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ABSTRACT

Stuck-At-Fault (SAF) defect of memristor generated from immature

fabrication and heavy device utilization makes neuromorphic com-

puting systems commercially unavailable. To mitigate this problem,

a Reconfigurable Mapping Algorithm (RMA) is proposed in this

paper. Based on the analysis for the VGG8 model with CIFAR10

dataset, the experiment results show that the RMA is efficient in

restoring the inference accuracy up to 90% (the original accuracy

without SAF) under SAFs from 0.1% to 50%, where Stuck-At-One

(SA1): Stuck-At-Zero (SA0) = 5:1, 1:5, and 1:1. Additionally, the

RMA improves the accuracy more than 50% in presence of high

nonlinearity LTP = 4 and LTD = -4 and the standard conductance

drift (10 years at 85 degrees Celsius) nearly has no influence on the

inference accuracy of the DNN with the RMA.
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1 INTRODUCTION

Nowadays, a DNN (Deep Neural Network) model deployed on

neuromorphic computing systems is more popularThis is because
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DNNs have achieved a tremendous success due to their unparal-

lel performance in important applications, such as computer vi-

sion, image processing, natural language processing, etc. [5] and

meanwhile neuromorphic computing systems are highly effective

in the Internet of Things (IoT) systems to perform computation,

communication, and storage functions. However, with the increas-

ing customer demand, DNN structures become more complex and

require huge computational resources. Since the downscaling of

the conventional CMOS technology is coming to the plateau, the

CMOS-based neuromorphic computing devices are facing insur-

mountable challenges to deal with such DNN problems, because

the computing speed of the CMOS-based neuromorphic computing

systems has no space to improve and cannot further accelerate AI

tasks. This situation creates an undesirable standstill towards the

further advancement of the neuromorphic computing systems.

As the emerging non-volatile memory, memristors can be a

rescuer from this deadlock. Besides non-volatility property, mem-

ristor exhibits wonderful characteristics like multilevel resistive

state, low computational complexity [13], sub-nanosecond switch-

ing speed [16], sub-10-nm scalability [9], low energy dissipation

of few pJ per bit [14, 16], long write-erase endurance [12] and

CMOS-compatibility [7]. Additionally, memristor enables Compute-

In-Memory (CIM) where the memory would be integrated into

processing task to boost the system. The crossbar architecture and

multilevel cell storage (multiple bits per cell) of memristors can

very efficiently perform the vector matrix multiplication as the CIM,

which is the most pivotal operation in the DNN algorithm.

Althoughmemristor exhibits excellent properties, Stuck-At-Fault

(SAF) in memristors causes reliability issue. SAF denotes a device

when the resistance of a memristor freezes at High Resistive State

(HRS) or Low Resistive State (LRS) [2]. Since the resistance variation

is directly related to the mapped weights, the defective memristor

will provide wrong weight and result in the inference error to the

output of the DNN. To increase the immunity against SAF defect,

several works have been proposed so far [3, 15, 18, 20]. These pro-

posed hardware-based solutions have some limitations. Most of

them use a complex algorithm to detect the defective memristors

and most valuable weights first. Then a complex control circuit pre-

vents those significant weights to be mapped to the defective cells.

However, random patterns in SAF require individual optimization

for each memristor array that is impossible when it comes to mass

memristor-based computing device production.
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Figure 1: OverallWeight Distribution of VGG8Model Trained

by CIFAR10 Dataset

So, in this paper, a new technology ś Reconfigurable Mapping

Algorithm (RMA) is proposed in this paper to mitigate the influ-

ence of SAFs without existing limitations of previously proposed

techniques.

2 METHODOLOGY

2.1 Stuck-At-Fault (SAF)

When the resistance state of the memristor is stuck at LRS, it is

known as SA0 defect. A newly fabricated memristor possesses

extremely high resistance. So, a forming process is required at

the wafer level to initialize the memristor for regular read/write

operations. The forming process is an action of inserting high

tester voltage in every memristor for decreasing the resistance

level to the normal LRS for around 100 us. The delicate insulator

layer in the metal-insulator-metal (MIM) structure can severely be

compromised during this process. Thus, some memristors would be

overly formed because of variations in the unstable taster voltage

and the thickness of the insulator layer. The resistance of the overly

formed memristors stay at LRS forever and input stimulus pulse(s)

fail(s) to change its resistance state.

On the other hand, when the resistance state of the memristor

is stuck at HRS, it is known as SA1 defect. Word line (WL), bit

line (BL), and select line (SL) are the three terminals to access

each memristor inside the memristor crossbar architecture. But

the broken WL makes memristor cells inaccessible for new write

operation. Broken WL creates an open circuit where the resistance

is unlimited. When the read circuit tries to read the resistance of

those memristors, it always mistakes the cell as HRS.

It has been found that 9.04% and 1.75% memristor cells are

affected by SA1 and SA0 respectively, which is approximately

SA1:SA0=5:1 [2]. But this is not always the case. This ratio may

vary from device to device. It has also been mentioned in [2] that

over forming can cause 60% of the memristor cells to be SA0.

2.2 Weight Distribution

To validate the effectiveness of the memristor-based neuromorphic

computing system, a VGG8 model along with CIFAR10 dataset are

used. Fig. 1 shows the overall weight distribution of VGG8 model

trained by CIFAR10 dataset. VGG8 model contains 12.97 million

synapses to represent weights. Among the 12.97 million synaptic

weights, 43.38% is negative, 25.53% is positive, and 31.18% is neutral

weight. As listed in Fig. 1, the mean values of the layers are inclined

towards zero and the standard deviations implies that those values

are clustered closely. Besides, 99% of the weights are situated within

±(3 × 10
−7).

2.3 Reconfigurable Mapping Algorithm (RMA)

After analyzing the weight distribution in Fig. 1, an Reconfigurable

Mapping Algorithm (RMA) is proposed in this paper. SAF causes

huge discrepancy between the original weight and mapped weight.

Hence, the inference accuracy degrades significantly even with a

very small amount of SAFs inside the memristor crossbar array.

The RMA maximally avoids the negative impact of SAF cells for

systems and bring back the high accuracy.

RMAWhen SA1:SA0 = 5:1.According to conventional mapping,

weights from the algorithm ranging from [-1, 1] will be mapped to

memristor devices based on the resistance level [LRS, HRS]. The

RMAwill use the same resistance level [LRS, HRS], but it rearranges

the same weights between [0, 1]. When SA1:SA0 = 5:1, most of SAFs

are SA1. The algorithm for the RMA is as follows.

W𝑎 =

{
1 𝑊 ≥ 0,

1 − |𝑊 | 𝑊 < 0,
(1) 𝑊𝑏 =

{
1 −𝑊 𝑊 > 0,

1 𝑊 ≤ 0,
(2)

where,𝑊𝑎 and𝑊𝑏 are the two positive portions of a single weight

stored in two different memristors. The desired weight is extracted

from the simple subtraction (𝑊𝑎-𝑊𝑏 ) during the execution. For

example, when SA1:SA0 = 5:1, the RMA splits the original weight

0.3 into 1 and 0.7 according to equation 1, and 2. Those two weights

will be mapped in two memristors and an op-amp based subtractor

will extract the original weight (1-0.7) during the execution. This

process creates huge number of "1". After mapped those ł1ž, most of

them replaces most of SA1s. In this case, the accuracy degradation

can be greatly suppressed.

RMA When SA1:SA0 = 1:5. When SA1:SA0 = 1:5, SA0s are

dominant in the memristor crossbar array. The algorithm for the

RMA is as follows.

W𝑎 =

{
𝑊 𝑊 ≥ 0,

0 𝑊 < 0,
(3) 𝑊𝑏 =

{
0 𝑊 > 0,

|𝑊 | 𝑊 ≤ 0,
(4)

Same as before, each weight is split into two positive weights𝑊𝑎

and𝑊𝑏 , and be mapped to two different memristors. During the

execution, the subtractor subtracts the two weights (𝑊𝑎-𝑊𝑏 ) and

bring back the original algorithmic weight. For example, negative

weight -0.3 is split into 0 and +0.3 and is mapped in two memris-

tors. At the end, the op-amp based subtractor generate (0-0.3), and

the original weight (-0.3) is brought back. Since the conventional

mapping takes place between [-1, 1] according to the resistance

state [LRS, HRS], memristors stuck at LRS always report -1. But,

the range of weight values are changed to [0, 1] with respect to the

same resistance level [LRS, HRS] after applying the RMA. So the

newly programmed memristors will provide ł0ž when it is stuck

at LRS. By following equaton 3 and 4, huge number of "0" will be

created and mapped to the crossbar architecture. Since most of the

"0" replaces the SA0 cells, the inference accuracy of the DNN model

with SAFs improves .

RMA When SA1:SA0 = 1:1. In previous conditions, the RMA

works in such a way that most of weights inside the crossbar array

aremapped to either HRS or LRS based on the dominance of the SAF.
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But sometimes SA1 and SA0 are equal and happen simultaneously,

for example, SA1:SA0 = 1:1. To handle this situation, the RMA uses

the same approach of splitting a single weight into two positive

weights. But it creates enormous amount of ł1ž as well as ł0ž at the

same time so that most of the SA1 and SA0 are replaced by those

newly mapped ł1ž and ł0ž. This condition follows the following

algorithm.

W𝑎 =





𝑊 𝑊 > 0,

0 𝑊 < 0,

1 𝑊 = 0,

(5) 𝑊𝑏 =





0 𝑊 > 0,

|𝑊 | 𝑊 < 0,

0 𝑊 = 0,

(6)

3 RESULT AND DISCUSSION

A physical 40 nm 𝐴𝑔(𝑆𝑖𝑙𝑣𝑒𝑟 ):𝑎-𝑆𝑖 (amorphous Silicon) memris-

tor is manufactured and tested thoroughly. Characteristics of the

𝐴𝑔(𝑆𝑖𝑙𝑣𝑒𝑟 ):𝑎-𝑆𝑖 memristor is incorporated into DNN+NeuroSim

platform for evaluations. DNN+NeuroSim is an integrated frame-

work that emulates neural networks (DNN) inference performance

on thememristor-based hardware [17]. Here, an 8-layer DNNmodel

VGG8 for CIFAR10 dataset is utilized for the evaluation.

3.1 Weight Distribution After Applying RMA

To enhance the immunity against SAFs when SA1:SA0 = 5:1, af-

ter applying the RMA, the initial weight distribution of the VGG8

model, as shown in Fig. 1, is altered into a different shape, as shown

in Fig. 2 [16]. Equation 1 and 2 enable this feat. When SA1 is domi-

nant, the algorithm maps 69.96% weights to ł1ž or HRS. As a result,

most of the newly mapped ł1ž replaces the defective cells that are

stuck at HRS (SA1). Similarly, the other 30.04% cells are mapped to

sub-1 regions (less than 1 but greater than or equal 0.9). If those

sub-1 values are mapped to the SA1 defective cell, the deviation

between the mapped weight and the weight from the algorithm is

very insignificant. Accordingly, it results in very low accuracy loss

in extreme SAF conditions.

Figure 2: Weight Distribution of VGG8Model After Applying

RMA for SA1:SA0 = 5:1

Similarly, if the SA0 is dominant inside the crossbar, that is

SA1:SA0 = 1:5, through equation 3 and 4, the RMA maps 65.71% of

the weights to the ł0ž or LRS, and the rest of the 34.29% weights are

also mapped to near zero regions, as shown in Fig. 3. Most of the

newly mapped ł0ž replaces the defective cells that are stuck at LRS

(SA0). Therefore, memristors affected by the SA0 act like a defect

free device and do not contribute much to the degradation of the

inference accuracy of the DNN.

Figure 3: Weight Distribution of VGG8Model After Applying

RMA for SA1:SA0 = 1:5

Figure 4: Weight Distribution of VGG8Model After Applying

RMA for SA1:SA0 = 1:1

However, when both parts of the SAF are dominant, equation 5

and 6 assigns a large number of weights to both LRS and HRS. As

shown in Fig. 4, 34.41% weights are converted to ł0ž or LRS and

31.82% weights are converted to ł1ž or HRS in case of SA1:SA0

= 1:1. The rest of the weights are very small, and most of them

almost equal to zero which are not so much affected by the SA0

defects. By mapping enormous weights to ł0ž or ł1ž, the RMA

creates significant immunity against SA1:SA0 = 1:1.

3.2 Accuracy with RMA under Different SAF

Accuracy Restoration When SA1:SA0 = 5:1. The original infer-

ence accuracy of the DNN model achieved by the ideal memristor-

based neuromorphic computing systems is 90% without any SAFs.

To investigate the deteriorating impact of SAF, SAFs from 0.1% to

50% is introduced. As shown in Table. 1, before the RMA is used, the

inference accuracy decrease starts as 0.2% SAFs. From 2.5% SAFs,

the DNN model becomes completely damaged and provides only

10% accuracy which is like random guessing. The RMA can restore

the inference accuracy to 90% when the SAF is less than 10%. The

RMA is also super-efficient even with extreme conditions. At 50%

SAFs, it achieves 80% accuracy.

Accuracy Restoration When SA1:SA0 = 1:5. Similarly, when

SA1:SA0 = 1:5, conventional mapping degrades the inference ac-

curacy quicky. As listed in Table. 1, with as small as 1% SAFs, the

DNN model becomes completely damaged and shows only 10% ac-

curacy. The RMA quickly recovers the original inference accuracy

(90%) when SAF is smaller than or equal 10%. Table. 1 also explains

that, for the RMA with SA1:SA0 = 1:5, the maximum and minimum

accuracy improvements are 80% and 72%, respectively.
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Table 1: Accuracy Degradation and Restoration with Different SAF Conditions

SAF

(SA1 and SA0)

Accuracy

No SAF

Accuracy Before RMA Accuracy After RMA

SA1: SA0 = 5:1 SA1: SA0 = 1:5 SA1: SA0 = 1:1 SA1: SA0 = 5:1 SA1: SA0 = 1:5 SA1: SA0 = 1:1

0.10%

90%

90% 88% 90% 90% 90% 90%

0.20% 89% 83% 90% 90% 90% 90%

0.50% 80% 12% 90% 90% 90% 90%

1% 42% 10% 90% 90% 90% 90%

2.50% 10% 10% 90% 90% 90% 90%

5% 10% 10% 88% 90% 90% 89%

7.50% 10% 10% 83% 90% 90% 89%

10% 10% 10% 54% 89% 90% 89%

15% 10% 10% 10% 89% 89% 88%

20% 10% 10% 10% 88% 88% 87%

30% 10% 10% 10% 87% 87% 83%

40% 10% 10% 10% 81% 85% 73%

50% 10% 10% 10% 80% 82% 66%

Accuracy Restoration When SA1:SA0 = 1:1. Unlike the other

two conditions, even the conventional mapping can create a rela-

tively strong immunity with low ratio SAFs when SA1:SA0 = 1:1.

As shown in Table. 1, the conventional mapping can achieve high

accuracy up to 7.5% SAFs without the RMA. As shown in Fig. 1,

31.18% weights of the DNN model are neutral and the overall mean

of the eight layers are inclined towards zero. When the conven-

tional mapping deals with SA1:SA0 = 1:1, the circuit nearly reads

equal number of ł1ž and ł-1ž from the crossbar array based on the

resistance level [LRS, HRS]. After the execution of the DNN model,

those ł1ž and ł-1ž cancel out each other’s adverse impact and bring

back the mean value closer to zero again. However, the inference

accuracy of the conventional mapping drops fast when the SAFs are

greater than 7.5%. It even drops to 10% accuracy at 15% SAFs. With

the RMA, the DNN model achieves approximately 90% accuracy

even with significantly high ratio SAF. According to Table. 1, the

RMA can improve the inference accuracy up to 79%. The reason

behind this significant improvement is shown in Table 2. Here a

practical scenario, SA1:SA0 = 1:1 with 10% SAF, is taken as an exam-

ple. After the RMA is applied, approximately 6% of defective cells

are successfully replaced by the newly mapped ł0ž (LRS) and ł1ž

(HRS). So, the 10% SAFs acts like a 4% SAFs. Accordingly, as listed

in Table. 1, the RMA restores 89% accuracy where conventional

mapping provides only 54% accuracy at 10% SAFs under SA1:SA0

= 1:1. Table 1 also shows that conventional mapping achieves 88%

accuracy with 5% SAFs which validates the result of achieving 89%

accuracy when the RMA deals with 10% SAFs (the visible defect is

4% in Table 2, similar with 5%).

Moreover, the scenario in Table 2 is the worst-case scenario. After

the RMA is applied, the range of weight is squeezed within [0,1]

instead of [-1,1] and 34.41% weights are mapped to near zero region,

as shown in Fig. 4. The RMA not only reduces the weight range

but also creates a huge near zero regions that helps compensate

the accuracy loss caused by the SA0 defective cells. However, the

RMA struggle to achieve very high accuracy with extreme 50% SAF,

when SA1:SA0 = 1:1. This is because, when the SAF is 50%, SA1

is 25% and SA0 is 25%. But as shown in Fig. 4, although the RMA

maps 34.41% cells to ł0ž and 31.82% cells to ł1ž, they can not replace

Figure 5: Non-Linearity of Memristor cells.

all SA1 and SA0 defective cells. It possibly results in relatively low

inference accuracy.

3.3 Accuracy Restoration with Non-Linearity

Apart from SAFs,memristor is additionally afflicted by non-linearity.

Theweight of the synapse is represented by the resistance/conductance

of the memristor, which must be updated frequently during the

training and inference process as specified by learning algorithms.

Weight increment (or long-term potentiation, LTP) and decrement

(or long-term depression, LTD) should ideally be proportionate to

the number of writing pulses [6]. However, physical restrictions

such as inherent drift and diffusion dynamics of the ions/vacancies

cause the inaccurate weight updating with respect to the input

stimulus pulse(s) [8, 22]. Ideally, in the weight updating process,

the change in the resistance of an ideal synapse device is propor-

tional to number of stimulus pulses. In Fig. 5, the curves (dark)

represent the actual resistance value of a memristor device with

respect to the number of input pulses where the pulses possess

the same duty cycle and the same amplitude, and the straight line

(light) represents the hypothetical resistance value of the ideal case.

For instance, as shown in Fig. 5, with LTP = 0 and LTD = 0, two

ideal memristors produce two resistive states A and B, respectively.
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However, with strong nonlinearity LTP = 4, LTD = -4, an abrupt in-

cline and decline of the resistive state is obtained, which are labeled

as C and D, respectively. This inaccurate weight updating directly

impact the overall performance of the DNN model.

The nonlinearity of LTP = 1.75 and LTP = -1.46 is taken into

account in all of the results from Tables 1 and 2. However, the

conventional mapping totally fails with the inclusion of very high

nonlinearity. The RMA is efficient in restoring the high accuracy

even with high nonlinearity. As listed in Table 3, when SAF is 1%

for SA1:SA0 = 1:5, 1:1, and 5:1, the RMA recovers 70% inference

accuracy which was 10% before. Similarly when SAF is 20%, the

RMA achieves over 60% accuracy.

This is because the RMAmaps majority of the weights at the LRS

or HRS where the influence of the non-linearly is absent, as shown

in Fig. 5. Hence, the nonlinearity cannot cause any negative impact.

As shown in Figs. 2, 3, and 4, when SA1:SA0 = 5:1, 99% weights are

mapped to ł1ž or HRS and sub-1 region; when SA1:SA0 = 1:5, 99%

weights are mapped to ł0ž or LRS and sub-0 region; when SA1:SA0

= 1:1, 99% weights are mapped to HRS and LRS; they are all not

affected by the non-linearity. Since in each case, the tendency of

the RMA is to map weights to the HRS or LRS are almost always

equal about 65% (as shown in Figs. 2, 3, and 4), the RMA has a

similar effectiveness for three conditions SA1:SA0 = 1:5, 1:1, and

5:1. Accordingly, Table 3 listed a similar accuracy restoration after

applying the RMA for three conditions.

Table 2: Comparison ofActual Defect andVisible Defect After

Applying RMAWhen SAF = 10%

Number of Iterations Actual Defect Visible Defect

1

10%

4.02%

2 3.98%

3 4.02%

4 4.03%

5 4.04%

6 3.99%

7 4.05%

8 4.00%

9 4.00%

10 4.01%

11 4.03%

12 4.03%

3.4 Retention

Retention is defined as the ability of the memristor device to retain

its programmed state over a long period of time [4]. Typically the

retention ability of a memristor is more than 10 years at 85 degrees

Celsius. As shown in Table 4, four conductance drift scenarios have

been discussed for the retention analyzed: Drift to HRS, Drift to

LRS, Drift to Middle, and Random Drift.

Here 10% SAF along with different drift has been considered

in Table 4. The RMA can successfully restored the high inference

accuracy even with the different drift conditions. The reason is

that we split a single weight into two numbers and store it in two

memristors. In some cases, the two weights are affected by the

Table 3: Accuracy Restoration Using Adaptive Mapping

Method in Presence of Significant Non-Linearity

SAF

Accuracy Before RMA

(LTP = 4, LTD = -4)

Accuracy After RMA

(LTP = 4, LTD = -4)

5:1 1:5 1:1 5:1 1:5 1:1

0.1% 61% 56% 71% 71% 71% 71%

1% 10% 10% 70% 70% 70% 70%

2.5% 10% 10% 65% 70% 69% 65%

20% 10% 10% 10% 64% 67% 60%

50% 10% 10% 10% 50% 50% 24%

Table 4: Impact of Drift on RMA

Drift SA1:SA0 = 5:1 SA1:SA0 = 1:5 SA1:SA0 = 1:1

Drift to HRS 89% 90% 90%

Drift to LRS 89% 90% 88%

Drift to Middle 90% 90% 90%

Random Drift 89% 89% 89%

same amount of drifts, and therefore after the subtraction, the same

difference is obtained before/after drift. Finally, the DNN can get

the desired weight during execution.

3.5 Chip Area Estimation

The memristor based neuromorphic computing chip is made up of

a number of tiles, a global buffer, neural functional computation

units such as accumulating units, activation units, pooling units, as

well as computation units for weight gradient. In each tile, there

are several processing elements (PEs), tile buffers for loading neural

activations, accumulation modules for adding partial sums from

PEs and output buffers. The total size of a memristor based DNN

chip is shown in Table 6.

The total chip area with RMA is 0.38% larger than the DNN with-

out the RMA. It can be negligible, considering the great contribution

of the RMA on the accuracy and immunity to SAFs.

Table 5: State-of-The-Art

State-

of-

The-Art

Parameters

No

Intricate

Algorithm

No

Complex

Read

Circuit

No

Separate

Customization

Consideration

of all Possible

SAF Ratio

High Accuracy

Restoration

on all Possible

SAF Ratio

[16]
√ √ √

× ×

[15] × × × × ×

[3] × × × × ×

[20] ×
√

× × ×

[18] × × × × ×

[11] ×
√ √

× ×

[21] ×
√

× × ×

[1] ×
√

× × ×

[10] ×
√

× × ×

[19]
√ √

× × ×

This Work
√ √ √ √ √

4 COMPARISON WITH STATE-OF-THE-ART

As shown in Table 5, our proposed method offers some advan-

tages over the state-of-the-art. So far, most of the SAF handling
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Table 6: Area Comparison Between Before and After Reconfigurable Mapping Algorithm (RMA)

Items Before RMA After RMA

Total Compute-In-Memory (memristor) array 3.65072 × 10
5𝜇𝑚2

7.30144 × 10
5𝜇𝑚2

Total IC Area on chip (Global and Tile/PE local) 1.20372 × 10
7𝜇𝑚2

1.20372 × 10
7𝜇𝑚2

Total ADC Area on chip 5.40220 × 10
7𝜇𝑚2

5.40220 × 10
7𝜇𝑚2

Total Accumulation Circuits on chip (Adders, shift Adds accumulation units) 1.05098 × 10
7𝜇𝑚2

1.05098 × 10
7𝜇𝑚2

Other Peripheries (decoders, mux, switch matrix, buffers, pooling, and activation units) 9.57562 × 10
7𝜇𝑚2

9.57562 × 10
7𝜇𝑚2

Weight Gradient Calculation 9.66804 × 10
6𝜇𝑚2

9.66804 × 10
6𝜇𝑚2

Differential Reading Circuit (Op amp based subtractors) 0 3.01333 × 10
2𝜇𝑚2

Total Chip Area 9.61777 × 10
7𝜇𝑚2

10.82152 × 10
7𝜇𝑚2 (0.38% Overhead)

approaches develop an intricate algorithm to determine the signifi-

cant weights first. Then a complex read circuit identifies SAFs free

regions for mapping those significant weights. However, These ap-

proaches cause a large hardware and software overhead. The RMA

can be used as a ubiquitous solution to avoid all these complexities.

5 CONCLUSION

High integrated density and simple crossbar architecture makes

memristor suitable for the implementation of large and complex

DNN model in neuromorphic computing systems. But unavoidable

SAF defects impede its commercial success, because the inference

accuracy drop is inevitable. In this paper, the RMA is proposed

to deal with such accuracy degradation. The experiment results

show that the RMA can restore the interference accuracy to 90%

when the SAF is less than or equal to 7.5%/10%/2.5% at SA1:SA0 =

5:1/1:5/1:1. Even in some extreme cases, for example SAF = 50%, the

RMA is also effective and achieves the accuracy up to 80%/82%/66%

at SA1:SA0 = 5:1/1:5/1:1. Finally, as compared with state-of-the-art,

our proposed method implies the superiority.
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