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Abstract 

In this study, we propose a complex-step convolutional autoencoder to identify the regions 
that are important in a metal microstructure for compact representation and secure sharing. Firstly, 
the architecture of a convolutional autoencoder is designed for the compact representation of 
microstructural images. The designed autoencoder achieved a high image compression ratio of 32 
without loss of important information. Secondly, an in-home developed model agnostic sensitivity 
analysis using complex step derivative approximation is implemented on convolutional 
autoencoders to identify regions of the microstructure that are important for reconstruction. 
Finally, saliency maps that highlight the importance of pixels for reconstruction are generated for 
three grades of dual-phase structural steels. The saliency maps indicated secondary phase regions 
and grain boundaries are important for microstructure image reconstruction.  The proposed 
approach produces more tenable saliency explanations compared to guided backpropagation and 
layer wise relevance propagation methods. The decoder part of the convolutional autoencoder can 
be used as a key that could be used to reconstruct the actual microstructure from encoded image 
information contributing to secure and efficient sharing of microstructure data. The proposed 
framework is generic and can be extended to identify important microstructural regions for other 
metals, composites, biomaterials, and material systems.  

Keywords: Interpretable AI; ASTM A992; Saliency maps; Pixel relevance; and Convolutional 
autoencoder. 

  
1. Introduction  

The microstructure of a metal dictates the metal’s Young’s modulus [1, 2], hardness [3, 4], 
yield strength [5, 6], ductility [7, 8], and in-fire and postfire properties [9, 10].  The microstructure 
is comprised of microscale constituents such as metallurgical phases, non-metallic defects, and 
microvoids. The characteristics of these constituents such as average grain size, grain orientation, 
and composition are determined by the thermos-mechanical manufacturing route, alloy 
composition, etc. and will govern the constitutive response and fracture behavior of metals [8, 11-
13]. Optical microscopy and SEM analysis are widely used to extract microstructural images from 
metallographic specimens to perform microstructural analysis and characterization. Modern SEMs 
and optical microscopes are capable of rapidly generating large volumes of high-resolution image 
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data. For instance, ZEISS MultiSEM microscope can image a square centimeter material sample 
area at 4nm pixel level in less than 3 hours and can generate 1.5 terabytes of data per hour. Neural 
networks (NNs) and machine learning (ML) algorithms are now commonly employed to automate 
microstructural characterization and to take advantage of the large volumes of microstructural data 
generated through these modern instruments [14-16]. However, handling of large volumes of 
microstructural data still poses storage and transfer challenges. A survey conducted among 7700 
researchers by springer in 2018 [17] shows 56% of researchers identify copyright issues and cost 
of sharing are major barriers to data sharing. 

 One effective and economical solution to storage and transfer problems is the use of 
downsized data.  There exists several lossy image compression methods [18] which can achieve 
highly compressed image data by losing some image information. However, these methods do not 
identify and preserve information critical to microstructural characterization and can lose 
information essential to valid microstructural analysis. Alternatively, deep learning or machine 
learning methods can be used to obtain lower dimensional (compact) representation of image data.  
Larmuseau et al. achieved a compact representation of microstructure by combining three neural 
network structure [19]. The employed network is trained for categorizing different classes of 
microstructure. Discriminative convolutional neural networks proposed in [20] can shrink the 
overall feature space spanned by the image data and offer a discriminative lower-dimensional 
representation of the data.  These methods are solely focused on the compact representation of data 
for classification tasks and do not provide a way to recover the original data and thus facilitate a 
secure transfer of data. Also, NNs and ML algorithms used for microstructural characterization of 
compact representation do not provide any insights that could be used by a microscopy expert on 
the regions that should be captured with high fidelity at the microscopy stage. In other words, the 
existing methods can only automate the material characterization but cannot inform the analyst on 
the regions of the microstructure that can improve the fidelity of characterization. The goal of this 
study is to achieve a compact representation of metal microstructures, identify important regions 
of metal microstructure and develop a new way to safe and secure transfer of micrograph data.  
The research questions addressed in this article are: 1) How to compactly represent the metal 
microstructure images without losing important information? 2) what are the regions of the 
microstructure that are crucial for microstructure image reconstruction? 3) what regions of 
microstructure are important for high-fidelity microstructural characterization and classification 
of different classes of microstructure and 4) how to safely share large volume of microstructural 
image data? In this study, we propose a convolutional autoencoder (see Section 2) architecture to 
compactly represent the metal microstructure and the relevant procedure is detailed in Section 3. 
A complex-step sensitivity analysis procedure to identify the important regions of the metal 
microstructure is described in Section 4. Sharing the compact representations of the metal 
microstructure securely is discussed in Section 5. The generated saliency maps for identifying 
important pixel regions are explained in Section 6. Saliency explanations produced by the 
proposed method is compared with existing methods in Section 7. Finally, the conclusions drawn 
from this study are provided in Section 8.    
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2. Convolutional autoencoders: applications and mathematical background 
Autoencoders are a class of self-supervised neural networks whose main function is to 

compress the input data to a very high degree and reconstruct the input from the compressed data 
with a minimal loss of input information [21, 22]. Some important applications of autoencoders 
include dimensionality reduction of data [23, 24], detection of anomalies [25, 26], extraction of 
salient features for classification [27, 28], and generation of artificial images [29, 30]. Fig. 1 shows 
a schematic representation of the architecture of an autoencoder. Sparse [31], contractive [27], 
denoising [32], and variational autoencoders [33] are some important types of autoencoders. 

Convolutional autoencoder (CAE) is a special form of autoencoder [34] which combines 
the ability of CNNs in efficiently extracting image features and the ability of autoencoders in 
compactly representing the input data. CAEs have several interesting applications in the field of 
mechanics. Kim et. al. [35] employed a convolutional variational autoencoder (CVAE) to generate 
continuous dual-phase microstructure and generated the compact latent features to relate them with 
yield strength, ultimate tensile strength, and toughness. Lee et. al. [36] predicted the stress state of 
aluminum alloys and stainless subjected to four-point bending using a CVAE by combining the 
experimental and finite element behavior in the compact latent space.  In the study conducted by 
Xu and Duraisamy [37], a CAE is successfully applied to predict fluid flow dynamics. The flow 
data is passed through two levels of CAEs. The first CAE is used to capture the spatial relations 
and its latent features are used as inputs to the second CAE to capture the temporal evolution. 
CAEs are also used for the non-linear decomposition of fluid flow by employing two decoder 
networks [38]. More applications of CAEs in mechanics can be found elsewhere [39-42].  

Autoencoders are designed to reconstruct the input by combining two neural network 
blocks: an encoder and a decoder (refer Fig. 1). The encoder block of the network encodes an input 
𝒙𝒙 to a latent output 𝒍𝒍 which is a compressed representation of the input. The dimensionality of the 
latent output 𝒍𝒍 is usually very small compared to the dimensionality of input 𝒙𝒙. Decoder then builds 
on the latent output, 𝒍𝒍, and generates output, 𝒙𝒙�, as close as possible to the input, 𝒙𝒙. Autoencoders 
are trained to minimize the reconstruction loss of network for adequate reconstruction of the 
original input. 
In mathematical terms, an autoencoder consists of an encoder, 𝑓𝑓(𝒙𝒙,𝜽𝜽) that compresses the data 
and a decoder, 𝑔𝑔(𝒍𝒍,𝝓𝝓)  that reconstructs the input in the following way 

𝒍𝒍 = 𝑓𝑓(𝒙𝒙,𝜽𝜽)    (1a) 

𝒙𝒙� = 𝑔𝑔(𝒍𝒍,𝝓𝝓) = 𝑔𝑔(𝑓𝑓(𝒙𝒙,𝜽𝜽),𝝓𝝓) (1b) 

where, 𝜽𝜽 and 𝝓𝝓 are trainable parameters of encoder and decoder, respectively. These parameters 
are fixed by training the autoencoder to minimize the cost function (𝒞𝒞) 

𝒞𝒞(𝒙𝒙,𝒙𝒙�) =  ℒ(𝒙𝒙,𝒙𝒙�) + regularization term (2) 

here, ℒ(𝒙𝒙,𝒙𝒙�) is a reconstruction loss function which is, in general, a mean squared error (𝑀𝑀𝑀𝑀𝑀𝑀) or 
binary cross-entropy (𝐵𝐵𝐵𝐵𝐵𝐵) averaged over the total number of instances which are calculated as 
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 ℒ𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ �𝒙𝒙𝑖𝑖 − 𝒙𝒙�𝑖𝑖�

𝟐𝟐𝑁𝑁
𝑖𝑖      (3a) 

ℒ𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑁𝑁
∑ −[𝒙𝒙𝑖𝑖 log�𝒙𝒙�𝑖𝑖� + �1 − 𝒙𝒙�𝑖𝑖� log�1 − 𝒙𝒙�𝑖𝑖�]𝑁𝑁
𝑖𝑖   (3b) 

The regularization term in Eq. 2 is necessary for deep neural networks to prevent the network from 
learning identity function and therefore improve the model’s ability to generalize the results [21, 
31, 43]. Shallow network autoencoders need not involve any regularization term since the 
bottleneck structure (refer to Fig. 1) itself is sufficient to enforce the regularization [22]. Table 1 
shows regularization terms involved in different types of autoencoders. In the case of CAEs, the 
use of pooling layers prevents the overfitting of network and improves the generalizing ability of 
the model [44, 45]. Thus, the reconstruction loss can be simply used a cost function [46, 47]. The 
encoder of a typical convolutional autoencoder consists of alternative layers of convolutions and 
pooling for most of the network and fully connected layers in the end.   A latent layer is usually 
represented as a fully connected layer (one-dimensional layer). The decoder majorly consists of a 
series of transposed convolutional layers with some fully connected layers at the start. However, 
transposed convolutions are shown to have a tendency of producing checkerboard artifacts [48], 
and hence they are now replaced with alternative layers of upsampling and convolutions. A 
convolutional autoencoder involves three main operations namely convolution, pooling, and 
upsampling which are explained subsequently.  

 2.1 Feature Extraction in CAE through convolutions 
Convolution is the process of extracting spatially connected features present in the images 

with the use of convolutional filters. A convolutional filter comprises of a stack of kernels and the 
number of kernels present in a filter corresponds to the number of input channels. For example, an 
RGB image input consists of three channels and requires filters with three kernels whereas grey 
image input has only one kernel. A kernel is usually a 2D array of learnable weights with a size, 
𝑘𝑘 × 𝑘𝑘. Here, 𝑘𝑘 refers to kernel size and it is computationally rewarding to keep it very small 
compared to the size of the image input. Though a kernel can have different sizes, a kernel size of 
3 × 3 is standardly used. Larger kernel sizes (sizes more than 3) increase computational costs and 
make the model less generalizable whereas smaller kernel sizes (sizes less than 3) do not extract 
high-level image features [49, 50].  

Each kernel of a convolutional filter operates on its conjugal channel array of input data 
and results in individual array outputs corresponding to each kernel-channel pair. Each element in 
a convolved output array is a sum of Hadamard product between the weights of a kernel and a 
subarray of input data [51]. The subarray is systematically chosen by sliding a kernel window 
across both the dimensions of the input array and considering the region of the input spanned by 
the window at every step. The top-left corner of the kernel window starts from the top-left corner 
of the input and moves in steps from left to right until the last column is reached, then moves down 
and again from left to right. This is repeated until the last row of the input array is covered. The 
step size of the slide movement is called ‘stride’ and it is of unit step size, in general, for kernel 
filters. The individual output arrays corresponding to each channel are then summed together and 
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the resulting array is called a feature map. Fig. 2 illustrates the generation of a feature map through 
convolution.   

Inputs to convolutions are usually ‘padded’ which implies the addition of calculated 
numbers of columns and rows of zeros around the inputs as symmetrical as possible. Padding is 
necessary when the information available around the edges of the input image is valuable. Padding 
is generally of two types namely ‘Valid’ and ‘Same’ padding [52]. ‘Valid’ padding is another term 
for zero padding whereas the ‘Same’ padding refers to the type of padding which results in the 
convolved output the same size as that of the input (refer to Fig. 3).   Feature maps pass through 
an activation function to impart nonlinearity in the convolutional process. ‘ReLU, ‘Leaky ReLU’, 
‘Tanh’, and ‘Sigmoid’ are the widely used activation functions for convolutional autoencoders. 
The functional expressions for these activation functions are summarized in Table 2. However, for 
the output layer, ‘Sigmoid’ and ‘Linear’ activation functions are generally used.  

A convolutional layer usually consists of several convolutional filters which operate on the 
input data individually and results in corresponding output feature maps. The number of filters is 
chosen based on the nature and complexity of the problem and it is usually varied along the 
procession of neural layers. Increasing the number of filters in a layer increase the extent of 
abstractions extracted from the input image or feature map.  In the case of the encoder, the number 
of filters is incrementally decreased to obtain only important lower-dimensional features. The 
filters are then again incrementally increased until the final layer to regenerate the image features 
of the input.  

2.2 Removal of redundancy in CAE using pooling operations 
Convolution is followed by a pooling operation in the encoder block of the convolutional 

autoencoder. Pooling is essentially performed to down sample the feature maps. Pooling 
aggregates the important abstractions available in the features maps and produces coarser maps 
that are spatially invariant. This is essential in the case of dimensionality reduction. Pooling also 
significantly reduces the computational overhead and prevents the overfitting of the model.  

Pooling operates on the subarrays of the input and involves a pooling window to select the 
subarrays similar to the convolutional operation. The pooling window slides across the width and 
height (from left to right and top to bottom) of the input array with ‘stride’ as the step size. Max 
pooling and average pooling are the two most popular pooling operations.  Max pooling returns 
the maximum values of subarrays whereas the average pooling returns the mean values of 
subarrays.  Accordingly, max-pooling extracts sharp and prominent features from the input while 
average pooling captures more complexities present in the input. In the case of convolutional 
autoencoders, max pooling is preferred to average pooling.  However, not much difference is 
observed between the use of these two functions in terms of the performance of the model.  Fig. 4 
provides an illustrative example for both max and average pooling. In the example, a standard 
pooling window size of 2 × 2 and stride 2 is used and it is evident from the example, that it halves 
the size of the input along both the dimensions.  
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2.3 Image regeneration in CAE using upsampling 
Upsampling is performed to reverse the effect of pooling. Upsampling is mainly used in 

the convolutional autoencoder, particularly in the decoder network, to expand the input 
information and thereby regenerate the original input image. Upsampling in itself does not produce 
any new information, it just repeats the available input information and increases the image size. 
In order to build the required features for image generation, it has to be followed by a convolutional 
layer. In upsampling, each value of the input array gets repeated depending on the size of the 
upsampling window size. An example that demonstrates upsampling operation is provided in Fig. 
5. As seen in the example, upsample window size of  2 × 2 increases the dimensions of the input 
by 2. It is important to note that both pooling and upsampling operations do not involve any 
learnable parameters, unlike convolutions. Therefore, the training of convolutional autoencoders 
is basically to find the appropriate weights and biases involved with the convolutional layers for 
adequate image reconstruction.  
 
3. Methodology 

A five-step procedure is employed to accomplish the objectives of this study: (1) 
acquisition of microstructural images of structural steel metallographic specimens, (2) preparation 
of input data from the acquired microstructural images, (3) configuration and training of a 
convolutional autoencoder, (4) formation of the convolutional encoder network from the trained 
convolutional autoencoder network, and (5) computation of pixel relevance and construction of 
the saliency maps. The schematic of the steps involved is also shown in Fig. 6. These steps are 
further explained in detail in the following sub-sections.  

3.1 Acquisition of microstructural images  
The microstructural images used in this work were acquired from metallographic 

specimens extracted from three different structural steels popularly used in the US – ASTM A36, 
ASTM A572, and ASTM A992 [53]. All these steels are ferrite-pearlite steels [9, 53]. Seven 
metallographic specimens were obtained from each type of structural steel totaling twenty-one 
metallographic specimens. Six specimens of each grade were exposed to elevated temperatures of 
500°C, 600°C, 700°C, 800°C, 900°C, and 1000° with a one-hour soaking period to alter the 
microstructure of the parent metal. After the soaking, the specimens were allowed to undergo 
natural cooling at room temperature. The remaining specimen of each grade was not subjected to 
any heat treatment.  The images were gathered from 5 to 7 random locations on each specimen 
using an Amscope® optical microscope. The images were captured at 50X magnification. More 
details on the preparation of these microstructural images can be found in [9, 54, 55].  In the end, 
a total of 124 microstructural images with a size of 2080 × 1542 pixels were acquired. 

3.2 Preparation of input data for training and testing purposes 
The original microstructural images of size 2080 × 1542 pixels are segmented into images 

of size 256 by 256. Since the segmented images are of small input size and captures the 
microstructural pattern of the whole unsegmented image, the segmentation helps in obtaining 
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leaner network architecture. The segmentation resulted in 5,704 greyscale images with pixel values 
ranging from 0 to 255. The segmented images are converted into numerical arrays and partitioned 
into a training dataset (𝑫𝑫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ ℝ𝑛𝑛×𝑝𝑝×𝑞𝑞×𝑐𝑐) and a testing dataset (𝑫𝑫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ ℝ𝑚𝑚×𝑝𝑝×𝑞𝑞×𝑐𝑐) with 80:20 
split. Here, 𝑛𝑛 and 𝑚𝑚 denote the number of image examples in the training and testing dataset which 
are 4564 and 1140, respectively, in our case, 𝑝𝑝 × 𝑞𝑞 denotes the dimension of an input image array 
which is 256 × 256 and 𝑐𝑐 denotes the number of channels which is 1 since the images are of 
greyscale. A typical 𝑘𝑘th example of the dataset (called an instance) is defined as  

𝑿𝑿𝑘𝑘 =
 𝑥𝑥11

(𝑘𝑘) ⋯ 𝑥𝑥1𝑞𝑞
(𝑘𝑘)

⋮ ⋱ ⋮
𝑥𝑥𝑝𝑝1

(𝑘𝑘) ⋯ 𝑥𝑥𝑝𝑝𝑝𝑝
(𝑘𝑘)

 

where 𝑥𝑥11,
(𝑘𝑘) ⋯ , 𝑥𝑥𝑝𝑝𝑝𝑝

(𝑘𝑘) are the pixel features and 𝑘𝑘 ranges from 1 to 𝑛𝑛 or 𝑚𝑚 . The grey pixel values of 
both datasets were then normalized.  Normalization involves scaling down the range of pixel 
intensity values from 0 to 255 to 0 to 1 to improve the performance of the neural network.   

3.3 Configuring and training the convolutional autoencoder 
In this study, a CAE is employed for the compact representation of the input 

microstructural images (in the form of arrays). Detailed background on CAEs is presented in 
Section 2. The CAE network was duly configured to ensure the autoencoder reconstructs the 
images with minimal loss of input information not only for the learned examples but also for the 
unseen data. The configuration of the network involves a rigorous selection of a network 
architecture which kept the reconstruction loss of the network (mean squared error) below 0.0035 
during both the training and testing stage. At every trial selection of network architecture, the 
network was trained for 50 epochs with an input batch size of 32. The training process involves 
fine-tuning the network parameters, i.e., weights and biases through a stochastic gradient descent 
algorithm called ‘Adam’ (Adaptive moment estimation) [56]. The parameters used for the ‘Adam’ 
optimization algorithm are presented in Table 3. The final configured CAE consists of 50,353 
network parameters.  

The CAE model employed in this study was developed using TensorFlow 2.8.0 open-
source software library [57]. The encoder block starts with an input layer which receives the input 
of size 32 × 256 × 256 × 1. The first dimension of the input indicates the batch size (the number 
of image inputs per batch). The input layer is followed by four numbers of convolutional layers 
alternated with max-pooling layers. The final max-pooling layer of the encoder outputs the latent 
variables of dimension 32 × 16 × 16 × 8. Normally, one or more fully connected layers are added 
at the end of an encoder to construct the latent representation as a one-dimensional tensor, 
however, the addition of fully connected layers lead to model overfitting (results in large 
reconstruction loss in the testing stage)[58]. Hence, in our study, we did not use any fully 
connected layers and maintained the latent variables in the form of feature maps (a three-
dimensional tensor). The decoder block takes the latent variables tensors as inputs and reconstructs 
the original inputs. It comprises four alternating layers of upsampling and convolutional layers 
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with an additional convolutional layer at the end. We used a standard kernel filter size of 3 × 3 
with a stride of 1 and the ‘same’ padding type for all the convolutional operations. The ‘same’ 
padding type allows the model to retain the information near image boundaries. Max pooling 
operations that halve the inputs along both the dimensions use the standard pool size of 2 × 2 with 
stride 1. All convolutional layers use the ‘ReLU’ activation function except for the final 
convolutional layer of the decoder block which uses the ‘Linear’ activation function. The use of 
‘Linear’ activation instead of the ‘Sigmoid’ function improved the convergence and reconstruction 
loss of the model. The schematic of the model is shown in Fig. 7 and the model details are 
summarized in Table 4 and Table 5.  

3.4 Formation of the convolutional encoder network from the convolutional autoencoder 
 A convolutional neural network (CNN) with the same architecture as that of the encoder 
part of the convolutional encoder was constructed to perform sensitivity analysis using complex 
step derivative approximation method.   The newly constructed CNN takes microstructural images 
as input and generates latent variable tensors as outputs. The layer modules available in the 
TensorFlow libraries were customized to accept complex inputs. Accordingly, the CNN uses 
customized layers such as ‘xConv2D’ and ‘xMaxPool2D’ for convolution and max pooling, 
respectively, on complex inputs. Also, for activation, a modified ReLU function, ‘xReLU’, was 
used to activate complex inputs.  The weights and biases of the CNN network were transferred 
from the encoder block of the autoencoder. 

3.5 Computation of pixel relevance and construction of the saliency maps 
 The relevance (attributions) of the pixels ( 𝒓𝒓 = 𝒔𝒔(𝒙𝒙)) of an input image to latent variables 
(𝒍𝒍 = 𝒇𝒇(𝒙𝒙)) were computed using the sensitivity of latent variables to the input pixels. Here, 𝒔𝒔 is 
the sensitivity function, 𝒙𝒙 ∈ ℝ256×256  is an input image array and 𝒍𝒍 ∈ ℝ16×16×8 is a tensor of 
latent variables associated with 𝒙𝒙,  𝒓𝒓 has the same size as that of input image array 𝒙𝒙 and every 
element in 𝒓𝒓 maps the relevance or attribution of every element in 𝒙𝒙 as seen in Fig. 8. 

Sensitivities were determined through the gradient of latent variables with respect to input 
pixel features. Thus, the relevance of a pixel feature (𝑟𝑟𝑖𝑖𝑖𝑖) is mathematically defined as the 
Frobenius norm of the gradient tensor (𝒈𝒈𝑖𝑖𝑖𝑖 = 𝜕𝜕𝒍𝒍 𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖⁄ ) given as 

𝑟𝑟𝑖𝑖𝑖𝑖 = �𝒈𝒈𝑖𝑖𝑖𝑖�
𝐹𝐹

=  �∑ ∑ ∑ (𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖 )2 8

𝑤𝑤=1
16
𝑣𝑣=1

16
𝑢𝑢=1      (5) 

where, 𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢
𝑖𝑖𝑖𝑖 =  𝜕𝜕𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢 𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖⁄ ,  𝑢𝑢 = 1 𝑡𝑡𝑡𝑡 16, 𝑣𝑣 = 1 𝑡𝑡𝑡𝑡 16 and 𝑤𝑤 = 1 𝑡𝑡𝑡𝑡 8    (6) 

 The gradient tensor for each input pixel feature was determined using the complex step 
derivative approximation (CSDA) method. The mathematical basis involved with the CSDA 
method is comprehensively explained in Section 4. Computation of gradient tensor of an input 
pixel feature 𝑥𝑥𝑖𝑖𝑖𝑖 using the CSDA method involves three steps: 1. Creating a perturbed input array 
(𝒙́𝒙) by adding a very small complex perturbation (𝑖𝑖ℎ) to 𝑥𝑥𝑖𝑖𝑖𝑖, 2. Determination of latent variables 
�𝒍́𝒍�  by feedforwarding the perturbed input array (𝒙́𝒙) and 3. Calculation of partial derivatives by 
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dividing imaginary component of obtained complex latent variables with the step size 
�𝒈𝒈 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝒍́𝒍� ℎ⁄ �. We used a step size (ℎ) of 10−24 in our analysis to obtain analytical level 
accurate gradients. This is further illustrated in Fig. 9.  
 
4. Complex step derivative approximation  

In this study, the partial derivatives of latent features with respect to the input pixel features 
of a convolutional autoencoder are determined using complex step derivative approximation 
(CSDA). We employed CSDA for its various advantages over its numerical counterparts and also 
based on the experience we derived from our previous studies [59-62]. One of the important 
advantages of CSDA is that it is automatable which means that a common step size (ℎ) (which can 
be very small in the order of 10-24) can be assumed to find an accurate derivative of any function.  
This is due to the fact that CSDA is free of subtractive cancellation errors which also allows it to 
obtain analytical level accurate derivatives. In the case of discontinuous functions, CSDA still can 
find one-sided derivatives which are very useful in the case of neural networks since it employs 
many discontinuous activation functions [63]. CSDA can also be used to determine first-order and 
second-order derivatives of tensor functions [64].  

CSDA is derived from expanding an analytical function, 𝑓𝑓, about a very small complex 
step size, 𝑖𝑖ℎ ( 𝑖𝑖 is a unit imaginary component and h is the step size) using Taylor’s series 

𝑓𝑓(𝑥𝑥 + 𝑖𝑖ℎ) = 𝑓𝑓(𝑥𝑥) + 𝑖𝑖ℎ𝑓𝑓′(𝑥𝑥) −
ℎ2

2!
 𝑓𝑓′′(𝑥𝑥) −

ℎ3

3!
𝑓𝑓′′′(𝑥𝑥) + ⋯      (7) 

Rearranging Eq. 7 and using a quadratic error term, 𝑜𝑜(ℎ2), we obtain: 

𝑓𝑓′(𝑥𝑥) =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑓𝑓(𝑥𝑥 + 𝑖𝑖ℎ)�

ℎ
+ 𝑜𝑜(ℎ2)      (8) 

here, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(. ) extracts the imaginary component of a function.   
Finally, the expression in Eq. 9 approximates the first-order derivative of a scalar function after 
the quadratic error term in Eq. 8 is truncated. It is evident from Eq. 8 that we can obtain analytical 
precise derivatives by keeping the step size, ℎ, very small (i.e., in the order of 10-24).  

𝑓𝑓′(𝑥𝑥) ≈
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑓𝑓(𝑥𝑥 + 𝑖𝑖ℎ)�

ℎ
      (9) 

CSDA can be further extended to multivariable functions by expanding the function about one 
variable at a time.  For example, using the above approach we can arrive at the following 
expression to determine the partial derivative of a 𝑘𝑘𝑡𝑡ℎ variable of a multivariable function:   

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

≈
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑓𝑓(𝑥𝑥1, 𝑥𝑥2 … , 𝑥𝑥𝑘𝑘 + 𝑖𝑖ℎ, … , 𝑥𝑥𝑛𝑛)�

ℎ
 

     
(10) 

In the case of multi-output functions, the first derivative(s) of each output function can be obtained 
using Eq. 9 or Eq. 10 independently and therefore can be computed parallelly.  

With this mathematical basis, we have implemented CSDA to convolutional autoencoders 
in this study. The functional relation between inputs and outputs is implicit in neural network 
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models and is developed through data training. Hence, CSDA is applied to the trained and 
configured network model. Since the network is trained with real values, a new model with the 
same architecture and network parameters as that of the trained network but with complex layers 
and activation functions is used. In our study, we used CSDA on the encoder network, hence we 
modified convolution, max pooling, and activation functions to deal with complex inputs. 
Convolutions on the complex inputs are performed as follows 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙�) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅(𝒙𝒙�)) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐼𝐼𝐼𝐼(𝒙𝒙�)) (11) 
where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(. ) is a convolutional operator and 𝒙𝒙� is a complex input array. 𝑅𝑅𝑅𝑅(. ) and 𝐼𝐼𝐼𝐼(. ) are 
real and imaginary components of inputs respectively. 

Max pooling on complex inputs involves a complex summation of the maximum value of 
real components of 𝒙𝒙� and their conjugal imaginary components. The implementation of it is shown 
below: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒙𝒙�) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑅𝑅𝑅𝑅(𝒙𝒙�)� + 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐼𝐼𝐼𝐼(𝒙𝒙�) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐼𝐼𝐼𝐼(𝒙𝒙�) = 𝐼𝐼𝐼𝐼(𝒙𝒙�)[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑅𝑅𝑅𝑅(𝒙𝒙�)�] 

(12) 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(∗) the function finds the locations of max pool values and [∗] function extracts 
elements of an array corresponding to the input locations.  
The ReLU activation function used in the convolutional layers is modified as follows 

𝜙𝜙(𝑧𝑧) =  �0 + 0𝑖𝑖                            𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅(𝑧𝑧) ≤ 0
𝑅𝑅𝑅𝑅(𝑧𝑧) + 𝐼𝐼𝐼𝐼(𝑧𝑧)           𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅(𝑧𝑧) > 0     (13) 

where, 𝑧𝑧 is the activated scalar input, 𝑦𝑦 is the activated output. 
The encoder network of a CAE takes multiple inputs (pixel features) and returns multiple 

outputs (latent features). Based on Eq. 10, partial derivatives of latent features with respect to each 
pixel feature are evaluated one at a time. At each evaluation, the pixel feature of interest is added 
with a complex component (𝑖𝑖ℎ), then the pixel inputs are feedforwarded to obtain the 
corresponding complex latent outputs. The partial derivative of each latent feature is parallelly 
computed by extracting the imaginary components of complex latent features and dividing them 
with the step size (ℎ) as per Eq. 10.   

 
5. Compact representation and secured sharing of metal microstructure 

The input image of size 256 × 256 × 1 is compactly represented to a latent size of 16 × 16 
× 8 using the CAE designed in this study.  A compression ratio of 32 was achieved without losing 
any important information of the microstructure. In other words, an input image was able to be 
reconstructed just from 3.125% of the original information. Fig. 10 shows some examples of the 
reconstructed microstructural images together with the original images. It is to be noted that the 
compact (latent) representation of metal microstructure is an encoded version of metal 
microstructure. To retrieve back the original information from the latent representation (𝒍𝒍), the 
decoder network with the trained weights and biases is required. It is highly unlikely to reconstruct 
the input from the latent features without knowing the decoder architecture and its weights and 
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biases. Accordingly, the decoder network acts as a security key to decode the latent representation 
and thus provide a highly safe and secured way of sharing the metal microstructure information.  
 
6. Saliency maps of metal microstructure 

A set of microstructural images was selected and relevance matrices of those images were 
generated using the procedure laid out in Section 3. The elements of a relevance matrix are 
basically the sensitivities of latent variables to input pixel features of a microstructural image.  The 
high sensitivity of latent variables to an input pixel indicates that a specific input pixel is highly 
important in generating the respective output of latent variables. Heat maps were plotted using 
these relevance arrays to gain insights on the latent representation of microstructural images so 
that pixel regions which are important for reconstruction are identified. These heat maps are known 
as saliency maps in the literature [65, 66]. Saliency maps are useful in understanding the 
importance of inputs to the network predictions. In addition to acting as an interpretability tool, 
salient maps are also play an important role in object detection [67]. The saliency maps developed 
in the current study highlight the relevance of the input pixels for their latent representation. In 
other words, the saliency maps highlight the regions of input information passed on to the latent 
space and used for reconstruction. Fig. 11 shows some examples of saliency maps developed along 
with their input microstructural images. The saliency maps are smoothened using a gaussian filter 
with a standard deviation of 1. The maps are plotted using a blue-white-red divergent color map. 
Thus, red color indicates high relevance, white color indicates moderate relevance and blue color 
indicates low or no relevance of input pixels.  

The saliency maps consistently show the darker pearlite regions (secondary phase regions)   
and the microstructural boundaries as highly relevant and the greyer ferrite regions as slightly or 
not relevant for the convolutional autoencoder in constructing the latent representation. The 
obtained results are consistent with the way autoencoders work.  Autoencoders build a highly 
compressed version of an input image in a low-dimensional latent space.  They reconstruct the 
original image from the information available in the latent layer and information built into the 
network itself. The information stored in the latent space is unique to each image. The information 
stored in the network can be considered as base information over which the latent space 
information is added. If the images of interest are simply composites of number of image features, 
then the image features which are less frequent and occupying less regions get most likely encoded 
in the latent space and the features which are more frequent and occupying most regions get stored 
as base information in the network. This is because latent space stores distinct and a very small 
part of the input information. Since the pearlite microstructures relatively occupy only a smaller 
area of an image compared to ferrite microstructures, we find the saliency maps give more 
relevance to pearlite regions and very low or no relevance to ferrite regions. In the subsequent 
section, the saliency maps generated through the current approach is compared with other existing 
attribution approaches.    
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7. Comparison with other popular approaches 
Guided backpropagation (GBP) [68], class activation maps (CAMs) [69], layer wise 

relevance propagation (LRP) [70] and DeepLIFT [71] are widely used interpretability approaches 
for convolutional neural network models. GBP is a popular gradient approach which relates the 
relevance of input pixels to the gradients of the outputs. GBP differentiate itself from the vanilla 
gradient approach by backpropagating only the positive gradients. Hence, saliency maps 
constructed using GBP are less noisy and more understandable than the vanilla gradient approach. 
However, GBP simply act as an edge detector and lacks the ability to discriminate between classes. 
CAMs are specifically developed to overcome this limitation and successfully applied in many 
classification tasks. However, CAMs require a global max pooling layer before the soft max layer 
and cannot be readily applied for all the classification networks. LRP is a heuristic approach which 
sequentially backpropagates the prediction of the outputs based on the contribution of neurons of 
the previous layer to the activations of the current layer. Though LRP is free of gradient saturation 
problem suffered by the gradient approaches, it does not have a strong mathematical basis. It also 
does not handle negative contributions of the input features properly and requires different 
propagation rules for different levels of the layers. DeepLIFT backpropagates activation 
differences to find the contribution of the input features and addresses the problem of negative 
contributions. DeepLIFT has a theoretical basis unlike LRP. One defining aspect of DeepLIFT 
which is absent in other approaches is that it also considers the contributions from the network 
biases. The major limitation of DeepLIFT is that it requires domain expertise for fixing the 
reference basis to compute the activation differences. Our proposed approach is model agnostic 
can be applied to any type of machine learning task and handle different types of input data. It 
does not require any domain expertise for the computation of input attributions (relevance).  The 
proposed approach can also handle negative contributions toward the outputs, and it is capable of 
handling different activation functions.  

To assess the effectiveness of our proposed method, saliency maps are also constructed using 
GBP and LRP and compared with the saliency maps developing using our method (CPA) in Fig. 
11.  Since GBP can handle only one output, the L2 norm of latent outputs is used to find the pixel 
relevance. For LRP, 𝒵𝒵+ propagation rule is used for all the layers except for the first(input) layer. 
For the first layer, two different propagation rules are used and considered as separate approaches 
in the comparison. Accordingly, in Fig. 11, LRP𝓌𝓌2 𝑎𝑎𝑎𝑎𝑎𝑎 LRP𝛽𝛽 denote layer wise relevance 
propagation approach with 𝓌𝓌2 and 𝒵𝒵𝛽𝛽 rules for the first layer respectively [72]. The saliency 
maps developed using GBP shows almost all the regions of the input microstructure are 
significantly relevant which is rather ambiguous since autoencoder must lose dependency on some 
input features to obtain a lower-dimensional representation. Furthermore, GBP deems ferrite 
regions are more relevant to compact representation than pearlite regions and grain boundaries 
which clearly contradicts the results of all the other three approaches. The saliency explanations 
given by LRP, especially LRP𝓌𝓌2, is closer to our approach. The saliency explanations given by 
LRP𝛽𝛽 is more scattered than LRP𝓌𝓌2 and less image regions are deemed important compared to 
LRP𝓌𝓌2. This clearly demonstrates saliency explanations offered by LRP is sensitive to the 
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propagation rule used for the first layer. Since LRP is heuristic based, and hence no rational basis 
is available for selecting appropriate propagation rule. This comparison demonstrates our approach 
produces more consistent and meaningful saliency explanations when compared to GBP and LRP.  
 
8. Outcomes and Conclusions  

The current study aims at providing a deep learning framework to identify the important 
pixel regions in a metal microstructure for compact representation and secure sharing of 
microstructural image data. The main outcomes and conclusions of this study are  
1) The CAE designed in the study achieves a compression ratio of 32 and is capable of 

reconstructing original microstructural images just from 3.5% of original data without losing 
essential information.  

2) Since the input metal microstructural data can only be reconstructed through the trained 
decoder network, the compact representation of the metal microstructure along with the 
decoder network can be used for secure sharing of microstructural data. 

3) A model-agnostic sensitivity approach is proposed to quantify the pixel importance and a 
complex CNN is introduced to carry out the sensitivity analysis.  

4) Saliency maps which highlight the relevance/importance of pixel features for image 
reconstruction (or compact representation) are generated. The saliency maps showed the grey 
pearlite regions and grain boundaries are highly relevant. Interestingly, ferrite regions are 
shown unimportant for reconstruction. 

5) The proposed complex perturbation approach produces more tenable and consistent saliency 
explanations compared to guided backpropagation and layer wise propagation methods 

6) The generic framework introduce in the study can be extended to identify important 
microstructural regions for other metals, composites, biomaterials, and material systems. 
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Tables  

Table 1: Regularization terms of different autoencoders 

Autoencoders Regularization terms 

Sparse autoencoders 𝜆𝜆∑ |𝑎𝑎𝑖𝑖|𝑖𝑖     

Contractive autoencoders 𝜆𝜆‖𝑱𝑱(𝒙𝒙)‖𝐹𝐹2 , 𝐽𝐽(𝒙𝒙) =  ∑ �𝜕𝜕𝑔𝑔𝑗𝑗 𝜕𝜕𝑥𝑥𝑖𝑖⁄ �
2

𝑖𝑖𝑖𝑖   

Variational autoencoders 𝜆𝜆∑ 𝐾𝐾𝐾𝐾(𝑞𝑞𝑗𝑗(𝑙𝑙|𝒙𝒙)||𝑝𝑝(𝑙𝑙))𝑗𝑗   

Denoising autoencoders - 
where, 𝒙𝒙 is an input, 𝒍𝒍 is a latent output, 𝜆𝜆 is the regularization parameter, 𝑎𝑎𝑖𝑖 is 𝑖𝑖𝑡𝑡ℎ activation of 
the latent layer,  𝑱𝑱 is the Jacobian of the partial derivatives, 𝑙𝑙𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ latent variable, 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ 
input feature.  KL is the divergence function between the distribution of the code layer (𝑞𝑞𝑗𝑗(𝒍𝒍|𝒙𝒙)) 
and true prior distribution (𝑝𝑝(𝒍𝒍)) (approximated using a unit gaussian distribution). 
 
 

Table 2: Functional expressions of different activation functions 

Activation Type Activation function 

Linear 𝜙𝜙(𝑧𝑧) = 𝑧𝑧 

ReLU 𝜙𝜙(𝑧𝑧) =  �0       𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 0
𝑧𝑧       𝑖𝑖𝑖𝑖 𝑧𝑧 > 0 

Leaky ReLU 𝜙𝜙(𝑧𝑧) = �𝛽𝛽𝛽𝛽       𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 0
𝑧𝑧         𝑖𝑖𝑖𝑖 𝑧𝑧 > 0  

TanH 𝜙𝜙(𝑧𝑧) = tanh(𝑧𝑧) 

Sigmoid 𝜙𝜙(𝑧𝑧) = 1/(1 + 𝑒𝑒−𝑧𝑧) 
 
 

Table 3: Parameter used in this study for ADAM optimizer 

Parameter 𝛽𝛽1 𝛽𝛽2 𝜖𝜖 𝛼𝛼 
Value 0.9 0.999 10−8 0.001 

 
 

Table 4: Architectural details of encoder block of convolutional autoencoder  
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Layer No of filters Kernel/Pool 
size 

Activation 
function Data Size 

Input -  -  - 256×256×1 

Convolutional Layer 1 64 3×3 ReLU 256×256×64 

Maxpooling Layer 1 - 2×2 - 128×128×64 

Convolutional Layer 2 32 3×3 ReLU 128×128×32 

Maxpooling Layer 2 - 2×2 - 64×64×32 

Convolutional Layer 3 16 3×3 ReLU 64×64×16 

Maxpooling Layer 3 - 2×2 - 32×32×16 

Convolutional Layer 4 8 3×3 ReLU 32×32×8 

Maxpooling Layer 4 - 2×2 - 16×16×8 

 
 

Table 5: Architectural details of decoder block of convolutional autoencoder  

Layer No of filters 
Kernel/Pool 

size 
Activation 
function Data Size 

Latent Input -  -  - 16×16×8 

Upsampling Layer 1 -  2×2 - 32×32×8 

Convolutional Layer 1 8 3×3 ReLU 32×32×8 

Upsampling Layer 2 - 2×2 - 64×64×8 

Convolutional Layer 2 16 3×3 ReLU 64×64×16 

Upsampling Layer 3 - 2×2 - 128×128×16 

Convolutional Layer 3 32 3×3 ReLU 128×128×32 

Upsampling Layer 4 - 2×2 - 256×256×32 

Convolutional Layer 4 64 3×3 ReLU 256×256×64 

Convolutional Layer 5 1 3×3 Linear 256×256×1 

 

Table 6: Architectural details of decoder block of convolutional autoencoder  
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Figures 

 
Fig. 1: General schematic of autoencoder’s architecture. Encoder, 𝑓𝑓, maps the input, 𝒙𝒙, to a 
dimensionally reduced space and generate latent features, 𝒍𝒍, and decoder, 𝑔𝑔, uses the compressed 
data, 𝒍𝒍, and outputs reconstructed input, 𝒙𝒙, without significant loss of information.  
 

Fig. 2: Convolution of an RGB image input with 3×3 kernels and a unit stride. The three input 

 

Compressed data   
(latent features) 

𝒍𝒍 

Reconstructed input 

𝒍𝒍 =  𝒇𝒇(𝒙𝒙) 𝒙𝒙� = 𝒈𝒈(𝒍𝒍) 

Input 

Encoder, 𝒇𝒇 Decoder, 𝒈𝒈   𝒙𝒙 𝒙𝒙� 

0 3 0 3 1 

5 1 3 7 4 

1 2 8 5 0 

3 1 4 3 3 

6 2 3 2 4 
 

3 2 3 0 0 

5 2 0 7 4 

1 2 5 1 0 

3 9 4 3 3 

8 1 3 2 1 
 

1 2 3 1 0 

5 2 0 7 1 

1 2 5 0 0 

3 1 4 3 3 

1 1 0 2 4 
 

1 0 0 

-1 0 -1 

0 0 1 
 

0 1 0 

-1 0 1 

0 -1 0 
 

1 0 0 

0 -1 0 

0 0 1 
 

-5 3 3 

-3 -5 -1 

2 -4 -2 
 

4 2 -4 

7 0 3 

0 0 6 
 

+ 

+ 

0 0 -7 

0 -3 -2 

-3 0 5 
 

-1 5 -8 

4 -8 0 

-1 -4 9 
 

C 

C 

C C 
convolution 
operation 

feature map 

kernel 1  

kernel 2  

kernel 3  

RGB channel inputs  filter  convolved outputs  



21 

channel arrays are convolved with their respective kernels positioned next to them.  Dashed boxes 
on the input shows subarrays enclosed by the kernel window at an arbitrary step. The outputs and 
their positions results from convolution between the subarrays and the kernels are again indicated 
using a dashed box on the output arrays. The feature map is obtained finally by summing the 
convolved outputs together. 

 

Fig. 3: Convolutional operation involved in ‘same’ padding type. A row and column of zeros are 
added around the input sides to produce the feature map with size same as that of the input. A 
kernel filter of size 3×3 and a unit stride are used for this demonstration. 
    

 

Fig. 4: Illustration of a pooling operation with a pool window size of 2×2 and stride 2. The different 
colors in the feature map highlight the subarrays captured by the pool window. The max pool and 
average pool values of those subarrays are shown on the right side. The pooling operation halves 
the width and height of input feature maps.    
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Fig. 5: Illustration of a upsampling operation with a window size of 2×2. Upsampling in this 
illustrated case involves the repetition of each input values into a 2×2 array and increases the 
dimensions of the input by the factor of 2.   

 

 

Fig. 6: Schematic of the methodology used in this study 
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Fig. 7: Architecture of the convolutional autoencoder employed in the study. Yellow, red, and 
purple blocks are convolutional, max pooling and upsampling layers respectively. The employed 
network involves 50,353 network parameters. The input size of 256×256×1 is reduced to latent 
size of 16×16×8 with a compression ratio of 32.   

 

 

Fig. 8: Relevance matrix mapping the attribution of each pixel features in the input array 
 
  

 
Fig. 9: Implementation of complex step derivative approximation to compute partial derivatives 
of latent features with respect to input pixel features. The input with a perturbed pixel feature (𝑥𝑥𝑖𝑖𝑖𝑖) 
is feedforwarded on the complex convolutional neural network. The partial derivatives (𝒈𝒈) are 
determined by dividing the imaginary components of complex latent outputs (𝒍𝒍) with step size, ℎ. 

𝒙𝒙 𝒓𝒓 

𝑥𝑥11  𝑥𝑥12  𝑥𝑥13  ⋯ 𝑥𝑥1𝑞𝑞  

𝑥𝑥21 𝑥𝑥22 𝑥𝑥23 ⋯ 𝑥𝑥2𝑞𝑞  

𝑥𝑥31 𝑥𝑥32 𝑥𝑥33 ⋯ 𝑥𝑥3𝑞𝑞  

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑥𝑥𝑝𝑝1 𝑥𝑥𝑝𝑝2 𝑥𝑥𝑝𝑝3 ⋯ 𝑥𝑥𝑝𝑝𝑞𝑞  

 

𝑟𝑟11 𝑟𝑟12 𝑟𝑟13 ⋯ 𝑟𝑟1𝑞𝑞  

𝑟𝑟21 𝑟𝑟22 𝑟𝑟23 ⋯ 𝑟𝑟2𝑞𝑞  

𝑟𝑟31 𝑟𝑟32 𝑟𝑟33 ⋯ 𝑟𝑟3𝑞𝑞  

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑟𝑟𝑝𝑝1 𝑟𝑟𝑝𝑝2 𝑟𝑟𝑝𝑝3 ⋯ 𝑟𝑟𝑝𝑝𝑞𝑞  

 

𝒔𝒔 

𝒈𝒈 = 𝑖𝑖𝑖𝑖(𝒍𝒍) ℎ⁄  
input after complex 

perturbation 

complex latent 
outputs 

complex convolutional neural network 



24 

 
 

 
Fig. 10: Top row – Input microstructural images, Bottom row - microstructural images 
reconstructed by the trained network with a mean squared error reconstruction loss 0.035.  
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LRP𝓌𝓌2 

     
 
Fig. 11: Saliency maps generated for the trained convolutional autoencoder using the proposed 
complex perturbation approach (CPA), guided backpropagation (GBP), layer wise propagation 
with 𝓌𝓌2 rule for the first layer (LRP𝓌𝓌2), layer wise propagation with 𝒵𝒵𝛽𝛽 rule for the first layer 
(LRP𝛽𝛽), and along with the input microstructural images.   


