
1

Compact Representation and Identification of Important Regions of Metal Microstructures
Using Complex-step Convolutional Autoencoders

Dharanidharan Arumugam1 and Ravi Kiran2

Abstract

In this study, we propose a complex-step convolutional autoencoder to identify the regions
that are important in a metal microstructure for compact representation and secure sharing. Firstly,
the architecture of a convolutional autoencoder is designed for the compact representation of
microstructural images. The designed autoencoder achieved a high image compression ratio of 32
without loss of important information. Secondly, an in-home developed model agnostic sensitivity
analysis using complex step derivative approximation is implemented on convolutional
autoencoders to identify regions of the microstructure that are important for reconstruction.
Finally, saliency maps that highlight the importance of pixels for reconstruction are generated for
three grades of dual-phase structural steels. The saliency maps indicated secondary phase regions
and grain boundaries are important for microstructure image reconstruction. The proposed
approach produces more tenable saliency explanations compared to guided backpropagation and
layer wise relevance propagation methods. The decoder part of the convolutional autoencoder can
be used as a key that could be used to reconstruct the actual microstructure from encoded image
information contributing to secure and efficient sharing of microstructure data. The proposed
framework is generic and can be extended to identify important microstructural regions for other
metals, composites, biomaterials, and material systems.

Keywords: Interpretable AI; ASTM A992; Saliency maps; Pixel relevance; and Convolutional
autoencoder.

1. Introduction

The microstructure of a metal dictates the metal’s Young’s modulus [1, 2], hardness [3, 4],
yield strength [5, 6], ductility [7, 8], and in-fire and postfire properties [9, 10]. The microstructure
is comprised of microscale constituents such as metallurgical phases, non-metallic defects, and
microvoids. The characteristics of these constituents such as average grain size, grain orientation,
and composition are determined by the thermos-mechanical manufacturing route, alloy
composition, etc. and will govern the constitutive response and fracture behavior of metals [8, 11-
13]. Optical microscopy and SEM analysis are widely used to extract microstructural images from
metallographic specimens to perform microstructural analysis and characterization. Modern SEMs
and optical microscopes are capable of rapidly generating large volumes of high-resolution image

1 Graduate Research Assistant, Dept. of Civil, Construction & Environmental Engineering, North Dakota State University, Fargo,
ND 58105, email: d.arumugam@ndsu.edu
2 Assistant Professor (corresponding author), Dept. of Civil, Construction & Environmental Engineering, North Dakota State
University, Fargo, ND 58105, email: ravi.kiran@ndsu.edu

2

data. For instance, ZEISS MultiSEM microscope can image a square centimeter material sample
area at 4nm pixel level in less than 3 hours and can generate 1.5 terabytes of data per hour. Neural
networks (NNs) and machine learning (ML) algorithms are now commonly employed to automate
microstructural characterization and to take advantage of the large volumes of microstructural data
generated through these modern instruments [14-16]. However, handling of large volumes of
microstructural data still poses storage and transfer challenges. A survey conducted among 7700
researchers by springer in 2018 [17] shows 56% of researchers identify copyright issues and cost
of sharing are major barriers to data sharing.

 One effective and economical solution to storage and transfer problems is the use of
downsized data. There exists several lossy image compression methods [18] which can achieve
highly compressed image data by losing some image information. However, these methods do not
identify and preserve information critical to microstructural characterization and can lose
information essential to valid microstructural analysis. Alternatively, deep learning or machine
learning methods can be used to obtain lower dimensional (compact) representation of image data.
Larmuseau et al. achieved a compact representation of microstructure by combining three neural
network structure [19]. The employed network is trained for categorizing different classes of
microstructure. Discriminative convolutional neural networks proposed in [20] can shrink the
overall feature space spanned by the image data and offer a discriminative lower-dimensional
representation of the data. These methods are solely focused on the compact representation of data
for classification tasks and do not provide a way to recover the original data and thus facilitate a
secure transfer of data. Also, NNs and ML algorithms used for microstructural characterization of
compact representation do not provide any insights that could be used by a microscopy expert on
the regions that should be captured with high fidelity at the microscopy stage. In other words, the
existing methods can only automate the material characterization but cannot inform the analyst on
the regions of the microstructure that can improve the fidelity of characterization. The goal of this
study is to achieve a compact representation of metal microstructures, identify important regions
of metal microstructure and develop a new way to safe and secure transfer of micrograph data.
The research questions addressed in this article are: 1) How to compactly represent the metal
microstructure images without losing important information? 2) what are the regions of the
microstructure that are crucial for microstructure image reconstruction? 3) what regions of
microstructure are important for high-fidelity microstructural characterization and classification
of different classes of microstructure and 4) how to safely share large volume of microstructural
image data? In this study, we propose a convolutional autoencoder (see Section 2) architecture to
compactly represent the metal microstructure and the relevant procedure is detailed in Section 3.
A complex-step sensitivity analysis procedure to identify the important regions of the metal
microstructure is described in Section 4. Sharing the compact representations of the metal
microstructure securely is discussed in Section 5. The generated saliency maps for identifying
important pixel regions are explained in Section 6. Saliency explanations produced by the
proposed method is compared with existing methods in Section 7. Finally, the conclusions drawn
from this study are provided in Section 8.

3

2. Convolutional autoencoders: applications and mathematical background
Autoencoders are a class of self-supervised neural networks whose main function is to

compress the input data to a very high degree and reconstruct the input from the compressed data
with a minimal loss of input information [21, 22]. Some important applications of autoencoders
include dimensionality reduction of data [23, 24], detection of anomalies [25, 26], extraction of
salient features for classification [27, 28], and generation of artificial images [29, 30]. Fig. 1 shows
a schematic representation of the architecture of an autoencoder. Sparse [31], contractive [27],
denoising [32], and variational autoencoders [33] are some important types of autoencoders.

Convolutional autoencoder (CAE) is a special form of autoencoder [34] which combines
the ability of CNNs in efficiently extracting image features and the ability of autoencoders in
compactly representing the input data. CAEs have several interesting applications in the field of
mechanics. Kim et. al. [35] employed a convolutional variational autoencoder (CVAE) to generate
continuous dual-phase microstructure and generated the compact latent features to relate them with
yield strength, ultimate tensile strength, and toughness. Lee et. al. [36] predicted the stress state of
aluminum alloys and stainless subjected to four-point bending using a CVAE by combining the
experimental and finite element behavior in the compact latent space. In the study conducted by
Xu and Duraisamy [37], a CAE is successfully applied to predict fluid flow dynamics. The flow
data is passed through two levels of CAEs. The first CAE is used to capture the spatial relations
and its latent features are used as inputs to the second CAE to capture the temporal evolution.
CAEs are also used for the non-linear decomposition of fluid flow by employing two decoder
networks [38]. More applications of CAEs in mechanics can be found elsewhere [39-42].

Autoencoders are designed to reconstruct the input by combining two neural network
blocks: an encoder and a decoder (refer Fig. 1). The encoder block of the network encodes an input
𝒙𝒙 to a latent output 𝒍𝒍 which is a compressed representation of the input. The dimensionality of the
latent output 𝒍𝒍 is usually very small compared to the dimensionality of input 𝒙𝒙. Decoder then builds
on the latent output, 𝒍𝒍, and generates output, 𝒙𝒙�, as close as possible to the input, 𝒙𝒙. Autoencoders
are trained to minimize the reconstruction loss of network for adequate reconstruction of the
original input.
In mathematical terms, an autoencoder consists of an encoder, 𝑓𝑓(𝒙𝒙,𝜽𝜽) that compresses the data
and a decoder, 𝑔𝑔(𝒍𝒍,𝝓𝝓) that reconstructs the input in the following way

𝒍𝒍 = 𝑓𝑓(𝒙𝒙,𝜽𝜽) (1a)

𝒙𝒙� = 𝑔𝑔(𝒍𝒍,𝝓𝝓) = 𝑔𝑔(𝑓𝑓(𝒙𝒙,𝜽𝜽),𝝓𝝓) (1b)

where, 𝜽𝜽 and 𝝓𝝓 are trainable parameters of encoder and decoder, respectively. These parameters
are fixed by training the autoencoder to minimize the cost function (𝒞𝒞)

𝒞𝒞(𝒙𝒙,𝒙𝒙�) = ℒ(𝒙𝒙,𝒙𝒙�) + regularization term (2)

here, ℒ(𝒙𝒙,𝒙𝒙�) is a reconstruction loss function which is, in general, a mean squared error (𝑀𝑀𝑀𝑀𝑀𝑀) or
binary cross-entropy (𝐵𝐵𝐵𝐵𝐵𝐵) averaged over the total number of instances which are calculated as

4

 ℒ𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ �𝒙𝒙𝑖𝑖 − 𝒙𝒙�𝑖𝑖�

𝟐𝟐𝑁𝑁
𝑖𝑖 (3a)

ℒ𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑁𝑁
∑ −[𝒙𝒙𝑖𝑖 log�𝒙𝒙�𝑖𝑖� + �1 − 𝒙𝒙�𝑖𝑖� log�1 − 𝒙𝒙�𝑖𝑖�]𝑁𝑁
𝑖𝑖 (3b)

The regularization term in Eq. 2 is necessary for deep neural networks to prevent the network from
learning identity function and therefore improve the model’s ability to generalize the results [21,
31, 43]. Shallow network autoencoders need not involve any regularization term since the
bottleneck structure (refer to Fig. 1) itself is sufficient to enforce the regularization [22]. Table 1
shows regularization terms involved in different types of autoencoders. In the case of CAEs, the
use of pooling layers prevents the overfitting of network and improves the generalizing ability of
the model [44, 45]. Thus, the reconstruction loss can be simply used a cost function [46, 47]. The
encoder of a typical convolutional autoencoder consists of alternative layers of convolutions and
pooling for most of the network and fully connected layers in the end. A latent layer is usually
represented as a fully connected layer (one-dimensional layer). The decoder majorly consists of a
series of transposed convolutional layers with some fully connected layers at the start. However,
transposed convolutions are shown to have a tendency of producing checkerboard artifacts [48],
and hence they are now replaced with alternative layers of upsampling and convolutions. A
convolutional autoencoder involves three main operations namely convolution, pooling, and
upsampling which are explained subsequently.

 2.1 Feature Extraction in CAE through convolutions
Convolution is the process of extracting spatially connected features present in the images

with the use of convolutional filters. A convolutional filter comprises of a stack of kernels and the
number of kernels present in a filter corresponds to the number of input channels. For example, an
RGB image input consists of three channels and requires filters with three kernels whereas grey
image input has only one kernel. A kernel is usually a 2D array of learnable weights with a size,
𝑘𝑘 × 𝑘𝑘. Here, 𝑘𝑘 refers to kernel size and it is computationally rewarding to keep it very small
compared to the size of the image input. Though a kernel can have different sizes, a kernel size of
3 × 3 is standardly used. Larger kernel sizes (sizes more than 3) increase computational costs and
make the model less generalizable whereas smaller kernel sizes (sizes less than 3) do not extract
high-level image features [49, 50].

Each kernel of a convolutional filter operates on its conjugal channel array of input data
and results in individual array outputs corresponding to each kernel-channel pair. Each element in
a convolved output array is a sum of Hadamard product between the weights of a kernel and a
subarray of input data [51]. The subarray is systematically chosen by sliding a kernel window
across both the dimensions of the input array and considering the region of the input spanned by
the window at every step. The top-left corner of the kernel window starts from the top-left corner
of the input and moves in steps from left to right until the last column is reached, then moves down
and again from left to right. This is repeated until the last row of the input array is covered. The
step size of the slide movement is called ‘stride’ and it is of unit step size, in general, for kernel
filters. The individual output arrays corresponding to each channel are then summed together and

5

the resulting array is called a feature map. Fig. 2 illustrates the generation of a feature map through
convolution.

Inputs to convolutions are usually ‘padded’ which implies the addition of calculated
numbers of columns and rows of zeros around the inputs as symmetrical as possible. Padding is
necessary when the information available around the edges of the input image is valuable. Padding
is generally of two types namely ‘Valid’ and ‘Same’ padding [52]. ‘Valid’ padding is another term
for zero padding whereas the ‘Same’ padding refers to the type of padding which results in the
convolved output the same size as that of the input (refer to Fig. 3). Feature maps pass through
an activation function to impart nonlinearity in the convolutional process. ‘ReLU, ‘Leaky ReLU’,
‘Tanh’, and ‘Sigmoid’ are the widely used activation functions for convolutional autoencoders.
The functional expressions for these activation functions are summarized in Table 2. However, for
the output layer, ‘Sigmoid’ and ‘Linear’ activation functions are generally used.

A convolutional layer usually consists of several convolutional filters which operate on the
input data individually and results in corresponding output feature maps. The number of filters is
chosen based on the nature and complexity of the problem and it is usually varied along the
procession of neural layers. Increasing the number of filters in a layer increase the extent of
abstractions extracted from the input image or feature map. In the case of the encoder, the number
of filters is incrementally decreased to obtain only important lower-dimensional features. The
filters are then again incrementally increased until the final layer to regenerate the image features
of the input.

2.2 Removal of redundancy in CAE using pooling operations
Convolution is followed by a pooling operation in the encoder block of the convolutional

autoencoder. Pooling is essentially performed to down sample the feature maps. Pooling
aggregates the important abstractions available in the features maps and produces coarser maps
that are spatially invariant. This is essential in the case of dimensionality reduction. Pooling also
significantly reduces the computational overhead and prevents the overfitting of the model.

Pooling operates on the subarrays of the input and involves a pooling window to select the
subarrays similar to the convolutional operation. The pooling window slides across the width and
height (from left to right and top to bottom) of the input array with ‘stride’ as the step size. Max
pooling and average pooling are the two most popular pooling operations. Max pooling returns
the maximum values of subarrays whereas the average pooling returns the mean values of
subarrays. Accordingly, max-pooling extracts sharp and prominent features from the input while
average pooling captures more complexities present in the input. In the case of convolutional
autoencoders, max pooling is preferred to average pooling. However, not much difference is
observed between the use of these two functions in terms of the performance of the model. Fig. 4
provides an illustrative example for both max and average pooling. In the example, a standard
pooling window size of 2 × 2 and stride 2 is used and it is evident from the example, that it halves
the size of the input along both the dimensions.

6

2.3 Image regeneration in CAE using upsampling
Upsampling is performed to reverse the effect of pooling. Upsampling is mainly used in

the convolutional autoencoder, particularly in the decoder network, to expand the input
information and thereby regenerate the original input image. Upsampling in itself does not produce
any new information, it just repeats the available input information and increases the image size.
In order to build the required features for image generation, it has to be followed by a convolutional
layer. In upsampling, each value of the input array gets repeated depending on the size of the
upsampling window size. An example that demonstrates upsampling operation is provided in Fig.
5. As seen in the example, upsample window size of 2 × 2 increases the dimensions of the input
by 2. It is important to note that both pooling and upsampling operations do not involve any
learnable parameters, unlike convolutions. Therefore, the training of convolutional autoencoders
is basically to find the appropriate weights and biases involved with the convolutional layers for
adequate image reconstruction.

3. Methodology

A five-step procedure is employed to accomplish the objectives of this study: (1)
acquisition of microstructural images of structural steel metallographic specimens, (2) preparation
of input data from the acquired microstructural images, (3) configuration and training of a
convolutional autoencoder, (4) formation of the convolutional encoder network from the trained
convolutional autoencoder network, and (5) computation of pixel relevance and construction of
the saliency maps. The schematic of the steps involved is also shown in Fig. 6. These steps are
further explained in detail in the following sub-sections.

3.1 Acquisition of microstructural images
The microstructural images used in this work were acquired from metallographic

specimens extracted from three different structural steels popularly used in the US – ASTM A36,
ASTM A572, and ASTM A992 [53]. All these steels are ferrite-pearlite steels [9, 53]. Seven
metallographic specimens were obtained from each type of structural steel totaling twenty-one
metallographic specimens. Six specimens of each grade were exposed to elevated temperatures of
500°C, 600°C, 700°C, 800°C, 900°C, and 1000° with a one-hour soaking period to alter the
microstructure of the parent metal. After the soaking, the specimens were allowed to undergo
natural cooling at room temperature. The remaining specimen of each grade was not subjected to
any heat treatment. The images were gathered from 5 to 7 random locations on each specimen
using an Amscope® optical microscope. The images were captured at 50X magnification. More
details on the preparation of these microstructural images can be found in [9, 54, 55]. In the end,
a total of 124 microstructural images with a size of 2080 × 1542 pixels were acquired.

3.2 Preparation of input data for training and testing purposes
The original microstructural images of size 2080 × 1542 pixels are segmented into images

of size 256 by 256. Since the segmented images are of small input size and captures the
microstructural pattern of the whole unsegmented image, the segmentation helps in obtaining

7

leaner network architecture. The segmentation resulted in 5,704 greyscale images with pixel values
ranging from 0 to 255. The segmented images are converted into numerical arrays and partitioned
into a training dataset (𝑫𝑫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ ℝ𝑛𝑛×𝑝𝑝×𝑞𝑞×𝑐𝑐) and a testing dataset (𝑫𝑫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ ℝ𝑚𝑚×𝑝𝑝×𝑞𝑞×𝑐𝑐) with 80:20
split. Here, 𝑛𝑛 and 𝑚𝑚 denote the number of image examples in the training and testing dataset which
are 4564 and 1140, respectively, in our case, 𝑝𝑝 × 𝑞𝑞 denotes the dimension of an input image array
which is 256 × 256 and 𝑐𝑐 denotes the number of channels which is 1 since the images are of
greyscale. A typical 𝑘𝑘th example of the dataset (called an instance) is defined as

𝑿𝑿𝑘𝑘 =
 𝑥𝑥11

(𝑘𝑘) ⋯ 𝑥𝑥1𝑞𝑞
(𝑘𝑘)

⋮ ⋱ ⋮
𝑥𝑥𝑝𝑝1

(𝑘𝑘) ⋯ 𝑥𝑥𝑝𝑝𝑝𝑝
(𝑘𝑘)

where 𝑥𝑥11,
(𝑘𝑘) ⋯ , 𝑥𝑥𝑝𝑝𝑝𝑝

(𝑘𝑘) are the pixel features and 𝑘𝑘 ranges from 1 to 𝑛𝑛 or 𝑚𝑚 . The grey pixel values of
both datasets were then normalized. Normalization involves scaling down the range of pixel
intensity values from 0 to 255 to 0 to 1 to improve the performance of the neural network.

3.3 Configuring and training the convolutional autoencoder
In this study, a CAE is employed for the compact representation of the input

microstructural images (in the form of arrays). Detailed background on CAEs is presented in
Section 2. The CAE network was duly configured to ensure the autoencoder reconstructs the
images with minimal loss of input information not only for the learned examples but also for the
unseen data. The configuration of the network involves a rigorous selection of a network
architecture which kept the reconstruction loss of the network (mean squared error) below 0.0035
during both the training and testing stage. At every trial selection of network architecture, the
network was trained for 50 epochs with an input batch size of 32. The training process involves
fine-tuning the network parameters, i.e., weights and biases through a stochastic gradient descent
algorithm called ‘Adam’ (Adaptive moment estimation) [56]. The parameters used for the ‘Adam’
optimization algorithm are presented in Table 3. The final configured CAE consists of 50,353
network parameters.

The CAE model employed in this study was developed using TensorFlow 2.8.0 open-
source software library [57]. The encoder block starts with an input layer which receives the input
of size 32 × 256 × 256 × 1. The first dimension of the input indicates the batch size (the number
of image inputs per batch). The input layer is followed by four numbers of convolutional layers
alternated with max-pooling layers. The final max-pooling layer of the encoder outputs the latent
variables of dimension 32 × 16 × 16 × 8. Normally, one or more fully connected layers are added
at the end of an encoder to construct the latent representation as a one-dimensional tensor,
however, the addition of fully connected layers lead to model overfitting (results in large
reconstruction loss in the testing stage)[58]. Hence, in our study, we did not use any fully
connected layers and maintained the latent variables in the form of feature maps (a three-
dimensional tensor). The decoder block takes the latent variables tensors as inputs and reconstructs
the original inputs. It comprises four alternating layers of upsampling and convolutional layers

8

with an additional convolutional layer at the end. We used a standard kernel filter size of 3 × 3
with a stride of 1 and the ‘same’ padding type for all the convolutional operations. The ‘same’
padding type allows the model to retain the information near image boundaries. Max pooling
operations that halve the inputs along both the dimensions use the standard pool size of 2 × 2 with
stride 1. All convolutional layers use the ‘ReLU’ activation function except for the final
convolutional layer of the decoder block which uses the ‘Linear’ activation function. The use of
‘Linear’ activation instead of the ‘Sigmoid’ function improved the convergence and reconstruction
loss of the model. The schematic of the model is shown in Fig. 7 and the model details are
summarized in Table 4 and Table 5.

3.4 Formation of the convolutional encoder network from the convolutional autoencoder
 A convolutional neural network (CNN) with the same architecture as that of the encoder
part of the convolutional encoder was constructed to perform sensitivity analysis using complex
step derivative approximation method. The newly constructed CNN takes microstructural images
as input and generates latent variable tensors as outputs. The layer modules available in the
TensorFlow libraries were customized to accept complex inputs. Accordingly, the CNN uses
customized layers such as ‘xConv2D’ and ‘xMaxPool2D’ for convolution and max pooling,
respectively, on complex inputs. Also, for activation, a modified ReLU function, ‘xReLU’, was
used to activate complex inputs. The weights and biases of the CNN network were transferred
from the encoder block of the autoencoder.

3.5 Computation of pixel relevance and construction of the saliency maps
 The relevance (attributions) of the pixels (𝒓𝒓 = 𝒔𝒔(𝒙𝒙)) of an input image to latent variables
(𝒍𝒍 = 𝒇𝒇(𝒙𝒙)) were computed using the sensitivity of latent variables to the input pixels. Here, 𝒔𝒔 is
the sensitivity function, 𝒙𝒙 ∈ ℝ256×256 is an input image array and 𝒍𝒍 ∈ ℝ16×16×8 is a tensor of
latent variables associated with 𝒙𝒙, 𝒓𝒓 has the same size as that of input image array 𝒙𝒙 and every
element in 𝒓𝒓 maps the relevance or attribution of every element in 𝒙𝒙 as seen in Fig. 8.

Sensitivities were determined through the gradient of latent variables with respect to input
pixel features. Thus, the relevance of a pixel feature (𝑟𝑟𝑖𝑖𝑖𝑖) is mathematically defined as the
Frobenius norm of the gradient tensor (𝒈𝒈𝑖𝑖𝑖𝑖 = 𝜕𝜕𝒍𝒍 𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖⁄) given as

𝑟𝑟𝑖𝑖𝑖𝑖 = �𝒈𝒈𝑖𝑖𝑖𝑖�
𝐹𝐹

= �∑ ∑ ∑ (𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖)2 8

𝑤𝑤=1
16
𝑣𝑣=1

16
𝑢𝑢=1 (5)

where, 𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢 𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖⁄ , 𝑢𝑢 = 1 𝑡𝑡𝑡𝑡 16, 𝑣𝑣 = 1 𝑡𝑡𝑡𝑡 16 and 𝑤𝑤 = 1 𝑡𝑡𝑡𝑡 8 (6)

 The gradient tensor for each input pixel feature was determined using the complex step
derivative approximation (CSDA) method. The mathematical basis involved with the CSDA
method is comprehensively explained in Section 4. Computation of gradient tensor of an input
pixel feature 𝑥𝑥𝑖𝑖𝑖𝑖 using the CSDA method involves three steps: 1. Creating a perturbed input array
(𝒙́𝒙) by adding a very small complex perturbation (𝑖𝑖ℎ) to 𝑥𝑥𝑖𝑖𝑖𝑖, 2. Determination of latent variables
�𝒍́𝒍� by feedforwarding the perturbed input array (𝒙́𝒙) and 3. Calculation of partial derivatives by

9

dividing imaginary component of obtained complex latent variables with the step size
�𝒈𝒈 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝒍́𝒍� ℎ⁄ �. We used a step size (ℎ) of 10−24 in our analysis to obtain analytical level
accurate gradients. This is further illustrated in Fig. 9.

4. Complex step derivative approximation

In this study, the partial derivatives of latent features with respect to the input pixel features
of a convolutional autoencoder are determined using complex step derivative approximation
(CSDA). We employed CSDA for its various advantages over its numerical counterparts and also
based on the experience we derived from our previous studies [59-62]. One of the important
advantages of CSDA is that it is automatable which means that a common step size (ℎ) (which can
be very small in the order of 10-24) can be assumed to find an accurate derivative of any function.
This is due to the fact that CSDA is free of subtractive cancellation errors which also allows it to
obtain analytical level accurate derivatives. In the case of discontinuous functions, CSDA still can
find one-sided derivatives which are very useful in the case of neural networks since it employs
many discontinuous activation functions [63]. CSDA can also be used to determine first-order and
second-order derivatives of tensor functions [64].

CSDA is derived from expanding an analytical function, 𝑓𝑓, about a very small complex
step size, 𝑖𝑖ℎ (𝑖𝑖 is a unit imaginary component and h is the step size) using Taylor’s series

𝑓𝑓(𝑥𝑥 + 𝑖𝑖ℎ) = 𝑓𝑓(𝑥𝑥) + 𝑖𝑖ℎ𝑓𝑓′(𝑥𝑥) −
ℎ2

2!
 𝑓𝑓′′(𝑥𝑥) −

ℎ3

3!
𝑓𝑓′′′(𝑥𝑥) + ⋯ (7)

Rearranging Eq. 7 and using a quadratic error term, 𝑜𝑜(ℎ2), we obtain:

𝑓𝑓′(𝑥𝑥) =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑓𝑓(𝑥𝑥 + 𝑖𝑖ℎ)�

ℎ
+ 𝑜𝑜(ℎ2) (8)

here, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(.) extracts the imaginary component of a function.
Finally, the expression in Eq. 9 approximates the first-order derivative of a scalar function after
the quadratic error term in Eq. 8 is truncated. It is evident from Eq. 8 that we can obtain analytical
precise derivatives by keeping the step size, ℎ, very small (i.e., in the order of 10-24).

𝑓𝑓′(𝑥𝑥) ≈
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑓𝑓(𝑥𝑥 + 𝑖𝑖ℎ)�

ℎ
 (9)

CSDA can be further extended to multivariable functions by expanding the function about one
variable at a time. For example, using the above approach we can arrive at the following
expression to determine the partial derivative of a 𝑘𝑘𝑡𝑡ℎ variable of a multivariable function:

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

≈
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑓𝑓(𝑥𝑥1, 𝑥𝑥2 … , 𝑥𝑥𝑘𝑘 + 𝑖𝑖ℎ, … , 𝑥𝑥𝑛𝑛)�

ℎ

(10)

In the case of multi-output functions, the first derivative(s) of each output function can be obtained
using Eq. 9 or Eq. 10 independently and therefore can be computed parallelly.

With this mathematical basis, we have implemented CSDA to convolutional autoencoders
in this study. The functional relation between inputs and outputs is implicit in neural network

10

models and is developed through data training. Hence, CSDA is applied to the trained and
configured network model. Since the network is trained with real values, a new model with the
same architecture and network parameters as that of the trained network but with complex layers
and activation functions is used. In our study, we used CSDA on the encoder network, hence we
modified convolution, max pooling, and activation functions to deal with complex inputs.
Convolutions on the complex inputs are performed as follows

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙�) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅(𝒙𝒙�)) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐼𝐼𝐼𝐼(𝒙𝒙�)) (11)
where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(.) is a convolutional operator and 𝒙𝒙� is a complex input array. 𝑅𝑅𝑅𝑅(.) and 𝐼𝐼𝐼𝐼(.) are
real and imaginary components of inputs respectively.

Max pooling on complex inputs involves a complex summation of the maximum value of
real components of 𝒙𝒙� and their conjugal imaginary components. The implementation of it is shown
below:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒙𝒙�) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑅𝑅𝑅𝑅(𝒙𝒙�)� + 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐼𝐼𝐼𝐼(𝒙𝒙�)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐼𝐼𝐼𝐼(𝒙𝒙�) = 𝐼𝐼𝐼𝐼(𝒙𝒙�)[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑅𝑅𝑅𝑅(𝒙𝒙�)�]

(12)

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(∗) the function finds the locations of max pool values and [∗] function extracts
elements of an array corresponding to the input locations.
The ReLU activation function used in the convolutional layers is modified as follows

𝜙𝜙(𝑧𝑧) = �0 + 0𝑖𝑖 𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅(𝑧𝑧) ≤ 0
𝑅𝑅𝑅𝑅(𝑧𝑧) + 𝐼𝐼𝐼𝐼(𝑧𝑧) 𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅(𝑧𝑧) > 0 (13)

where, 𝑧𝑧 is the activated scalar input, 𝑦𝑦 is the activated output.
The encoder network of a CAE takes multiple inputs (pixel features) and returns multiple

outputs (latent features). Based on Eq. 10, partial derivatives of latent features with respect to each
pixel feature are evaluated one at a time. At each evaluation, the pixel feature of interest is added
with a complex component (𝑖𝑖ℎ), then the pixel inputs are feedforwarded to obtain the
corresponding complex latent outputs. The partial derivative of each latent feature is parallelly
computed by extracting the imaginary components of complex latent features and dividing them
with the step size (ℎ) as per Eq. 10.

5. Compact representation and secured sharing of metal microstructure

The input image of size 256 × 256 × 1 is compactly represented to a latent size of 16 × 16
× 8 using the CAE designed in this study. A compression ratio of 32 was achieved without losing
any important information of the microstructure. In other words, an input image was able to be
reconstructed just from 3.125% of the original information. Fig. 10 shows some examples of the
reconstructed microstructural images together with the original images. It is to be noted that the
compact (latent) representation of metal microstructure is an encoded version of metal
microstructure. To retrieve back the original information from the latent representation (𝒍𝒍), the
decoder network with the trained weights and biases is required. It is highly unlikely to reconstruct
the input from the latent features without knowing the decoder architecture and its weights and

11

biases. Accordingly, the decoder network acts as a security key to decode the latent representation
and thus provide a highly safe and secured way of sharing the metal microstructure information.

6. Saliency maps of metal microstructure

A set of microstructural images was selected and relevance matrices of those images were
generated using the procedure laid out in Section 3. The elements of a relevance matrix are
basically the sensitivities of latent variables to input pixel features of a microstructural image. The
high sensitivity of latent variables to an input pixel indicates that a specific input pixel is highly
important in generating the respective output of latent variables. Heat maps were plotted using
these relevance arrays to gain insights on the latent representation of microstructural images so
that pixel regions which are important for reconstruction are identified. These heat maps are known
as saliency maps in the literature [65, 66]. Saliency maps are useful in understanding the
importance of inputs to the network predictions. In addition to acting as an interpretability tool,
salient maps are also play an important role in object detection [67]. The saliency maps developed
in the current study highlight the relevance of the input pixels for their latent representation. In
other words, the saliency maps highlight the regions of input information passed on to the latent
space and used for reconstruction. Fig. 11 shows some examples of saliency maps developed along
with their input microstructural images. The saliency maps are smoothened using a gaussian filter
with a standard deviation of 1. The maps are plotted using a blue-white-red divergent color map.
Thus, red color indicates high relevance, white color indicates moderate relevance and blue color
indicates low or no relevance of input pixels.

The saliency maps consistently show the darker pearlite regions (secondary phase regions)
and the microstructural boundaries as highly relevant and the greyer ferrite regions as slightly or
not relevant for the convolutional autoencoder in constructing the latent representation. The
obtained results are consistent with the way autoencoders work. Autoencoders build a highly
compressed version of an input image in a low-dimensional latent space. They reconstruct the
original image from the information available in the latent layer and information built into the
network itself. The information stored in the latent space is unique to each image. The information
stored in the network can be considered as base information over which the latent space
information is added. If the images of interest are simply composites of number of image features,
then the image features which are less frequent and occupying less regions get most likely encoded
in the latent space and the features which are more frequent and occupying most regions get stored
as base information in the network. This is because latent space stores distinct and a very small
part of the input information. Since the pearlite microstructures relatively occupy only a smaller
area of an image compared to ferrite microstructures, we find the saliency maps give more
relevance to pearlite regions and very low or no relevance to ferrite regions. In the subsequent
section, the saliency maps generated through the current approach is compared with other existing
attribution approaches.

12

7. Comparison with other popular approaches
Guided backpropagation (GBP) [68], class activation maps (CAMs) [69], layer wise

relevance propagation (LRP) [70] and DeepLIFT [71] are widely used interpretability approaches
for convolutional neural network models. GBP is a popular gradient approach which relates the
relevance of input pixels to the gradients of the outputs. GBP differentiate itself from the vanilla
gradient approach by backpropagating only the positive gradients. Hence, saliency maps
constructed using GBP are less noisy and more understandable than the vanilla gradient approach.
However, GBP simply act as an edge detector and lacks the ability to discriminate between classes.
CAMs are specifically developed to overcome this limitation and successfully applied in many
classification tasks. However, CAMs require a global max pooling layer before the soft max layer
and cannot be readily applied for all the classification networks. LRP is a heuristic approach which
sequentially backpropagates the prediction of the outputs based on the contribution of neurons of
the previous layer to the activations of the current layer. Though LRP is free of gradient saturation
problem suffered by the gradient approaches, it does not have a strong mathematical basis. It also
does not handle negative contributions of the input features properly and requires different
propagation rules for different levels of the layers. DeepLIFT backpropagates activation
differences to find the contribution of the input features and addresses the problem of negative
contributions. DeepLIFT has a theoretical basis unlike LRP. One defining aspect of DeepLIFT
which is absent in other approaches is that it also considers the contributions from the network
biases. The major limitation of DeepLIFT is that it requires domain expertise for fixing the
reference basis to compute the activation differences. Our proposed approach is model agnostic
can be applied to any type of machine learning task and handle different types of input data. It
does not require any domain expertise for the computation of input attributions (relevance). The
proposed approach can also handle negative contributions toward the outputs, and it is capable of
handling different activation functions.

To assess the effectiveness of our proposed method, saliency maps are also constructed using
GBP and LRP and compared with the saliency maps developing using our method (CPA) in Fig.
11. Since GBP can handle only one output, the L2 norm of latent outputs is used to find the pixel
relevance. For LRP, 𝒵𝒵+ propagation rule is used for all the layers except for the first(input) layer.
For the first layer, two different propagation rules are used and considered as separate approaches
in the comparison. Accordingly, in Fig. 11, LRP𝓌𝓌2 𝑎𝑎𝑎𝑎𝑎𝑎 LRP𝛽𝛽 denote layer wise relevance
propagation approach with 𝓌𝓌2 and 𝒵𝒵𝛽𝛽 rules for the first layer respectively [72]. The saliency
maps developed using GBP shows almost all the regions of the input microstructure are
significantly relevant which is rather ambiguous since autoencoder must lose dependency on some
input features to obtain a lower-dimensional representation. Furthermore, GBP deems ferrite
regions are more relevant to compact representation than pearlite regions and grain boundaries
which clearly contradicts the results of all the other three approaches. The saliency explanations
given by LRP, especially LRP𝓌𝓌2, is closer to our approach. The saliency explanations given by
LRP𝛽𝛽 is more scattered than LRP𝓌𝓌2 and less image regions are deemed important compared to
LRP𝓌𝓌2. This clearly demonstrates saliency explanations offered by LRP is sensitive to the

13

propagation rule used for the first layer. Since LRP is heuristic based, and hence no rational basis
is available for selecting appropriate propagation rule. This comparison demonstrates our approach
produces more consistent and meaningful saliency explanations when compared to GBP and LRP.

8. Outcomes and Conclusions

The current study aims at providing a deep learning framework to identify the important
pixel regions in a metal microstructure for compact representation and secure sharing of
microstructural image data. The main outcomes and conclusions of this study are
1) The CAE designed in the study achieves a compression ratio of 32 and is capable of

reconstructing original microstructural images just from 3.5% of original data without losing
essential information.

2) Since the input metal microstructural data can only be reconstructed through the trained
decoder network, the compact representation of the metal microstructure along with the
decoder network can be used for secure sharing of microstructural data.

3) A model-agnostic sensitivity approach is proposed to quantify the pixel importance and a
complex CNN is introduced to carry out the sensitivity analysis.

4) Saliency maps which highlight the relevance/importance of pixel features for image
reconstruction (or compact representation) are generated. The saliency maps showed the grey
pearlite regions and grain boundaries are highly relevant. Interestingly, ferrite regions are
shown unimportant for reconstruction.

5) The proposed complex perturbation approach produces more tenable and consistent saliency
explanations compared to guided backpropagation and layer wise propagation methods

6) The generic framework introduce in the study can be extended to identify important
microstructural regions for other metals, composites, biomaterials, and material systems.

Acknowledgment

The Research presented in this presentation was supported by the National Science
Foundation through NSF EPSCoR Track-1 Cooperative Agreement OIA #1946202 and CAREER
award # 2045538. Any opinions, findings, and conclusions, or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

Data Availability Statement

The raw/processed data required to reproduce these findings cannot be shared at this time as
the data also forms part of an ongoing study.

References
[1] S. Montecinos, S. Tognana, and W. Salgueiro, "Influence of microstructure on the Young's
modulus in a Cu-2Be (wt%) alloy," Journal of Alloys and Compounds, vol. 729, pp. 43-48, 2017.

14

[2] A. Kupke, P. D. Hodgson, and M. Weiss, "The effect of microstructure and pre-strain on
the change in apparent Young’s modulus of a dual-phase steel," Journal of Materials Engineering
and Performance, vol. 26, no. 7, pp. 3387-3398, 2017.
[3] W. Kasprzak, H. Kurita, G. Birsan, and B. S. Amirkhiz, "Hardness control of Al–Si HPDC
casting alloy via microstructure refinement and tempering parameters," Materials & Design, vol.
103, pp. 365-376, 2016.
[4] A. Vornberger, J. Pötschke, T. Gestrich, M. Herrmann, and A. Michaelis, "Influence of
microstructure on hardness and thermal conductivity of hardmetals," International Journal of
Refractory Metals and Hard Materials, vol. 88, p. 105170, 2020.
[5] J. Gubicza, N. Q. Chinh, T. Csanadi, T. Langdon, and T. Ungár, "Microstructure and
strength of severely deformed fcc metals," Materials Science and Engineering: A, vol. 462, no. 1-
2, pp. 86-90, 2007.
[6] C. Zheng, L. Li, W. Yang, and Z. Sun, "Relationship between microstructure and yield
strength for plain carbon steel with ultrafine or fine (ferrite+ cementite) structure," Materials
Science and Engineering: A, vol. 617, pp. 31-38, 2014.
[7] T. Wang, F. Yong, X. H. Liu, K. X. Wang, Y. X. Du, and F. Zhao, "Enhanced Strength-
ductility synergy in Ti-4Al-5Mo-5V-5Cr-1Nb with hierarchical microstructure," Materials
Letters: X, p. 100168, 2022/09/20/ 2022, doi: https://doi.org/10.1016/j.mlblux.2022.100168.
[8] K. O. Pedersen, I. Westermann, T. Furu, T. Børvik, and O. S. Hopperstad, "Influence of
microstructure on work-hardening and ductile fracture of aluminium alloys," Materials & Design,
vol. 70, pp. 31-44, 2015.
[9] H. U. Sajid, D. L. Naik, and R. Kiran, "Microstructure–Mechanical Property Relationships
for Post-Fire Structural Steels," Journal of Materials in Civil Engineering, vol. 32, no. 6, p.
04020133, 2020.
[10] P. T. Summers, "Microstructure-based constitutive models for residual mechanical
behavior of aluminum alloys after fire exposure," Virginia Polytechnic Institute and State
University, 2014.
[11] M. Shabani, M. Emamy, and N. Nemati, "Effect of grain refinement on the microstructure
and tensile properties of thin 319 Al castings," Materials & Design, vol. 32, no. 3, pp. 1542-1547,
2011.
[12] M. Oliaei and R. Jamaati, "Improvement of the strength-ductility-toughness balance in
interstitial-free steel by gradient microstructure," Materials Science and Engineering: A, vol. 845,
p. 143237, 2022.
[13] Z. Zhang et al., "Effects of phase composition and content on the microstructures and
mechanical properties of high strength Mg–Y–Zn–Zr alloys," Materials & design, vol. 88, pp.
915-923, 2015.
[14] Q. Xie, M. Suvarna, J. Li, X. Zhu, J. Cai, and X. Wang, "Online prediction of mechanical
properties of hot rolled steel plate using machine learning," Materials & Design, vol. 197, p.
109201, 2021.
[15] G. Deffrennes, K. Terayama, T. Abe, and R. Tamura, "A machine learning–based
classification approach for phase diagram prediction," Materials & Design, vol. 215, p. 110497,
2022.
[16] A. A. K. Farizhandi and M. Mamivand, "Processing Time, Temperature, and Initial
Chemical Composition Prediction from Materials Microstructure by Deep Network for Multiple
Inputs and Fused Data," Materials & Design, p. 110799, 2022.
[17] D. Stuart et al., "Practical challenges for researchers in data sharing," 2018.

https://doi.org/10.1016/j.mlblux.2022.100168

15

[18] K. Marlapalli, R. S. B. P. Bandlamudi, R. Busi, V. Pranav, and B. Madhavrao, "A Review
on Image Compression Techniques," Singapore, 2021: Springer Singapore, in Communication
Software and Networks, pp. 271-279.
[19] M. Larmuseau, M. Sluydts, K. Theuwissen, L. Duprez, T. Dhaene, and S. Cottenier,
"Compact representations of microstructure images using triplet networks," npj Computational
Materials, vol. 6, no. 1, pp. 1-11, 2020.
[20] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, "When deep learning meets metric
learning: Remote sensing image scene classification via learning discriminative CNNs," IEEE
transactions on geoscience and remote sensing, vol. 56, no. 5, pp. 2811-2821, 2018.
[21] D. Bank, N. Koenigstein, and R. Giryes, "Autoencoders," arXiv preprint
arXiv:2003.05991, 2020.
[22] W. H. L. Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli, "Autoencoders," in Machine
learning: Elsevier, 2020, pp. 193-208.
[23] W. Wang, Y. Huang, Y. Wang, and L. Wang, "Generalized autoencoder: A neural network
framework for dimensionality reduction," in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2014, pp. 490-497.
[24] E. Lin, S. Mukherjee, and S. Kannan, "A deep adversarial variational autoencoder model
for dimensionality reduction in single-cell RNA sequencing analysis," BMC bioinformatics, vol.
21, no. 1, pp. 1-11, 2020.
[25] C. Zhou and R. C. Paffenroth, "Anomaly detection with robust deep autoencoders," in
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining, 2017, pp. 665-674.
[26] J. Feng, Y. Liang, and L. Li, "Anomaly Detection in Videos Using Two-Stream
Autoencoder with Post Hoc Interpretability," Computational Intelligence and Neuroscience, vol.
2021, 2021.
[27] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, "Contractive auto-encoders:
Explicit invariance during feature extraction," in Icml, 2011.
[28] J. Zabalza et al., "Novel segmented stacked autoencoder for effective dimensionality
reduction and feature extraction in hyperspectral imaging," Neurocomputing, vol. 185, pp. 1-10,
2016.
[29] C. Nash and C. K. Williams, "The shape variational autoencoder: A deep generative model
of part‐segmented 3D objects," in Computer Graphics Forum, 2017, vol. 36, no. 5: Wiley Online
Library, pp. 1-12.
[30] Y. Wu, Y. Burda, R. Salakhutdinov, and R. Grosse, "On the quantitative analysis of
decoder-based generative models," arXiv preprint arXiv:1611.04273, 2016.
[31] A. Ng, "Sparse autoencoder," CS294A Lecture notes, vol. 72, no. 2011, pp. 1-19, 2011.
[32] K. Cho, "Boltzmann machines and denoising autoencoders for image denoising," arXiv
preprint arXiv:1301.3468, 2013.
[33] D. P. Kingma and M. Welling, "An introduction to variational autoencoders," arXiv
preprint arXiv:1906.02691, 2019.
[34] Y. Zhang, "A better autoencoder for image: Convolutional autoencoder," in ICONIP17-
DCEC. Available online: http://users. cecs. anu. edu. au/Tom.
Gedeon/conf/ABCs2018/paper/ABCs2018_paper_58. pdf (accessed on 23 March 2017), 2018.
[35] Y. Kim et al., "Exploration of optimal microstructure and mechanical properties in
continuous microstructure space using a variational autoencoder," Materials & Design, vol. 202,
p. 109544, 2021.

http://users/

16

[36] S. M. Lee, S.-Y. Park, and B.-H. Choi, "Application of domain-adaptive convolutional
variational autoencoder for stress-state prediction," Knowledge-Based Systems, vol. 248, p.
108827, 2022.
[37] J. Xu and K. Duraisamy, "Multi-level convolutional autoencoder networks for parametric
prediction of spatio-temporal dynamics," Computer Methods in Applied Mechanics and
Engineering, vol. 372, p. 113379, 2020.
[38] K. Fukami, T. Nakamura, and K. Fukagata, "Convolutional neural network based
hierarchical autoencoder for nonlinear mode decomposition of fluid field data," Physics of Fluids,
vol. 32, no. 9, p. 095110, 2020.
[39] D. Jana, J. Patil, S. Herkal, S. Nagarajaiah, and L. Duenas-Osorio, "CNN and
Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization, and
correction," Mechanical Systems and Signal Processing, vol. 169, p. 108723, 2022.
[40] Z. Nie, H. Jiang, and L. B. Kara, "Stress field prediction in cantilevered structures using
convolutional neural networks," Journal of Computing and Information Science in Engineering,
vol. 20, no. 1, p. 011002, 2020.
[41] Z. Rastin, G. Ghodrati Amiri, and E. Darvishan, "Unsupervised structural damage
detection technique based on a deep convolutional autoencoder," Shock and Vibration, vol. 2021,
2021.
[42] F. Ni, J. Zhang, and M. N. Noori, "Deep learning for data anomaly detection and data
compression of a long‐span suspension bridge," Computer‐Aided Civil and Infrastructure
Engineering, vol. 35, no. 7, pp. 685-700, 2020.
[43] H. Steck, "Autoencoders that don't overfit towards the Identity," Advances in Neural
Information Processing Systems, vol. 33, pp. 19598-19608, 2020.
[44] H. Gholamalinezhad and H. Khosravi, "Pooling methods in deep neural networks, a
review," arXiv preprint arXiv:2009.07485, 2020.
[45] V. Turchenko, E. Chalmers, and A. Luczak, "A deep convolutional auto-encoder with
pooling-unpooling layers in caffe," arXiv preprint arXiv:1701.04949, 2017.
[46] B. Hou and R. Yan, "Convolutional autoencoder model for finger-vein verification," IEEE
Transactions on Instrumentation and Measurement, vol. 69, no. 5, pp. 2067-2074, 2019.
[47] N. M. N. Leite, E. T. Pereira, E. C. Gurjao, and L. R. Veloso, "Deep convolutional
autoencoder for EEG noise filtering," in 2018 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), 2018: IEEE, pp. 2605-2612.
[48] A. Odena, V. Dumoulin, and C. Olah, "Deconvolution and checkerboard artifacts," Distill,
vol. 1, no. 10, p. e3, 2016.
[49] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image
recognition," arXiv preprint arXiv:1409.1556, 2014.
[50] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception
architecture for computer vision," in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 2818-2826.
[51] E. Million, "The hadamard product," Course Notes, vol. 3, no. 6, 2007.
[52] I. Goodfellow, Y. Bengio, and A. Courville, "Convolutional networks," in Deep learning,
vol. 2016: MIT Press Cambridge, MA, USA, 2016, pp. 330-372.
[53] H. U. Sajid and R. Kiran, "Influence of high stress triaxiality on mechanical strength of
ASTM A36, ASTM A572 and ASTM A992 steels," Construction and Building Materials, vol.
176, pp. 129-134, 2018.

17

[54] D. L. Naik, H. U. Sajid, and R. Kiran, "Texture-Based Metallurgical Phase Identification
in Structural Steels: A Supervised Machine Learning Approach," Metals, vol. 9, no. 5, p. 546,
2019.
[55] D. Arumugam, D. L. Naik, H. U. Sajid, and R. Kiran, "Relationship between Nano and
Macroscale Properties of Postfire ASTM A36 Steels," Journal of Materials in Civil Engineering,
vol. 34, no. 6, p. 04022100, 2022.
[56] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint
arXiv:1412.6980, 2014.
[57] M. Abadi et al., "Tensorflow: Large-scale machine learning on heterogeneous distributed
systems," arXiv preprint arXiv:1603.04467, 2016.
[58] M. Lin, Q. Chen, and S. Yan, "Network in network," arXiv preprint arXiv:1312.4400,
2013.
[59] R. Kiran, L. Li, and K. Khandelwal, "Complex perturbation method for sensitivity analysis
of nonlinear trusses," Journal of Structural Engineering, vol. 143, no. 1, p. 04016154, 2017.
[60] R. Kiran and K. Khandelwal, "Complex step derivative approximation for numerical
evaluation of tangent moduli," Computers & Structures, vol. 140, pp. 1-13, 2014.
[61] R. Kiran and D. L. Naik, "Novel sensitivity method for evaluating the first derivative of
the feed-forward neural network outputs," Journal of Big Data, vol. 8, no. 1, pp. 1-13, 2021.
[62] D. L. Naik and R. kiran, "A novel sensitivity-based method for feature selection," Journal
of Big Data, vol. 8, no. 1, p. 128, 2021/10/09 2021, doi: 10.1186/s40537-021-00515-w.
[63] D. Wilke and S. Kok, "Numerical sensitivity computation for discontinuous gradient-only
optimization problems using the complex-step method," 2012.
[64] K.-L. Lai and J. Crassidis, "Extensions of the first and second complex-step derivative
approximations," Journal of Computational and Applied Mathematics, vol. 219, no. 1, pp. 276-
293, 2008.
[65] K. Simonyan, A. Vedaldi, and A. Zisserman, "Deep inside convolutional networks:
Visualising image classification models and saliency maps," arXiv preprint arXiv:1312.6034,
2013.
[66] L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene
analysis," IEEE Transactions on pattern analysis and machine intelligence, vol. 20, no. 11, pp.
1254-1259, 1998.
[67] J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, "Advanced deep-learning techniques for
salient and category-specific object detection: a survey," IEEE Signal Processing Magazine, vol.
35, no. 1, pp. 84-100, 2018.
[68] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, "Striving for simplicity:
The all convolutional net," arXiv preprint arXiv:1412.6806, 2014.
[69] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, "Learning deep features for
discriminative localization," in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 2921-2929.
[70] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, "On pixel-
wise explanations for non-linear classifier decisions by layer-wise relevance propagation," PloS
one, vol. 10, no. 7, p. e0130140, 2015.
[71] A. Shrikumar, P. Greenside, and A. Kundaje, "Learning important features through
propagating activation differences," in International Conference on Machine Learning, 2017:
PMLR, pp. 3145-3153.

18

[72] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller, "Layer-wise
relevance propagation: an overview," Explainable AI: interpreting, explaining and visualizing
deep learning, pp. 193-209, 2019.

Tables

Table 1: Regularization terms of different autoencoders

Autoencoders Regularization terms

Sparse autoencoders 𝜆𝜆∑ |𝑎𝑎𝑖𝑖|𝑖𝑖

Contractive autoencoders 𝜆𝜆‖𝑱𝑱(𝒙𝒙)‖𝐹𝐹2 , 𝐽𝐽(𝒙𝒙) = ∑ �𝜕𝜕𝑔𝑔𝑗𝑗 𝜕𝜕𝑥𝑥𝑖𝑖⁄ �
2

𝑖𝑖𝑖𝑖

Variational autoencoders 𝜆𝜆∑ 𝐾𝐾𝐾𝐾(𝑞𝑞𝑗𝑗(𝑙𝑙|𝒙𝒙)||𝑝𝑝(𝑙𝑙))𝑗𝑗

Denoising autoencoders -
where, 𝒙𝒙 is an input, 𝒍𝒍 is a latent output, 𝜆𝜆 is the regularization parameter, 𝑎𝑎𝑖𝑖 is 𝑖𝑖𝑡𝑡ℎ activation of
the latent layer, 𝑱𝑱 is the Jacobian of the partial derivatives, 𝑙𝑙𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ latent variable, 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ
input feature. KL is the divergence function between the distribution of the code layer (𝑞𝑞𝑗𝑗(𝒍𝒍|𝒙𝒙))
and true prior distribution (𝑝𝑝(𝒍𝒍)) (approximated using a unit gaussian distribution).

Table 2: Functional expressions of different activation functions

Activation Type Activation function

Linear 𝜙𝜙(𝑧𝑧) = 𝑧𝑧

ReLU 𝜙𝜙(𝑧𝑧) = �0 𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 0
𝑧𝑧 𝑖𝑖𝑖𝑖 𝑧𝑧 > 0

Leaky ReLU 𝜙𝜙(𝑧𝑧) = �𝛽𝛽𝛽𝛽 𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 0
𝑧𝑧 𝑖𝑖𝑖𝑖 𝑧𝑧 > 0

TanH 𝜙𝜙(𝑧𝑧) = tanh(𝑧𝑧)

Sigmoid 𝜙𝜙(𝑧𝑧) = 1/(1 + 𝑒𝑒−𝑧𝑧)

Table 3: Parameter used in this study for ADAM optimizer

Parameter 𝛽𝛽1 𝛽𝛽2 𝜖𝜖 𝛼𝛼
Value 0.9 0.999 10−8 0.001

Table 4: Architectural details of encoder block of convolutional autoencoder

19

Layer No of filters Kernel/Pool
size

Activation
function Data Size

Input - - - 256×256×1

Convolutional Layer 1 64 3×3 ReLU 256×256×64

Maxpooling Layer 1 - 2×2 - 128×128×64

Convolutional Layer 2 32 3×3 ReLU 128×128×32

Maxpooling Layer 2 - 2×2 - 64×64×32

Convolutional Layer 3 16 3×3 ReLU 64×64×16

Maxpooling Layer 3 - 2×2 - 32×32×16

Convolutional Layer 4 8 3×3 ReLU 32×32×8

Maxpooling Layer 4 - 2×2 - 16×16×8

Table 5: Architectural details of decoder block of convolutional autoencoder

Layer No of filters
Kernel/Pool

size
Activation
function Data Size

Latent Input - - - 16×16×8

Upsampling Layer 1 - 2×2 - 32×32×8

Convolutional Layer 1 8 3×3 ReLU 32×32×8

Upsampling Layer 2 - 2×2 - 64×64×8

Convolutional Layer 2 16 3×3 ReLU 64×64×16

Upsampling Layer 3 - 2×2 - 128×128×16

Convolutional Layer 3 32 3×3 ReLU 128×128×32

Upsampling Layer 4 - 2×2 - 256×256×32

Convolutional Layer 4 64 3×3 ReLU 256×256×64

Convolutional Layer 5 1 3×3 Linear 256×256×1

Table 6: Architectural details of decoder block of convolutional autoencoder

20

Figures

Fig. 1: General schematic of autoencoder’s architecture. Encoder, 𝑓𝑓, maps the input, 𝒙𝒙, to a
dimensionally reduced space and generate latent features, 𝒍𝒍, and decoder, 𝑔𝑔, uses the compressed
data, 𝒍𝒍, and outputs reconstructed input, 𝒙𝒙, without significant loss of information.

Fig. 2: Convolution of an RGB image input with 3×3 kernels and a unit stride. The three input

Compressed data
(latent features)

𝒍𝒍

Reconstructed input

𝒍𝒍 = 𝒇𝒇(𝒙𝒙) 𝒙𝒙� = 𝒈𝒈(𝒍𝒍)

Input

Encoder, 𝒇𝒇 Decoder, 𝒈𝒈 𝒙𝒙 𝒙𝒙�

0 3 0 3 1

5 1 3 7 4

1 2 8 5 0

3 1 4 3 3

6 2 3 2 4

3 2 3 0 0

5 2 0 7 4

1 2 5 1 0

3 9 4 3 3

8 1 3 2 1

1 2 3 1 0

5 2 0 7 1

1 2 5 0 0

3 1 4 3 3

1 1 0 2 4

1 0 0

-1 0 -1

0 0 1

0 1 0

-1 0 1

0 -1 0

1 0 0

0 -1 0

0 0 1

-5 3 3

-3 -5 -1

2 -4 -2

4 2 -4

7 0 3

0 0 6

+

+

0 0 -7

0 -3 -2

-3 0 5

-1 5 -8

4 -8 0

-1 -4 9

C

C

C C
convolution
operation

feature map

kernel 1

kernel 2

kernel 3

RGB channel inputs filter convolved outputs

21

channel arrays are convolved with their respective kernels positioned next to them. Dashed boxes
on the input shows subarrays enclosed by the kernel window at an arbitrary step. The outputs and
their positions results from convolution between the subarrays and the kernels are again indicated
using a dashed box on the output arrays. The feature map is obtained finally by summing the
convolved outputs together.

Fig. 3: Convolutional operation involved in ‘same’ padding type. A row and column of zeros are
added around the input sides to produce the feature map with size same as that of the input. A
kernel filter of size 3×3 and a unit stride are used for this demonstration.

Fig. 4: Illustration of a pooling operation with a pool window size of 2×2 and stride 2. The different
colors in the feature map highlight the subarrays captured by the pool window. The max pool and
average pool values of those subarrays are shown on the right side. The pooling operation halves
the width and height of input feature maps.

0 0 0 0 0

0 1 3 7 0

0 2 8 5 0

0 1 4 3 0

0 0 0 0 0

1 0 0

0 -1 0

0 0 1

C

kernel

padded input

7 2 -7

2 -4 -2

-1 -2 5
 feature map

2 3

2 4

feature map

max
pooling

average
pooling

5 7

3 6

0 3 3 1

5 0 1 7

1 2 6 4

3 2 4 2

feature map

upsampled output

5 7

3 6

5 5 7 7

5 5 7 7

3 3 6 6

3 3 6 6

22

Fig. 5: Illustration of a upsampling operation with a window size of 2×2. Upsampling in this
illustrated case involves the repetition of each input values into a 2×2 array and increases the
dimensions of the input by the factor of 2.

Fig. 6: Schematic of the methodology used in this study

Acquisition of Microstructural Images

Preparation of Input data

Training and Configuration of Autoencoder

Formation of neural network from the encoder

Construction of Saliency maps

23

Fig. 7: Architecture of the convolutional autoencoder employed in the study. Yellow, red, and
purple blocks are convolutional, max pooling and upsampling layers respectively. The employed
network involves 50,353 network parameters. The input size of 256×256×1 is reduced to latent
size of 16×16×8 with a compression ratio of 32.

Fig. 8: Relevance matrix mapping the attribution of each pixel features in the input array

Fig. 9: Implementation of complex step derivative approximation to compute partial derivatives
of latent features with respect to input pixel features. The input with a perturbed pixel feature (𝑥𝑥𝑖𝑖𝑖𝑖)
is feedforwarded on the complex convolutional neural network. The partial derivatives (𝒈𝒈) are
determined by dividing the imaginary components of complex latent outputs (𝒍𝒍) with step size, ℎ.

𝒙𝒙 𝒓𝒓

𝑥𝑥11 𝑥𝑥12 𝑥𝑥13 ⋯ 𝑥𝑥1𝑞𝑞

𝑥𝑥21 𝑥𝑥22 𝑥𝑥23 ⋯ 𝑥𝑥2𝑞𝑞

𝑥𝑥31 𝑥𝑥32 𝑥𝑥33 ⋯ 𝑥𝑥3𝑞𝑞

⋮ ⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑝𝑝1 𝑥𝑥𝑝𝑝2 𝑥𝑥𝑝𝑝3 ⋯ 𝑥𝑥𝑝𝑝𝑞𝑞

𝑟𝑟11 𝑟𝑟12 𝑟𝑟13 ⋯ 𝑟𝑟1𝑞𝑞

𝑟𝑟21 𝑟𝑟22 𝑟𝑟23 ⋯ 𝑟𝑟2𝑞𝑞

𝑟𝑟31 𝑟𝑟32 𝑟𝑟33 ⋯ 𝑟𝑟3𝑞𝑞

⋮ ⋮ ⋮ ⋱ ⋮

𝑟𝑟𝑝𝑝1 𝑟𝑟𝑝𝑝2 𝑟𝑟𝑝𝑝3 ⋯ 𝑟𝑟𝑝𝑝𝑞𝑞

𝒔𝒔

𝒈𝒈 = 𝑖𝑖𝑖𝑖(𝒍𝒍) ℎ⁄
input after complex

perturbation

complex latent
outputs

complex convolutional neural network

24

Fig. 10: Top row – Input microstructural images, Bottom row - microstructural images
reconstructed by the trained network with a mean squared error reconstruction loss 0.035.

input images

saliency maps

CPA

GBP

LRP𝛽𝛽

25

LRP𝓌𝓌2

Fig. 11: Saliency maps generated for the trained convolutional autoencoder using the proposed
complex perturbation approach (CPA), guided backpropagation (GBP), layer wise propagation
with 𝓌𝓌2 rule for the first layer (LRP𝓌𝓌2), layer wise propagation with 𝒵𝒵𝛽𝛽 rule for the first layer
(LRP𝛽𝛽), and along with the input microstructural images.

