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REGULARITY AND NEUMANN PROBLEMS FOR OPERATORS
WITH REAL COEFFICIENTS SATISFYING CARLESON
CONDITIONS

MARTIN DINDOS, STEVE HOFMANN, AND JILL PIPHER

ABSTRACT. In this paper, we continue the study of a class of second order elliptic
operators of the form £ = div(AV-) in a domain above a Lipschitz graph in R™, where
the coefficients of the matrix A satisfy a Carleson measure condition, expressed as
a condition on the oscillation on Whitney balls. For this class of operators, it is
known (since 2001) that the L9 Dirichlet problem is solvable for some 1 < ¢ <
00. Moreover, further studies completely resolved the range of L9 solvability of the
Dirichlet, Regularity, Neumann problems in Lipschitz domains, when the Carleson
measure norm of the oscillation is sufficiently small.

We show that there exists p,e, > 1 such that for all 1 < p < p,¢4 the LP Regularity
problem for the operator £ = div(AV-) is solvable. Furthermore pTleg + q% = 1 where
@« > 1 is the number such that the L? Dirichlet problem for the adjoint operator £*
is solvable for all ¢ > ¢..

Additionally when n = 2, there exists ppeum > 1 such that for all 1 < p < ppeum
the LP? Neumann problem for the operator £ = div(AV:) is solvable. Furthermore
LIRS q% =1 where ¢* > 1 is the number such that the L9 Dirichlet problem for the

Preg

operator £y = div(A4;V-) with matrix A; = A/det A4 is solvable for all ¢ > ¢*.

1. INTRODUCTION

In this paper, we consider the solvability of certain boundary value problems (Regu-
larity, Neumann) for a class of elliptic second order divergence form equations with real
coefficients satisfying a natural and well-studied Carleson measure condition. Some of
the extensive literature in this subject includes [2,3,5,6,9,10,14-16, 19].

The operators we study have the form L = div(AV) where the matrix A(X) =
(a;;(X)) is uniformly elliptic in the sense that there exists a positive constant A such
that

Ale? < Zaij(X)fifj < AP,

for all X and all é’ € R™. The matrix A is not assumed to be symmetric, and the non-
symmetry imposes constraints on both the methodology and on the range of the sharp
results. The class of operators we study have coefficients that are assumed to satisfy the
following condition on gradient of A, or a related weaker oscillation condition, namely
that

(1.1)
dp(X) = |[VA(X)]25(X) is a Carleson measure, and I(X)|IVAX)| < C,

where 6(X) is the distance of a point X € Q to the boundary.
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This condition first appeared in a conjecture of Dahlberg, where it arose via a spe-
cific change of variables (4.41) introduced by Dahlberg, Kenig-Stein, and by Necas ([1],
[25]). This change of variable is relevant to the study of smooth equations in Lipschitz
domains. In particular, an example of an operator satisfying the above Carleson con-
dition is the divergence form operator generated from the pull-back of the Laplacian
under the change of variable in (4.41).

There are three well-studied boundary value problems that have natural physical
interpretations for these elliptic equations: Dirichlet, Regularity, and Neumann. The
Dirichlet problem prescribes boundary data of the solution in a domain, Regularity
prescribes the tangential derivative of the boundary data as well, and Neumann pre-
scribes the normal (or co-normal) derivative of the solution. The precise definition of
these problems, for data in Lebesgue spaces, will be given in section 2.

In [19], the methods of [17] were applied to study the Dirichlet problem for a class
of divergence form operators satisfying (1.1). There is a constant associated with the
“size” of this Carleson measure, referred to as the Carleson norm. See section 2 for
the definition of Carleson measure, and its norm. This Carleson condition on the
coefficients of the matrix implies that |Va; ;(X)| is bounded away from the boundary,
but could blow up near the boundary.

The main result of [19] is that, for an operator in this class, defined in a Lipschitz
domain, the elliptic measure and surface Lebesgue measure on such domains are mu-
tually absolutely continuous. Moreover, there exists a p < oo such that the Dirichlet
problem with boundary data in the Lebesgue LP space with respect to surface measure
is solvable.

In [6], it was shown that the range of solvability in LP of the Dirichlet problem for
these operators could be extended to the full range of 1 < p < oo if the Carleson norm
of the matrix coefficients was sufficiently small. Operators whose coefficients satisfy
this small Carleson norm condition also arise naturally. For example, consider the
Laplacian in the region above a graph ¢ = ¢(x). If the function ¢ has the property
that Vi € L VMO, a weaker property than ¢ € C, the solvability of the Dirichlet
problem in L? for 1 < p < oo is a corollary of the main theorem of [6] via a change
of variable. The function space VMO, introduced by Sarason ([26]) consists of those
BMO (bounded mean oscillation) functions that can be approximated in BMO norm
by C*° functions.

The Regularity and Neumann problems have also been studied for the class of elliptic
operators whose coefficients satisfy (1.1), but only with additional assumptions. If the
Carleson norm of the expression in (1.1) is sufficiently small, both of these boundary
value problems were shown to be solvable in the full range of 1 < p < oo, first in two
dimensions in [10], and later in all dimensions in [9].

A central problem to complete the study of these operators in Lipschitz domains
(or even smooth domains) has been open since the 2001 results of [19]: the solvability
of the Regularity and Neumann problems when the Carleson measure norm is merely
finite, as opposed to small.

In this paper, we fully resolve solvability of Regularity problems in all dimensions on
Lipschitz graph domains, as well as the Neumann problems in two dimensions. In fact,
we give two different proofs of solvability of the two-dimensional Regularity problem.
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Solvability in two dimensions, and subsequent passage from two dimensions to all
dimensions, has been quite typical for progress in this subject. One example, from
the two-dimensional work of [10] to the higher dimensional generalizations [9] was
mentioned earlier. In another example, the passage to higher dimensions required
the development of major new ideas: the solvabilty of the Dirichlet and Regularity
problems in [12] and [13] came fifteen years after the two-dimensional results of [18],
and used the toolbox developed in connection with the solution to Kato’s conjecture.
The innovation in two dimensions that is applicable to the problem we solve in this
paper is a change of variable observed by Feneuil in [11] in another context, and is
described in Section 4. In Section 5, we present the new idea that leads to solvability
of the Regularity problem in all dimensions n > 2.

Importantly, condition (1.1) can be replaced by a weaker “oscillation” condition of
coefficients on Whitney balls; we will state our main result in this form.

Theorem 1.1. Let Q be an unbounded Lipschitz domain in R™, n > 2 of the form
{(z,t) : t > ¢(x)} for some Lipschitz function ¢ : R — R. Let A : Q — M,x,(R) be a
real matriz valued functions such that for some A\, A > 0 we have

(1.2) (AX)E,€) = NP, KAX)Em)| < AEllnl,  for allg,n e R"

and a.e. X € Q.
Suppose that A satisfies a Carleson condition on oscillation on coefficients in Whit-
ney balls in 2, that is
2
(1.3) (X))t sup |A(Y) — A(Z)|| is a Carleson measure.
Y,ZEB(X,5(X)/2)

Then there exists pyeg > 1 such that for all1 < p < preg the Lp Regularity problem
for the operator L = div(AV-) is solvable. Furthermore + — =1 where q. > 1 is
the number such that the LY Dirichlet problem for the adjomt opemtor L* is solvable
for all ¢ > q..

Additionally when n = 2, there exists Ppewm > 1 such that for all 1 < p < Ppeum
the Lr Neumann problem for the operator L = div(AV:) is solvable. Furthermore
preg + = =1 where ¢* > 1 is the number such that the L? Dirichlet problem for the

opemtor Ly = div(A; V) with matriz Ay = A/ det A is solvable for all ¢ > ¢*.

We remark that, for simplicity, we have stated the result for domains of the form
{(z,t) : t > ¢(x)}, but the arguments should carry over to the setting of bounded
Lipschitz domains. This will require some further localization results which are not
addressed in this paper.

One of the main tools we use to prove Theorem 1.1 is Theorem 1.2 below, which
reduces the solvability of the Regularity problem for matrices whose coefficients satisfy
condition (1.3) to solvability of the Regularity problem for an operator defined by a
block-form matrix. This theorem holds in all dimensions. Its proof, in Section 3, can
be read independently of its application to the solution of Regularity and Neumann
problems which are located in Sections 4 and 5.
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Theorem 1.2. Let £ = div(AV:) be an operator in R, where matriz A is uniformly
elliptic, with bounded real coefficients such that there exists a constant C

(1.4) VAt dt do is a Carleson measure, and  t|VA| < C.
Suppose that for some p > 1 the LP Regularity problem for the block form operator
(1.5) Lou = diV”(A”V”u) + Uy,

(where Ay is the matriz (a;j)1<ij<n—1) is solvable in R}.

Then we have the following: For any 1 < q < oo the LY Regularity problem for the
operator L is solvable in R if and only if the LY Dirichlet problem for the adjoint
operator L* is solvable in R’ .

One direction of the equivalence in this theorem has been proven without any of the
stated assumptions (1.4) or (1.5). Namely, the solvability of the L? Regularity problem
for the operator £ implies the solvability of the L¢ Dirichlet problem for the adjoint
operator L* for ¢ = ¢/(q —1). (c.f. [4,20]). Thus the novelty in Theorem 1.2 is the
converse direction.

Finally, in Section 5 we prove that the Regularity problem for operators (1.5) is
solvable under the following assumptions:

Theorem 1.3. Let Lou = div (A V|ju) +uy be an operator in R’y where matriz Ay is
uniformly elliptic (n — 1) x (n — 1) matriz, with bounded real coefficients such that
2

(1.6) dp(X) =0(X) | sup  [VA(X)

B(X,6(X)/2)

dX 1s a Carleson measure.

Then we have the following: For any 1 < q < oo the LY Regularity problem for the
operator Ly 1s solvable in R’ .

The reduction to block form is a special feature of working in the Lipschitz graph
domain, permitting us to exploit a “preferred direction” and introduce Riesz transform
type operators via an integration in that preferred direction. This was also a feature
of the main result of [13], where solvability of the Regularity problem for so-called
“t-independent” elliptic divergence form operators with data in L? (for some possibly
large value of p) was established. The methods of this paper are similarly reliant on
working in domains that are locally a graph, and making use of that graph direction.

As we were completing this manuscript, we learned that M. Mourgoglou, B. Poggi,
and X. Tolsa ([23]) were simultaneously completing a manuscript that showed solvabil-
ity of the Regularity problem for this same class of elliptic operators, but on uniformly
rectifiable domains. Their methods, necessitated by the weaker geometric assumptions
on the domain, are very different from those in this paper. In particular, they use the
results of [9] together with a new corona decomposition introduced in [24]. While their
end result is more general - due to the weaker assumptions on the domain - the ideas
and techniques we present here are novel in the context of Lipschitz domain theory,
give a significantly shorter and self-contained argument, and serve to illuminate the
specific additional technicalities that involve passage from local Lipschitz graphs to
more general domains.
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2. BACKGROUND AND DEFINITIONS

In this section, we will state the relevant definitions and background for domains
Q= {(z,t): t > p(x)} where p(z) : R" — R is a Lipschitz function.

Definition 2.1. Let Q be as above. For Q € 92, X € Q and r > 0 we write:
A(Q) =00N B.(Q), T(A,) =QNB,.(Q),
0(X) = dist(X, 09).

Definition 2.2. Let T'(A,) be the Carleson region associated to a surface ball A, in
0%), as defined above. A measure p in 2 is Carleson if there exists a constant C' such
that

(T (A)) < Co(A,).
The best possible C' is the Carleson norm and will denoted by ||p||car- The notation
i € C means that the measure p is Carleson.

Definition 2.3. A cone of aperture a > 0 is a non-tangential approach region for

Q € 02 of the form
F(Q)={XeQ:|X—-Q| <(1+4a) dist(X,00)}.

For ease of notation, and when there is no need for the specificity, we shall omit the
dependence on the aperture of the cones in the definitions of the square function and
nontangential maximal functions below.

Definition 2.4. The square function of a function u defined on €2, relative to the family
of cones {I'(Q) }geoq, is

sei@ - ([ . Fu(X)S(X ) "

at each Q € 092. The non-tangential mazimal function relative to {I'(Q)}geon is
Nu)(@) = sup [u(X)|
Xel(Q)

at each (Q € 00 We also define the following variant of the non-tangential mazximal
function:

1
2
(27) R()(@) = sw (][ u(v)P dY) .
Xel'(Q) Bs(x)/2(X)

When we want to emphasize dependance of square or nontangential maximal func-
tions on the particular cone I', we shall write S,(u) or N,(u). Similarly, if we consider
cones truncated at a certain height h we shall use the notation S*(u), S*(u), N"(u) or
NI (u). In general, the particular choice of the aperture a does not matter, as operators
with different apertures give rise to comparable L” norms.

In Proposition 2.5 of [7], it was shown that, under the assumption that |[VA(X)| <
574 X), a reverse Holder inequality for the gradient of solutions holds and therefore,
N(u)(Q) is comparable to N (u)(Q), with possibly different apertures of the cones used
to define these quantities.
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We recall the definition of L? solvability of the Dirichlet problem. When an operator
L is uniformly elliptic, the Lax-Milgram lemma can be applied and guarantees the
existence of weak solutions. That is, given any f € 312/22 (092), the homogenous space

of traces of functions in W12(Q), there exists a unique (up to a constant) u € W12(Q)
such that Lu = 0 in Q and Tru = f on 0. These “energy solutions” are used to
define the solvability of the L? Dirichlet, Regularity and Neumann problems.

Definition 2.5. Let 1 < p < co. The Dirichlet problem with data in LP(OQ, do) is
solvable (abbreviated (D),) if for every f € Bf/é(aﬂ) N LP(0NY) the weak solution u to
the problem Lu = 0 with continuous boundary data f satisfies the estimate
[N (w)|| 2o 00,d0) S NI fll L2(092,d0)-

The tmplied constant depends only the operator L, p, and the Lipschitz norm of ¢.
Definition 2.6. Let 1 < p < oo. The regularity problem with boundary data in
H?(0Q) is solvable (abbreviated (R), ), if for every f € Bf/i(ﬁﬂ) with Vrf € LP(09),
the weak solution u to the problem

Lu =0 1

ulog = [f on 09

satisfies

IN(Vullleoo) S IV flle o)
The implied constant depends only the operator L, p, and the Lipschitz norm of ¢.

Definition 2.7. Let 1 < p < co. The Neumann problem with boundary data in L?(02)
is solvable (abbreviated (N),), if for every f € LP(02) N Bi’fﬂ(a(l) with the property
that fm fdo =0, the weak solution u to the problem

Lu =0 inQ
AVu-v =f on )

satisfies

IN(Vu)|| o) S I fllzr@o)-
Again, the implied constant depends only the operator L, p, and the Lipschitz norm of
. Here v is the outer normal to the boundary OS). The sense in which AVu -v = f
on 0X) is that

/AVU.V’/] dX = fndo,
Q o9

for alln € C(R™).

We now compile some results from other papers that will be used to prove the main
theorems.

The following is a key lemma for the square function, which combines Lemmas 3.2
and 3.3 of [9].
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Lemma 2.1. Let u be a solution of Lu = 0, where L = div(AVu) is a uniformly
elliptic differential operator defined on €, with bounded coefficients such that

(2.8) IVAI?6(X) is a Carleson measure, and  §(X)|VA| < C.

Then there exists K > 0 depending only on the Lipschitz constant of the domain €2,
the Carleson norm of |VA|?6(X), the ellipticity constant of L, and the dimension n
such that

(2.9) ‘/ S2y(Vu)d [7 IV (Vu(X))[28(X) dX
80 (0,r/2)
1
2 2 2
< K[ 8Q\Vu| da+/ag NT(Vu)dajL;HVuHLz(Q) ;

Here N, and S, denote the truncated non-tangential mazximal function and square,
defined with respect to truncated cones I',(Q) N B,(Q).

3. PROOF OF THEOREM 1.2: REDUCTION TO THE BLOCK CASE

Let A = (a;;) be as in Theorem 1.2 and set 2 = R". As explained earlier, it remains
to prove one of the implications in the statement of the Theorem. To that end, assume
that the L? Dirichlet problem is solvable for the adjoint operator £* for some ¢ > 1.

We want to deduce solvability of the L? Regularity problem for the operator Lu =
0;(a;;0;u) if, in addition, we have solvability of the L? Regularity problem for the
block-form operator

(3.10) Lou = diVH(AHV”u) + Uy,

where AH is the matrix (aij)lgi,jgn_l.

Throughout this section, we make the assumption that |[VA(x,t)| is bounded by
a constant M for all (x,t). All the estimates established below will be independent
of M. This assumption entails that boundary integrals like those in (3.17), (3.18),
and so on, are meaningful in a pointwise sense. The assumption can be removed by
approximating a matrix that satisfies condition (1.4) by a sequence of matrices with
bounded gradients - details can be found in section 7 of [2].

We start by summarising useful results from [21]. Let us denote by N;. the L'-
averaged version of the non-tangential maximal function for doubly truncated cones.
That is, for u : Q — R™, we set

N (@) (Q) = sup {][ZEB(Xé( " luldZ : X €T (Q) =T(Q)N{X e <(X) < 1/5}} .

Lemma 2.8 of [21], stated below, provides a way to estimate the LI norm of N, .(VF)(Q)
via duality (based on tent-spaces).

Lemma 3.1. There exists a(X, Z) with d(X,-) : B(X,d§(X)/2) — R" and
13X, ) | e (Bx.s(x)/2)) = 1, a nonnegative scalar function f(X,Q) € LY(I'.(Q)) with
Jr.io) B(X,Q)dX =1 and a nonnegative g € L9 (02, do) with ||g|| e = 1 such that

(3.11) HNMVF)‘M@MU /VF )-h(Z)dZ,
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where
P a X(2]X — Z]/6(X))
2= [ [ s@ax msx @ B IEE R ax g,
)

and x(s) = xo,0(|s])- )
Moreover, for any G : Q@ — R with N1(VG) € L0, do) we also have an upper
bound

(3.12) / VG(Z) - h(Z)dZ < HNl(VG)

La(09,do)

The implied constants in (3.11)-(3.12) do not depend on e, only on the dimension n.

For the matrix A = (a;;) as above, we let v : Q@ — R be the solution of the inho-
mogenous Dirichlet problem for the operator £* (adjoint to £):

=0.
o9

Then Lemma 2.10 - Lemma 2.13 of [21] gives us the following estimates for the
nontangential maximal and square functions of v.

—

(3.13) L*v = div(A*Vv) = div(h) in Q, v

Lemma 3.2. If the LY Dirichlet problem is solvable for the operator L£*, where ¢ > 1,

then there exists C' < oo depending on n, q, and L*, such that for any h as in Lemma
3.1 and v defined by (3.13) we have

(3.14) ||N(U)HL«1’(aQ,da) + ||N(5VU)HL«1’(aQ,da) + HS(U)HL‘I'(BQ,dJ) <C.

Let u be the solution of the following boundary value problem

(3.15) Lu = div(AVu) =0 in €, U o f,

where we assume that f € Wh(9Q) N Bfé(@ﬂ) for some ¢ > 1. Then clearly, u €

W12(Q) by Lax-Milgram. Fix ¢ > 0. Our aim is to estimate Ny .(Vu) in L9 using
Lemma 3.1. Let & be as in Lemma 3.1 for VF = Vu. Then since E‘m — 0 and h

vanishes at oo, we have by integration by parts
(3.16)

| N (V)20 < / VuddZ = — / wdividZ — — /
Q Q

Q
We now move u inside divergence and then apply the divergence theorem to obtain:

ul*vdZ = —/udiv(A*Vv) dz.
0

RHS of (3.16) = —/div(uA*Vv) Az + / AVu -VuvdZ :/ u(+,0)ay, 05v d,
Q 0

o0
since

/AVu~VvdZ:—/£uvdZ:0.
0 0

Here there is no boundary integral as v vanishes on the boundary of €2. It follows that

(3.17) | N1e(Vu)|lpe S /89 u(z,0)ay,;(x,0)0;v(z,0) dr,
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where the implied constant in (3.17) is independent of ¢ > 0. Now, we use the funda-
mental theorem of calculus and the decay of Vv at infinity to write (3.17) as

(3.18) 1N (V)| s < — /8 u(z,0) ( /0 OO% (a2, (x, )Dju(x, 5)) ds) dz.

—

Recall that div(A*Vv) = div(h) and hence RHS of (3.18) equals to

(3.19) - / u(z,0) ( / [Z 0i(aj;(x, 5)djv(x, ) — divh(z, s)] ds> dz.
o 0 i<n

We integrate by parts moving 0; for i < n onto u(-,0). The integral term containing

Ophn(x,s) does not need to be considered as it equals to zero by the fundamental

theorem of calculus since h(-,0) = 0 and h(-,s) — 0 as s — o).
It follows that

Wl 5 [ it ([T s - (9o 0] ds) do
(3.20) — 411

Here I is the term containing i_i” and /1 contains (A*Vv)). The notation we are using
here is that, for a vector @ = (wy, ws, ..., w,), the vector wj denotes the first n — 1
components of w, that is (wy, we, ..., w,_1).

As shall see below we do not need worry about term . This is because what we are
going to do next is essentially undo the integration by parts we have done above but we
swap function u with another better behaving function @ with the same boundary data.
Doing this we eventually arrive to ||N(V@)| s plus some error terms (solid integrals)
that arise from the fact that v and @ disagree inside the domain. This explain why we
get the same boundary integral as I but with opposite sign as this “reverse process”
will undo and eliminate all such boundary terms.

We solve a new auxiliary PDE problem to define @. Let % be the solution of the
following boundary value problem for the operator Ly defined in (3.10), i.e., its matrix

40
Ay has the block-form Ay = 0 ‘ . and

o9
Recall that we have assumed that the L? Regularity problem for the operator Ly is
solvable; that is, for a constant C' > 0 independent of f, [|[N(Va)|re < C||Vf|lLa-
Then, by Lemma 2.1, taking r — 0o, we see that

(3.22) IN(V) || + |S(VE)|| e < CIVf] Lo
We look the term /1. Let
(3.23) Viz,t)=— / (A*Vv))(z, s)ds.
t

It follows that by the fundamental theorem of calculus

IT= [ Vyu(z,0)-V(z,0)de = / o [v”a(x,t)-x?(g;,t) tdx dt.
0N Q
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Hence

I = /8§(V”ﬂ)-V(a:,t)tdxdt+/8t(v||ﬁ)-0t(17(:r,t))td:):dt+
Q Q

3.24 + [ Va2V (x,t))tdedt = 11, + 11, + I1;.
VI

Here @ is same as in (3.21) (observe that w and 4 have the same boundary data).
Since 0,V (x,t) = (A*Vv)| the term I, is easiest to handle and can be estimated as a
product of two square functions

(3.25) (11| < [|S(8¢)|[ a1 (0) || o

By our assumption that the L¢ Dirichlet problem for the operator £* is solvable,
Lemma 3.2 applies and provides us with an estimate ||S(v)||,# < C. Combining this
estimate with (3.22) yields

(3.26) 11| < C|\Vyfllza,

as desired.
Next we look at II;. We integrate by parts moving V || from @. This gives us

(3.27) 11, = / 8;1] (/ diV”(A*VU)”dS) tdxdt.
Q t

Using the PDE v satisfies we get that

o0

/ div (A*Vv)ds = (an;05v)(x, 1) +/ divh ds.
t

t
Using this in (3.27) we see that

(3.28) 15 = /(0;&)(anj8jv)tdxdt+/thﬁ- (/ divads) tdx dt.
Q Q ¢

Here the first term enjoys the same estimate as Il5, namely (3.25). We work more
with the second term which we call I1;5. We integrate by parts in 0;.

(3.29) [Ty, = / (8,0) (divh)t da: dt — / Dy - < / divﬁds) dz dt =
Q Q t

e / By ( / divﬁds) dedt = Iy + / a(x,0) < / divﬁ) dr+ / Vii-h dz dt
Q t o0 0 Q

= 11121—/ V”fb(l’,O) (/ E”) d$+11123 = 11121—]+11123.
o0 0

In the second line we have swapped 0, and ) derivatives integrating by parts twice.
This integration yields a boundary term but fortunately this term is precisely as the
term I defined by (3.20) but since it comes with opposite sign these two terms cancel
out. We return to the terms I1;5; and I1;93 later.

Next we look at I13. We see that
(3.30)

I[3:/V”ﬂ-at(A*Vv)”td:):dt:/V|ﬁ-((8tA)*Vv)|td:rdt+/ V”ﬁ-(A*V(atv))th{Edt
Q Q Q
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(3.31) = II3 + I 1.

In order to handle the term I3, we will use the fact that the matrix A satisfies the
Carleson measure condition (1.4). The argument uses a stopping time argument that

is typical in connection with Carleson measures.
To set this up, let O; denote {x € 9Q : N(Va)(Q)S(v)(Q) > 2’} and define an

)
enlargement of O; by O; := {M(xo,) > 1/2}. (Note that |O;| < [0O;|.) We will break
up integrals over €2 into regions determined by the sets:

Fy ={X = (y,1) € @ |Auly) N O] > 1/2, [Auly) N O] <1/2},

where ¢ depends on the aperture of the cones used to define the nontangential maximal

function and square functions.
Then,

1l 5 [ Valoavelx <Y [ |9l
Q = Jonr

IN

> / / Va0, Al Volt*"d X d
7 J0,\0; JT(@Q)NF;
1/2 1/2
Z/ (/ \Vv\2|Vﬂl2t2‘"dX) / AP AX | dQ
7 J0,\0; \JI(@Q) L(Q)NE;
1/2
<> / N(Va)(Q)S(v)(Q) </ |8tA|2|2t2‘"dX) dQ
i JONO; D(Q)NF;

1/2
< >y ¥ // 10, AP dX dQ | |02
; 0; JT(Q)NF;

(332) 5 > 20 < | NVD(QSE©)(Q)dQ.

IN

The penultimate inequality follows from the Carleson measure property of |0 AP [td X
as the integration is over the Carleson region {X = (y,t) : Ax(y) C O;}.
Consequently, by Holder’s inequality,

(3.33) [ Is1| S IS (0)[| o [[N(VE)]| Lo
Hence as above
(3.34) ([ Ls1| < ClIVy fllpa.

For the term I13, we separate the parallel and tangential parts of the gradient, to get

Q Q

Q

= — / diVH(AHVﬁ) ((%v)tdx dt + I35 = /(8@&) ((%v)tdx dt + 1153.
Q
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Here we have integrated the first term by parts and then used the equation that @
satisfies. It follows that in the last expression the first term has square functions
bounds identical to (3.25). For Il33 we write d3v as

a* 1
at2t'U =0, (a:n aﬂ)) = aTat(a:matU) =0

nn nn nn

&ga

nn

1

— “a [dlv”(a”V”v + Z (a,0,0) 4 O(a*,0:0)] + 9y (al, ) Dy — divh

<n

where the final line follows from the equation that v satisfies. It therefore follows that

the term /33 can be written as a sum of five terms (which we shall call 1133, [ 1339, ..., 1335.)
Terms 1331 and [133, are similar and we deal with then via integration by parts (in

&, 1< n):

(3.35) L] + || < C / V2a[Volt + C / VAVl [Volt.
0 Q

For the third term 1333 we observe that 0;(a},0;v) = 0;(a’,0v)+ (0yar;) 0w — (0;ak,) Oy
which implies that it again can be estimated by the right-hand side of (3.35). The same
is true for the term I/334 which has a bound by the second term on the right-hand side
of (3.35). It remains to consider the term [I335 which is

(3.36) 11555 = Z/ am@u dlvh tdx dt.

a
i<n nn

Notice the similarity of this term with I/;51, hence the calculation below also applies
to it. We again integrate by parts. Observe we get an extra term when 0, derivative
falls on t. This gives us

(3.37) [Ihon| + |1 Is35] < C/ |v2auﬁ\t+/ \VAHV@HE\tJrZ‘/ Zn Oy hn, d:cdt‘.
Q Q i Q Ynn

We deal with terms on the right-hand side of (3.35) and (3.37) now. The first term
of (3.35) can be seen to be a product of two square functions and hence by Holder it
has an estimate by ||S(Va)||q||S(v)| o The second term of (3.35) is similar to the
term [13; with analogous estimate. It follows that

(L ls31| + [ Lsso| + [ sss] + [[Lssa] < C(S(V@)||pa + [N(VE)[|za) 1S (0)]] Lo
(3.38) < ClIVyfllza,
by using (3.22) and Lemma 3.2. The first two terms of (3.37) have similar estimates,
provided we introduce as in [21] the operator T'. Here

T(h)(Q) = / A 2z

The last term of (3.37) and also the term I1lj53 is handled using (3.12). Here the
presence of 2= in the integral is harmless as we have flexibility to hide this term into

the vector-valued function @ in the definition of h. This gives us
(L Lo1| + [T Thos| + |1 335] CUIS(VD) | o + [IN(V) | o) I TR o + ClINL(VE)| o

<
(3.39) < ClVyfllze
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Here the bound for ||T(|h])|| e follows from Lemma 2.13 of [21].

In summary, under the assumptions we have made we see that
1= / Y ju(z,0) - V(x, 0)dz < C[V, fllus — 1.
o0

After putting all estimates together (since term I cancels out), we have established
the following: .
INLe(Vu)l[ze < ClIV ) fl|za-

Remark: The assumption that LP Regularity problem for the block form operator
L) is solvable for some p > 1 implies solvability of the said Regularity problem for all
values of p € (1, 00). This follows by combining results of [4] and [6].

An argument is required to demonstrate that the control of NLE(Vu) of a solution
Lu = 0 implies the control of N(Vu) (the L? averaged version of the non-tangential
maximal function). Firstly, as the established estimates are independent of £ > 0 we
obtain

1N (V)| e = Jim 1N (V) | za < ClIVyf | o

Secondly, as Vu satisfies a reverse Holder self-improvement inequality

1/(246) 1/2
(frvupe) s ([ 1var)
B 2B

for some § > 0 depending on ellipticity constant and all B such that 3B C €2, it also
follows (c.f. [27, Theorem 2.4]) that

(o) "= (o)

which implies a bound of N(Vu)(-) defined using cones I'y(+) of some aperture a > 0
by Ni(Vu)(-) defined using cones I'y(+) of some slightly larger aperture b > a. Hence
IN(Vu)| e < ClV)f|r« must hold.

This completes the proof of Theorem 1.2. O

4. THE REGULARITY AND NEUMANN PROBLEMS WHEN n = 2

To prove Theorem 1.1 in the special case n = 2, we will use Theorem 1.2, a change
of variable discovered by Feneuil [11], and the equivalence in dimension two between
the solvability of Regularity and Neumann problems observed by Kenig and Rule [22].

Proof of Theorem 1.1. The solvability of the Neumann problem can be reduced to
solvability of the Regularity problem using an observation in [22]; namely, if u solves
Lu = div(AVu) = 0 in 2 then @ uniquely (modulo constants) defined via

(4.40) {(1] _01} Vi = AVu

solves the equation Lu = div(AVu) = 0 with A = A’/det A and the tangential
derivative of u is the co-normal derivative of 4 and vice-versa.
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If A satisfies the Carleson condition (1.3) then so does A’/det A (with a possibly
larger constant) and hence the LP Neumann problem for a given matrix A is solvable
in the same range 1 < p < P for which the LP Regularity problem for the matrix
At/ det A is solvable. The range of solvability for the operator with matrix A’/ det A is
determined by the range of solvability of the Dirichlet problem for its adjoint operator,
which has matrix A/ det A, reducing the second claim of Theorem 1.1 to the first. In
summary, for these operators, the solvability of the Neumann problem can be deduced
from solvability of the Regularity problem.

Next, we perform some additional reductions to simplify the problem. A well known
and used pull-back transformation

(4.41) (z,t) = (z,ct+ (% ¢)(x))

for a smooth family of mollifiers (1;);~o and some sufficiently large enough ¢ > 0 (de-
pending on |[|[V¢||1~) allows us to consider the Regularity problem on the domain R’ .
This is because, for = {(z,t) : t > ¢(x)}, the pull-back map preserves the ellipticity
condition and the Carleson condition on the coefficients (although the Carleson bound
K for the new operator on R’} might increase and will depend on ||Vl 1~ as well).
Hence from now on we assume that {2 = R’}. The next reduction comes in the form
of replacing the Carleson condition (1.3) by the stronger condition:
2

is a Carleson measure.

(4.42) 5(X) [ sup  |VA(Y),|
YEB(X,6(X)/2)

To see this, one consider a new matrix A obtained from A via mollification A(z,t) =
(A *mny0)(x,t) (for details see [9] where this observation was made). The matrix val-
ued function A is uniformly elliptic but now satisfies (4.42) instead of the oscillation
condition, (1.3), that holds for A. In addition, we also have

2

is a Carleson measure.

(4.43) 5(X)‘1[ sup  JA(Y) — A(Y)]
YEB(X,6(X)/2)

Let us clarify our objective. It suffices to prove that the LP Regularity problem for
the original operator £ = div(AV:) is solvable for at least one value ¢ € (1,00) as
then by [4] it follows that L” Regularity problem for L is solvable if and only if the
L*" Dirichlet problem is solvable for the adjoint operator £*. (See Theorem 1.1 of [4])
But solvability of Dirichlet problem satisfying Carleson condition in the range (pg;., o)
for some pg; > 1 has been resolved in [19], and hence the claim about the range of
solvability of Regularity stated in Theorem 1.1 would follow.

The operator with matrix A is, by (4.43), a Carleson perturbation of the operator
A. By the perturbation theory of [21], the solvability of the L¢ Regularity problem for
at least one q € (1, 00) for the operator div(AV-) implies solvability of the Regularity
problem for the operator £ = div(AV-) for a possibly different (smaller) value of § > 1.

Hence it remains to establish the solvability of the L? Regularity problem for a
uniformly elliptic operator satisfying condition (4.42) in the domain 2 = R’ for at
least one value of ¢ > 1. Up to this point, all the statements and reductions regarding
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the Regularity problem are valid in any dimension. In what follows, we will use the
assumption that we are in two dimensions.

In the two dimensional setting, we observe that if our matrix A has the special form
in which the ay; coefficient equals 1 in €2, then the operator £y in Theorem 1.2 is
simply the Laplacian A. For the Laplacian, all the required square and non-tangential
estimates are known, including solvability of the Regularity problem for all values of
p > 1. Applying Theorem 1.2 gives the solvability of the L? Regularity problem for
at least one value ¢ > 1 for an operator £ = div(AV-) with a;; = 1, which is our
objective. Hence the objective now is to reduce from our general matrix A to one
having this special form with 1 in the top left corner.

The strategy of using a change of variables to reduce to matrices of a special form
has been used before in two dimensions to prove solvability of Dirichlet and Regularity
boundary value problems. The paper [18] considered the L” Dirichlet problem for
operators whose matrix A(x,t) = A(x) is t-independent and non-symmetric. The
crucial observation that was used to resolve the obstacles in solving this problem for
some, possibly large, value of p was the discovery of a change of variables reducing

matters to matrices of the form [(1] ggg ] . For these matrices, the proof of solvability
used arguments that took advantage of the upper triangular structure. This particular
change of variable does not apply to the situation in Theorem 1.1 as it relied heavily
on the t-independence.

We will be able to make the reduction to a matrix with 1 in the top left corner
via a very useful change of variables introduced by J. Feneuil in [11]. The change of
variable can be stated in n-dimensions, and has strong consequences when specialized
two dimensions. In R, let:

p:(x,t)— (z,th(z,t)),

where 1 < h < 2, and which, for 2¢|Vh| < h, is a bijection on R". Let .J, denote the
Jacobian of this change of variables:

If u is the solution to an operator £ = div(AV:), then, as observed in [11], then
u o p is the solution a new operator £, with matrix A, = det (J,)(J,) (Ao p)(J,) "

Il tV,h
A simple calculation gives that J, = | ——| .
0| h+tdh
As observed in [11], the matrix A, can be written in the form
(4.44) g LT I
. = |—- _|_ ,
’ C | h'd g
where
Al B
(4.45) A= Ci‘d , and Aj is the (n — 1) x (n — 1) block.
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The matrix B, is a Carleson perturbation matrix, that is
2

is a Carleson measure.

(4.46) 5(X)™ [ sup  |B,(Y)]
YEB(X,5(X)/2)

In particular, the result of [21] tell us that when (4.46) holds, the solvability of
hA| B
C ‘ h=td

solvability of Regularity problem for the operator with matrix A, for possibly different

value of ¢ > 1. As A, and A are related via the change of variables this also implies

solvability of the original Regularity problem for operator with matrix A for the same
qg>1

Regularity problem for the operator with matrix for some ¢ > 1 implies

Consider the case n = 2. Ideally, we would want to choose h = aj] so that the

matrix % has a 1 in the top left corner. It is only possible to make this
choice when 2¢t|Vh| < h. If that is not the case, we use the clever method of [11]
to achieve this objective after a finite sequence of steps instead of just one. Observe
that since ap; satisfies the Carleson condition (4.42) and A < a;; < A there exists an
integer N such that, for h = al_ll/ N, we have 2t|Vh| < h as well as the property that
1/2<h<2.

Asin [11], this can be iterated N times. After one iteration, we have that the solvabil-
ity of Regularity problem for an operator with matrix A for some ¢ > 1 can be deduced
from solvability of Regularity problem for an operator with matrix V;all h_af; } . In

22 22
the next iteration we relate it to the solvability of the Regularity problem for the op-
a1 a2
azg  h%ag
need to consider solvability of the Regularity problem for the operator with matrix
{hNall aio I ap

erator with matrix } Finally, after the N iterations we find that we

N = . As observed above for such matrices, Theorem 1.2
22 h™" ag Qg2 A11022

gives solvability of the Regularity problem for some ¢ > 1.

It is important to emphasise that Feneuil’s change of variables gives (4.46) only if
coefficients of the original matrix A satisfy (4.42), but we have reduced matters to this
situation. This finishes the proof of Theorem 1.1. U

5. REGULARITY PROBLEM FOR BLOCK FORM OPERATORS WHEN n > 2.

In this section we establish Theorem 1.1 in all dimensions for the Regularity problem.
The argument is not as simple as in the case n = 2, where we made use of Feneuil’s
change of variables. Instead, the ideas necessary for the n-dimensional result are closer
to the methods of [9].

Using the same reductions established in Section 4 - the flattening of the domain
and mollification of coefficients - we see that Theorem 1.1 holds provided we can solve
the L? Regularity problem in R”} for the block form operator (1.5) under the Carleson
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condition (4.42) for at least one (and hence for all) 1 < ¢ < co. This is precisely the
claim of Theorem 1.3, and we turn to its proof.
Consider therefore Ay as in Theorem 1.3 and denote by L, the operator

(5.47) Lou = diVH(AHV”u) + Uy
For each £k = 2,3,4,... let L, be a related rescaled operator in t-variable defined as
follows:
(5.48) Lyu = divy (A Vju) + uy,
where
(5.49) Aﬁ(:c,t) = Ay(x, kt), for all z € R" and t > 0.

We claim that for each k = 2,3,... the L? Regularity problem for Ly in R is
solvable if and only if the L? Regularity problem for £, in R’} is solvable.

This can be see as follows. Using the mean value theorem the coefficients Aﬁ can be
viewed as Carleson perturbations of coefficients of £, which are A. That is, similar
to (4.43), we have that

2

(5.50) S(X)™t sup |A(Y) — Aﬁ(Y)| is a Carleson measure.
YEB(X,6(X)/2)

Thus, if the L? Regularity problem for £, in R is solvable, then so is the L? Regularity
problem for £; in R? for some ¢ > 1 (by [21]). But for these block form operators,
solvability of the Regularity problem for one value ¢ > 1 implies solvability for all
values. Therefore we can deduce that the L? Regularity problem for £, in R is
solvable. The reverse implication has a similar proof.

Next, we consider what we can say about the Carleson condition for the coefficients
Aﬁ . We want to look at

dp(x,t) = |VxAﬁ(x, t)|?t dx dt.

Notice that the gradient is only taken in z variable, not in ¢, so we are not examining
the same (full) Carleson measure property of the coefficients. Given that (1.6) holds,
it follows that for

dp’(z,t) = |V, A (z,t)*t dx dt,

we have that

1/2
(551) ||,U0||C'arl < ||,U||C'arl and |va||(1’,t)| < %,

Let A C R™! be a boundary ball of radius r. Let T(A) be the usual Carleson region
associated with A.

To estimate the Carleson norm of p* in the region T(A) N {X : 6(X) < r/k}, a
change of variables (z,t) — (x, kt) together with the first the Carleson norm property
in (5.51) gives an upper bound of 1/k?. In the region T(A)N{X : 6(X) > r/k}, we
use the second estimate in (5.51) and altogether this gives:

1+ C(n)logk

12 : for some C'(n) > 0.

(5.52) 1"l cart < il car
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It follows that by choosing k large enough we can make the Carleson norm of p* as
small as we wish. This observation will be crucial for what follows.
From now on let By = Aﬁ for some large fixed k& which will be determined later. Let

(5.53) Lu = diV”(B”V”u) + Uy,

and we consider the Regularity problem for this operator on 2 = R’. Our objective
now is to solve the L? Regularity problem for £ for some ¢ > 1, thus proving Theorem
1.3.

Suppose that Lu = 0 and that u‘m = f for some f with V,f € L9.

In the spirit of the approach taken in [9] we consider the PDEs satisfied by each
Wy, = Opu for m = 1,2,...,n — 1 satisfies. Due to the block form nature of our
operator £ we have the following:

n—1
(5.54) Lw, = Z 0i((Ombij)w;) inQ, m=1,2...,n—1,
ij=1
o0
Observe that only wy, ..., w,_; appears in these equations and hence (5.54) is a weakly

coupled fully determined system of n — 1 equations for the unknown vector valued
function W = (wq,ws. .., w,_1) with boundary datum W‘m = V.f € LP. We call
this system weakly coupled because each 0,,b;; appearing on the righthand side has
small Carleson measure norm, which follows from (5.52) since k will be chosen to be
(sufficiently) large.

Hence, let us write w,, = v,,, + n,, where each v,, solves the Dirichlet problem

Lvp =0 Q,  Uplyy = Omf € LUOD).

As L is a block form matrix we know this Dirichlet problem is solvable for all 1 < ¢ < oo
and we have the following square and nontangential estimates:

(5.55) 1S (wm)lle = N (Wm)llLa S NOmfllLa,  m=1,2,....,n 1.

Thus each 7, solves

n—1

(5.56) L = Y 0((Ombi)(vj+m;)) mQ m=12.. n—1
i,j=1
nm‘ = 0.

o9
Our aim is to establish square and nontangential estimates for each 7, as well, and
thus also for w,,.
Let us start with the square function bound. The most convenient bound we can
get is when ¢ = 2 and hence from now on we shall assume that. Using ellipticity we
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see that

n—1
651 ISl ~ [ (Zbijammé‘mmH@M)z)tdwdt:
+

1,7=1

= = / (Enm)nmt drdt + 1 O (nm)2 dx dt,
7 2 Jrr
where in the second line we have integrated by parts. There is no boundary integral
due to the fact that t = 0 at the boundary. The second summand following the equality
in (5.57) vanishes since 7, = 0 at the boundary and 7,, — 0 as t — oo (due to the
decay of our solutions at infinity). Hence, only the penultimate term of (5.57) remains,
where we will substitute (5.56) and sum over m.

S USmIE = = [ 3T Bi(Bub)ws + )t de d

m<n + 4,5,m<n
(5.58) = / > (Ombi) (v + 1) 0t dex dt
+2]m<n
1/2 1/2
< 2 2 2 2
~ <Z ||S(77m)||L2) </R" VB |*([V| + |7 )tdxdt) ,
m<n i+

by Cauchy-Schwarz. Hence V = (vy,va,...,v,-1) and 7 = (91, M2, ..., Mn_1). For the
last term of expression above we use the Carleson property and also move the square
function term on the righthand side. This will give us:

(5.59) Y IS(ma)llze S IVaBy |t da dtcan (Z 1N (v 122 + ||N(nm)!|iz> :

m<n m<n

But for nontangential maximal function of v,, we do have (5.55) and hence we can
conclude that

(5.60) YISz < Ck) (HfoHiz + ||N(nm)!|iz> :

m<n m<n
Here C(k) — 0 as k — oo thanks to the choice of matrix B made above.

It remain to establish a nontangetial estimates of N(7,,) since we would like to move
such terms from the righhand side of (5.60).

Here we refer the reader to the paper [2] where a classical stopping time technique
has been used for similar estimates in the case of systems. (The idea of estimating
an integral of a nontangential maximal via good-\ inequalities and a Lipschitz graph
determined by the stopping time goes back to [18]. New ideas were needed to make
this approach work in the case of systems.) In particular, Lemma 5.1, Lemma 5.2 and
Corollary 5.3 of [2] hold without any modifications for the system 77 considered here.

What does change in the present context is Lemma 5.4 of [2], which we reformulate
as follows.

Lemma 5.1. Let 2 = R% and let L be a block-from operator as above. Suppose 1
is a weak solution of (5.56) in Q. For a fized (sufficiently large) a > 0, consider an
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arbitrary Lipschitz function b : R"! — R such that
(5.61) IVA| L~ < 1/a, h(x) >0 for all v € R™'.

Then for sufficiently large b = b(a) > 0 we have the following. For an arbitrary
surface ball A, C R"™* of radius r such that at least one point of A, the inequality
h(z) < 2r holds we have the following estimate for all m = 1,2,....,n — 1 and an
arbitrary ¢ = (c1,¢9, ..., Ch_1) € R:

// [ . 80(0)) — 28 < YD 00 Il D
m<n ” 1/6

IOl + Iy I M)
(5.62) +0||sb<ﬁ>||izm2r> + & i ax,

for some C € (0,00) that only depends on a, A\,n but not on 7, ¢ or A, and C(k) >0
depends only on k chosen to define By, the Carleson norm ||(t||can and has the property
that C(k) = 0 as k — oo.

Here IC denotes a region inside 2 such that its diameter, distance to the graph
(-, h(+)), and distance to A, are all comparable to r. Also, the cones used to define the
square and nontangential mazximal functions in this lemma have vertices on OS2.

Moreover, the term %// |7 — ¢ dX appearing in (5.62) may be replaced by the
K

quantity

(5.63) Crt (77 — &) (A7,

where A, is any point inside K (usually called a corkscrew point of A,.).

0) in the
Co(t)Gi ()

Proof. Let A, be as in the statement of our Lemma. and assume that (q,
center of our ball. Let ¢ be a smooth cutoff function of the form ((z,t) =
where

1 in (—oo,rg+ 1], 1 in A.(q),
(5.64) o {0 in [ro + 2r,00), S {O in R™\ Ay,.(q)
and
(5.65) r0:Co| + 7| VoG < ¢

for some constant ¢ € (0,00) independent of r. Here 7y = 6sup,en, (4 A(z). Observe
that our assumptions imply that

0<ry—0h(z) <ry =<, for all z € Ay.(q),
for 0 € (1/6,6).
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Our goal is to control the L? norm of 5y, (-, 0k(-)) — ¢y We fix m € {1,...,n — 1}
and proceed to estimate

/ (1, OB (2)) — c)2d < T = / (1 (2, O (2)) — )¢z, O(2))
Ar(q) Ao (q)

// (M (2, ) — c)*C(x, )] dt da,
S(q,r,r0,0h)
where S(q,r,ro,0h) = {(z,t) : © € Ay, (q) and Oh(x) <t < rg+ 2r}. Hence:

<=2 // (nm - Cm)at(nm - Cm)gdt dx
S(q,r,ro0,0h)

(5.66) - // (N — )2 (2, 1) 0 C dt dw =: A+ 1V
S(q,r,r0,0h)

We further expand the term A as a sum of three terms obtained via integration by
parts with respect to ¢ as follows:

A= -2 // (M — €m) O (M, — €) (Oet)C dt dex
S(q,r,ro,0h)
:2// Oy | tC dt da
S(q,r,ro,0h)
+ 2 // (N — cm)ﬁft(nm — cp)tC dt dx
S(q,r,r0,0h)

+2 // (nm - Cm)atnm to,C dt dx
S(q,r,r0,0h)

(5.67) = I+ II+1III.

We start by analyzing the term /1. As the 7, solve the PDE (5.56) then we have
for 0, — e

and thus

n—1 n—1

(5.68) (= €m) = D 0l(Ounbig) (v +17)) = D 0u(b;0; (1l — €m)).

2,7=1 i,7=1
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In turn, this permits us to write the term I as

1,7<n S(q,ryro, 9ﬁ
+2) // M — ¢m)0; ((Ombij) (v; + m;)) tC dt dz
ij<n S(q,ryro0, Gh

(5.69)
Integrating both terms by parts w.r.t. 0; then yields

S

ij<n (q,r,r0,0h)

+2) // — )0 (M) £(0:C) dt d:

ij<n qrr()Gh

2 //S(q r.r0,0h) (Ombiy ) (Oimim) (v; -+ HC dt d

1,j<n

23 (Oub)m = )y + )0 e

ij<n (q,r,r0,0h)

-2 Z/ (boundary terms)t(v; dS
i>0 7 0S(q’;rro,0h)
(570) ::I]1+IIQ+]I3+I]4+I]5.

The boundary integral (term II5) vanishes everywhere except on the graph of the
function #h which implies that

1Ll <C Z / ) (@, O(2))) V. () (i, B1() () C i, OB () 1] S,
e Z / Byl (o — o) 1)) 1y + 07) (2, 082 () (, O()) o5 dS.
]‘ 2
<3 /A  nl,00(2) = ), ()
(5.71)
el /A Ve, ) o)+ OO /A IRCEREE

1
= 51—1—[]6—1—[]7.

Here we have used the Cauchy-Schwarz for the first two terms and then the fact that
VB[t < +/C(k) with C'(k) — 0 as k — oo which is a consequence of (5.51) and how
we have defined Bj.
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We can hide the term 17 on the lefthand side of (5.66), while the second term after
integrating /s in 6 becomes:

/ 115 do < C / / IV (2, 0(2)) 2| () 2.
/6 AQT([]

(5.72) < // V2t dt dz < Sy [22a
AQT( )X[O 7‘0}

The term [II; can be estimated using the nontangential maximal function and is
bounded by

(5.73) 117 S COR) (INa D qany + INa(V) B

where in the last line we have used (5.55).
Some of the remaining (solid integral) terms that are of the same type we estimate
together. Firstly, we have

(5.74) 1T+ 11| S 1Sh() 172 (as)-

Here, the estimate holds even if the square function truncated at a hight O(r). Next,
since 7|V(| < ¢, if the derivative falls on the cutoff function ¢ we have

L+ 11| < // Vi 7 — &l dt da
[0,2r] x Ag, r

1/2
<(f - dtdx) ELGIPN.
0,2r] X Aoy

(5.75) S S () 22200 1 Va (T = |2 (A0 -
The Carleson condition for [V B |?t and the Cauchy-Schwarz inequality imply
L] < CURISH ) 2200 N (D 7200 + INa(V 72000 ">
For the term 11, we use both that 7|V({| < c and |V,B|t < /C(k). It follows that

t
misew [ g-ay i .
[0,27] X Ag, r
An application of Cauchy-Schwarz inequality then implies that

11| S CR)INa(T = O)I72(a0) + INa(D 220, + 1N (V)72 (a0,)-
Finally, the interior term IV, which arises from the fact that 9y( vanishes on the set
(—00, 79 + 1) U (rg + 2r,00) may be estimated as follows:

1
(5.76) v < - // 17— &2 dt da.
r Aoy (q) X [ro+r,ro+2r]

We put together all terms and integrate in . The above analysis ultimately yields
(5.62). Finally, the last claim in the statement of the lemma that we can use (5.63)
on the righthand side instead of the solid integral is a consequence of the Poincaré’s
inequality (see [3] for detailed discussion). O
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We now make use of Lemma 5.1, involving the stopping time Lipschitz functions
6h, .(w), in order to obtain a localized good-A inequality. We omit the proof as it is
identical to the one given in [3]. Here

Mf(x) := sup][ |f(2)|dz for x € R",
r>0 J|z—z|<r

denotes the standard Hardy-Littlewood maximal function on OR’: = R" 1.

Lemma 5.2. Let L be an operator as in (5.1). Consider any boundary ball Ay =
Ay(q) C R et Ay = (q,d/2) be its corkscrew point and let

(5-77) Vo = |ﬁ(Ad)"

Then for each vy € (0, 1) there exists a constant C(7y) > 0 such that C(v) — 0 asy — 0
and with the property that for each v > 21y and any n that satisfies (5.56) there holds

{o e R 5 Nalmvrcan) > v (MOSEM))2 <,
(CRM(N2(pxray) + MINZV))])? < 4,
(M(SENM(NZ(eran) " < wl

(5.78) < C(y)[{z e R Nalnxray) (@) > v/32}].

Here xr(a,) is the indicator function of the Carleson region T(Aq) and the square
function Sy in (5.78) is truncated at the height 2d. Similarly, the Hardy-Littlewood
maximal operator M is only considered over all balls A" C A,,q for some enlargement
constant m = m(a) > 2.

Finally we have the following proposition, again by the same argument as in [3].

Proposition 5.3. Under the assumptions of Lemma 5.2, for sufficiently large k we
have that for any p > 0 and a > 0 there exists an integer m = m(a) > 2 and a finite
constant C = C(n,p,a, ||pl|cart) > 0 such that for all balls Ay C R"™' we have

(5.79)  INZ(@Dllzran < CUST (Do + CINa(V)zoa,0 + Cd" VPl Ag)],

where Ay denotes the corkscrew point of the ball A,.
We also have a global estimate for any p > 1 and a > 0. There exists a constant
C > 0 such that

(5.80) INa (i) ln@r1) < ClSa@ o) + ClVaf s,

Here we have used the estimate (5.55).

We can now combine Proposition (5.80) with estimate (5.60). It follows that
(5.51) IN@Dllzeesy < CUS s + CIVafllzwo
< ClVafle + CRIN ) 2 @n1)-

For k chosen so large that the constant C'(k) < 1/2 we then obtain
(5.82) [N z2@n-1) < 20|V fll2@n-).
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Then by (5.55) we obtain a similar estimate for W = (wy,wsy . .., w,_1):
(5.83) INW)l2@n-1) S (Ve fllz@n-1y,

which would imply that the L? Regularity problem for £ is solvable if we can also
establish nontangential estimates for w,, = d;u.

We establish an analogue of Lemma 5.1 for the function w, — ¢ for an arbitrary
¢ € R. Clearly, we have that

n—1
(5.84) Llw, —c) =Y 0((Oubij)wy).

ij=1
It follows that the calculation of Lemma 5.1 can be followed step by step. The only
difference is that we cannot claim any smallness of the Carleson measure as the measure
we obtain is that of |9,B)|*¢ which is not small for any k. This will not be a problem
since the terms that come with it contain N(W') for which we already have required
estimates. Hence we can prove that

6
[ [ e nta)) —of dedo < ClSuan) sl Vol = s
1/6 J A,

+C((IINa(wn = )220y + 1S6(wn) | 220 I Na(W) | 2(80,) + 1Na(W) [ Z2(a5,))
(5.85)

C
+ClSsw) sy + 7 [ fon = e ax
From this we can obtain a good-lambda inequality and eventually a global estimate as
before in the form of
(586) [Nl < OISl ges) + CINOV) g,

It remains to prove square functions estimates for S(w,). But since we have estimates
for S(W) the only remaining term that needs an estimate is [, [Oyu|*tdt dz. Since
+

Lu = 0 this PDE implies that
(5.87) / Owul*tdtde = " 0i(biy0ju)0u(berOru)t dt da
Ri ©,7,8,r<n

< CYISOW) 2 +c/ VL By 2W [ dt da
Ry

< CISW)La@n-1y + CRIN W) L2 @n)-
It follows that || N (wy)|| r2@n-1) < C||N(W)| p2@n-1) and hence by (5.83) the Regularity

problem in L? for £ is solvable on R”. As this also implies solvability for Ly, this
completes the argument.
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