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ABSTRACT

Stuck-At-Fault (SAF) defect of memristor generated from immature
fabrication and heavy device utilization makes neuromorphic com-
puting systems commercially unavailable. To mitigate this problem,
a Reconfigurable Mapping Algorithm (RMA) is proposed in this
paper. Based on the analysis for the VGG8 model with CIFAR10
dataset, the experiment results show that the RMA is efficient in
restoring the inference accuracy up to 90% (the original accuracy
without SAF) under SAFs from 0.1% to 50%, where Stuck-At-One
(SA1): Stuck-At-Zero (SA0) = 5:1, 1:5, and 1:1. Additionally, the
RMA improves the accuracy more than 50% in presence of high
nonlinearity LTP = 4 and LTD = -4 and the standard conductance
drift (10 years at 85 degrees Celsius) nearly has no influence on the
inference accuracy of the DNN with the RMA.
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1 INTRODUCTION

Nowadays, a DNN (Deep Neural Network) model deployed on
neuromorphic computing systems is more popularThis is because
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DNNs have achieved a tremendous success due to their unparal-
lel performance in important applications, such as computer vi-
sion, image processing, natural language processing, etc. [5] and
meanwhile neuromorphic computing systems are highly effective
in the Internet of Things (IoT) systems to perform computation,
communication, and storage functions. However, with the increas-
ing customer demand, DNN structures become more complex and
require huge computational resources. Since the downscaling of
the conventional CMOS technology is coming to the plateau, the
CMOS-based neuromorphic computing devices are facing insur-
mountable challenges to deal with such DNN problems, because
the computing speed of the CMOS-based neuromorphic computing
systems has no space to improve and cannot further accelerate Al
tasks. This situation creates an undesirable standstill towards the
further advancement of the neuromorphic computing systems.

As the emerging non-volatile memory, memristors can be a
rescuer from this deadlock. Besides non-volatility property, mem-
ristor exhibits wonderful characteristics like multilevel resistive
state, low computational complexity [13], sub-nanosecond switch-
ing speed [16], sub-10-nm scalability [9], low energy dissipation
of few pJ per bit [14, 16], long write-erase endurance [12] and
CMOS-compatibility [7]. Additionally, memristor enables Compute-
In-Memory (CIM) where the memory would be integrated into
processing task to boost the system. The crossbar architecture and
multilevel cell storage (multiple bits per cell) of memristors can
very efficiently perform the vector matrix multiplication as the CIM,
which is the most pivotal operation in the DNN algorithm.

Although memristor exhibits excellent properties, Stuck-At-Fault
(SAF) in memristors causes reliability issue. SAF denotes a device
when the resistance of a memristor freezes at High Resistive State
(HRS) or Low Resistive State (LRS) [2]. Since the resistance variation
is directly related to the mapped weights, the defective memristor
will provide wrong weight and result in the inference error to the
output of the DNN. To increase the immunity against SAF defect,
several works have been proposed so far [3, 15, 18, 20]. These pro-
posed hardware-based solutions have some limitations. Most of
them use a complex algorithm to detect the defective memristors
and most valuable weights first. Then a complex control circuit pre-
vents those significant weights to be mapped to the defective cells.
However, random patterns in SAF require individual optimization
for each memristor array that is impossible when it comes to mass
memristor-based computing device production.
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Figure 1: Overall Weight Distribution of VGG8 Model Trained
by CIFAR10 Dataset

So, in this paper, a new technology — Reconfigurable Mapping
Algorithm (RMA) is proposed in this paper to mitigate the influ-
ence of SAFs without existing limitations of previously proposed
techniques.

2 METHODOLOGY
2.1 Stuck-At-Fault (SAF)

When the resistance state of the memristor is stuck at LRS, it is
known as SAO defect. A newly fabricated memristor possesses
extremely high resistance. So, a forming process is required at
the wafer level to initialize the memristor for regular read/write
operations. The forming process is an action of inserting high
tester voltage in every memristor for decreasing the resistance
level to the normal LRS for around 100 us. The delicate insulator
layer in the metal-insulator-metal (MIM) structure can severely be
compromised during this process. Thus, some memristors would be
overly formed because of variations in the unstable taster voltage
and the thickness of the insulator layer. The resistance of the overly
formed memristors stay at LRS forever and input stimulus pulse(s)
fail(s) to change its resistance state.

On the other hand, when the resistance state of the memristor
is stuck at HRS, it is known as SA1 defect. Word line (WL), bit
line (BL), and select line (SL) are the three terminals to access
each memristor inside the memristor crossbar architecture. But
the broken WL makes memristor cells inaccessible for new write
operation. Broken WL creates an open circuit where the resistance
is unlimited. When the read circuit tries to read the resistance of
those memristors, it always mistakes the cell as HRS.

It has been found that 9.04% and 1.75% memristor cells are
affected by SA1 and SAO respectively, which is approximately
SA1:SA0=5:1 [2]. But this is not always the case. This ratio may
vary from device to device. It has also been mentioned in [2] that
over forming can cause 60% of the memristor cells to be SA0.

2.2 Weight Distribution

To validate the effectiveness of the memristor-based neuromorphic
computing system, a VGG8 model along with CIFAR10 dataset are
used. Fig. 1 shows the overall weight distribution of VGG8 model
trained by CIFAR10 dataset. VGG8 model contains 12.97 million
synapses to represent weights. Among the 12.97 million synaptic
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weights, 43.38% is negative, 25.53% is positive, and 31.18% is neutral
weight. As listed in Fig. 1, the mean values of the layers are inclined
towards zero and the standard deviations implies that those values
are clustered closely. Besides, 99% of the weights are situated within
+(3%1077).

2.3 Reconfigurable Mapping Algorithm (RMA)

After analyzing the weight distribution in Fig. 1, an Reconfigurable
Mapping Algorithm (RMA) is proposed in this paper. SAF causes
huge discrepancy between the original weight and mapped weight.
Hence, the inference accuracy degrades significantly even with a
very small amount of SAFs inside the memristor crossbar array.
The RMA maximally avoids the negative impact of SAF cells for
systems and bring back the high accuracy.

RMA When SA1:SA0 = 5:1. According to conventional mapping,
weights from the algorithm ranging from [-1, 1] will be mapped to
memristor devices based on the resistance level [LRS, HRS]. The
RMA will use the same resistance level [LRS, HRS], but it rearranges
the same weights between [0, 1]. When SA1:SAO0 = 5:1, most of SAFs
are SA1. The algorithm for the RMA is as follows.

Wa_{l w=oo Wb_{l—W w>o

1-|W| W<o, 1 W <o,

where, W, and W, are the two positive portions of a single weight
stored in two different memristors. The desired weight is extracted
from the simple subtraction (W;-W;,) during the execution. For
example, when SA1:SAQ = 5:1, the RMA splits the original weight
0.3 into 1 and 0.7 according to equation 1, and 2. Those two weights
will be mapped in two memristors and an op-amp based subtractor
will extract the original weight (1-0.7) during the execution. This
process creates huge number of "1". After mapped those “1”, most of
them replaces most of SA1s. In this case, the accuracy degradation
can be greatly suppressed.

RMA When SA1:SA0 = 1:5. When SA1:SA0 = 1:5, SAOs are
dominant in the memristor crossbar array. The algorithm for the
RMA is as follows.

we={" W=D wb:{o @

0 W<o, Wl w <o,

Same as before, each weight is split into two positive weights W,
and W, and be mapped to two different memristors. During the
execution, the subtractor subtracts the two weights (W;-W;,) and
bring back the original algorithmic weight. For example, negative
weight -0.3 is split into 0 and +0.3 and is mapped in two memris-
tors. At the end, the op-amp based subtractor generate (0-0.3), and
the original weight (-0.3) is brought back. Since the conventional
mapping takes place between [-1, 1] according to the resistance
state [LRS, HRS], memristors stuck at LRS always report -1. But,
the range of weight values are changed to [0, 1] with respect to the
same resistance level [LRS, HRS] after applying the RMA. So the
newly programmed memristors will provide “0” when it is stuck
at LRS. By following equaton 3 and 4, huge number of "0" will be
created and mapped to the crossbar architecture. Since most of the
"0" replaces the SAO cells, the inference accuracy of the DNN model
with SAFs improves .

RMA When SA1:SA0 = 1:1. In previous conditions, the RMA
works in such a way that most of weights inside the crossbar array
are mapped to either HRS or LRS based on the dominance of the SAF.

W >o,
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But sometimes SA1 and SAQ are equal and happen simultaneously,
for example, SA1:SA0 = 1:1. To handle this situation, the RMA uses
the same approach of splitting a single weight into two positive
weights. But it creates enormous amount of “1” as well as “0” at the
same time so that most of the SA1 and SAO0 are replaced by those
newly mapped “1” and “0”. This condition follows the following

algorithm.
w W>o0, 0 W >0,
We={0 W<o (5 W,={|w| W<o, (6
1 wW=o, 0o Ww=o,

3 RESULT AND DISCUSSION

A physical 40 nm Ag(Silver):a-Si (amorphous Silicon) memris-
tor is manufactured and tested thoroughly. Characteristics of the
Ag(Silver):a-Si memristor is incorporated into DNN+NeuroSim
platform for evaluations. DNN+NeuroSim is an integrated frame-
work that emulates neural networks (DNN) inference performance
on the memristor-based hardware [17]. Here, an 8-layer DNN model
VGGS for CIFAR10 dataset is utilized for the evaluation.

3.1 Weight Distribution After Applying RMA

To enhance the immunity against SAFs when SA1:SA0 = 5:1, af-
ter applying the RMA, the initial weight distribution of the VGG8
model, as shown in Fig. 1, is altered into a different shape, as shown
in Fig. 2 [16]. Equation 1 and 2 enable this feat. When SA1 is domi-
nant, the algorithm maps 69.96% weights to “1” or HRS. As a result,
most of the newly mapped “1” replaces the defective cells that are
stuck at HRS (SA1). Similarly, the other 30.04% cells are mapped to
sub-1 regions (less than 1 but greater than or equal 0.9). If those
sub-1 values are mapped to the SA1 defective cell, the deviation
between the mapped weight and the weight from the algorithm is
very insignificant. Accordingly, it results in very low accuracy loss
in extreme SAF conditions.
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Figure 2: Weight Distribution of VGG8 Model After Applying
RMA for SA1:SA0 = 5:1

Similarly, if the SAO is dominant inside the crossbar, that is
SA1:SAQ = 1:5, through equation 3 and 4, the RMA maps 65.71% of
the weights to the “0” or LRS, and the rest of the 34.29% weights are
also mapped to near zero regions, as shown in Fig. 3. Most of the
newly mapped “0” replaces the defective cells that are stuck at LRS
(SAO0). Therefore, memristors affected by the SA0 act like a defect
free device and do not contribute much to the degradation of the
inference accuracy of the DNN.
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Figure 3: Weight Distribution of VGG8 Model After Applying
RMA for SA1:SA0 = 1:5
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Figure 4: Weight Distribution of VGG8 Model After Applying
RMA for SA1:SA0 = 1:1

However, when both parts of the SAF are dominant, equation 5
and 6 assigns a large number of weights to both LRS and HRS. As
shown in Fig. 4, 34.41% weights are converted to “0” or LRS and
31.82% weights are converted to “1” or HRS in case of SA1:SA0
= 1:1. The rest of the weights are very small, and most of them
almost equal to zero which are not so much affected by the SA0
defects. By mapping enormous weights to “0” or “1”, the RMA
creates significant immunity against SA1:SA0 = 1:1.

3.2 Accuracy with RMA under Different SAF

Accuracy Restoration When SA1:SA0 = 5:1. The original infer-
ence accuracy of the DNN model achieved by the ideal memristor-
based neuromorphic computing systems is 90% without any SAFs.
To investigate the deteriorating impact of SAF, SAFs from 0.1% to
50% is introduced. As shown in Table. 1, before the RMA is used, the
inference accuracy decrease starts as 0.2% SAFs. From 2.5% SAFs,
the DNN model becomes completely damaged and provides only
10% accuracy which is like random guessing. The RMA can restore
the inference accuracy to 90% when the SAF is less than 10%. The
RMA is also super-efficient even with extreme conditions. At 50%
SAFs, it achieves 80% accuracy.

Accuracy Restoration When SA1:SA0 = 1:5. Similarly, when
SA1:SA0 = 1:5, conventional mapping degrades the inference ac-
curacy quicky. As listed in Table. 1, with as small as 1% SAFs, the
DNN model becomes completely damaged and shows only 10% ac-
curacy. The RMA quickly recovers the original inference accuracy
(90%) when SAF is smaller than or equal 10%. Table. 1 also explains
that, for the RMA with SA1:SA0 = 1:5, the maximum and minimum
accuracy improvements are 80% and 72%, respectively.
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Table 1: Accuracy Degradation and Restoration with Different SAF Conditions

SAF Accuracy Accuracy Before RMA Accuracy After RMA
(SA1and SA0) No SAF SA1:SA0=5:1 SA1:SA0=1:5 SA1:SA0=1:1 SA1:SA0=5:1 SA1:SA0=1:5 SAI1:SA0=1:1
0.10% 90% 88% 90% 90% 90% 90%
0.20% 89% 83% 90% 90% 90% 90%
0.50% 80% 12% 90% 90% 90% 90%
1% 42% 10% 90% 90% 90% 90%
2.50% 10% 10% 90% 90% 90% 90%
5% 10% 10% 88% 90% 90% 89%
7.50% 90% 10% 10% 83% 90% 90% 89%
10% 10% 10% 54% 89% 90% 89%
15% 10% 10% 10% 89% 89% 88%
20% 10% 10% 10% 88% 88% 87%
30% 10% 10% 10% 87% 87% 83%
40% 10% 10% 10% 81% 85% 73%
50% 10% 10% 10% 80% 82% 66%
Accuracy Restoration When SA1:SA0 = 1:1. Unlike the other 4 Areafor ; . LD :
two conditions, even the conventional mapping can create a rela- Sub-1 —O Sibol NL=0
tively strong immunity with low ratio SAFs when SA1:SAQ = 1:1. o3l C B NL=1 ]
As shown in Table. 1, the conventional mapping can achieve high 2 /o 1 (HRS) h . Etz3
accuracy up to 7.5% SAFs without the RMA. As shown in Fig. 1, g 5L I LTP l e NL=4
31.18% weights of the DNN model are neutral and the overall mean 7 NL=0 '
of the eight layers are inclined towards zero. When the conven- é 2 NL=1 \D\ )
tional mapping deals with SA1:SA0 = 1:1, the circuit nearly reads ! | ’ Areator NL=2 N\ |
equal number of “1” and “-1” from the crossbar array based on the Neat=) — Etj ?\}zf‘ltg‘
resistance level [LRS, HRS]. After the execution of the DNN model, 0 ' '
0 50 100 150 200

those “1” and “-1” cancel out each other’s adverse impact and bring
back the mean value closer to zero again. However, the inference
accuracy of the conventional mapping drops fast when the SAFs are
greater than 7.5%. It even drops to 10% accuracy at 15% SAFs. With
the RMA, the DNN model achieves approximately 90% accuracy
even with significantly high ratio SAF. According to Table. 1, the
RMA can improve the inference accuracy up to 79%. The reason
behind this significant improvement is shown in Table 2. Here a
practical scenario, SA1:SA0Q = 1:1 with 10% SAF, is taken as an exam-
ple. After the RMA is applied, approximately 6% of defective cells
are successfully replaced by the newly mapped “0” (LRS) and “1”
(HRS). So, the 10% SAFs acts like a 4% SAFs. Accordingly, as listed
in Table. 1, the RMA restores 89% accuracy where conventional
mapping provides only 54% accuracy at 10% SAFs under SA1:SA0
= 1:1. Table 1 also shows that conventional mapping achieves 88%
accuracy with 5% SAFs which validates the result of achieving 89%
accuracy when the RMA deals with 10% SAFs (the visible defect is
4% in Table 2, similar with 5%).

Moreover, the scenario in Table 2 is the worst-case scenario. After
the RMA is applied, the range of weight is squeezed within [0,1]
instead of [-1,1] and 34.41% weights are mapped to near zero region,
as shown in Fig. 4. The RMA not only reduces the weight range
but also creates a huge near zero regions that helps compensate
the accuracy loss caused by the SA0 defective cells. However, the
RMA struggle to achieve very high accuracy with extreme 50% SAF,
when SA1:SA0 = 1:1. This is because, when the SAF is 50%, SA1
is 25% and SAO0 is 25%. But as shown in Fig. 4, although the RMA
maps 34.41% cells to “0” and 31.82% cells to “1”, they can not replace
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Figure 5: Non-Linearity of Memristor cells.

all SA1 and SAQ defective cells. It possibly results in relatively low
inference accuracy.

3.3 Accuracy Restoration with Non-Linearity
Apart from SAFs, memristor is additionally afflicted by non-linearity.

The weight of the synapse is represented by the resistance/conductance

of the memristor, which must be updated frequently during the
training and inference process as specified by learning algorithms.
Weight increment (or long-term potentiation, LTP) and decrement
(or long-term depression, LTD) should ideally be proportionate to
the number of writing pulses [6]. However, physical restrictions
such as inherent drift and diffusion dynamics of the ions/vacancies
cause the inaccurate weight updating with respect to the input
stimulus pulse(s) [8, 22]. Ideally, in the weight updating process,
the change in the resistance of an ideal synapse device is propor-
tional to number of stimulus pulses. In Fig. 5, the curves (dark)
represent the actual resistance value of a memristor device with
respect to the number of input pulses where the pulses possess
the same duty cycle and the same amplitude, and the straight line
(light) represents the hypothetical resistance value of the ideal case.
For instance, as shown in Fig. 5, with LTP = 0 and LTD = 0, two
ideal memristors produce two resistive states A and B, respectively.
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However, with strong nonlinearity LTP = 4, LTD = -4, an abrupt in-
cline and decline of the resistive state is obtained, which are labeled
as C and D, respectively. This inaccurate weight updating directly
impact the overall performance of the DNN model.

The nonlinearity of LTP = 1.75 and LTP = -1.46 is taken into
account in all of the results from Tables 1 and 2. However, the
conventional mapping totally fails with the inclusion of very high
nonlinearity. The RMA is efficient in restoring the high accuracy
even with high nonlinearity. As listed in Table 3, when SAF is 1%
for SA1:SA0 = 1:5, 1:1, and 5:1, the RMA recovers 70% inference
accuracy which was 10% before. Similarly when SAF is 20%, the
RMA achieves over 60% accuracy.

This is because the RMA maps majority of the weights at the LRS
or HRS where the influence of the non-linearly is absent, as shown
in Fig. 5. Hence, the nonlinearity cannot cause any negative impact.
As shown in Figs. 2, 3, and 4, when SA1:SA0 = 5:1, 99% weights are
mapped to “1” or HRS and sub-1 region; when SA1:SA0 = 1:5, 99%
weights are mapped to “0” or LRS and sub-0 region; when SA1:SA0
= 1:1, 99% weights are mapped to HRS and LRS; they are all not
affected by the non-linearity. Since in each case, the tendency of
the RMA is to map weights to the HRS or LRS are almost always
equal about 65% (as shown in Figs. 2, 3, and 4), the RMA has a
similar effectiveness for three conditions SA1:SA0 = 1:5, 1:1, and
5:1. Accordingly, Table 3 listed a similar accuracy restoration after
applying the RMA for three conditions.

Table 2: Comparison of Actual Defect and Visible Defect After
Applying RMA When SAF = 10%

Number of Iterations Actual Defect Visible Defect
1 4.02%
2 3.98%
3 4.02%
4 4.03%
5 4.04%
6 3.99%
7 10% 4.05%
8 4.00%
9 4.00%
10 4.01%
11 4.03%
12 4.03%

3.4 Retention

Retention is defined as the ability of the memristor device to retain
its programmed state over a long period of time [4]. Typically the
retention ability of a memristor is more than 10 years at 85 degrees
Celsius. As shown in Table 4, four conductance drift scenarios have
been discussed for the retention analyzed: Drift to HRS, Drift to
LRS, Drift to Middle, and Random Drift.

Here 10% SAF along with different drift has been considered
in Table 4. The RMA can successfully restored the high inference
accuracy even with the different drift conditions. The reason is
that we split a single weight into two numbers and store it in two
memristors. In some cases, the two weights are affected by the
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Table 3: Accuracy Restoration Using Adaptive Mapping
Method in Presence of Significant Non-Linearity

Accuracy Before RMA  Accuracy After RMA

SAF  (LTP=4,LTD=-4)  (LTP=4,LTD = -4)
5:1 1:5 1:1 5:1 1:5 1:1
0.1% 61% 56% 71% 71% 71% 71%
1% 10% 10% 70% 70% 70% 70%
25% 10% 10% 65% 70% 69% 65%
20% 10% 10% 10% 64% 67% 60%
50%2 10% 10% 10% 50% 50% 24%
Table 4: Impact of Drift on RMA
Drift SA1:SA0 =5:1 SA1:SA0=1:5 SA1:SA0=1:1
Drift to HRS 89% 90% 90%
Drift to LRS 89% 90% 88%
Drift to Middle 90% 90% 90%
Random Drift 89% 89% 89%

same amount of drifts, and therefore after the subtraction, the same
difference is obtained before/after drift. Finally, the DNN can get
the desired weight during execution.

3.5 Chip Area Estimation

The memristor based neuromorphic computing chip is made up of
a number of tiles, a global buffer, neural functional computation
units such as accumulating units, activation units, pooling units, as
well as computation units for weight gradient. In each tile, there
are several processing elements (PEs), tile buffers for loading neural
activations, accumulation modules for adding partial sums from
PEs and output buffers. The total size of a memristor based DNN
chip is shown in Table 6.

The total chip area with RMA is 0.38% larger than the DNN with-
out the RMA. It can be negligible, considering the great contribution
of the RMA on the accuracy and immunity to SAFs.

Table 5: State-of-The-Art

Parameters
State- No No No Consideration High Acct%racy
of- X Complex . Restoration
Intricate Separate of all Possible X
The-Art Algorithm Read Customization SAF Ratio on all Possible
5 Circuit SAF Ratio

[16] v v v x x
[15] x x x x x
3] x x x x x
[20] x \/ x x x
[18] x x x M x
(11] . v v « «
[21] x v x x x
[1] x \/ x x x
[10] x v x x x
[19] v v x x x
This Work v v v v v

4 COMPARISON WITH STATE-OF-THE-ART

As shown in Table 5, our proposed method offers some advan-
tages over the state-of-the-art. So far, most of the SAF handling
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Table 6: Area Comparison Between Before and After Reconfigurable Mapping Algorithm (RMA)

Items

Before RMA After RMA

Total Compute-In-Memory (memristor) array
Total IC Area on chip (Global and Tile/PE local)
Total ADC Area on chip

Total Accumulation Circuits on chip (Adders, shift Adds accumulation units)
Other Peripheries (decoders, mux, switch matrix, buffers, pooling, and activation units)

Weight Gradient Calculation
Differential Reading Circuit (Op amp based subtractors)

7.30144 X 10°um
1.20372 x 107 ym
5.40220 X 107 yum

3.65072 X 10°um z
2
2
1.05098 X 107 yim?
2
2
2

2
1.20372 x 107 ym?
5.40220 x 107 um?
1.05098 x 107 ym?
9.57562 x 107 um? 9.57562 x 107 ym
9.66804 x 10°um? 9.66804 x 10°um

0 3.01333 x 10%um

Total Chip Area

9.61777 x 107 um®  10.82152 x 107 um? (0.38% Overhead)

approaches develop an intricate algorithm to determine the signifi-
cant weights first. Then a complex read circuit identifies SAFs free
regions for mapping those significant weights. However, These ap-
proaches cause a large hardware and software overhead. The RMA
can be used as a ubiquitous solution to avoid all these complexities.

5 CONCLUSION

High integrated density and simple crossbar architecture makes
memristor suitable for the implementation of large and complex
DNN model in neuromorphic computing systems. But unavoidable
SAF defects impede its commercial success, because the inference
accuracy drop is inevitable. In this paper, the RMA is proposed
to deal with such accuracy degradation. The experiment results
show that the RMA can restore the interference accuracy to 90%
when the SAF is less than or equal to 7.5%/10%/2.5% at SA1:SA0 =
5:1/1:5/1:1. Even in some extreme cases, for example SAF = 50%, the
RMA is also effective and achieves the accuracy up to 80%/82%/66%
at SA1:SA0 = 5:1/1:5/1:1. Finally, as compared with state-of-the-art,
our proposed method implies the superiority.
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