks (GNN) are being increasingly

used to solve such planning problems with a CO formulation

[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],

[21]. This emergence of graph RL is partly attributed to the

ability of GNNs to capture both Euclidean and non-Euclidean

features along with local and global structural information

of the task space. These methods are, however, limited in

three key aspects: 1) Simplified problems that often exclude

common real-world factors such as resource and capacity

constraints [10], [14], [13], [19]). 2) Focused on smaller

sized problems (f 100 tasks and 10 robots) [22], [18]. 3)

Rarely provide evidence of generalizing to problem scenarios

that are larger in size than those used for training. Such

capability would be particularly critical since real-world

MRTA problems often involve simulating episodes whose

costs scale with the number of tasks and robots, making

re-training efforts burdensome. For practical scenarios with

large numbers of task locations, achieving good feasible

solutions is typically the priority [23], especially under

constrained communication scenarios [24] – which further

motivates the need for learning-based policies to drive real-

time planning in such applications.

To enable scalable policies that can be executed in real-

time, a novel encoder-decoder-based RL approach was intro-

duced by our earlier work [25], [26]. We now hypothesize

that scalability can be further improved by utilizing task-

neighborhood similarity. To this end, we use the Capsule

Attention Mechanism or CAPAM policy network introduced

in [25], [26], and particularly augment it with Topological

Descriptors (TD) as novel additional task-space features to

compute task-neighborhood similarity. The policy network

is trained using a standard policy gradient RL algorithm,

Proximal Policy Optimization (PPO) [27].

Topological Data Analysis (TDA) involves the extraction

of higher-order shape features from an observed object such

as graph-structured data. By shape here we broadly under-

stand object properties that are invariant under continuous

transformations such as bending, twisting, and compressing.

It relies on the intuition that the extracted shape charac-

teristics contain some inherent hidden information on the

underlying object that enhance learning capabilities. The

primary TD used here is Persistence Diagrams (PD) [28].

The new proposed policy network is then trained to learn

sequential actions for MRTA-CT (meaning task selection

by each robot taking decisions) from an output probabil-

ity distribution with the overall objective to maximize the

number of tasks completed. For taxonomy purposes, the

MRTA-CT problem can be classified as Single-task Robots,

Multi-robot Tasks, Time-extended Assignment (ST-MR-TA)

class defined in [29], [30], which is an NP-hard problem.

Based on iTax taxonomy as defined in [31], this problem also

falls into the In-schedule Dependencies (ID) category. The

optimization formulation of the MRTA-CT as defined in this

paper yields a large mixed-integer non-linear programming

(MINLP) problem, which further elucidates the substantial

problem complexity.

Key Contributions: The main contributions of this paper

can be summarized as 1) Formulating the MRTA-CT prob-

lems as a Markov Decision Process or MDP over graphs

such that the task allocation policy can be learned using

a policy gradient RL approach, where the task information

is represented as node embeddings from a GNN-based en-

coder of the policy network, the robot states embedded as

the context portion of the policy network, and the above

two information is used to select the next task using the

Attention-based decoder in a sequential manner. 2) Explore

the advantage of using higher-order structural information

(encoded by TD) as additional features in improving the

generalizability and scalability of the GNN-based policies. 3)

Demonstrate this learning framework’s ability to generalize

to larger-sized problems without the need to retrain.

The next section briefly overviews the MRTA-CT problem

and its MDP formulation. Section III describes our proposed

new graph learning architecture that operates on this MDP.

Section IV presents the settings and outcomes of numerical

experiments performed on MRTA-CT problems of varying

size, used for comparative evaluation of the learning and

non-learning methods, and MINLP (optimal) solutions. Sec-

tion V summarizes concluding remarks and potential future

extensions of our work.

II. MRTA - COLLECTIVE TRANSPORT

A. Problem description
Given a homogeneous set of M robots,

R={r1, r2, . . . , rM} and a set of N tasks V , the goal

is to allocate tasks to robots for maximizing a given

objective function. The objective here is to maximize the

number of tasks done. There is a single depot that serves as

the start and end points of each robot. Each task i ∈ V has

a unique location represented by its x-y coordinates (xi, yi),
a workload/demand wi (time-varying) which can be fulfilled

partially by a robot, and a time deadline τi by which the task

must be completed (demand satisfied) to consider the task

i as done (namely ρi=1). Fig 1 illustrates the MRTA-CT

problem. Each robot has a maximum distance range, ∆max,

that it can travel before returning to the depot to recharge;

each robot also has a defined maximum capacity Cmax. Each

robot starts from the depot where it gets a full battery and

full load and then visits the task location to satisfy (fully or



partially) its demand. A robot returns to the depot once it is

fully unloaded, it is running out of battery, or there are no

more remaining tasks in the environment, whichever comes

first. The recharging process is assumed to be instantaneous

(e.g., via battery swap).

B. MRTA-CT as Optimization Problem

The exact solution to the MRTA-CT problem, excluding

the communication constraints, can be obtained by formu-

lating it as an MINLP problem, which can be concisely

expressed as (for brevity):

min fcost = (N −Nsuccess)/N (1)

Nsuccess =
∑

i∈V

ρi

{

ρi = 1, if τfi f τi

ρi = 0, if τfi > τi

0 f ∆t
r f ∆max, r ∈ R (2)

0 f ctr f Cmax, r ∈ R (3)

Here τfi is the time at which task i is completed, ∆t
r is

the available range for robot r at a time instant t, ctr is

the capacity of robot r at time t, Nsuccess is the number

of successfully completed tasks during the operation. Here,

we craft the objective function (Eq. (1)) such that it em-

phasizes maximizing the completion rate (i.e., the number

of completed tasks divided by the total number of tasks).

Equations 2 and 3 correspond to the remaining range and

capacity respectively at time t. To learn policies that yield

solutions to this CO problem, we express the MRTA-CT as

an MDP over a graph, as described next.

C. MDP over a Graph

The task space of an MRTA-CT problem can be

represented as a graph, including a set of nodes/vertices

(V ) and a set of edges (E) that connect the vertices to each

other. The complete graph is given by G = (V,E,Ω), where

Ω is a weighted adjacency matrix. Each node represents

a task, and each edge connects a pair of nodes. For

MRTA-CT with N tasks, the vertices and edges are N and

N(N−1)/2, respectively. Node i is assigned a 4-dimensional

feature vector denoting the task location coordinates,

time deadline, and the remaining workload/demand i.e.,

δi=[xi, yi, τi, w
t
i ] where i ∈ [1, N ]. Here, the weight between

two edges Ωi,j (∈ Ω) can be computed as Ωi,j = 1/(1 +
√

(xi − xj)2 + (yi − yj)2 + (τi − τj)2 + (wt
i − wt

j)
2),

where i, j ∈ [1, N ].
The MDP defined in a decentralized manner for each

individual robot (to capture its task selection process) can

be expressed as a tuple < S,A,Pa,R >. The components

of the MDP can be defined as State Space (S), i.e., a

robot r at its decision-making instance uses a state s ∈ S ,

which contains the following information: 1) Task graph G,

2) the current operation time t, 3) current destination of

robot (xt
r, y

t
r), 4) remaining range (battery state) of robot

r δtr, 5) capacity of robot r ctr , 6) destination of its peers

(xk, yk, k ∈ R k ̸= r), 7) the remaining range of peers

δtk, k ∈ R k ̸= r, 8) capacity of peers ctk, k ∈ R k ̸= r,

and 9) next decision time of peers tnext
k , k ∈ R ̸= r, 10)

the time at which each peer robot took it’s previous decision

tsk, k ∈ R k ̸= r. When a robot k visits a task i the demand

fulfilled by the robot k is min(wt
i , c

t
k). Action Space (A):

The set of actions is represented as A, where each action

a is defined as the index of the selected task, {0, . . . , N}
with the index of the depot as 0. The task 0 (the depot) can

be selected by multiple robots, but the other tasks can be

chosen if they are active (not completed or missed tasks).

Pa(s
′|s, a): A robot taking action a at state s reaches the

next state s′ in a deterministic manner. Reward (R): The

reward function is defined as −fcost, calculated when there

are no more active tasks (all tasks demand has been met).

Transition: The transition is an event-based trigger. An event

is when a robot reaches its selected task or visits the depot

location. Here we do not consider any uncertainty, hence the

state transition probability is 1.
Robot State CAPAM TD Probabilities

1
2
3
4
5
6

Decision Instance: 1
Robot taking decision: R1
Action: T6

T6

T5

T4

T3

T2

T1
R2

R3

R1

Robot State CAPAM TD Probabilities
1
2
3
4
5
6

Decision Instance: 2
Robot Taking Decision: R2
Action: T3

T6

T5

T4

T3

T2

T1

R2

R3

R1

R:
C:

R:
C:

C:
R:

R:
C:

R:
C:

R:
C:

DL: 85
DM: 0/3

DL: 85
DM: 0/3

DL: 75
DM:1/2

DL: 75
DM:1/2

DL: 80
0/3DM:

DL: 80
DM: 3/3

DL: 65
DM: 3/3

DL: 65
DM: 3/3

DL: 80
DM: 0/4

DL: 50
DM: 0/2

DL: 80
DM: 0/4

DL: 50
DM: 0/2

Legend:
    Depot                         Robot   
C Capacity              R Range
DM Demand Met    DL Deadline
   Uncompleted Task     Chosen Task
    Completed Task        Expired Task

Fig. 1: Two sequential decision-making instants in MRTA-CT problem with
6 tasks and 3 robots. The task with the largest probability is chosen.

Communication modeling: The state variables 6, 7, 8, 9,

and 10 are the values that robot r has about its peers during

the decision-making time t, along with a vector (wr ∈ R
N )

which tracks the task completion ratio, and gets updated only

during an information exchange (about (6 × M + N) × 8
bytes exchanged for a double data type) based on the latest

value of tsk, k ∈ R, k ̸= r. In our study, two robots can

only communicate if their separation distance is less than a

threshold distance denoted as dthresh
com .

III. LEARNING FRAMEWORK

By formulating the MRTA-CT as an MDP, we can use an

RL algorithm to learn policies that maximize the objective

function (Eq. 1). The learning framework mainly consists

of the CAPAM-TD policy network and a policy gradient RL

algorithm. The RL algorithm used here is PPO. The CAPAM

policy network from [25] has demonstrated both general-

izability and scalability capabilities and hence we adopt

this network and enhance it with TD, with the aim to use

higher dimensional topological features for decision-making

to maximize the reward. In this section, we will describe the

importance of the local higher-order topological information,

TD using Persistent Homology, a quick overview of the

CAPAM architecture, and how TD is incorporated into the



CAPAM network. The CAPAM policy network consists of a

Graph Capsule Convolutional Network [32] based encoder,

a context (that reads in robot states), and a Multi-Head

Attention (MHA) based decoder [10]. The encoder takes

in the task graph G, computes a feature vector F0i for

each graph node i ∈ V by a linear transformation of the

node properties δi, which is then passed through multiple

Graph Capsule Layers to compute permutation invariant node

embeddings.

f (l)
p (X,L) = σ(

K
∑

k=0

Lk(F(l−1)(X,L)◦p)W
(l)
pk ) (4)

Here L is the graph Laplacian, p is the order of the

statistical moment, K is the degree of the convolutional

filter, F(l−1)(X,L) is the output from (l − 1)-th layer,

F(l−1)(X,L)◦p represents p times element-wise multipli-

cation of F(l−1)(X,L). Here, F(l−1)(X,L) ∈ R
N×hl−1p,

W
(l)
pk ∈ R

hl−1p×hl . The variable f
(l)
p (X,L) ∈ R

N×hl is

a matrix where each row is an intermediate feature vector

for each node i ∈ [1, N ], infusing nodal information from

Le×K hop neighbors, for a value of p. The output of layer

l is obtained by concatenating all f
(l)
p (X,L), as given by:

Fl(X,L) = [f
(l)
1 (X,L), f

(l)
2 (X,L), ...f

(l)
P (X,L)] (5)

Here P denotes the highest order of statistical moment,

and hl denotes the node embedding length of layer l. We

consider all the values of hl (where l ∈ [0, Le]) to be the

same for this paper. Equations 4 and 5 were computed for Le

layers, where each layer uses the output from the previous

layer (Fl−1(X,L)). The context reads in the state of the

robot taking the decision as well as the state information

available to it regarding the peer robots. and computes

a vector Q during a decision-making instance. The node

embeddings from the encoder FLe
(X,L) and the context Q

are then passed to the MHA-based decoder, which computes

output probabilities for all the nodes. This output probability

distribution is used to choose the next task node/task to visit

by the robot taking the decision. A complete description of

the CAPAM architecture can be found in our previous work

[25].

A. Topological data analysis using persistent homology

Simplicial complex Component Simplices

Point

(0-simplex)

Edge

(1-simplex)

Triangle

(2-simplex)

Tetrahedron

(3-simplex)

Fig. 2: A simplicial complex composed of a point, edges, triangles, and
tetrahedron.

Over the past few years, there have been numerous studies

demonstrating the advantage of complementing ML with

topological information extracted using the machinery of

TDA [33], [34], [35], where the underlying structure of data

(such as a point cloud or graph) can be used for improving

the learning performance. In this work, we use Persistent

Homology (PH) [36] to extract higher-order topological

information from the task graph, in the form of Persistence

Diagram (PD). We provide here a very brief description of

PH and PD. A simplicial complex is an entity composed

of a set of points, line segments, triangles, tetrahedron, and

their higher dimensional counterparts. The components of a

simplicial complex are called simplicies.
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Fig. 4: CAPAM-TD policy network. Blocks in green color have learnable
weights. Blocks in blue represent the TD.

For example, given a graph G = (V,E,Ω), PH starts with

filtration of G to get a new graph Gα = (Vα, Eα,Ωα), where

Vα = V , (i, j) ∈ E if Ωi,j
α = 1, and Ωi,j

α = 1 if |δi − δj | ≤
α else Ωi,j

α = 0, and a simiplicial complex SCα can be

generated for Gα (Fig. 3). Then we identify the occurrence

of topological features such as cycles, cavities, and higher

p-dimensional holes in SCα and track their lifespans. That

is, as the value of α increases (starting from 0), different

simplicial complexes are generated which results in the birth

of different p-dimensional holes and their death. Let Z be the

set of all the p-dimensional holes encountered with varying

values of α, we track the birth and death of the p-dimensional

holes using their corresponding α values. The longer the

lifespan of a p-dimensional hole, the likelier this topological

feature contains some latent information on the underlying

object structure. All extracted topological features can be

summarized in a form of PD. A PD for G is defined as

PD(G) = {(αz
1, α

z
2) ∈ R

2, ∀z ∈ Z, αz
1 < αz

2}.

B. Incorporating TDA with CAPAM

Inspired from [37], to include the local higher-order topo-

logical information, we replace the graph Laplacian L, with a

Laplacian matrix computed using PH (LTD ∈ R
N×N ). First,

for each node i ∈ V of graph G, we find a sub-graph Gi
sub

which consists of k-hop neighbors of node i (where k ≥ 1).

A node j ∈ V is an immediate neighbor of node i if |δi−δj |
< dthresh, where || represents the L2 norm and dthresh is a

threshold distance. Hence for each node i ∈ V we can get

a set of points Gi
sub (or sub-graph). For each Gi

sub, i ∈ V



we compute it’s Persistence Diagram PD(Gi
sub). We use the

Wasserstein distance (as in [37]) (Wp(·)) (where 0 ≤ p ≤ ∞)

between each node’s PD to compute each element of LTD,

represented as:

Lij
TD =

1

(1 +Wp(PD(Gi
sub), PD(Gj

sub)))
, ∀ i, j ∈ V (6)

Hence for each pair of nodes i, j ∈ V , Lij
TD will be close to

1 if they have similar topological information, and close to 0

otherwise. Figure 4 shows the overall CAPAM-TD network.

IV. EXPERIMENTAL EVALUATION

A. Baseline methods

We use five baselines for performance comparison of

CAPAM-TD-RL on the % task completion and total time

spent for computing the decisions, with simulation time

not included. These baselines include: 1) Mixed Integer

Non-Linear Programming (MINLP): We formulated the

MRTA-CT as MINLP and used Gurobi [38] for solving the

MINLP. Given that the MINLP solution does not consider the

communication constraints, it can be used here to compute

the upper bound of the optimality gap of the other meth-

ods. In other words, a successfully converged MINLP here

finds ideal solutions that are as good as or better than the

true optimum solutions. 2) Bi-Graph MRTA (BIGMRTA):

BIGMRTA [39] is an online method that uses a bipartite

graph to connect robots to tasks based on an incentive model.

The model considers the task’s features and the robot’s states

to determine the weights of connecting edges, which allows

for the decomposition of the problem and yields a measure of

robot-task pairing suitability. Each robot solves a maximum

weighted matching problem to identify optimal task assign-

ments that maximize the team’s net incentive. 3) Feasibility-

preserving Random-Walk (FEASRND): FEASRND is a

myopic decision-making method that takes randomized but

feasible actions, avoiding conflicts and satisfying other prob-

lem constraints. 4) Multi-Layer Perceptron based RL

(MLP-RL): Here the node encoder of the policy network

is a Multi-Layered Perceptron with 2 hidden layers (with

512 neurons), hl =128. 5) Capsule-Attention Mechanism-

based RL (CAPAM-RL): Here we use the CAPAM policy

network from [25] with parameters as follows: K=3, Le=3,

P=3, hl=128, (these parameters are the same for CAPAM-

TD). We consider MINLP and BIGMRTA to be the upper

bound performance (even though the computational time is

significantly high) and FEASRND to be the lower bound.

Environment & Training details: We consider a scenario

(described in section II) with a single depot, N=50, M=6

over an area of 1 × 1 km2 area. Each robot has maximum

payload capacity Cmax=5kg and the demand for each task i
(wi) is drawn from a uniform distribution between 1 and 10

kg. Each robot r ∈ R has a uniform speed of 10m/s. The

time deadline for all the tasks (τi, i ∈ V ) follows a uniform

distribution between 150 and 600 seconds. The maximum

range for the robots ∆max=4km. The communication thresh-

old range dthresh
com =100m.

The simulation environment is developed in Python as

an Open AI gym environment. The three policy networks

– CAPAM-TD, CAPAM, and MLP – are trained (ensur-

ing convergence) with the same parameters: e.g., Total

steps=4×106, Rollout buffer=4×104, Batch size=4×103,

Step size=1×10−6, and Entropy coefficient = 0.01) for a

fair comparison, on two GPUs (NVIDIA Tesla V100) with

16GB RAM using PPO from Stable-Baselines3 [40]. To

compute PD, we use the Gudhi library [41]. The trained

models are tested and the non-learning (MINLP, BIGMRTA,

FEASRND) based methods are implemented on a 2.6 GHz

Intel core i7 MacOS 11.2.3 system.

B. Generalizability

In this paper, generalizability refers to the performance of

the trained model on unseen test scenarios with the same

(or lower) number of tasks as that of the training scenarios;

and where the test and training scenarios are drawn from the

same probability distribution over task locations, deadlines

and demand. In this work, generalizability is evaluated on

test scenarios with the number of tasks multiplied by a factor

λt ∈ {0.5, 1.0} and drawn from the same distribution as

that of training. For each value of λt, we consider 3 cases

with varying numbers of robots representing small, medium,

and large. This gives us a total 2 × 3=6 scenario. For each

scenario, the number of tasks N=int(λt×50) and the number

of robots M=int(6× λt × λr) + 1, where λr takes a value

of 0.5 for small, 1 for medium, and 2 for large number of

robots. For each combination of N and M we consider 100

test samples to compare the performance, where all the 100

samples are the same for all the methods.

(a) Scenarios with N = 25

(b) Scenarios with N = 50

Fig. 5: % task completion (box plots to left axis) and average computation
time in seconds (dashed lines to the right axis) for generalizability.

As expected, MINLP produced the best results for all

the scenarios with N=25. However, this comes with a very

high computational cost, where the samples (total 100 per

scenario) were run for 200, 250, and 360 seconds for M=2,4



and 7 respectively, and without considering any communi-

cation constraints. Due to high computational expense, the

MINLP solution is generated only for scenarios with N=25.

For larger values of N (≥ 50), the computational time per

sample is very high (> 1000 seconds per sample). For

scenarios with N=25 and N=50 (Fig. 5), CAPAM-TD-RL

outperforms CAPAM-RL, MLP-RL, and FEASRND. This

is confirmed with a statistical t-test with 5% significance,

p-value< 0.05 (except in the case of CAPAM-RL N=25,

M=7). CAPAM-RD-RL also shows a % task completion

performance comparable to BIGMRTA (p-value> 0.05 for

all scenarios).

Even though BIGMRTA has a lower computation time

for smaller-sized problems ((N=25, M=2,4), and (N=50,

M=4)), for larger number of robots the computation time

is higher. It is important to note the trend of the computa-

tion time. In scenarios with N=50, the computation time

increases from 0.14 (M=4) to 0.58 (M=13) seconds for

BIGMRTA, while for CAPAM-TD-RL the increase is from

0.24 to 0.38 seconds. This difference in the increase of

computational time becomes more drastic when scaled to

scenarios with larger N and M values, which is discussed in

section (IV-C). CAPAM-TD-RL outperforms both learning-

based methods (CAPAM-RL and MLP-RL) in terms of

the average % task completion by a maximum margin of

6.5% (for N=25, M=2) and 9.9% (for N=50 and M=4)

respectively. The improved performance of CAPAM-TD-RL

compared to CAPAM-TD for generalizability can be credited

to the use of PD to compute the graph Laplacian.

C. Scalability

Scalability refers to the performance of the trained model

on test scenarios with higher numbers of tasks and robots

compared to the training scenarios. Here λt takes values

of 2, 5, and 10, while λr is the same as that used in

the generalizability analysis. The % task completion fol-

lows a similar trend (Fig. 6) for scalability as seen in

the generalizability analysis, where BIGMRTA performs the

best and FEASRND performs the worst. CAPAM-TD-RL

provides almost comparable performance to BIGMRTA, with

the largest performance gap being 6.54 % (p-value=2e-9)

for N=500, M=31, and the smallest being 0.32 % (p-

value=0.86) for N=100, M=25. However, for almost all

the scenarios, the computation time of CAPAM-TD-RL is

significantly lower compared to BIGMRTA. For scenarios

with N=500 and M=121, the average % task completion rate

for BIGMRTA and CAPAM-TD-RL are 87.2% and 84.9%
respectively, while their total computation times are 604 and

33 seconds, respectively. Note that BIGMRTA demonstrated

comparable performance to MINLP for N=25 and λr=1,2,

with a highest optimiality gap being just 9.4%. This shows

that the ability of CAPAM-TD-RL to scale to larger problems

without retraining is noticeably better than that of other

learning-based methods (CAPAM-RL, MLP-RL).

V. CONCLUSION

In this paper, we proposed a graph RL approach to

generate generalizable, scalable, and real-time executable

(a) Scenarios with N = 100

(b) Scenarios with N = 250

(c) Scenarios with N = 500

Fig. 6: % task completion (box plots to left axis) and average computation
time in seconds (dashed lines to the right axis) for Scalability.

policies for a class of MRTA problems called MRTA-

Collective Transport (MRTA-CT). A particular novelty of our

approach lies in the introduction of Topological Descriptors

(TD) as additional features that are encoded by the graph

neural network serving as the policy model. Persistence

homology applied to the task graph was used to derive

the TD features. The proposed GNN, essentially a Capsule

Attention Mechanism (CAPAM) based encoder-decoder ar-

chitecture augmented with TD was trained on randomized

problem samples of fixed size in terms of the number

of tasks and robots, and was tested on unseen problems

of varying size to assess generalizability and scalability.

The performance of the CAPAM-TD model was compared

to CAPAM without TD, an MLP-based RL, and 3 non-

learning-based baseline methods (MINLP, BIGMRTA, and

FEASRND). CAPAM-TD-RL demonstrated similar perfor-

mance compared to BIGMRTA (which itself has comparable

performance to MINLP for N=25) with roughly 20 times

lower computation time, and better performance compared

to the other baselines. The advantage of using TD is also

readily evident, e.g., in the {N=500, M=61} scalability test,

CAPAM with TD achieves 7.1% better mean completion rate



than the one without TD.

Future directions: As the immediate next step, we intend

to extend our method to problems with unreliable commu-

nication and task uncertainty, which are common features

of the target applications. Further, we plan to implement

the CAPAM-TD models on a more realistic multi-robot

simulation environment, thereof transitioning to deployment

and testing over physical testbeds.
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APPENDIX

A. Mixed Integer Non-Linear Programming Formulation for

MRTA-Collective Transport Problem

NOMENCLATURE

(h, s, r) Tuple representing robot r during decision number

h of route s
(i, j, h, s, r) Tuple representing a scenario where robot r

travels from location i to j during decision number

h of route s
(j, h, s) Tuple representing task j during decision number h

of route s
∆(h, s, r) Range of robot r during (h, s, r)

∆max Maximum allowed range in a single tour for each

robot

τi Time deadline for task i
time(i, j, h, s, r) time taken to execute scenario (i, j, h, s, r)

time
complete
i Time at which task i is completed

c(h, s, r) Capacity of robot r after scenario during scenario

(h, s, r)

Cmax Maximum capacity of each robot

d(i, j) Distance between nodes i and j
D Depot

e(i, j, h, s, r) work done during scenario (i, j, h, s, r)

H Maximum number of decisions per tour for each

robot

h Index for each decision in a tour

i, j, k Indices for nodes

M Number of robots

N Number of tasks

R Set of robots

r Index for robots

S Maximum number of tours for each robot

s Index for each tour

t(i, j) Time to reach from node i to j
T Set of tasks

V Set of tasks including the depot, [D,T]

w(j, h, s) demand met during scenario (j, h, s)

wact
i Demand for task i

x(i, j, h, s, r) Binary decision variable which takes a value

of 1 if robot r travels from node i to j during

decision number h of route s

1) Objective Function and Constraints: Objective func-

tion eq. 7 is set to maximize the number of tasks done,

subject to a set of constraints.

max
Nsuccess −N

N
(7)

∑

j∈V

x(1, j, 1, s, r) = 1, ∀s ∈ [1, S], ∀r ∈ R (8)

∑

j∈V

x(j, 1, H, s, r) = 1, ∀s ∈ [1, S], ∀r ∈ R (9)

∑

i,j∈V

x(i, j, h, s, r) ≤ 1, ∀h ∈ [1, H], ∀s ∈ [1, S], ∀r ∈ R

(10)

∑

j∈V

x(i, j, h, s, r) =
∑

k∈V

x(k, i, h− 1, s, r), (11)

∀i ∈ V, ∀h ∈ [2, H] ∀s ∈ [1, S], ∀r ∈ R

∆(1, s, r) = ∆max −
∑

i,j∈V

x(i, j, 1, s, r)× d(i, j), (12)

∀s ∈ [1, S], ∀r ∈ R

0 ≤ ∆(h, s, r) ≤ ∆max, ∀i, j ∈ V, (13)

h ∈ [1, H], s ∈ [1, S], r ∈ R

0 ≤ c(h, s, r) ≤ Cmax, ∀i, j ∈ V, (14)

h ∈ [1, H], s ∈ [1, S], r ∈ R

∆(h, s, r) = ∆(h− 1, s, r) (15)

−
∑

i,j∈V

x(i, j, h, s, r)× d(i, j),

∀h ∈ [2, H], ∀s ∈ [1, S], ∀r ∈ R

w(j, 1, 1) =
∑

i∈V,∀r∈R

e(i, j, 1, 1, r)× x(i, j, 1, 1, r), (16)

∀j ∈ V

w(1, s, r) = w(H, s− 1, r)+ (17)
∑

∀i∈V,∀r∈R

e(i, j, 1, s, r)× x(i, j, 1, s, r),

∀j ∈ V, ∀s ∈ [2, S]

0 ≤ e(i, j, h, s, r) ≤ Cmax, ∀i, j ∈ V, (18)

∀h ∈ [1, H], ∀s ∈ [1, S], ∀r ∈ R

e(i, j, h, s, r) ≤ c(h− 1, s, r), ∀i, j ∈ V, (19)

∀h ∈ [2, H], ∀s ∈ [1, S], ∀r ∈ R

e(i, j, h, s, r) ≤ wact
j − w(j, h, s), ∀i, j ∈ V, (20)

∀h ∈ [2, H], ∀s ∈ [1, S], ∀r ∈ R

w(j, h, s) = w(h− 1, s, r)+ (21)
∑

∀i∈V,∀r∈R

e(i, j, h, s, r)× x(i, j, h, s, r), ∀j ∈ V,

∀h ∈ [2, H], ∀s ∈ [2, S]



c(1, s, r) = Cmax − (22)
∑

i,j∈V

e(i, j, 1, s, r)× x(i, j, 1, s, r),

∀s ∈ [1, S] ∀r ∈ R

c(h, s, r) = c(h− 1, s, r) − (23)
∑

∀i,j∈V

e(i, j, h, s, r)× x(i, j, h, s, r),

∀h ∈ [2, H], ∀s ∈ [1, S], ∀r ∈ R

w(j, h, s) ≤ wact
j , ∀j ∈ V, (24)

∀h ∈ [1, H], ∀s ∈ [1, S], ∀r ∈ R

∑

i∈V,r∈R

w(j,H, S) = wact
j , ∀j ∈ V (25)

time(i, j, h, s, r) = t(i, j)× x(i, j, h, s, r), ∀i, j ∈ V,
(26)

∀h ∈ [1, H], ∀s ∈ [1, S], ∀r ∈ R

time
complete
j =

∑

i∈V,h∈[1,H],s∈[1,S],r∈R

time(i, j, h, s, r),

(27)

∀i, j ∈ V

Nsuccess =
∑

i∈V−1

Donei











Donei = 1, if timecomplete
i ≤ τi

Donei = 0, if timecomplete
i > τi

∀i ∈ V − 1

(28)

Constraints 8 and 9 ensures that every robot start and

ends a route/tour from the depot. Constraint 10 ensures that

each robot can make a maximum of one transition during

each decision-making instances. Constraint 11 makes the

start location of a transition same as the end location of

the previous transition for each robot. Constraint 12 sets the

range of the robots as ∆max during the start of a journey. The

range update after each transition for the robots are governed

by equations 13 and 15. Constraints 18, 19, and 20 ensures

that the work done by a robot do not exceed it’s capacity

the demand of it’s location, while constraints 17 and 21

corresponds to the update for the demand met for each task.

Constraints 24 and 25 enforces the the demand met does not

exceed the actual demand. Constraints 22 and 23 corresponds

to the capacity update for the robots. Constraints 26, 27, and

28 are used to compute the task completion time for each

task and the number of tasks completed before deadline.

B. More details on CAPAM and PH

1) CAPAM architecture: The CAPAM policy architecture

proposed in [25] consists of three parts, which are the

encoder, context, and decoder.

Encoder: The encoder takes in the task information which

is represented as a graph G, and computes node embeddings

for each node i ∈ V using the Graph Capsule layers as

shown in equations 4 and 5 in section III.

Context: The context consists of the following features: 1)

elapsed mission time; 2) range of the robot taking decision;

3) capacity of the robot taking decision; 4) current location

of the robot taking decision; 5) current destination of robot’s

peers; 6) range capacity of peer; 7) work capacity of peer

robots. These features are transformed and aggregated as

single learnable vector of length hq , which then undergoes a

linear transformation to get a vector of length hl also called

the query Q. It should be noted that features 5,6,and 7 are the

state of the peer robots which the robot taking the decision

has during the decision-making instance.

Decoder: The MHA-based decoder use the information

from the encoder and the context or query, and thereof

choose the best task by calculating the probability value

of getting selected for each (task) node. In this case, the

first step is to feed the embedding for each node (from the

encoder) as key-values (K, V ), since inputs for MHA are

key-value pairs [42]. The key K and value V for each node is

computed by two separate linear transformations of the node

embedding obtained from the encoder. Now the attention

mechanism can be described as mapping the query (Q) to

a set of key-value (K, V ) pairs. The inputs, which are the

query (Q) is a vector, while K and V are matrices of size

hl ×N (since there are N nodes). The output is a weighted

sum of the values V , with the weight vector computed using

the compatibility function expressed as:

Attention(Q,K, V ) = softmax(QTK/
√

hl)V
T (29)

where hl is the dimension of the key of any node i (ki ∈ K).

The output from each MHA layer is obtained as:

MHA(Q,K, V ) = Linear(Concat(head1 . . . headhe
)) (30)

Here headi = Attention(Q,K, V ) and he (taken as 8 here)

is the number of heads. A final softmax layer outputs the

probability values for all the nodes. The nodes which are

already visited will be masked (by setting their probability

as 0) so that these nodes are not available for selection in

the future time steps of the simulation of the multi-robot

operation.

2) Persistent Homology (PH): The Persistence Diagram

(PD) of a point cloud G = (V,E,Ω) is computed by applying

PH over G. Here we consider G to be an undirected graph.

The next step is to apply a filtration technique to find

topological features such as cycles (2-D hole), cavities (3-

d hole), and higher dimensional holes. These holes features

come into existence as edges are formed between the nodes

of the graph. Consider a threshold distance α such that two

nodes u and v has an edge between them if |δu − δv| ≤ α,

where δu and δv represents the features of nodes u and

v, respectively. As the value of α increases, new edges

are formed which results in new simplical complexes. We

track the birth and death of all the k-dimensional holes. For

example, from figure 3, a 2-d z is born at α = α4. This

hole persists until α = α6 where two new edges are formed

and as a result hole z disappears, which is considered at

it’s death. Therefore (α4, α6) denotes the persistence of z.



Similarly this performed for all the k-dimesional holes O.

Therefore the persistence diagram of G is represented as

PD(G) = (α1
o, α

2
o)∀o ∈ O, where α1

o and α2
o represents the

birth and death of o ∈ O.

C. Communication Modelling

In a real world scenario, a full communication between

each robots in a mission is not always possible. Each robot

will only be able to communicate with robots on close

proximity. Robots deployed for disaster response will be

implemented with a communication device such as Wifi

or Zigbee [43] with a typical range of ’x’ meters. The

communication between two robots a and b is two way,

where robot ‘a’ shares the information it has about the

environment and other robots, to robot ‘b’, and vice versa.

This information exchange can be modelled in a probabilistic

manner similar to [44], where the information exchange

does not happen beyond a threshold distance, and within the

threshold distance, the information exchange happens prob-

abilistically, where smaller the separation distance larger is

the probability of information exchange. In order to simplify

the communication modelling, we assume that information

exchange occurs when the separation distance between two

robots at a time instant is less than a threshold distance

dthreshcom , and does not occur if the separation distance is

greater than dthreshcom . In this paper, we consider dthreshcom =
100 meters. Apart from the static information such as the

location of the tasks and its time deadline, each robot r keeps

a record of 1) information regarding the completion of a task

visitedr, 2) information regarding all the robots including

(self information) RobotStater.

Each robot r ∈ R maintains vector (completionr) of size

1×N , where each element of completionr corresponds to

a task i, and represents the fraction of the total demand met

for task i. For example, during the information exchange

between two robots a and b, robot a updates visiteda
as, visiteda = visiteda | visitedb, where ‘|’ represents a

pairwise logical ‘or’ operator.

The self state information generated by r ∈ R includes

1) destination coordinates (xr, and yr), 2) current available

range ∆r , 3) current payload capacity cr 4) a time stamp

when this information was generated t. Let RobotStatelr be

the state information of robot l that robot r has during an in-

stance. So we can express RobotStaterr = [xr, yr,∆r, cr, t].
Therefore for all robots r ∈ R, RobotStater is a matrix of

size M × 5, where each row l represents RobotStatelr.

While information exchange occurs between two robots

a and b, the state information update happens only for

those entries with newer timestamps. For example, during an

information exchange between robots a and b, robot a has

both RobotStatea and RobotStateb, and robot a will replace

RobotStatela (l ∈ R) with RobotStatelb if RobotStatelb has

a newer timestamp compared to that of RobotStatela.
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