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REGULARITY AND NEUMANN PROBLEMS FOR OPERATORS

WITH REAL COEFFICIENTS SATISFYING CARLESON

CONDITIONS

MARTIN DINDOŠ, STEVE HOFMANN, AND JILL PIPHER

Abstract. In this paper, we continue the study of a class of second order elliptic
operators of the form L = div(A∇·) in a domain above a Lipschitz graph in R

n, where
the coefficients of the matrix A satisfy a Carleson measure condition, expressed as
a condition on the oscillation on Whitney balls. For this class of operators, it is
known (since 2001) that the Lq Dirichlet problem is solvable for some 1 < q <
∞. Moreover, further studies completely resolved the range of Lq solvability of the
Dirichlet, Regularity, Neumann problems in Lipschitz domains, when the Carleson
measure norm of the oscillation is sufficiently small.

We show that there exists preg > 1 such that for all 1 < p < preg the Lp Regularity
problem for the operator L = div(A∇·) is solvable. Furthermore 1

preg

+ 1

q∗
= 1 where

q∗ > 1 is the number such that the Lq Dirichlet problem for the adjoint operator L∗

is solvable for all q > q∗.
Additionally when n = 2, there exists pneum > 1 such that for all 1 < p < pneum

the Lp Neumann problem for the operator L = div(A∇·) is solvable. Furthermore
1

preg

+ 1

q∗
= 1 where q∗ > 1 is the number such that the Lq Dirichlet problem for the

operator L1 = div(A1∇·) with matrix A1 = A/ detA is solvable for all q > q∗.

1. Introduction

In this paper, we consider the solvability of certain boundary value problems (Regu-
larity, Neumann) for a class of elliptic second order divergence form equations with real
coefficients satisfying a natural and well-studied Carleson measure condition. Some of
the extensive literature in this subject includes [2, 3, 5, 6, 9, 10, 14–16, 19].

The operators we study have the form L = div(A∇) where the matrix A(X) =
(aij(X)) is uniformly elliptic in the sense that there exists a positive constant Λ such
that

Λ|ξ|2 ≤
∑

i,j

aij(X)ξiξj ≤ Λ−1|ξ|2,

for all X and all ~ξ ∈ R
n. The matrix A is not assumed to be symmetric, and the non-

symmetry imposes constraints on both the methodology and on the range of the sharp
results. The class of operators we study have coefficients that are assumed to satisfy the
following condition on gradient of A, or a related weaker oscillation condition, namely
that
(1.1)

dµ(X) = |∇A(X)|2δ(X) is a Carleson measure, and δ(X)|∇A(X)| ≤ C,

where δ(X) is the distance of a point X ∈ Ω to the boundary.

The second author was supported by NSF grant number DMS-2000048.

1
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This condition first appeared in a conjecture of Dahlberg, where it arose via a spe-
cific change of variables (4.41) introduced by Dahlberg, Kenig-Stein, and by Nečas ([1],
[25]). This change of variable is relevant to the study of smooth equations in Lipschitz
domains. In particular, an example of an operator satisfying the above Carleson con-
dition is the divergence form operator generated from the pull-back of the Laplacian
under the change of variable in (4.41).

There are three well-studied boundary value problems that have natural physical
interpretations for these elliptic equations: Dirichlet, Regularity, and Neumann. The
Dirichlet problem prescribes boundary data of the solution in a domain, Regularity
prescribes the tangential derivative of the boundary data as well, and Neumann pre-
scribes the normal (or co-normal) derivative of the solution. The precise definition of
these problems, for data in Lebesgue spaces, will be given in section 2.

In [19], the methods of [17] were applied to study the Dirichlet problem for a class
of divergence form operators satisfying (1.1). There is a constant associated with the
“size” of this Carleson measure, referred to as the Carleson norm. See section 2 for
the definition of Carleson measure, and its norm. This Carleson condition on the
coefficients of the matrix implies that |∇ai,j(X)| is bounded away from the boundary,
but could blow up near the boundary.

The main result of [19] is that, for an operator in this class, defined in a Lipschitz
domain, the elliptic measure and surface Lebesgue measure on such domains are mu-
tually absolutely continuous. Moreover, there exists a p < ∞ such that the Dirichlet
problem with boundary data in the Lebesgue Lp space with respect to surface measure
is solvable.

In [6], it was shown that the range of solvability in Lp of the Dirichlet problem for
these operators could be extended to the full range of 1 < p < ∞ if the Carleson norm
of the matrix coefficients was sufficiently small. Operators whose coefficients satisfy
this small Carleson norm condition also arise naturally. For example, consider the
Laplacian in the region above a graph t = ϕ(x). If the function ϕ has the property
that ∇ϕ ∈ L∞

⋂
VMO, a weaker property than ϕ ∈ C1, the solvability of the Dirichlet

problem in Lp for 1 < p < ∞ is a corollary of the main theorem of [6] via a change
of variable. The function space VMO, introduced by Sarason ([26]) consists of those
BMO (bounded mean oscillation) functions that can be approximated in BMO norm
by C∞ functions.

The Regularity and Neumann problems have also been studied for the class of elliptic
operators whose coefficients satisfy (1.1), but only with additional assumptions. If the
Carleson norm of the expression in (1.1) is sufficiently small, both of these boundary
value problems were shown to be solvable in the full range of 1 < p < ∞, first in two
dimensions in [10], and later in all dimensions in [9].

A central problem to complete the study of these operators in Lipschitz domains
(or even smooth domains) has been open since the 2001 results of [19]: the solvability
of the Regularity and Neumann problems when the Carleson measure norm is merely
finite, as opposed to small.

In this paper, we fully resolve solvability of Regularity problems in all dimensions on
Lipschitz graph domains, as well as the Neumann problems in two dimensions. In fact,
we give two different proofs of solvability of the two-dimensional Regularity problem.
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Solvability in two dimensions, and subsequent passage from two dimensions to all
dimensions, has been quite typical for progress in this subject. One example, from
the two-dimensional work of [10] to the higher dimensional generalizations [9] was
mentioned earlier. In another example, the passage to higher dimensions required
the development of major new ideas: the solvabilty of the Dirichlet and Regularity
problems in [12] and [13] came fifteen years after the two-dimensional results of [18],
and used the toolbox developed in connection with the solution to Kato’s conjecture.
The innovation in two dimensions that is applicable to the problem we solve in this
paper is a change of variable observed by Feneuil in [11] in another context, and is
described in Section 4. In Section 5, we present the new idea that leads to solvability
of the Regularity problem in all dimensions n ≥ 2.

Importantly, condition (1.1) can be replaced by a weaker “oscillation” condition of
coefficients on Whitney balls; we will state our main result in this form.

Theorem 1.1. Let Ω be an unbounded Lipschitz domain in R
n, n ≥ 2 of the form

{(x, t) : t > φ(x)} for some Lipschitz function φ : R → R. Let A : Ω → Mn×n(R) be a
real matrix valued functions such that for some λ,Λ > 0 we have

(1.2) 〈A(X)ξ, ξ〉 ≥ λ|ξ|2, |〈A(X)ξ, η〉| ≤ Λ|ξ||η|, for all ξ, η ∈ R
n

and a.e. X ∈ Ω.
Suppose that A satisfies a Carleson condition on oscillation on coefficients in Whit-

ney balls in Ω, that is

(1.3) δ(X)−1

[
sup

Y,Z∈B(X,δ(X)/2)

|A(Y )− A(Z)|

]2
is a Carleson measure.

Then there exists preg > 1 such that for all 1 < p < preg the Lp Regularity problem
for the operator L = div(A∇·) is solvable. Furthermore 1

preg
+ 1

q∗
= 1 where q∗ > 1 is

the number such that the Lq Dirichlet problem for the adjoint operator L∗ is solvable
for all q > q∗.

Additionally when n = 2, there exists pneum > 1 such that for all 1 < p < pneum
the Lp Neumann problem for the operator L = div(A∇·) is solvable. Furthermore
1

preg
+ 1

q∗
= 1 where q∗ > 1 is the number such that the Lq Dirichlet problem for the

operator L1 = div(A1∇·) with matrix A1 = A/ detA is solvable for all q > q∗.

We remark that, for simplicity, we have stated the result for domains of the form
{(x, t) : t > φ(x)}, but the arguments should carry over to the setting of bounded
Lipschitz domains. This will require some further localization results which are not
addressed in this paper.

One of the main tools we use to prove Theorem 1.1 is Theorem 1.2 below, which
reduces the solvability of the Regularity problem for matrices whose coefficients satisfy
condition (1.3) to solvability of the Regularity problem for an operator defined by a
block-form matrix. This theorem holds in all dimensions. Its proof, in Section 3, can
be read independently of its application to the solution of Regularity and Neumann
problems which are located in Sections 4 and 5.
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Theorem 1.2. Let L = div(A∇·) be an operator in R
n
+ where matrix A is uniformly

elliptic, with bounded real coefficients such that there exists a constant C

(1.4) |∇A|2t dt dx is a Carleson measure, and t|∇A| ≤ C.

Suppose that for some p > 1 the Lp Regularity problem for the block form operator

(1.5) L0u = div‖(A‖∇‖u) + utt,

(where A‖ is the matrix (aij)1≤i,j≤n−1) is solvable in R
n
+.

Then we have the following: For any 1 < q < ∞ the Lq Regularity problem for the
operator L is solvable in R

n
+ if and only if the Lq′ Dirichlet problem for the adjoint

operator L∗ is solvable in R
n
+.

One direction of the equivalence in this theorem has been proven without any of the
stated assumptions (1.4) or (1.5). Namely, the solvability of the Lq Regularity problem
for the operator L implies the solvability of the Lq′ Dirichlet problem for the adjoint
operator L∗ for q′ = q/(q − 1). (c.f. [4, 20]). Thus the novelty in Theorem 1.2 is the
converse direction.

Finally, in Section 5 we prove that the Regularity problem for operators (1.5) is
solvable under the following assumptions:

Theorem 1.3. Let L0u = div‖(A‖∇‖u) + utt be an operator in R
n
+ where matrix A‖ is

uniformly elliptic (n− 1)× (n− 1) matrix, with bounded real coefficients such that

(1.6) dµ(X) = δ(X)

[
sup

B(X,δ(X)/2)

|∇A(X)|

]2
dX is a Carleson measure.

Then we have the following: For any 1 < q < ∞ the Lq Regularity problem for the
operator L0 is solvable in R

n
+.

The reduction to block form is a special feature of working in the Lipschitz graph
domain, permitting us to exploit a “preferred direction” and introduce Riesz transform
type operators via an integration in that preferred direction. This was also a feature
of the main result of [13], where solvability of the Regularity problem for so-called
“t-independent” elliptic divergence form operators with data in Lp (for some possibly
large value of p) was established. The methods of this paper are similarly reliant on
working in domains that are locally a graph, and making use of that graph direction.

As we were completing this manuscript, we learned that M. Mourgoglou, B. Poggi,
and X. Tolsa ([23]) were simultaneously completing a manuscript that showed solvabil-
ity of the Regularity problem for this same class of elliptic operators, but on uniformly
rectifiable domains. Their methods, necessitated by the weaker geometric assumptions
on the domain, are very different from those in this paper. In particular, they use the
results of [9] together with a new corona decomposition introduced in [24]. While their
end result is more general - due to the weaker assumptions on the domain - the ideas
and techniques we present here are novel in the context of Lipschitz domain theory,
give a significantly shorter and self-contained argument, and serve to illuminate the
specific additional technicalities that involve passage from local Lipschitz graphs to
more general domains.
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2. Background and definitions

In this section, we will state the relevant definitions and background for domains
Ω = {(x, t) : t > ϕ(x)} where ϕ(x) : Rn → R is a Lipschitz function.

Definition 2.1. Let Ω be as above. For Q ∈ ∂Ω, X ∈ Ω and r > 0 we write:

∆r(Q) = ∂Ω ∩Br(Q), T (∆r) = Ω ∩Br(Q),

δ(X) = dist(X, ∂Ω).

Definition 2.2. Let T (∆r) be the Carleson region associated to a surface ball ∆r in
∂Ω, as defined above. A measure µ in Ω is Carleson if there exists a constant C such
that

µ(T (∆r)) ≤ Cσ(∆r).

The best possible C is the Carleson norm and will denoted by ‖µ‖Carl. The notation
µ ∈ C means that the measure µ is Carleson.

Definition 2.3. A cone of aperture a > 0 is a non-tangential approach region for
Q ∈ ∂Ω of the form

Γa(Q) = {X ∈ Ω : |X −Q| ≤ (1 + a) dist(X, ∂Ω)}.

For ease of notation, and when there is no need for the specificity, we shall omit the
dependence on the aperture of the cones in the definitions of the square function and
nontangential maximal functions below.

Definition 2.4. The square function of a function u defined on Ω, relative to the family
of cones {Γ(Q)}Q∈∂Ω, is

S(u)(Q) =

(
ˆ

Γ(Q)

|∇u(X)|2δ(X)2−ndX

)1/2

at each Q ∈ ∂Ω. The non-tangential maximal function relative to {Γ(Q)}Q∈∂Ω is

N(u)(Q) = sup
X∈Γ(Q)

|u(X)|

at each Q ∈ ∂Ω We also define the following variant of the non-tangential maximal
function:

(2.7) Ñ(u)(Q)) = sup
X∈Γ(Q)

(
 

Bδ(X)/2(X)

|u(Y )|2 dY

) 1
2

.

When we want to emphasize dependance of square or nontangential maximal func-
tions on the particular cone Γa we shall write Sa(u) or Na(u). Similarly, if we consider
cones truncated at a certain height h we shall use the notation Sh(u), Sh

a (u), N
h(u) or

Nh
a (u). In general, the particular choice of the aperture a does not matter, as operators

with different apertures give rise to comparable Lp norms.
In Proposition 2.5 of [7], it was shown that, under the assumption that |∇A(X)| .

δ−1(X), a reverse Hölder inequality for the gradient of solutions holds and therefore,

Ñ(u)(Q) is comparable to N(u)(Q), with possibly different apertures of the cones used
to define these quantities.
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We recall the definition of Lp solvability of the Dirichlet problem. When an operator
L is uniformly elliptic, the Lax-Milgram lemma can be applied and guarantees the
existence of weak solutions. That is, given any f ∈ Ḃ2,2

1/2(∂Ω), the homogenous space

of traces of functions in Ẇ 1,2(Ω), there exists a unique (up to a constant) u ∈ Ẇ 1,2(Ω)
such that Lu = 0 in Ω and Tru = f on ∂Ω. These “energy solutions” are used to
define the solvability of the Lp Dirichlet, Regularity and Neumann problems.

Definition 2.5. Let 1 < p ≤ ∞. The Dirichlet problem with data in Lp(∂Ω, dσ) is

solvable (abbreviated (D)p) if for every f ∈ Ḃ2,2
1/2(∂Ω) ∩ Lp(∂Ω) the weak solution u to

the problem Lu = 0 with continuous boundary data f satisfies the estimate

‖N(u)‖Lp(∂Ω,dσ) . ‖f‖Lp(∂Ω,dσ).

The implied constant depends only the operator L, p, and the Lipschitz norm of ϕ.

Definition 2.6. Let 1 < p < ∞. The regularity problem with boundary data in
H1,p(∂Ω) is solvable (abbreviated (R)p), if for every f ∈ Ḃ2,2

1/2(∂Ω) with ∇T f ∈ Lp(∂Ω),

the weak solution u to the problem
{
Lu = 0 in Ω

u|∂B = f on ∂Ω

satisfies

‖Ñ(∇u)‖Lp(∂Ω) . ‖∇Tf‖Lp(∂Ω).

The implied constant depends only the operator L, p, and the Lipschitz norm of ϕ.

Definition 2.7. Let 1 < p < ∞. The Neumann problem with boundary data in Lp(∂Ω)

is solvable (abbreviated (N)p), if for every f ∈ Lp(∂Ω) ∩ Ḃ2,2
−1/2(∂Ω) with the property

that
´

∂Ω
fdσ = 0, the weak solution u to the problem

{
Lu = 0 in Ω

A∇u · ν = f on ∂Ω

satisfies

‖Ñ(∇u)‖Lp(∂Ω) . ‖f‖Lp(∂Ω).

Again, the implied constant depends only the operator L, p, and the Lipschitz norm of
ϕ. Here ν is the outer normal to the boundary ∂Ω. The sense in which A∇u · ν = f
on ∂Ω is that

ˆ

Ω

A∇u.∇η dX =

ˆ

∂Ω

fη dσ,

for all η ∈ C∞
0 (Rn).

We now compile some results from other papers that will be used to prove the main
theorems.

The following is a key lemma for the square function, which combines Lemmas 3.2
and 3.3 of [9].



OPERATORS SATISFYING CARLESON CONDITION 7

Lemma 2.1. Let u be a solution of Lu = 0, where L = div(A∇u) is a uniformly
elliptic differential operator defined on Ωt0 with bounded coefficients such that

(2.8) |∇A|2δ(X) is a Carleson measure, and δ(X)|∇A| < C.

Then there exists K > 0 depending only on the Lipschitz constant of the domain Ω,
the Carleson norm of |∇A|2δ(X), the ellipticity constant of L, and the dimension n
such that

ˆ

∂Ω

S2
r/2(∇u) dσ ≃

¨

∂Ω×(0,r/2)

|∇(∇u(X))|2δ(X) dX(2.9)

≤ K

[
ˆ

∂Ω

|∇u|2 dσ +

ˆ

∂Ω

N2
r (∇u)dσ +

1

r
‖∇u‖2L2(Ω)

]
,

Here Nr and Sr denote the truncated non-tangential maximal function and square,
defined with respect to truncated cones Γa(Q) ∩ Br(Q).

3. Proof of Theorem 1.2: reduction to the block case

Let A = (aij) be as in Theorem 1.2 and set Ω = R
n
+. As explained earlier, it remains

to prove one of the implications in the statement of the Theorem. To that end, assume
that the Lq′ Dirichlet problem is solvable for the adjoint operator L∗ for some q > 1.

We want to deduce solvability of the Lq Regularity problem for the operator Lu =
∂i(aij∂ju) if, in addition, we have solvability of the Lq Regularity problem for the
block-form operator

(3.10) L0u = div‖(A‖∇‖u) + utt,

where A‖ is the matrix (aij)1≤i,j≤n−1.
Throughout this section, we make the assumption that |∇A(x, t)| is bounded by

a constant M for all (x, t). All the estimates established below will be independent
of M . This assumption entails that boundary integrals like those in (3.17), (3.18),
and so on, are meaningful in a pointwise sense. The assumption can be removed by
approximating a matrix that satisfies condition (1.4) by a sequence of matrices with
bounded gradients - details can be found in section 7 of [2].

We start by summarising useful results from [21]. Let us denote by Ñ1,ε the L1-
averaged version of the non-tangential maximal function for doubly truncated cones.
That is, for ~u : Ω → R

m, we set

Ñ1,ε(~u)(Q) = sup

{
ˆ

Z∈B(X,δ(X)/2)

|~u|dZ : X ∈ Γε(Q) := Γ(Q) ∩ {X : ε < δ(X) < 1/ε}

}
.

Lemma 2.8 of [21], stated below, provides a way to estimate the Lq norm of Ñ1,ε(∇F )(Q)
via duality (based on tent-spaces).

Lemma 3.1. There exists ~α(X,Z) with ~α(X, ·) : B(X, δ(X)/2) → R
n and

‖~α(X, ·)‖L∞(B(X,δ(X)/2)) = 1, a nonnegative scalar function β(X,Q) ∈ L1(Γε(Q)) with
´

Γε(Q)
β(X,Q) dX = 1 and a nonnegative g ∈ Lq′(∂Ω, dσ) with ‖g‖Lq′ = 1 such that

(3.11)
∥∥∥Ñ1,ε(∇F )

∥∥∥
Lq(∂Ω,dσ)

.

ˆ

Ω

∇F (Z) · ~h(Z) dZ,
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where
~h(Z) =

ˆ

∂Ω

ˆ

Γ(Q)

g(Q)~α(X,Z)β(X,Q)
χ(2|X − Z|/δ(X))

δ(X)n
dX dQ,

and χ(s) = χ(0,1)(|s|).

Moreover, for any G : Ω → R with Ñ1(∇G) ∈ Lq(∂Ω, dσ) we also have an upper
bound

(3.12)

ˆ

Ω

∇G(Z) · h(Z) dZ .
∥∥∥Ñ1(∇G)

∥∥∥
Lq(∂Ω,dσ)

.

The implied constants in (3.11)-(3.12) do not depend on ε, only on the dimension n.

For the matrix A = (aij) as above, we let v : Ω → R be the solution of the inho-
mogenous Dirichlet problem for the operator L∗ (adjoint to L):

(3.13) L∗v = div(A∗∇v) = div(~h) in Ω, v
∣∣∣
∂Ω

= 0.

Then Lemma 2.10 - Lemma 2.13 of [21] gives us the following estimates for the
nontangential maximal and square functions of v.

Lemma 3.2. If the Lq′ Dirichlet problem is solvable for the operator L∗, where q > 1,

then there exists C < ∞ depending on n, q, and L∗, such that for any ~h as in Lemma
3.1 and v defined by (3.13) we have

(3.14) ‖N(v)‖Lq′ (∂Ω,dσ) + ‖Ñ(δ∇v)‖Lq′(∂Ω,dσ) + ‖S(v)‖Lq′(∂Ω,dσ) ≤ C.

Let u be the solution of the following boundary value problem

(3.15) Lu = div(A∇u) = 0 in Ω, u
∣∣∣
∂Ω

= f,

where we assume that f ∈ Ẇ 1,q(∂Ω) ∩ Ḃ2,2
1/2(∂Ω) for some q > 1. Then clearly, u ∈

Ẇ 1,2(Ω) by Lax-Milgram. Fix ε > 0. Our aim is to estimate N1,ε(∇u) in Lq using

Lemma 3.1. Let ~h be as in Lemma 3.1 for ∇F = ∇u. Then since ~h
∣∣
∂Ω

= 0 and ~h
vanishes at ∞, we have by integration by parts
(3.16)

‖N1,ε(∇u)‖Lq .

ˆ

Ω

∇u·~h dZ = −

ˆ

Ω

u div~h dZ = −

ˆ

Ω

uL∗v dZ = −

ˆ

Ω

u div(A∗∇v) dZ.

We now move u inside divergence and then apply the divergence theorem to obtain:

RHS of (3.16) = −

ˆ

Ω

div(uA∗∇v) dZ +

ˆ

Ω

A∇u · ∇v dZ =

ˆ

∂Ω

u(·, 0)a∗nj∂jv dx,

since
ˆ

Ω

A∇u · ∇v dZ = −

ˆ

Ω

Lu v dZ = 0.

Here there is no boundary integral as v vanishes on the boundary of Ω. It follows that

(3.17) ‖N1,ε(∇u)‖Lq .

ˆ

∂Ω

u(x, 0)a∗nj(x, 0)∂jv(x, 0) dx,
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where the implied constant in (3.17) is independent of ε > 0. Now, we use the funda-
mental theorem of calculus and the decay of ∇v at infinity to write (3.17) as

(3.18) ‖N1,ε(∇u)‖Lq . −

ˆ

∂Ω

u(x, 0)

(
ˆ ∞

0

d

ds

(
a∗nj(x, s)∂jv(x, s)

)
ds

)
dx.

Recall that div(A∗∇v) = div(~h) and hence RHS of (3.18) equals to

(3.19) =

ˆ

∂Ω

u(x, 0)

(
ˆ ∞

0

[
∑

i<n

∂i(a
∗
ij(x, s)∂jv(x, s))− div~h(x, s)

]
ds

)
dx.

We integrate by parts moving ∂i for i < n onto u(·, 0). The integral term containing
∂nhn(x, s) does not need to be considered as it equals to zero by the fundamental

theorem of calculus since ~h(·, 0) = ~0 and ~h(·, s) → ~0 as s → ∞).
It follows that

‖N1,ε(∇u)‖Lq .

ˆ

∂Ω

∇‖f(x) ·

(
ˆ ∞

0

[
~h‖(x, s)− (A∗∇v)‖(x, s)

]
ds

)
dx

= I + II.(3.20)

Here I is the term containing ~h‖ and II contains (A∗∇v)‖. The notation we are using
here is that, for a vector ~w = (w1, w2, . . . , wn), the vector ~w‖ denotes the first n − 1
components of ~w, that is (w1, w2, . . . , wn−1).

As shall see below we do not need worry about term I. This is because what we are
going to do next is essentially undo the integration by parts we have done above but we
swap function u with another better behaving function ũ with the same boundary data.
Doing this we eventually arrive to ‖Ñ(∇ũ)‖Lq plus some error terms (solid integrals)
that arise from the fact that u and ũ disagree inside the domain. This explain why we
get the same boundary integral as I but with opposite sign as this “reverse process”
will undo and eliminate all such boundary terms.

We solve a new auxiliary PDE problem to define ũ. Let ũ be the solution of the
following boundary value problem for the operator L0 defined in (3.10), i.e., its matrix

A0 has the block-form A0 =

[
A‖ 0

0 1

]
and

(3.21) L0ũ = div(A0∇ũ) = 0 in Ω, ũ
∣∣∣
∂Ω

= f.

Recall that we have assumed that the Lq Regularity problem for the operator L0 is
solvable; that is, for a constant C > 0 independent of f , ‖Ñ(∇ũ)‖Lq ≤ C‖∇‖f‖Lq .
Then, by Lemma 2.1, taking r → ∞, we see that

(3.22) ‖Ñ(∇ũ)‖Lq + ‖S(∇ũ)‖Lq ≤ C‖∇‖f‖Lq .

We look the term II. Let

(3.23) ~V (x, t) = −

ˆ ∞

t

(A∗∇v)‖(x, s)ds.

It follows that by the fundamental theorem of calculus

II =

ˆ

∂Ω

∇‖u(x, 0) · ~V (x, 0)dx =

ˆ

Ω

∂2
tt

[
∇‖ũ(x, t) · ~V (x, t)

]
t dx dt.
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Hence

II =

ˆ

Ω

∂2
tt(∇‖ũ) · ~V (x, t)t dx dt+

ˆ

Ω

∂t(∇‖ũ) · ∂t(~V (x, t))t dx dt+

+

ˆ

Ω

∇‖ũ · ∂2
tt(

~V (x, t))t dx dt = II1 + II2 + II3.(3.24)

Here ũ is same as in (3.21) (observe that u and ũ have the same boundary data).

Since ∂t~V (x, t) = (A∗∇v)‖ the term II2 is easiest to handle and can be estimated as a
product of two square functions

(3.25) |II2| ≤ ‖S(∂tũ)‖Lq‖S(v)‖Lq′ .

By our assumption that the Lq′ Dirichlet problem for the operator L∗ is solvable,
Lemma 3.2 applies and provides us with an estimate ‖S(v)‖Lq′ ≤ C. Combining this
estimate with (3.22) yields

(3.26) |II2| ≤ C‖∇‖f‖Lq ,

as desired.
Next we look at II1. We integrate by parts moving ∇ ‖ from ũ. This gives us

(3.27) II1 =

ˆ

Ω

∂2
ttũ ·

(
ˆ ∞

t

div‖(A
∗∇v)‖ds

)
t dx dt.

Using the PDE v satisfies we get that
ˆ ∞

t

div‖(A
∗∇v)‖ds = (anj∂jv)(x, t) +

ˆ ∞

t

div~h ds.

Using this in (3.27) we see that

(3.28) II1 =

ˆ

Ω

(∂2
ttũ)(anj∂jv)t dx dt+

ˆ

Ω

∂2
ttũ ·

(
ˆ ∞

t

div~h ds

)
t dx dt.

Here the first term enjoys the same estimate as II2, namely (3.25). We work more
with the second term which we call II12. We integrate by parts in ∂t.

(3.29) II12 =

ˆ

Ω

(∂tũ)(div~h)t dx dt−

ˆ

Ω

∂tũ ·

(
ˆ ∞

t

div~h ds

)
dx dt =

= II121−

ˆ

Ω

∂tũ·

(
ˆ ∞

t

div~h ds

)
dx dt = II121+

ˆ

∂Ω

ũ(x, 0)

(
ˆ ∞

0

div~h

)
dx+

ˆ

Ω

∇ũ·~h dx dt

= II121−

ˆ

∂Ω

∇‖ũ(x, 0)

(
ˆ ∞

0

~h‖

)
dx+II123 = II121−I+II123.

In the second line we have swapped ∂t and ∂‖ derivatives integrating by parts twice.
This integration yields a boundary term but fortunately this term is precisely as the
term I defined by (3.20) but since it comes with opposite sign these two terms cancel
out. We return to the terms II121 and II123 later.

Next we look at II3. We see that
(3.30)

II3 =

ˆ

Ω

∇‖ũ·∂t(A
∗∇v)‖t dx dt =

ˆ

Ω

∇‖ũ·((∂tA)
∗∇v)‖t dx dt+

ˆ

Ω

∇‖ũ·(A
∗∇(∂tv))‖t dx dt
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(3.31) = II31 + II32.

In order to handle the term II31 we will use the fact that the matrix A satisfies the
Carleson measure condition (1.4). The argument uses a stopping time argument that
is typical in connection with Carleson measures.

To set this up, let Oj denote {x ∈ ∂Ω : N(∇ũ)(Q)S(v)(Q) > 2j} and define an

enlargement of Oj by Õj := {M(χOj
) > 1/2}. (Note that |Õj| . |Oj |.) We will break

up integrals over Ω into regions determined by the sets:

Fj = {X = (y, t) ∈ Ω : |∆ct(y) ∩Oj | > 1/2, |∆ct(y) ∩Oj+1| ≤ 1/2},

where c depends on the aperture of the cones used to define the nontangential maximal
function and square functions.

Then,

|II31| .

ˆ

Ω

|∇ũ||∂tA||∇v|tdX ≤
∑

j

ˆ

Ω∩Fj

|∇ũ||∂tA||∇v|tdX

≤
∑

j

ˆ

Õj\Oj

ˆ

Γ(Q)∩Fj

|∇ũ||∂tA||∇v|t2−ndXdx

≤
∑

j

ˆ

Õj\Oj

(
ˆ

Γ(Q)

|∇v|2|∇ũ|2t2−ndX

)1/2
(
ˆ

Γ(Q)∩Fj

|∂tA|
2|2t2−ndX

)1/2

dQ

≤
∑

j

ˆ

Õj\Oj

N(∇ũ)(Q)S(v)(Q)

(
ˆ

Γ(Q)∩Fj

|∂tA|
2|2t2−ndX

)1/2

dQ

≤
∑

j

2j

(
ˆ

Õj

ˆ

Γ(Q)∩Fj

|∂tA|
2|2t2−ndX dQ

)1/2

|Õj|
1/2

.
∑

j

2j|Oj| .

ˆ

∂Ω

N(∇ũ)(Q)S(v)(Q)dQ.(3.32)

The penultimate inequality follows from the Carleson measure property of |∂tA|
2|tdX

as the integration is over the Carleson region {X = (y, t) : ∆ct(y) ⊂ Õj}.
Consequently, by Hölder’s inequality,

(3.33) |II31| . ‖S(v)‖Lq′‖N(∇ũ)‖Lq .

Hence as above

(3.34) |II31| ≤ C‖∇‖f‖Lq .

For the term II32 we separate the parallel and tangential parts of the gradient, to get

II32 =

ˆ

Ω

∇‖ũ · (A∗
‖∇‖(∂tv))t dx dt+

ˆ

Ω

∇‖ũ · (a∗in∂
2
ttv)i<nt dx dt

= −

ˆ

Ω

div‖(A‖∇ũ)(∂tv)tdx dt+ II33 =

ˆ

Ω

(∂2
ttũ)(∂tv)tdx dt+ II33.
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Here we have integrated the first term by parts and then used the equation that ũ
satisfies. It follows that in the last expression the first term has square functions
bounds identical to (3.25). For II33 we write ∂2

ttv as

∂2
ttv = ∂t

(
a∗nn
a∗nn

∂tv

)
=

1

a∗nn
∂t(a

∗
nn∂tv)−

∂ta
∗
nn

a∗nn
∂tv

= −
1

a∗nn

[
div‖(a

∗
‖∇‖v) +

∑

i<n

[∂i(a
∗
in∂tv) + ∂t(a

∗
ni∂iv)] + ∂t(a

∗
nn)∂tv − div~h

]
,

where the final line follows from the equation that v satisfies. It therefore follows that
the term II33 can be written as a sum of five terms (which we shall call II331, II332, . . . , II335.)

Terms II331 and II332 are similar and we deal with then via integration by parts (in
∂i, i < n):

(3.35) |II331|+ |II332| ≤ C

ˆ

Ω

|∇2ũ||∇v|t+ C

ˆ

Ω

|∇A||∇ũ||∇v|t.

For the third term II333 we observe that ∂t(a
∗
ni∂iv) = ∂i(a

∗
ni∂tv)+(∂ta

∗
ni)∂iv−(∂ia

∗
ni)∂tv

which implies that it again can be estimated by the right-hand side of (3.35). The same
is true for the term II334 which has a bound by the second term on the right-hand side
of (3.35). It remains to consider the term II335 which is

(3.36) II335 =
∑

i<n

ˆ

Ω

ani
ann

∂iũ (div~h) t dx dt.

Notice the similarity of this term with II121, hence the calculation below also applies
to it. We again integrate by parts. Observe we get an extra term when ∂t derivative
falls on t. This gives us

(3.37) |II121|+ |II335| ≤ C

ˆ

Ω

|∇2ũ||~h|t+

ˆ

Ω

|∇A||∇ũ||~h|t+
∑

i

∣∣∣∣
ˆ

Ω

ani
ann

∂iũ hn dx dt

∣∣∣∣ .

We deal with terms on the right-hand side of (3.35) and (3.37) now. The first term
of (3.35) can be seen to be a product of two square functions and hence by Hölder it
has an estimate by ‖S(∇ũ)‖Lq‖S(v)‖Lq′ . The second term of (3.35) is similar to the
term II31 with analogous estimate. It follows that

|II331|+ |II332|+ |II333|+ |II334| ≤ C(‖S(∇ũ)‖Lq + ‖N(∇ũ)‖Lq) ‖S(v)‖Lq′

≤ C‖∇‖f‖Lq ,(3.38)

by using (3.22) and Lemma 3.2. The first two terms of (3.37) have similar estimates,

provided we introduce as in [21] the operator T̃ . Here

T̃ (|~h|)(Q) =

ˆ

Γ(Q)

|~h|(Z)δ(Z)1−n(Z)dZ.

The last term of (3.37) and also the term II123 is handled using (3.12). Here the
presence of ani

ann
in the integral is harmless as we have flexibility to hide this term into

the vector-valued function ~α in the definition of ~h. This gives us

|II121|+ |II123|+ |II335| ≤ C(‖S(∇ũ)‖Lq + ‖N(∇ũ)‖Lq) ‖T̃ (|~h|)‖Lq′ + C‖Ñ1(∇ũ)‖Lq

≤ C‖∇‖f‖Lq .(3.39)
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Here the bound for ‖T̃ (|~h|)‖Lq′ follows from Lemma 2.13 of [21].

In summary, under the assumptions we have made we see that

II =

ˆ

∂Ω

∇‖u(x, 0) · ~V (x, 0)dx ≤ C‖∇‖f‖Lq − I.

After putting all estimates together (since term I cancels out), we have established
the following:

‖Ñ1,ε(∇u)‖Lq ≤ C‖∇‖f‖Lq .

Remark: The assumption that Lp Regularity problem for the block form operator
L‖ is solvable for some p > 1 implies solvability of the said Regularity problem for all
values of p ∈ (1,∞). This follows by combining results of [4] and [6].

An argument is required to demonstrate that the control of Ñ1,ε(∇u) of a solution

Lu = 0 implies the control of Ñ(∇u) (the L2 averaged version of the non-tangential
maximal function). Firstly, as the established estimates are independent of ε > 0 we
obtain

‖Ñ1(∇u)‖Lq = lim
ε→0+

‖Ñ1,ε(∇u)‖Lq ≤ C‖∇‖f‖Lq .

Secondly, as ∇u satisfies a reverse Hölder self-improvement inequality
(
ˆ

B

|∇u|2+δ

)1/(2+δ)

.

(
ˆ

2B

|∇u|2
)1/2

,

for some δ > 0 depending on ellipticity constant and all B such that 3B ⊂ Ω, it also
follows (c.f. [27, Theorem 2.4]) that

(
ˆ

B

|∇u|2
)1/2

.

(
ˆ

2B

|∇u|

)
,

which implies a bound of Ñ(∇u)(·) defined using cones Γa(·) of some aperture a > 0

by Ñ1(∇u)(·) defined using cones Γb(·) of some slightly larger aperture b > a. Hence
‖Ñ(∇u)‖Lq ≤ C‖∇‖f‖Lq must hold.

This completes the proof of Theorem 1.2. �

4. The Regularity and Neumann problems when n = 2

To prove Theorem 1.1 in the special case n = 2, we will use Theorem 1.2, a change
of variable discovered by Feneuil [11], and the equivalence in dimension two between
the solvability of Regularity and Neumann problems observed by Kenig and Rule [22].

Proof of Theorem 1.1. The solvability of the Neumann problem can be reduced to
solvability of the Regularity problem using an observation in [22]; namely, if u solves
Lu = div(A∇u) = 0 in Ω then ũ uniquely (modulo constants) defined via

(4.40)

[
0 −1
1 0

]
∇ũ = A∇u

solves the equation L̃u = div(Ã∇u) = 0 with Ã = At/ detA and the tangential
derivative of u is the co-normal derivative of ũ and vice-versa.
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If A satisfies the Carleson condition (1.3) then so does At/ detA (with a possibly
larger constant) and hence the Lp Neumann problem for a given matrix A is solvable
in the same range 1 < p < pmax for which the Lp Regularity problem for the matrix
At/ detA is solvable. The range of solvability for the operator with matrix At/ detA is
determined by the range of solvability of the Dirichlet problem for its adjoint operator,
which has matrix A/ detA, reducing the second claim of Theorem 1.1 to the first. In
summary, for these operators, the solvability of the Neumann problem can be deduced
from solvability of the Regularity problem.

Next, we perform some additional reductions to simplify the problem. A well known
and used pull-back transformation

(4.41) (x, t) 7→ (x, ct+ (ηt ∗ φ)(x))

for a smooth family of mollifiers (ηt)t>0 and some sufficiently large enough c > 0 (de-
pending on ‖∇φ‖L∞) allows us to consider the Regularity problem on the domain R

n
+.

This is because, for Ω = {(x, t) : t > φ(x)}, the pull-back map preserves the ellipticity
condition and the Carleson condition on the coefficients (although the Carleson bound
K for the new operator on R

n
+ might increase and will depend on ‖∇φ‖L∞ as well).

Hence from now on we assume that Ω = R
n
+. The next reduction comes in the form

of replacing the Carleson condition (1.3) by the stronger condition:

(4.42) δ(X)

[
sup

Y ∈B(X,δ(X)/2)

|∇A(Y )|

]2
is a Carleson measure.

To see this, one consider a new matrix Ā obtained from A via mollification Ā(x, t) =
(A ∗ ηt/2)(x, t) (for details see [9] where this observation was made). The matrix val-
ued function Ā is uniformly elliptic but now satisfies (4.42) instead of the oscillation
condition, (1.3), that holds for A. In addition, we also have

(4.43) δ(X)−1

[
sup

Y ∈B(X,δ(X)/2)

|A(Y )− Ā(Y )|

]2
is a Carleson measure.

Let us clarify our objective. It suffices to prove that the Lp Regularity problem for
the original operator L = div(A∇·) is solvable for at least one value q ∈ (1,∞) as
then by [4] it follows that Lp Regularity problem for L is solvable if and only if the
Lp′ Dirichlet problem is solvable for the adjoint operator L∗. (See Theorem 1.1 of [4])
But solvability of Dirichlet problem satisfying Carleson condition in the range (pdir,∞)
for some pdir > 1 has been resolved in [19], and hence the claim about the range of
solvability of Regularity stated in Theorem 1.1 would follow.

The operator with matrix A is, by (4.43), a Carleson perturbation of the operator
Ā. By the perturbation theory of [21], the solvability of the Lq Regularity problem for
at least one q ∈ (1,∞) for the operator div(Ā∇·) implies solvability of the Regularity
problem for the operator L = div(A∇·) for a possibly different (smaller) value of q̃ > 1.

Hence it remains to establish the solvability of the Lq Regularity problem for a
uniformly elliptic operator satisfying condition (4.42) in the domain Ω = R

n
+ for at

least one value of q > 1. Up to this point, all the statements and reductions regarding
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the Regularity problem are valid in any dimension. In what follows, we will use the
assumption that we are in two dimensions.

In the two dimensional setting, we observe that if our matrix A has the special form
in which the a11 coefficient equals 1 in Ω, then the operator L0 in Theorem 1.2 is
simply the Laplacian ∆. For the Laplacian, all the required square and non-tangential
estimates are known, including solvability of the Regularity problem for all values of
p > 1. Applying Theorem 1.2 gives the solvability of the Lq Regularity problem for
at least one value q > 1 for an operator L = div(A∇·) with a11 = 1, which is our
objective. Hence the objective now is to reduce from our general matrix A to one
having this special form with 1 in the top left corner.

The strategy of using a change of variables to reduce to matrices of a special form
has been used before in two dimensions to prove solvability of Dirichlet and Regularity
boundary value problems. The paper [18] considered the Lp Dirichlet problem for
operators whose matrix A(x, t) = A(x) is t-independent and non-symmetric. The
crucial observation that was used to resolve the obstacles in solving this problem for
some, possibly large, value of p was the discovery of a change of variables reducing

matters to matrices of the form

[
1 γ(x)
0 δ(x)

]
. For these matrices, the proof of solvability

used arguments that took advantage of the upper triangular structure. This particular
change of variable does not apply to the situation in Theorem 1.1 as it relied heavily
on the t-independence.

We will be able to make the reduction to a matrix with 1 in the top left corner
via a very useful change of variables introduced by J. Feneuil in [11]. The change of
variable can be stated in n-dimensions, and has strong consequences when specialized
two dimensions. In R

n
+, let:

ρ : (x, t) 7→ (x, th(x, t)),

where 1 < h < 2, and which, for 2t|∇h| < h, is a bijection on R
n
+. Let Jρ denote the

Jacobian of this change of variables:
If u is the solution to an operator L = div(A∇·), then, as observed in [11], then

u ◦ ρ is the solution a new operator Lρ with matrix Aρ = det (Jρ)(Jρ)
−t(A ◦ ρ)(Jρ)

−1.

A simple calculation gives that Jρ =

[
I t∇xh

0 h+ t∂th

]
.

As observed in [11], the matrix Aρ can be written in the form

(4.44) Aρ =

[
hA‖ B

C h−1d

]
+ Bρ,

where

(4.45) A =

[
A‖ B

C d

]
, and A‖ is the (n− 1)× (n− 1) block.
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The matrix Bρ is a Carleson perturbation matrix, that is

(4.46) δ(X)−1

[
sup

Y ∈B(X,δ(X)/2)

|Bρ(Y )|

]2
is a Carleson measure.

In particular, the result of [21] tell us that when (4.46) holds, the solvability of

Regularity problem for the operator with matrix

[
hA‖ B

C h−1d

]
for some q > 1 implies

solvability of Regularity problem for the operator with matrix Aρ for possibly different
value of q̃ > 1. As Aρ and A are related via the change of variables this also implies
solvability of the original Regularity problem for operator with matrix A for the same
q̃ > 1.

Consider the case n = 2. Ideally, we would want to choose h = a−1
11 so that the

matrix

[
hA‖ B

C h−1d

]
has a 1 in the top left corner. It is only possible to make this

choice when 2t|∇h| < h. If that is not the case, we use the clever method of [11]
to achieve this objective after a finite sequence of steps instead of just one. Observe
that since a11 satisfies the Carleson condition (4.42) and λ ≤ a11 ≤ Λ there exists an

integer N such that, for h = a
−1/N
11 , we have 2t|∇h| < h as well as the property that

1/2 ≤ h ≤ 2.

As in [11], this can be iteratedN times. After one iteration, we have that the solvabil-
ity of Regularity problem for an operator with matrix A for some q > 1 can be deduced

from solvability of Regularity problem for an operator with matrix

[
ha11 a12
a22 h−1a22

]
. In

the next iteration we relate it to the solvability of the Regularity problem for the op-

erator with matrix

[
h2a11 a12
a22 h−2a22

]
. Finally, after the N iterations we find that we

need to consider solvability of the Regularity problem for the operator with matrix[
hNa11 a12
a22 h−Na22

]
=

[
1 a12
a22 a11a22

]
. As observed above for such matrices, Theorem 1.2

gives solvability of the Regularity problem for some q > 1.

It is important to emphasise that Feneuil’s change of variables gives (4.46) only if
coefficients of the original matrix A satisfy (4.42), but we have reduced matters to this
situation. This finishes the proof of Theorem 1.1. �

5. Regularity problem for block form operators when n ≥ 2.

In this section we establish Theorem 1.1 in all dimensions for the Regularity problem.
The argument is not as simple as in the case n = 2, where we made use of Feneuil’s
change of variables. Instead, the ideas necessary for the n-dimensional result are closer
to the methods of [9].

Using the same reductions established in Section 4 - the flattening of the domain
and mollification of coefficients - we see that Theorem 1.1 holds provided we can solve
the Lq Regularity problem in R

n
+ for the block form operator (1.5) under the Carleson
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condition (4.42) for at least one (and hence for all) 1 < q < ∞. This is precisely the
claim of Theorem 1.3, and we turn to its proof.

Consider therefore A‖ as in Theorem 1.3 and denote by L0 the operator

(5.47) L0u = div‖(A‖∇‖u) + utt.

For each k = 2, 3, 4, . . . let Lk be a related rescaled operator in t-variable defined as
follows:

(5.48) Lku = div‖(A
k
‖∇‖u) + utt,

where

(5.49) Ak
‖(x, t) = A‖(x, kt), for all x ∈ R

n−1 and t > 0.

We claim that for each k = 2, 3, . . . the Lq Regularity problem for L0 in R
n
+ is

solvable if and only if the Lq Regularity problem for Lk in R
n
+ is solvable.

This can be see as follows. Using the mean value theorem the coefficients Ak
‖ can be

viewed as Carleson perturbations of coefficients of L0 which are A‖. That is, similar
to (4.43), we have that

(5.50) δ(X)−1

[
sup

Y ∈B(X,δ(X)/2)

|A‖(Y )−Ak
‖(Y )|

]2
is a Carleson measure.

Thus, if the Lq Regularity problem for L0 in R
n
+ is solvable, then so is the Lq̃ Regularity

problem for Lk in R
n
+ for some q̃ > 1 (by [21]). But for these block form operators,

solvability of the Regularity problem for one value q̃ > 1 implies solvability for all
values. Therefore we can deduce that the Lq Regularity problem for Lk in R

n
+ is

solvable. The reverse implication has a similar proof.
Next, we consider what we can say about the Carleson condition for the coefficients

Ak
‖. We want to look at

dµk(x, t) = |∇xA
k
‖(x, t)|

2t dx dt.

Notice that the gradient is only taken in x variable, not in t, so we are not examining
the same (full) Carleson measure property of the coefficients. Given that (1.6) holds,
it follows that for

dµ0(x, t) = |∇xA‖(x, t)|
2t dx dt,

we have that

(5.51) ‖µ0‖Carl ≤ ‖µ‖Carl and |∇xA‖(x, t)| ≤
‖µ‖

1/2
Carl

t
.

Let ∆ ⊂ R
n−1 be a boundary ball of radius r. Let T (∆) be the usual Carleson region

associated with ∆.
To estimate the Carleson norm of µk in the region T (∆) ∩ {X : δ(X) < r/k}, a

change of variables (x, t) 7→ (x, kt) together with the first the Carleson norm property
in (5.51) gives an upper bound of 1/k2. In the region T (∆) ∩ {X : δ(X) ≥ r/k}, we
use the second estimate in (5.51) and altogether this gives:

(5.52) ‖µk‖Carl ≤ ‖µ‖Carl
1 + C(n) log k

k2
, for some C(n) > 0.
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It follows that by choosing k large enough we can make the Carleson norm of µk as
small as we wish. This observation will be crucial for what follows.

From now on let B‖ = Ak
‖ for some large fixed k which will be determined later. Let

(5.53) Lu = div‖(B‖∇‖u) + utt,

and we consider the Regularity problem for this operator on Ω = R
n
+. Our objective

now is to solve the Lq Regularity problem for L for some q > 1, thus proving Theorem
1.3.

Suppose that Lu = 0 and that u
∣∣
∂Ω

= f for some f with ∇xf ∈ Lq.
In the spirit of the approach taken in [9] we consider the PDEs satisfied by each

wm = ∂mu for m = 1, 2, . . . , n − 1 satisfies. Due to the block form nature of our
operator L we have the following:

Lwm =

n−1∑

i,j=1

∂i((∂mbij)wj) in Ω, m = 1, 2, . . . , n− 1,(5.54)

wm

∣∣∣
∂Ω

= ∂mf.

Observe that only w1, . . . , wn−1 appears in these equations and hence (5.54) is a weakly
coupled fully determined system of n − 1 equations for the unknown vector valued
function W = (w1, w2 . . . , wn−1) with boundary datum W

∣∣
∂Ω

= ∇xf ∈ Lp. We call
this system weakly coupled because each ∂mbij appearing on the righthand side has
small Carleson measure norm, which follows from (5.52) since k will be chosen to be
(sufficiently) large.

Hence, let us write wm = vm + ηm where each vm solves the Dirichlet problem

Lvm = 0 in Ω, vm
∣∣
∂Ω

= ∂mf ∈ Lq(∂Ω).

As L is a block form matrix we know this Dirichlet problem is solvable for all 1 < q < ∞
and we have the following square and nontangential estimates:

(5.55) ‖S(vm)‖Lq ≈ ‖N(vm)‖Lq . ‖∂mf‖Lq , m = 1, 2, . . . , n− 1.

Thus each ηm solves

Lηm =

n−1∑

i,j=1

∂i((∂mbij)(vj + ηj)) in Ω, m = 1, 2, . . . , n− 1,(5.56)

ηm

∣∣∣
∂Ω

= 0.

Our aim is to establish square and nontangential estimates for each ηm as well, and
thus also for wm.

Let us start with the square function bound. The most convenient bound we can
get is when q = 2 and hence from now on we shall assume that. Using ellipticity we
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see that

‖S(ηm)‖
2
L2 ≈

ˆ

Rn
+

(
n−1∑

i,j=1

bij∂jηm∂iηm + (∂tηm)
2

)
t dx dt =(5.57)

= −

ˆ

Rn
+

(Lηm)ηmt dx dt+
1

2

ˆ

Rn
+

∂t(ηm)
2 dx dt,

where in the second line we have integrated by parts. There is no boundary integral
due to the fact that t = 0 at the boundary. The second summand following the equality
in (5.57) vanishes since ηm = 0 at the boundary and ηm → 0 as t → ∞ (due to the
decay of our solutions at infinity). Hence, only the penultimate term of (5.57) remains,
where we will substitute (5.56) and sum over m.
∑

m<n

‖S(ηm)‖
2
L2 ≈ −

ˆ

Rn
+

∑

i,j,m<n

∂i((∂mbij)(vj + ηj))ηmt dx dt

=

ˆ

Rn
+

∑

i,j,m<n

(∂mbij)(vj + ηj)∂iηmt dx dt(5.58)

.

(
∑

m<n

‖S(ηm)‖
2
L2

)1/2(
ˆ

Rn
+

|∇xB‖|
2(|V |2 + |~η|2)t dx dt

)1/2

,

by Cauchy-Schwarz. Hence V = (v1, v2, . . . , vn−1) and ~η = (η1, η2, . . . , ηn−1). For the
last term of expression above we use the Carleson property and also move the square
function term on the righthand side. This will give us:

∑

m<n

‖S(ηm)‖
2
L2 . ‖|∇xB‖|

2t dx dt‖Carl

(
∑

m<n

‖N(vm)‖
2
L2 + ‖N(ηm)‖

2
L2

)
.(5.59)

But for nontangential maximal function of vm we do have (5.55) and hence we can
conclude that

∑

m<n

‖S(ηm)‖
2
L2 ≤ C(k)

(
‖∇xf‖

2
L2 +

∑

m<n

‖N(ηm)‖
2
L2

)
.(5.60)

Here C(k) → 0 as k → ∞ thanks to the choice of matrix B‖ made above.

It remain to establish a nontangetial estimates of N(ηm) since we would like to move
such terms from the righhand side of (5.60).

Here we refer the reader to the paper [2] where a classical stopping time technique
has been used for similar estimates in the case of systems. (The idea of estimating
an integral of a nontangential maximal via good-λ inequalities and a Lipschitz graph
determined by the stopping time goes back to [18]. New ideas were needed to make
this approach work in the case of systems.) In particular, Lemma 5.1, Lemma 5.2 and
Corollary 5.3 of [2] hold without any modifications for the system ~η considered here.

What does change in the present context is Lemma 5.4 of [2], which we reformulate
as follows.

Lemma 5.1. Let Ω = R
n
+ and let L be a block-from operator as above. Suppose ~η

is a weak solution of (5.56) in Ω. For a fixed (sufficiently large) a > 0, consider an
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arbitrary Lipschitz function ~ : Rn−1 → R such that

(5.61) ‖∇~‖L∞ ≤ 1/a, ~(x) ≥ 0 for all x ∈ R
n−1.

Then for sufficiently large b = b(a) > 0 we have the following. For an arbitrary
surface ball ∆r ⊂ R

n−1 of radius r such that at least one point of ∆r the inequality
~(x) ≤ 2r holds we have the following estimate for all m = 1, 2, . . . , n − 1 and an
arbitrary ~c = (c1, c2, . . . , cn−1) ∈ R:

∑

m<n

ˆ 6

1/6

ˆ

∆r

∣∣ηm
(
x, θ~(x)

)
− cm

∣∣2 dx dθ ≤ C‖Sb(~η)‖L2(∆2r)‖Na(~η − ~c)‖L2(∆2r)

+C(k)(‖Na(~η − ~c)‖2L2(∆2r)
+ ‖Na(~η)‖

2
L2(∆2r)

+ ‖Na(V )‖2L2(∆2r)
)

+C‖Sb(~η)‖
2
L2(∆2r)

+
C

r

¨

K

|~η − ~c|2 dX,(5.62)

for some C ∈ (0,∞) that only depends on a,Λ, n but not on ~η, ~c or ∆r and C(k) > 0
depends only on k chosen to define B‖, the Carleson norm ‖µ‖Carl and has the property
that C(k) → 0 as k → ∞.

Here K denotes a region inside Ω such that its diameter, distance to the graph
(·, ~(·)), and distance to ∆r, are all comparable to r. Also, the cones used to define the
square and nontangential maximal functions in this lemma have vertices on ∂Ω.

Moreover, the term C
r

¨

K

|~η − ~c|2 dX appearing in (5.62) may be replaced by the

quantity

(5.63) Crn−1 |(~η − ~c)(Ar)|
2 ,

where Ar is any point inside K (usually called a corkscrew point of ∆r).

Proof. Let ∆r be as in the statement of our Lemma. and assume that (q, 0) in the
center of our ball. Let ζ be a smooth cutoff function of the form ζ(x, t) = ζ0(t)ζ1(x)
where

(5.64) ζ0 =

{
1 in (−∞, r0 + r],

0 in [r0 + 2r,∞),
ζ1 =

{
1 in ∆r(q),

0 in R
n \∆2r(q)

and

(5.65) r|∂tζ0|+ r|∇xζ1| ≤ c

for some constant c ∈ (0,∞) independent of r. Here r0 = 6 supx∈∆r(q) ~(x). Observe
that our assumptions imply that

0 ≤ r0 − θ~(x) ≤ r0 . r, for all x ∈ ∆2r(q),

for θ ∈ (1/6, 6).
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Our goal is to control the L2 norm of ηm
(
·, θ~(·)

)
− cm. We fix m ∈ {1, . . . , n − 1}

and proceed to estimate
ˆ

∆r(q)

(ηm(x, θ~(x))− cm)
2 dx ≤ I :=

ˆ

∆2r(q)

(ηm(x, θ~(x))− cm)
2ζ(x, θ~(x)) dx

= −

¨

S(q,r,r0,θ~)

∂t
[
(ηm(x, t)− cm)

2ζ(x, t)
]
dt dx,

where S(q, r, r0, θ~) = {(x, t) : x ∈ ∆2r(q) and θ~(x) < t < r0 + 2r}. Hence:

I ≤ −2

¨

S(q,r,r0,θ~)

(ηm − cm)∂t(ηm − cm)ζ dt dx

−

¨

S(q,r,r0,θ~)

(ηm − cm)
2(x, t)∂tζ dt dx =: A+ IV.(5.66)

We further expand the term A as a sum of three terms obtained via integration by
parts with respect to t as follows:

A = −2

¨

S(q,r,r0,θ~)

(ηm − cm)∂t(ηm − cm)(∂tt)ζ dt dx

= 2

¨

S(q,r,r0,θ~)

|∂tηm|
2 tζ dt dx

+ 2

¨

S(q,r,r0,θ~)

(ηm − cm)∂
2
tt(ηm − cm)tζ dt dx

+ 2

¨

S(q,r,r0,θ~)

(ηm − cm)∂tηm t∂tζ dt dx

=: I + II + III.(5.67)

We start by analyzing the term II. As the ηm solve the PDE (5.56) then we have
for ηm − cm:

L(ηm − cm) =

n−1∑

i,j=1

∂i((∂mbij)(vj + ηj))

and thus

(5.68) ∂2
tt(ηm − cm) =

n−1∑

i,j=1

∂i((∂mbij)(vj + ηj))−

n−1∑

i,j=1

∂i(bij∂j(ηm − cm)).
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In turn, this permits us to write the term II as

II = −2
∑

i,j<n

¨

S(q,r,r0,θ~)

(ηm − cm)∂i (bij∂jηm) tζ dt dx

+ 2
∑

i,j<n

¨

S(q,r,r0,θ~)

(ηm − cm)∂i ((∂mbij)(vj + ηj)) tζ dt dx

(5.69)

Integrating both terms by parts w.r.t. ∂i then yields

= 2
∑

i,j<n

¨

S(q,r,r0,θ~)

bij∂iηm∂jηm tζ dt dx

+ 2
∑

i,j<n

¨

S(q,r,r0,θ~)

bij(ηm − cm)∂j(ηm) t(∂iζ) dt dx

− 2
∑

i,j<n

¨

S(q,r,r0,θ~)

(∂mbij)(∂iηm)(vj + ηj)tζ dt dx

− 2
∑

i,j<n

¨

S(q,r,r0,θ~)

(∂mbij)(ηm − cm)(vj + ηj)t(∂iζ) dt dx

− 2
∑

i>0

ˆ

∂S(q′,r,r0,θ~)

(boundary terms)tζνi dS

=: II1 + II2 + II3 + II4 + II5.(5.70)

The boundary integral (term II5) vanishes everywhere except on the graph of the
function θ~ which implies that

|II5| ≤ C
∑

i,j<n

ˆ

∆2r(q)

|(ηm − cm)(x, θ~(x)))∇x(ηm)(x, θ~(x))~(x)ζ(x, θ~(x))νi|dS.

+ C
∑

i,j<n

ˆ

∆2r(q)

|∂mbij ||(ηm − cm)(x, θ~(x)))(ηj + vj)(x, θ~(x))~(x)ζ(x, θ~(x))νi|dS.

≤
1

2

ˆ

∆2r(q)

(ηm(x, θ~(x))− cm)
2ζ(x, θ~(x)) dx

+ C ′

ˆ

∆2r(q)

|∇xηm(x, θ~(x))|
2|~(x)|2 dx+ C(k)

ˆ

∆2r(q)

(|~η|2 + |V |2) dx

(5.71)

=
1

2
I + II6 + II7.

Here we have used the Cauchy-Schwarz for the first two terms and then the fact that
|∇xB‖|t ≤

√
C(k) with C(k) → 0 as k → ∞ which is a consequence of (5.51) and how

we have defined B‖.
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We can hide the term 1
2
I on the lefthand side of (5.66), while the second term after

integrating II6 in θ becomes:
ˆ 6

1/6

|II6| dθ ≤ C

ˆ 6

1/6

ˆ

∆2r(q)

|∇ηm(x, θ~(x))|
2|~(x)|2dxdθ.

.

¨

∆2r(q)×[0,r0]

|∇ηm|
2t dt dx . ‖Sb(ηm)‖

2
L2(∆2r)

.(5.72)

The term II7 can be estimated using the nontangential maximal function and is
bounded by

(5.73) |II7| . C(k)
(
‖Na(~η)‖

2
L2(∆2r)

+ ‖Na(V )‖2L2(∆2r)

)

where in the last line we have used (5.55).
Some of the remaining (solid integral) terms that are of the same type we estimate

together. Firstly, we have

(5.74) |I + II1| . |Sb(~η)‖
2
L2(∆2r)

.

Here, the estimate holds even if the square function truncated at a hight O(r). Next,
since r|∇ζ | ≤ c, if the derivative falls on the cutoff function ζ we have

|II2 + III| .

¨

[0,2r]×∆2r

|∇~η| |~η − ~c|
t

r
dt dx

≤

(
¨

[0,2r]×∆2r

|~η − ~c|2
t

r2
dt dx

)1/2

‖S2r
b (~η)‖L2(∆2r)

. ‖Sb(~η)‖L2(∆2r)‖Ña(~η − ~c)‖L2(∆2r).(5.75)

The Carleson condition for |∇B‖|
2t and the Cauchy-Schwarz inequality imply

|II3| . C(k)‖Sb(~η)‖L2(∆2r)(‖Na(~η)‖
2
L2(∆2r)

+ ‖Na(V )‖2L2(∆2r)
)1/2.

For the term II4 we use both that r|∇ζ | ≤ c and |∇xB‖|t ≤
√

C(k). It follows that

|II4| . C(k)

¨

[0,2r]×∆2r

|~η − ~c||V + ~η|
t

r2
dt dx.

An application of Cauchy-Schwarz inequality then implies that

|II4| . C(k)(‖Na(~η − ~c)‖2L2(∆2r)
+ ‖Na(~η)‖

2
L2(∆2r)

+ ‖Na(V )‖2L2(∆2r)
).

Finally, the interior term IV , which arises from the fact that ∂0ζ vanishes on the set
(−∞, r0 + r) ∪ (r0 + 2r,∞) may be estimated as follows:

(5.76) |IV | .
1

r

¨

∆2r(q)×[r0+r,r0+2r]

|~η − ~c|2 dt dx.

We put together all terms and integrate in θ. The above analysis ultimately yields
(5.62). Finally, the last claim in the statement of the lemma that we can use (5.63)
on the righthand side instead of the solid integral is a consequence of the Poincaré’s
inequality (see [3] for detailed discussion). �
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We now make use of Lemma 5.1, involving the stopping time Lipschitz functions
θhν,a(w), in order to obtain a localized good-λ inequality. We omit the proof as it is
identical to the one given in [3]. Here

Mf(x) := sup
r>0

 

|x−z|<r

|f(z)| dz for x ∈ R
n−1,

denotes the standard Hardy-Littlewood maximal function on ∂Rn
+ = R

n−1.

Lemma 5.2. Let L be an operator as in (5.1). Consider any boundary ball ∆d =
∆d(q) ⊂ R

n−1, let Ad = (q, d/2) be its corkscrew point and let

(5.77) ν0 = |~η(Ad)|.

Then for each γ ∈ (0, 1) there exists a constant C(γ) > 0 such that C(γ) → 0 as γ → 0
and with the property that for each ν > 2ν0 and any η that satisfies (5.56) there holds

∣∣∣
{
x ∈ R

n−1 : Na(ηχT (∆d)) > ν, (M(S2
b (η)))

1/2 ≤ γν,

(
C(k)[M(N2

a (ηχT (∆d))) +M(N2
a (V ))]

)1/2
≤ γν,

(
M(S2

b (η))M(N2
a (ηχT (∆d)))

)1/4
≤ γν

}∣∣∣

≤ C(γ)
∣∣{x ∈ R

n−1 : Na(ηχT (∆d))(x) > ν/32
}∣∣ .(5.78)

Here χT (∆d) is the indicator function of the Carleson region T (∆d) and the square
function Sb in (5.78) is truncated at the height 2d. Similarly, the Hardy-Littlewood
maximal operator M is only considered over all balls ∆′ ⊂ ∆md for some enlargement
constant m = m(a) ≥ 2.

Finally we have the following proposition, again by the same argument as in [3].

Proposition 5.3. Under the assumptions of Lemma 5.2, for sufficiently large k we
have that for any p > 0 and a > 0 there exists an integer m = m(a) ≥ 2 and a finite
constant C = C(n, p, a, ‖µ‖Carl) > 0 such that for all balls ∆d ⊂ R

n−1 we have

(5.79) ‖Ñ r
a (~η)‖Lp(∆d) ≤ C‖S2r

a (~η)‖Lp(∆md) + C‖Ña(V )‖Lp(∆md) + Cd(n−1)/p|~η(Ad)|,

where Ad denotes the corkscrew point of the ball ∆d.
We also have a global estimate for any p > 1 and a > 0. There exists a constant

C > 0 such that

(5.80) ‖Na(~η)‖Lp(Rn−1) ≤ C‖Sa(~η)‖Lp(Rn−1) + C‖∇xf‖Lp(Rn−1).

Here we have used the estimate (5.55).

We can now combine Proposition (5.80) with estimate (5.60). It follows that

‖N(~η)‖L2(Rn−1) ≤ C‖S(~η)‖L2(Rn−1) + C‖∇xf‖L2(Rn−1)(5.81)

≤ C‖∇xf‖L2 + C(k)‖N(~η)‖L2(Rn−1).

For k chosen so large that the constant C(k) < 1/2 we then obtain

(5.82) ‖N(~η)‖L2(Rn−1) ≤ 2C‖∇xf‖L2(Rn−1).
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Then by (5.55) we obtain a similar estimate for W = (w1, w2 . . . , wn−1):

(5.83) ‖N(W )‖L2(Rn−1) . ‖∇xf‖L2(Rn−1),

which would imply that the L2 Regularity problem for L is solvable if we can also
establish nontangential estimates for wn = ∂tu.

We establish an analogue of Lemma 5.1 for the function wn − c for an arbitrary
c ∈ R. Clearly, we have that

(5.84) L(wn − c) =
n−1∑

i,j=1

∂i((∂tbij)wj).

It follows that the calculation of Lemma 5.1 can be followed step by step. The only
difference is that we cannot claim any smallness of the Carleson measure as the measure
we obtain is that of |∂tB‖|

2t which is not small for any k. This will not be a problem
since the terms that come with it contain N(W ) for which we already have required
estimates. Hence we can prove that

ˆ 6

1/6

ˆ

∆r

∣∣wn

(
x, θ~(x)

)
− c
∣∣2 dx dθ ≤ C‖Sb(wn)‖L2(∆2r)‖Na(wn − c)‖L2(∆2r)

+C((‖Na(wn − c)‖L2(∆2r) + ‖Sb(wn)‖L2(∆2r))‖Na(W )‖L2(∆2r) + ‖Na(W )‖2L2(∆2r)
)

+C‖Sb(wn)‖
2
L2(∆2r)

+
C

r

¨

K

|wn − c|2 dX,

(5.85)

From this we can obtain a good-lambda inequality and eventually a global estimate as
before in the form of

(5.86) ‖N(wn)‖Lp(Rn−1) ≤ C‖S(wn)‖Lp(Rn−1) + C‖N(W )‖Lp(Rn−1).

It remains to prove square functions estimates for S(wn). But since we have estimates
for S(W ) the only remaining term that needs an estimate is

´

Rn
+
|∂ttu|

2tdt dx. Since

Lu = 0 this PDE implies that

(5.87)

ˆ

Rn
+

|∂ttu|
2tdt dx =

∑

i,j,s,r<n

∂i(bij∂ju)∂s(bsr∂ru)t dt dx

≤ C‖S(W )‖2L2(Rn−1) + C

ˆ

Rn
+

|∇xB‖|
2|W |2t dt dx

≤ C‖S(W )‖2L2(Rn−1) + C(k)‖N(W )‖2L2(Rn−1).

It follows that ‖N(wn)‖L2(Rn−1) ≤ C‖N(W )‖L2(Rn−1) and hence by (5.83) the Regularity
problem in L2 for L is solvable on R

n
+. As this also implies solvability for L0, this

completes the argument.
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[4] M. Dindoš, J. Kirsch, The regularity problem for elliptic operators with boundary data in Hardy-
Sobolev space H1, Math. Res. Lett., Vol. 19, (2012), no.3, 699-717.
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