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ABSTRACT

For a wide variety of envisioned humanitarian and com-
mercial applications that involve a human user commanding a
swarm of robotic systems, developing human-swarm interaction
(HSI) principles and interfaces calls for systematic virtual envi-
ronments to study such HSI implementations. Specifically, such
studies are fundamental to achieving HSI that is operationally ef-
ficient and can facilitate trust calibration through the collection—
use—modeling of cognitive information. However, there is a lack
of such virtual environments, especially in the context of studying
HSI in different operationally relevant contexts. Building on our
previous work in swarm simulation and computer game-based
HSI, this paper develops a comprehensive virtual environment
to study HSI under varying swarm size, swarm compliance, and
swarm-to-human feedback. This paper demonstrates how this
simulation environment informs the development of an indoor
physical (experimentation) environment to evaluate the human
cognitive model. New approaches are presented to simulate phys-
ical assets based on physical experiment-based calibration and
the effects that this presents on the human users.Key features of
the simulation environment include medium fidelity simulation of
large teams of small aerial and ground vehicles (based on the
Pybullet engine), a graphical user interface to receive human
command and provide feedback (from swarm assets) to human in
the case of non-compliance with commands, and a lab-streaming
layer to synchronize physiological data collection (e.g., related
to brain activity and eye gaze) with swarm state and human com-
mands.
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1. INTRODUCTION
Advances in Artificial Intelligence (AI) have significantly
improved human-AlI partnership in different capacities ranging
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from augmenting human capabilities (e.g., human-swarm inter-
action[1]), to providing aids in decision making (e.g., medical
decision making [2]), to fully automating tasks under human
supervision (e.g. autonomous driving [3]). [4].

In goal oriented tasks, this partnership requires a bi-
directional understanding between Al and human capabilities
without which the team performance may not exceed the indi-
vidual performance [5]. This is mostly referred to as shared
mental model [6] in which AI and human create an understand-
ing of their teammate ability to employ their obtained knowledge
in perceiving and explaining an external stimulus and predicting
the consequence of any response to it [7]. Explainable Al is
extensively being explored to create a mental model of Al and
enhance AI’s transparency. Although it has been shown, Al ac-
curacy does not necessarily translate to team performance [5, 8].
Most Al techniques are still developed in isolation from a human
model or by considering a human as a source of uncertainty. In
this regard, human performance has been long studied with re-
gard to cognitive factors (including the workload, engagement,
distraction, situation awareness, and trust) [9] in the ergonomic
research that can enhance AI’s understanding of the human coun-
terpart. Understanding how these factors change with the Al
assistance/decision making is imperative to create a synchronous
Human-AI collaboration environment [10].

The main challenges in utilizing cognitive factors to describe
the human mental model is the need to conduct human sub-
ject studies for specific tasks as most cognitive factors are task-
dependent. Moreover, cognitive factors are hidden factors that
are either utilized by self-reported surveys (e.g., NASA TLX)
or by the need to be estimated from physiological information
[11]. Finally, most human subject experiments are conducted in
simulation environments where the effect of simplified simula-
tions on the human mental model is unknown. To study these
limitations, in this paper we use real-time brain activity monitor-
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ing techniques through an electroencephalogram (EEG) and eye
movement to predict the human’s cognitive factors and then study
the effect of simulation simplifications on these cognitive factors
by comparing the extracted mental model with real hardware ex-
periments. To minimize the other effects in our study, we select
the case of teleoperation where a human operator interacts with
multiple agents to achieve a shared goal. By choosing this sce-
nario, human will interact with the same interface regardless of
how Al agents are represented (real robots or simulated robots).

2. BACKGROUND

Measuring teleoperators physiological data while perform-
ing human-swarm interaction tasks provides information about
cognitive states of the operator and the opportunity to assess met-
rics such as cognitive load, situational awareness, and trust, to
design a better human-swarm teaming [12] and predict human
performance, task difficulty [13], and operator tactical decision
(intention) [1] in real-time. In previous research, we have found
that looking at the physiological data during HSI to complete
time-intensive tasks provides information about the difficulty of
the mission and the tactics the human is using [13], [1]. By
utilizing the human physiological information and hardware cali-
bration for simulation environments, we can explore how humans
react to the difference between physical and simulated environ-
ments.

There are currently many simulation environments that are
used for human-swarm interaction. Most of these simulated en-
vironments employ physics engines to simulate their swarms and
environments [14], [15] but do not compensate for other hard-
ware difficulties such as compliance, noise, or problems sending
signals.

There have been massive strides in simulation environments
for various human swarm interaction applications. For instance,
Kate et al. [16] has developed Simbee-otic which is a simulation
framework for modeling and simulating micro aerial vehicles.
Pinciroli et al. [17] has developed a similar robot simulator
called ARGos to simulate large swarm robotics of many different
types. Soria et al. [18] presents a novel Matlab simulator called
SwarmLab that looks to standardize the processes and metrics of
the robustness of swarm algorithms. Cheraghi et al. [19] have
created an open-source simulator where they can evaluate large
scale swarms in both 2D and 3D. All these simulators lack the
ability to synchronize human swarm interaction while measuring
the user’s physiological information.

Previously we developed a new simulation framework and
simulator for HSI named SHaSTA. This framework outperforms
other simulation platforms by offering physiological data mea-
suring, a comprehensive GUI for teleoperation, a light physics
engine, and plugins for reinforcement learning. This simulator
also provides a lab streaming layer that saves all game and human
data for post-process analysis. This open-source simulator has
been used in multiple human subject studies and swarm anal-
ysis including learning swarm tactics over complex adversarial
environments [20].

Similar to the simulation environment, creating a physical
environment is also important in human-swarm interaction ex-
periments. Many indoor testbeds have been developed to test

human robot interaction [21]. While measuring physiological
data from a subject, the resulting value depends on how the op-
eration of the physical environment connects to the simulator.
Our group uses e-puck2, a small ground robot to reflect the phys-
ical environment and conduct the physical testbed in a motion
capture experiment using a VICON Tracker system for accurate
movement of the swarm robots. By showing the positioning of
each e-puck2 on the simulator screen, it is possible to check for
malfunctions, delays or latency in the physical environment and
provide feedback.

In this paper, we emphasize the importance of this end-to-end
framework to properly analyze the human cognitive model during
human swarm interaction teleoperation. We not only present a
human subject study and analysis to illustrate three main goals,
but we also discuss how this framework could be used by others
with minimal effort to push the research community forward. Our
three main goals in this paper are: (1) We enhance our current
simulation platform SHaSTA by creating add-ons that allow for
compliance models, feedback, hardware connection, and swarm
calibration. (2) We present a new framework for conducting a
human subject study where the subjects must interact with a GUI
to control a simulation, real hardware, or simulated hardware to
complete a disaster search mission. We also include all our design
of experiment and calibration between the physical hardware,
simulated hardware, and simulation. We also explicitly share
how this end-to-end framework may be modified within a matter
of hours to days for studying HSI in different tasks, settings,
and environments (which would have previously required months
or years of effort to set up). (3) Lastly, we analyze the data
collected to show what effect the simulated hardware versus the
real hardware versus the simulation have on the teleoperators
cognitive model. We validate our framework by exploring the
human cognitive model changes between simulation, simulated
hardware, and real hardware.

3. METHODS AND MATERIALS

To study the teleoperator behavior and human physiologi-
cal data during three different environments: swarm simulation,
hardware simulation, and pure hardware, we created a frame-
work to run a human subject study. Utilizing our previously
developed SHaSTA environment we were able to create add-
on packages for compliance, feedback, hardware, and simulated
hardware. Using these add-ons, we conducted a human-subject
study that required a teleoperator to perform a search mission in
an urban environment with supervision and control of swarms
both through simulation and a physical testbed. The details of
the simulation environment, physical environment, calibration,
physiological data recording, and analysis are reported below.

3.1 Simulation Framework

In any human-subject study, it is imperative to have an ef-
fective interaction platform that promotes engagement but does
not overload the human workload. In recent years, game engines
have progressed in photo-realistic rendering and physics which
has attracted users from diverse fields, such as robotics, to de-
velop various different application environments. We developed
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FIGURE 1: THE FRAMEWORK CONSISTS OF A SIMULATION ENVIRONMENT, A GRAPHICAL USER INTERFACE, A HARDWARE PLUGIN
MODULE, AND PHYSIOLOGICAL DATA MEASURING. ALL DATA IS STORED IN THE LAB STREAMING LAYER AND PROVIDED A TIME STAMP

FOR POST-PROCESSING

a game-based GUI while incorporating physics using an open-
source library PyBullet. To allow for communication between
the hardware and the simulation, a parameter server is utilized
for all data exchange. All modules are run in parallel using an
open-source library called Ray. Further details are explained
below:

3.1.1 Parameter server. The parameter server is developed
using an open-source package for distributed computing named
Ray. The parameter server initializes and manages the informa-
tion exchange from PyGame (GUI) and PyBullet (Simulation).
This module tracks all information such as the position of robots,
user input, and game status. It is also responsible for transmitting
this information to the lab streaming layer for data synchroniza-
tion and time stamps.

3.1.2 Graphical User Interface. The main GUI displayed
to the teleoperator is designed using Pygame as shown in Figure
2. The GUI contains a 2D representation of the environment,
feedback, and the mission status grid. The GUI takes the swarm
location from the parameter server and displays the location on
the 2D map to the user. The user must assign target locations
to the platoons by pausing the game, drawing a rectangle around
the wanted platoon, and selecting a target location. The target
position along with the allocated platoon information will be sent
to the parameter server, which will be used by the bullet engine
to execute the tasks.

The feedback grid on the right side of the screen provides
the user with notifications whenever the platoon fails to follow
the user’s instructions. More details on compliance and feedback
are explained in section 3.5. As the name suggests, the score grid
and time grid display the score and the mission time.

3.1.3 Simulation Environment. The simulation environ-
ment controls task allocation, path planning, and managing com-
pliance. The action manager controls task information for each
swarm that is received from the parameter server. It then as-
signs the swarms different primitives using a primitive manager.
The feedback manager evaluates the platoon’s compliance and
feedback level to determine if given action should be performed.
The Pybullet engine performs the user’s actions and sends the
platoon’s data to the parameter server through the state manager.

3.2 Physical Environment

E-puck2, a wheeled mobile robot from GCtronic, was em-
ployed to play the physical role of swarm robots in the physical
testbed. E-puck2s have a built-in Bluetooth module allowing
communication with multiple E-pucks from a single PC. In this
experiment, we utilized three E-puck?2 robots as different swarms
to enhance the communication speed between the robots and
controller in the physical testbed.

In order to conduct the physical experiment with E-puck2s,
the position data sent to the simulation must be precise. To
achieve this, we needed to create a mapping from the physical
testbed to the simulation. We used Vicon Tracker, a software
used for motion capture labs, to allow for accurate tracking of
the swarm robots. By utilizing Vicon Tracker data-streaming, we
were able to receive information on motion-captured objects at
the maximum speed of 300 Hz, which significantly reduced the
delay and layover between the robots and teleoperator.

Lastly, as shown in Figure 1, in order to harmonize the en-
vironment of the simulator and the physical experiment, we set
up a projector vertically on the floor to project the map which

Copyright © 2023 by ASME



EEG ;-
Recording .:"N

tracker

FIGURE 2: A) THE EXPERIMENTAL SET UP USED FOR RECORD-
ING DATA. THE HARDWARE IS BLOCKED FROM THE HUMAN
SIGHT BUT TRACKED TROUGH A VICON SYSTEM AND DIS-
PLAYED THROUGH THE GUI. THE HUMAN CONTROLS THE
SWARMS THROUGH THE GUI. B) THE PHYSICAL HARDWARE BE-
ING CONTROLLED BY THE HUMAN ON THE PROJECTED 2D MAP.
C) THE PHYSIOLOGICAL DATA RECORDING SETUP.

was displayed in the simulator. Calibration between the map pro-
jected on the floor and the map displayed on the simulator screen
required adjustments in the different coordinate systems. The
way to calibrate the experiment is explained in the next section.

3.3 Experiment calibration

The physical experiments returned the exact position of each
swarm robot to the simulator in real-time. When a subject as-
signed a platoon’s target position through the simulation, the
location was sent to the hardware. The hardware moved to its
target location and the swarm’s movement was displayed to the
user in real-time. In order to effectively control and display the
physical experiments through the simulator, it was necessary to
calibrate the map projected on the floor with the map in the sim-
ulator. Mapping calibration was executed by extracting the four
corner points of both the hardware and simulation environments
and performing affine transformation with translation and scaling.
This transformation is shown below:

Xphy = (ysim + 80) X wphy/wsim
Yphy = (= X5im +80) x hphy/hsim

)

where x,;,, and y,;, stand for the coordinates in physical
environment and xg;,, and y;,, stand for the coordinate in simu-
lation environment. wy,yy and &y, are the width and height of
the physically projected map, and wy;y,, and hg;,, are the width
and height of the map displayed on the simulator.

3.4 Physiological Data Collection

In this study, we measure the participant’s brain activity. For
the brain activity, we use the non-invasive B-Alert X24 elec-
troencephalogram headset from Advanced Brain Monitoring® to
record brain activity of the subject at 20 locations on the scalp
with a sampling rate of 256.0 Hz.

We utilize the EEG to extract mental workload, situational
awareness, engagement, and distraction. A quadratic discrimi-
nant function analysis used by the B-Alert software is used to
classify the engagement level. The coefficients of this model are
individualized for each participant according to the baseline tasks
[22]. The EEG signals must be cleaned to remove any electrical
noise, slow drift, or muscle movements from the electrodes. To
do this, we begin by filtering the EEG with a bandpass filter (1-60
Hz). We then run an Independent Component Analysis to remove
all muscle movement and eye blink artifacts. Autorejection [23]
was used to remove any epochs from the data that contained very
large artifacts that skewed the data. After each experiment the
participant completed a NASA-TLX survey rating their perceived
mental, physical, and temporal demands as well as their effort,
performance, and frustration during the experiment.

3.5 Feedback and Compliance

In this particular human subject study, we focused on two
main applications utilizing this framework. The first study was
looking at different levels of feedback and compliance, and the
second study was creating a simulated hardware that replicated
the real hardware testbed. To study feedback and compliance,
we ran nine different iterations of a target search mission in an
urban environment. The nine different iterations consisted of
a combination of three levels of feedback and three levels of
compliance.

The three levels of feedback (low, medium, high) all progres-
sively provided more information to the user about the platoons.
The compliance model in the simulation was done by randomly
denying the users action 50, 70, and 90 percent of the time.

The simulated hardware was based on the real hardware
testbed experiments. The drone speed was reduced to one third
of the simulation speed and 30 pixels of noise was added to target
position of each drone. The drone also had a 10 percent chance
of either not complying or going to the wrong location.

3.6 Experiment and Framework

The framework for this study is illustrated in detail in Figure
1. The end-to-end framework includes a simulation environment,
a hardware plugin, a simulated hardware plugin, an interactive
GUI, physiological data measuring, and a real-time physics en-
gine. The framework in this paper was utilized by performing
a search and extract mission while providing the different levels
of feedback and compliance. It was then utilized to do the same
mission in the physical testbed and then in the simulated hardware
testbed. The goal of the user was to search an urban environment
to find as many targets as possible in one minute.

To test the simulated versus real hardware, all participants
were informed they were controlling the real hardware. Half the
participants were controlling the E-puck2s and the other half were
working with the simulated hardware. The experimental setup
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denoted in Figure 2 consists of a human controlling the swarms
through a computer setup while getting their physiological data
measured. The human cannot see the hardware testbed that is
being measured through the Vicon Tracker system.

4. RESULTS AND DISCUSSION
4.1 Simulation, Hardware, Simulated Hardware

In Figure 3 and Table 1 we show the efficiency of our end-
to-end framework and demonstrate some of the capabilities in
this study. In Figure 3 we plot the x and y positions of one UAV
for the simulation, hardware, and simulated hardware. The user
assigns target positions through the GUI, and the simulator and
hardware must both try to reach that position. In the top plot, we
see the simulated hardware verse the simulator, and in the bottom
we see the physical hardware vs the simulator.

In supplement to Figure 3, in Table 1 we report the time the
user inputted a target location, the simulated UAV arrival time,
and the physical/simulation hardware arrival time. We also show
the average travel time of the simulation and simulated/physical
hardware. It can be seen that the simulated hardware is a just
representation of the physical hardware delays and travel speed.
In the physical testbed, the hardware takes an average of 4.9
seconds longer and the simulation hardware takes an average
of 3.67 seconds longer than the simulation to reach the target
position. It should be noted that the physical hardware takes about
5 seconds to orient itself at the beginning of the experiment. Inthe
simulated hardware we show a case where the noise of position
affects the hardware.

Target | Input Time | Arrival Time | Arrival Time |Alternative
(Simulation) | (Alternative)
1 11.3 14.6 (3.3 sec) [26.8 (15.5sec) | T -
2 24.9 30.2 (5.3 sec)| 33.0 (8.1 sec) 3 g
3 524  |57.2(4.8sec)| 58.8(6.4sec) | £ §
4 60.5  |65.0(4.5sec)| 68.0(7.5sec) | &
Average Travel Time| 4.475 sec 9.375 sec
1 5.9 14.7 (8.8 sec) | 15.4 (9.5 sec) T w
2 19.4  [34.1(14.7sec)36.9 (17.5sec)| 3 3
3 40.4 43.7 (3.3 sec) | 49.9 (9.5 sec) 5 7y
4 53.7 DNF DNF 32
Average Travel Time| 8.93 sec 12.16 sec

TABLE 1: COMPARISON OF THE SIMULATION UAV WITH THE
HARDWARE AND SIMULATION HARDWARE. THIS TABLE SUPPLE-
MENTS FIGURE 3 AND SHOWS THE TIME THE USER INPUTTED A
TARGET LOCATION, THE TIME THE SIMULATION UAV REACHES
A TARGET, AND THE TIME THE SIMULATED/PHYSICAL HARD-
WARE REACHES A TARGET. WE ALSO SHOW THE AVERAGE
TRAVEL TIMES TO COMPARE THE SIMULATED HARDWARE AND
THE PHYSICAL HARDWARE DELAYS.

4.2 Teleoperator Cognitive Analysis

Focusing on analyzing the human decisions and perfor-
mance, we look at Figure 4. This plot shows the variance of
the Z-score values of the NASA-TLX survey. These results give
insight on the framework, design of experiments, and the teleop-
erators cognitive load. The NASA-TLX survey has five questions

23 Target 1 Target 2
c 18
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3
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>
) 7 — Simulation O Simulation Arrival Point
= Sim-hardware o Hardware Arrival Point
o8 Hardware
e——1® Target 1
& s |
= <
7 Target 2 Target3 3
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> =
-32 °
-20 30 80 130 180
X Position

FIGURE 3: COMPARISON OF THE SIMULATION WITH HARDWARE
AND SIMULATION HARDWARE. THE TOP PLOT SHOWS A SINGLE
UAV POSITION FOR BOTH SIMULATION AND SIMULATED HARD-
WARE. THE BOTTOM PLOT SHOWS A SINGLE UAV POSITION FOR
BOTH SIMULATION AND PHYSICAL HARDWARE. THE TARGETS
ARE ASSIGNED BY THE USER AND THE ARRIVAL OF THE UAVS
IS DENOTED BY A CIRCLE OR SQUARE.

to measure the human cognitive state during the experiment. Due
to individual differences in subjects, it is not sufficient to look at
the averages, so the Z-score is calculated to get rid of subject bias.
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FIGURE 4: THIS PLOT SHOWS THE Z-SCORE VARIANCE OF THE
NASA-TLX SURVEY RESULTS FOR THE PHYSICAL HARDWARE,
SIMULATED HARDWARE, AND SIMULATION.

The NASA-TLX survey is the human perception of their own
mental workload. Our goal was to show that our framework is
sufficient for physical hardware simulation, hardware simulation,
and simulation. One important factor that we illustrate is that
the simulated hardware is more like the physical hardware than
the simulation. We can observe that in Figure 4 there is little
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variance between any cognitive measures. We observe the human
perception cognitive measures during simulated hardware are
much closer to the physical hardware than the simulation. This
proves that our framework is successful at simulating hardware to
a degree that replicates physical hardware on the cognitive mind.
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, N . a

-0.05
W Simulation
0.1 Hardware
Simulated Hardware
-0.15

Engagment Distraction Workload

FIGURE 5: THIS PLOT SHOWS THE Z-SCORE AVERAGE COGNI-
TIVE MEASURES FROM THE BRAIN ACTIVITY FOR THE SIMULA-
TION, HARDWARE, AND SIMULATED HARDWARE.

Looking at Figure 5 we compare the teleoperators cognitive
functions for the the simulation, the hardware, and the simulated
hardware. To show that our end-to-end framework works for
simulation, hardware, and physical hardware, we illustrate the
teleoperator cognitive function of workload and distraction are
very similar for hardware and simulated hardware, but not for
simulation. The engagement and distraction difference between
the three cases is very insignificant, but the workload shows sub-
stantial differences. This is expected due to the simulation having
non-compliance and requiring the user to be more engaged and
using more cognitive work with the feedback. For example,
during the simulation, the swarms may be non-compliant, requir-
ing the user to evaluate the feedback and re-evaluate to another
platoon, but in the hardware studies, the swarms are always com-
pliant. This will cause a higher workload and engagement in the
simulation.

5. CONCLUSION

This end-to-end framework is incredibly important for the
research community of human swarm interaction. We have
gone through the difficulties of building this framework from the
ground up so others in the community can study human swarm
interaction with ease. This framework can trim months of fu-
ture research opportunities in this community. The wide range
of applications and ease to change the parameters in this HSI
framework is a huge contribution.

In this paper specifically, we utilized this framework to ex-
plore how teleoperators react to different levels of feedback and
compliance, hardware, and simulated hardware. Now that this
framework is developed, the next step in this research is to do
an in-depth analysis of the human physiological information to
create a cognitive model that can be used for Human-Swarm
Interaction and decision making.
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